1
|
McGirr T, Onar O, Jafarnejad SM. Dysregulated ribosome quality control in human diseases. FEBS J 2025; 292:936-959. [PMID: 38949989 PMCID: PMC11880988 DOI: 10.1111/febs.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Precise regulation of mRNA translation is of fundamental importance for maintaining homeostasis. Conversely, dysregulated general or transcript-specific translation, as well as abnormal translation events, have been linked to a multitude of diseases. However, driven by the misconception that the transient nature of mRNAs renders their abnormalities inconsequential, the importance of mechanisms that monitor the quality and fidelity of the translation process has been largely overlooked. In recent years, there has been a dramatic shift in this paradigm, evidenced by several seminal discoveries on the role of a key mechanism in monitoring the quality of mRNA translation - namely, Ribosome Quality Control (RQC) - in the maintenance of homeostasis and the prevention of diseases. Here, we will review recent advances in the field and emphasize the biological significance of the RQC mechanism, particularly its implications in human diseases.
Collapse
Affiliation(s)
- Tom McGirr
- Patrick G. Johnston Centre for Cancer ResearchQueen's University BelfastUK
| | - Okan Onar
- Patrick G. Johnston Centre for Cancer ResearchQueen's University BelfastUK
- Department of Biology, Faculty of ScienceAnkara UniversityTurkey
| | | |
Collapse
|
2
|
Chatterjee S, Naeli P, Onar O, Simms N, Garzia A, Hackett A, Coyle K, Harris Snell P, McGirr T, Sawant TN, Dang K, Stoichkova Z, Azam Y, Saunders M, Braun M, Alain T, Tuschl T, McDade S, Longley D, Gkogkas C, Adrain C, Knight JP, Jafarnejad SM. Ribosome Quality Control mitigates the cytotoxicity of ribosome collisions induced by 5-Fluorouracil. Nucleic Acids Res 2024; 52:12534-12548. [PMID: 39351862 PMCID: PMC11551743 DOI: 10.1093/nar/gkae849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 11/12/2024] Open
Abstract
Ribosome quality control (RQC) resolves collided ribosomes, thus preventing their cytotoxic effects. The chemotherapeutic agent 5-Fluorouracil (5FU) is best known for its misincorporation into DNA and inhibition of thymidylate synthase. However, while a major determinant of 5FU's anticancer activity is its misincorporation into RNAs, the mechanisms by which cancer cells overcome the RNA-dependent 5FU toxicity remain ill-defined. Here, we report a role for RQC in mitigating the cytotoxic effects of 5FU. We show that 5FU treatment results in rapid induction of the mTOR signalling pathway, enhanced rate of mRNA translation initiation, and increased ribosome collisions. Consistently, a defective RQC exacerbates the 5FU-induced cell death, which is mitigated by blocking mTOR pathway or mRNA translation initiation. Furthermore, 5FU treatment enhances the expression of the key RQC factors ZNF598 and GIGYF2 via an mTOR-dependent post-translational mechanism. This adaptation likely mitigates the cytotoxic consequences of increased ribosome collisions upon 5FU treatment.
Collapse
Affiliation(s)
- Susanta Chatterjee
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Okan Onar
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Nicole Simms
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Angela Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Kelsey Coyle
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Patric Harris Snell
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Tom McGirr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Tanvi Nitin Sawant
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Kexin Dang
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Zornitsa Vasileva Stoichkova
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Yumna Azam
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Mark P Saunders
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Michael Braun
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ONK1H 8L1, Canada
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Simon S McDade
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Daniel B Longley
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Christos G Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Colin Adrain
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - John R P Knight
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| |
Collapse
|
3
|
He Q, Zheng Y, Lu L, Shen H, Gu W, Yang J, Zhang X, Jin H. Hyperthermia improves gemcitabine sensitivity of pancreatic cancer cells by suppressing the EFNA4/β-catenin axis and activating dCK. Heliyon 2024; 10:e28488. [PMID: 38590861 PMCID: PMC10999932 DOI: 10.1016/j.heliyon.2024.e28488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background Previously, our investigations have underscored the potential of hyperthermia to improve the therapeutic efficacy of gemcitabine (GEM) in pancreatic cancer (PC). Nonetheless, the precise underlying mechanisms remain elusive. Methods We engineered two GEM-resistant PC cell lines (BxPC-3/GEM and PANC-1/GEM) and treated them with GEM alongside hyperthermia. The impact of hyperthermia on the therapeutic potency of GEM was ascertained through MTT assay, assessment of the concentration of its active metabolite dFdCTP, and evaluation of deoxycytidine kinase (dCK) activity. Lentivirus-mediated dCK silencing was further employed to validate its involvement in mediating the GEM-sensitizing effect of hyperthermia. The mechanism underlying hyperthermia-mediated dCK activation was explored using bioinformatics analyses. The interplay between hyperthermia and the ephrin A4 (EFNA4)/β-catenin/dCK axis was investigated, and their roles in GEM resistance was further explored via the establishment of xenograft tumor models in nude mice. Results Hyperthermia restored dCK expression in GEM-resistant cell lines, concurrently enhancing GEM sensitivity and fostering DNA damage and cell death. These observed effects were negated by dCK silencing. Regarding the mechanism, hyperthermia activated dCK by downregulating EFNA4 expression and mitigating β-catenin activation. Overexpression of EFNA4 activated the β-catenin while suppressing dCK, thus diminishing cellular GEM sensitivity-a phenomenon remediated by the β-catenin antagonist MSAB. Consistently, in vivo, hyperthermia augmented the therapeutic efficacy of GEM on xenograft tumors through modulation of the ephrin A4/β-catenin/dCK axis. Conclusion This study delineates the role of hyperthermia in enhancing GEM sensitivity of PC cells, primarily mediated through the suppression of the EFNA4/β-catenin axis and activation of dCK.
Collapse
Affiliation(s)
- Qiaoxian He
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
| | - Yangyang Zheng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
| | - Lei Lu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
| | - Hongzhang Shen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
| | - Weigang Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
| | - Jianfeng Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310006, Zhejiang, PR China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China
| | - Xiaofeng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310006, Zhejiang, PR China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China
| | - Hangbin Jin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310006, Zhejiang, PR China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China
| |
Collapse
|
4
|
Persaud AK, Bernier MC, Massey MA, Agrawal S, Kaur T, Nayak D, Xie Z, Weadick B, Raj R, Hill K, Abbott N, Joshi A, Anabtawi N, Bryant C, Somogyi A, Cruz-Monserrate Z, Amari F, Coppola V, Sparreboom A, Baker SD, Unadkat JD, Phelps MA, Govindarajan R. Increased renal elimination of endogenous and synthetic pyrimidine nucleosides in concentrative nucleoside transporter 1 deficient mice. Nat Commun 2023; 14:3175. [PMID: 37264059 PMCID: PMC10235067 DOI: 10.1038/s41467-023-38789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Concentrative nucleoside transporters (CNTs) are active nucleoside influx systems, but their in vivo roles are poorly defined. By generating CNT1 knockout (KO) mice, here we identify a role of CNT1 in the renal reabsorption of nucleosides. Deletion of CNT1 in mice increases the urinary excretion of endogenous pyrimidine nucleosides with compensatory alterations in purine nucleoside metabolism. In addition, CNT1 KO mice exhibits high urinary excretion of the nucleoside analog gemcitabine (dFdC), which results in poor tumor growth control in CNT1 KO mice harboring syngeneic pancreatic tumors. Interestingly, increasing the dFdC dose to attain an area under the concentration-time curve level equivalent to that achieved by wild-type (WT) mice rescues antitumor efficacy. The findings provide new insights into how CNT1 regulates reabsorption of endogenous and synthetic nucleosides in murine kidneys and suggest that the functional status of CNTs may account for the optimal action of pyrimidine nucleoside analog therapeutics in humans.
Collapse
Affiliation(s)
- Avinash K Persaud
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew C Bernier
- Campus Chemical Instrument Center Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael A Massey
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- The Center for Life Sciences Education, College of Arts and Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Shipra Agrawal
- Division of Nephrology & Hypertension, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Tejinder Kaur
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Debasis Nayak
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhiliang Xie
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Brenna Weadick
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Kasey Hill
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Nicole Abbott
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Arnav Joshi
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Nadeen Anabtawi
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Claire Bryant
- Center for Clinical & Translational Research, Nationwide Children's Hospital, Columbus, OH, 43210, USA
| | - Arpad Somogyi
- Campus Chemical Instrument Center Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, 43210, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Genetically Engineered Mouse Modeling Core, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Alex Sparreboom
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharyn D Baker
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, College of Pharmacy, University of Washington, Seattle, WA, 98195, USA
- Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Mitch A Phelps
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA.
- Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Cha HM, Kim UI, Ahn SB, Lee MK, Lee H, Bang H, Jang Y, Kim SS, Bae MA, Kim K, Kim M. Evaluation of Antiviral Activity of Gemcitabine Derivatives against Influenza Virus and Severe Acute Respiratory Syndrome Coronavirus 2. ACS Infect Dis 2023; 9:1033-1045. [PMID: 36912867 PMCID: PMC10081574 DOI: 10.1021/acsinfecdis.3c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 03/14/2023]
Abstract
Gemcitabine is a nucleoside analogue of deoxycytidine and has been reported to be a broad-spectrum antiviral agent against both DNA and RNA viruses. Screening of a nucleos(t)ide analogue-focused library identified gemcitabine and its derivatives (compounds 1, 2a, and 3a) blocking influenza virus infection. To improve their antiviral selectivity by reducing cytotoxicity, 14 additional derivatives were synthesized in which the pyridine rings of 2a and 3a were chemically modified. Structure-and-activity and structure-and-toxicity relationship studies demonstrated that compounds 2e and 2h were most potent against influenza A and B viruses but minimally cytotoxic. It is noteworthy that in contrast to cytotoxic gemcitabine, they inhibited viral infection with 90% effective concentrations of 14.5-34.3 and 11.4-15.9 μM, respectively, maintaining viability of mock-infected cells over 90% at 300 μM. Resulting antiviral selectivity was comparable to that of a clinically approved nucleoside analogue, favipiravir. The cell-based viral polymerase assay proved the mode-of-action of 2e and 2h targeting viral RNA replication and/or transcription. In a murine influenza A virus-infection model, intraperitoneal administration of 2h not only reduced viral RNA level in the lungs but also alleviated infection-mediated pulmonary infiltrates. In addition, it inhibited replication of severe acute respiratory syndrome virus 2 infection in human lung cells at subtoxic concentrations. The present study could provide a medicinal chemistry framework for the synthesis of a new class of viral polymerase inhibitors.
Collapse
Affiliation(s)
- Hyeon-Min Cha
- Infectious
Diseases Therapeutic Research Center, Korea
Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Graduate
School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic
of Korea
| | - Uk-Il Kim
- ST
Pharm Co., Ltd., Seoul 06194, Republic of Korea
- College
of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Soo Bin Ahn
- Infectious
Diseases Therapeutic Research Center, Korea
Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Graduate
School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic
of Korea
| | - Myoung Kyu Lee
- Infectious
Diseases Therapeutic Research Center, Korea
Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Haemi Lee
- Infectious
Diseases Therapeutic Research Center, Korea
Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | | | - Yejin Jang
- Infectious
Diseases Therapeutic Research Center, Korea
Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Seong Soon Kim
- Drug
Discovery Platform Research Center, Korea
Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Myung Ae Bae
- Drug
Discovery Platform Research Center, Korea
Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Kyungjin Kim
- ST
Pharm Co., Ltd., Seoul 06194, Republic of Korea
| | - Meehyein Kim
- Infectious
Diseases Therapeutic Research Center, Korea
Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Graduate
School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic
of Korea
| |
Collapse
|
6
|
Venkataramanan NS, Suvitha A, Sahara R, Kawazoe Y. Unveiling the gemcitabine drug complexation with cucurbit[n]urils (n = 6–8): a computational analysis. Struct Chem 2023. [DOI: 10.1007/s11224-023-02133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
8
|
Is age just a number? A population pharmacokinetic study of gemcitabine. Cancer Chemother Pharmacol 2022; 89:697-705. [PMID: 35426526 DOI: 10.1007/s00280-022-04431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/01/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Pharmacokinetic exposure to gemcitabine and its metabolite, 2',2'-difluorodeoxyuridine (dFdU), might be altered in elderly compared to their younger counterparts. It is unknown if age-based dose adjustments are necessary to reduce the development of treatment-induced adverse events. The aim of this study was to assess the impact of age on the pharmacokinetics of gemcitabine and dFdU. METHODS Pharmacokinetic sampling following a flexible limited sampling strategy was performed in patients ≥ 70 years after gemcitabine infusion. The data were supplemented with pharmacokinetic data in patients included in four previously conducted clinical trials. Nonlinear mixed effects modelling was performed on the pooled dataset to assess the impact of age on the pharmacokinetics of gemcitabine and dFdU. RESULTS In total, pharmacokinetic data were available of 197 patients, of whom 83 patients were aged ≥ 70 years (42%). A two-compartment model for both gemcitabine and dFdU with linear clearances from the central compartments described the data best. Age, tested as continuous and categorical (< 70 years versus ≥ 70 years) covariate, did not statistically affect the pharmacokinetics of gemcitabine and dFdU. CONCLUSION Age was not of influence on the pharmacokinetics of gemcitabine or its metabolite, dFdU. Age-related dose adjustments for gemcitabine based on pharmacokinetic considerations are not recommended. TRIAL REGISTRATION NUMBER NL39647.048.12, registered on May 3rd 2012.
Collapse
|
9
|
Müller JP, Gründemann D. Does Intracellular Metabolism Render Gemcitabine Uptake Undetectable in Mass Spectrometry? Int J Mol Sci 2022; 23:ijms23094690. [PMID: 35563081 PMCID: PMC9101085 DOI: 10.3390/ijms23094690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
The ergothioneine transporter ETT (formerly OCTN1; human gene symbol SLC22A4) is a powerful and highly specific transporter for the uptake of ergothioneine (ET). Recently, Sparreboom et al. reported that the ETT would transport nucleosides and nucleoside analogues such as cytarabine and gemcitabine with the highest efficiency. In our assay system, we could not detect any such transport. Subsequently, Sparreboom suggested that the intracellular metabolization of the nucleosides occurs so fast that the original compounds cannot be detected by LC–MS/MS after inward transport. Our current experiments with 293 cells disprove this hypothesis. Uptake of gemcitabine was easily detected by LC–MS/MS measurements when we expressed the Na+/nucleoside cotransporter CNT3 (SLC28A3). Inward transport was 1280 times faster than the intracellular production of gemcitabine triphosphate. The deoxycytidine kinase inhibitor 2-thio-2′-deoxycytidine markedly blocked the production of gemcitabine triphosphate. There was no concomitant surge in intracellular gemcitabine, however. This does not fit the rapid phosphorylation of gemcitabine. Uptake of cytarabine was very slow, but detection by MS was still possible. When the ETT was expressed and incubated with gemcitabine, there was no increase in intracellular gemcitabine triphosphate. We conclude that the ETT does not transport nucleosides.
Collapse
|
10
|
Jang Y, Shin JS, Lee MK, Jung E, An T, Kim UI, Kim K, Kim M. Comparison of Antiviral Activity of Gemcitabine with 2'-Fluoro-2'-Deoxycytidine and Combination Therapy with Remdesivir against SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22041581. [PMID: 33557278 PMCID: PMC7915419 DOI: 10.3390/ijms22041581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. The virus still spreads globally through human-to-human transmission. Nevertheless, there are no specific treatments clinically approved. This study aimed to compare antiviral activity of gemcitabine and its analogue 2′-fluoro-2′-deoxycytidine (2FdC) against SARS-CoV-2 as well as cytotoxicity in vitro. Fluorescent image-based antiviral assays revealed that gemcitabine was highly potent, with a 50% effective concentration (EC50) of 1.2 μM, more active than the well-known nucleoside monophosphate remdesivir (EC50 = 35.4 μM). In contrast, 2FdC was marginally active (EC50 = 175.2 μM). For all three compounds, the 50% cytotoxic concentration (CC50) values were over 300 μM toward Vero CCL-81 cells. Western blot and quantitative reverse-transcription polymerase chain reaction analyses verified that gemcitabine blocked viral protein expression in virus-infected cells, not only Vero CCL-81 cells but also Calu-3 human lung epithelial cells in a dose-dependent manner. It was found that gemcitabine has a synergistic effect when combined with remdesivir. This report suggests that the difluoro group of gemcitabine is critical for the antiviral activity and that its combination with other evaluated antiviral drugs, such as remdesivir, could be a desirable option to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (M.K.L.); (E.J.); (T.A.)
| | - Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (M.K.L.); (E.J.); (T.A.)
| | - Myoung Kyu Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (M.K.L.); (E.J.); (T.A.)
| | - Eunhye Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (M.K.L.); (E.J.); (T.A.)
| | - Timothy An
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (M.K.L.); (E.J.); (T.A.)
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea
| | - Uk-Il Kim
- Research and Development Center, ST Pharm Co., Ltd., Seoul 01694, Korea;
| | - Kyungjin Kim
- Research and Development Center, ST Pharm Co., Ltd., Seoul 01694, Korea;
- Correspondence: (K.K.); (M.K.)
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (M.K.L.); (E.J.); (T.A.)
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (K.K.); (M.K.)
| |
Collapse
|
11
|
Derissen EJB, Beijnen JH. Intracellular Pharmacokinetics of Pyrimidine Analogues used in Oncology and the Correlation with Drug Action. Clin Pharmacokinet 2020; 59:1521-1550. [PMID: 33064276 PMCID: PMC7717039 DOI: 10.1007/s40262-020-00934-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pyrimidine analogues can be considered as prodrugs, like their natural counterparts, they have to be activated within the cell. The intracellular activation involves several metabolic steps including sequential phosphorylation to its monophosphate, diphosphate and triphosphate. The intracellularly formed nucleotides are responsible for the pharmacological effects. This review provides a comprehensive overview of the clinical studies that measured the intracellular nucleotide concentrations of pyrimidine analogues in patients with cancer. The objective was to gain more insight into the parallels between the different pyrimidine analogues considering their intracellular pharmacokinetics. For cytarabine and gemcitabine, the intracellular pharmacokinetics have been extensively studied over the years. However, for 5-fluorouracil, capecitabine, azacitidine and decitabine, the intracellular pharmacokinetics was only very minimally investigated. This is probably owing to the fact that there were no suitable bioanalytical assays for a long time. Since the advent of suitable assays, the first exploratory studies indicate that the intracellular 5-fluorouracil, azacitidine and decitabine nucleotide concentrations are very low compared with the intracellular nucleotide concentrations obtained during treatment with cytarabine or gemcitabine. Based on their pharmacology, the intracellular accumulation of nucleotides appears critical to the cytotoxicity of pyrimidine analogues. However, not many clinical studies have actually investigated the relationship between the intracellular nucleotide concentrations in patients with cancer and the anti-tumour effect. Only for cytarabine, a relationship was demonstrated between the intracellular triphosphate concentrations in leukaemic cells and the response rate in patients with AML. Future clinical studies should show, for the other pyrimidine analogues, whether there is a relationship between the intracellular nucleotide concentrations and the clinical outcome of patients. Research that examined the intracellular pharmacokinetics of cytarabine and gemcitabine focused primarily on the saturation aspect of the intracellular triphosphate formation. Attempts to improve the dosing regimen of gemcitabine were aimed at maximising the intracellular gemcitabine triphosphate concentrations. However, this strategy does not make sense, as efficient administration also means that less gemcitabine can be administered before dose-limiting toxicities are achieved. For all pyrimidine analogues, a linear relationship was found between the dose and the plasma concentration. However, no correlation was found between the plasma concentration and the intracellular nucleotide concentration. The concentration-time curves for the intracellular nucleotides showed considerable inter-individual variation. Therefore, the question arises whether pyrimidine analogue therapy should be more individualised. Future research should show which intracellular nucleotide concentrations are worth pursuing and whether dose individualisation is useful to achieve these concentrations.
Collapse
Affiliation(s)
- Ellen J B Derissen
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek Hospital-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC , Amsterdam, The Netherlands. .,Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Department of Pharmacy , Elisabeth-TweeSteden Hospital, Dr. Deelenlaan 5, 5042 AD, Tilburg, The Netherlands.
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek Hospital-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC , Amsterdam, The Netherlands.,Science Faculty, Division of Pharmaco-epidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
12
|
Thompson BR, Shi J, Zhu HJ, Smith DE. Pharmacokinetics of gemcitabine and its amino acid ester prodrug following intravenous and oral administrations in mice. Biochem Pharmacol 2020; 180:114127. [PMID: 32603666 DOI: 10.1016/j.bcp.2020.114127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/30/2022]
Abstract
Gemcitabine is an intravenously administered anti-cancer nucleoside analogue. Systemic exposure following oral administration of gemcitabine is limited by extensive first-pass metabolism via cytidine deaminase (CDA) and potentially by saturation of nucleoside transporter-mediated intestinal uptake. An amino acid ester prodrug of gemcitabine, 5'-l-valyl-gemcitabine (V-Gem), was previously shown to be a substrate of the intestinally expressed peptide transporter 1 (PEPT1) and stable against CDA-mediated metabolism. However, preliminary studies did not evaluate the in vivo oral performance of V-Gem as compared to parent drug. In the present study, we evaluated the pharmacokinetics and in vivo oral absorption of gemcitabine and V-Gem following intravenous and oral administrations in mice. These studies revealed that V-Gem undergoes rapid systemic elimination (half-life < 1 min) and has a low oral bioavailability (<1%). Most importantly, the systemic exposure of gemcitabine was not different following oral administration of equimolar doses of gemcitabine (gemcitabine bioavailability of 18.3%) and V-Gem (gemcitabine bioavailability of 16.7%). Single-pass intestinal perfusions with portal blood sampling in mice revealed that V-Gem undergoes extensive activation in intestinal epithelial cells and that gemcitabine undergoes first-pass metabolism in intestinal epithelial cells. Thus, formulation of gemcitabine as the prodrug V-Gem does not increase systemic gemcitabine exposure following oral dosing, due, in part, to the instability of V-Gem in intestinal epithelial cells.
Collapse
Affiliation(s)
- Brian R Thompson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jian Shi
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Combination chemotherapy with gemcitabine and nab-paclitaxel for a metastatic pancreatic ductal adenocarcinoma patient undergoing hemodialysis. Clin J Gastroenterol 2019; 12:484-489. [DOI: 10.1007/s12328-019-00976-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/28/2019] [Indexed: 01/05/2023]
|
14
|
Jin HB, Lu L, Xie L, Yang JF, Zhang XF, Ma SL. Concentration changes in gemcitabine and its metabolites after hyperthermia in pancreatic cancer cells assessed using RP-HPLC. Cell Mol Biol Lett 2019; 24:30. [PMID: 31131010 PMCID: PMC6521548 DOI: 10.1186/s11658-019-0153-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
Background Gemcitabine (2′,2′-difluoro-2′-deoxycytidine;dFdC) is a first-line chemotherapy drug for pancreatic cancer. Recently, a synergistic anti-tumor treatment of dFdC and hyperthermia has achieved good clinical results, but there are few reports on the molecular mechanism influenced by hyperthermia. This study is an initial exploration of the effects of hyperthermia on changes in the concentration of dFdC and its metabolites in pancreatic cancer cells. The aim is to provide a theoretical basis for clinical detection and pharmacokinetic research. Methods PANC-1 cells at logarithmic growth phase were used as the experimental object. The MTT assay was performed to determine the half maximal inhibitory concentration (IC50) of dFdC. After PANC-1 cells were cultured in DMEM medium containing IC50dFdC and treated with hyperthermia at 41 °C or 43 °C, changes in the concentration of dFdC, 2′,2′-difluorodeoxyuridine (dFdU) and difluorodeoxycytidine triphosphate (dFdCTP) in the cells were tested using an optimized reverse phase high-performance liquid chromatography (RP-HPLC) protocol. Results We found that 41 °C and 43 °Chyperthermia gave rise to a decrease in dFdC and dFdU content. At 41 °C, the levels respectively fell to 9.28 and 30.93% of the baseline, and at 43 °C, to 24.76 and 57.80%, respectively. The dFdCTP content increased by 21.82% at 41 °C and 42.42% at 43 °C. Conclusion The two heat treatments could alter the mechanism of dFdC metabolism in PANC-1 cells. The effect of 43 °C hyperthermia is more significant. Our observations may be instrumental to explaining the higher anti-tumor efficacy of this combination therapy.
Collapse
Affiliation(s)
- H B Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 China
| | - L Lu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 China
| | - L Xie
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 China
| | - J F Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 China
| | - X F Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 China
| | - S L Ma
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 China
| |
Collapse
|
15
|
Pulido J, de Cabrera M, Sobczak AJ, Amor-Coarasa A, McGoron AJ, Wnuk SF. 4-N-Alkanoyl and 4-N-alkyl gemcitabine analogues with NOTA chelators for 68-gallium labelling. Bioorg Med Chem 2018; 26:5624-5630. [PMID: 30342865 DOI: 10.1016/j.bmc.2018.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/03/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
The conjugation of 4-N-(3-aminopropanyl)-2'-deoxy-2',2'-difluorocytidine with 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (SCN-Bn-NOTA) ligand in 0.1 M Na2CO3 buffer (pH 11) at ambient temperature provided 4-N-alkylgemcitabine-NOTA chelator. Incubation of latter with excess of gallium(III) chloride (GaCl3) (0.6 N AcONa/H2O, pH = 9.3) over 15 min gave gallium 4-N-alkylgemcitabine-NOTA complex which was characterized by HRMS. Analogous [68Ga]-complexation of 4-N-alkylgemcitabine-NOTA conjugate proceeded with high labeling efficiency (94%-96%) with the radioligand almost exclusively found in the aqueous layer (∼95%). The high polarity of the gallium 4-N-alkylgemctiabine-NOTA complex resulted in rapid renal clearance of the 68Ga-labelled radioligand in BALB/c mice.
Collapse
Affiliation(s)
- Jesse Pulido
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Maria de Cabrera
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Adam J Sobczak
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Alejandro Amor-Coarasa
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, United States
| | - Anthony J McGoron
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, United States
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
16
|
Giménez-Marqués M, Bellido E, Berthelot T, Simón-Yarza T, Hidalgo T, Simón-Vázquez R, González-Fernández Á, Avila J, Asensio MC, Gref R, Couvreur P, Serre C, Horcajada P. GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801900. [PMID: 30091524 DOI: 10.1002/smll.201801900] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/15/2018] [Indexed: 05/24/2023]
Abstract
Controlling the outer surface of nanometric metal-organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL-100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF-PEG interaction is deeply investigated using high-resolution soft X-ray spectroscopy. Finally, a cell penetration study using the radio-labeled antitumor agent gemcitabine monophosphate (3 H-GMP)-loaded MIL-100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness.
Collapse
Affiliation(s)
- Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), Universitat de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
- Institut Lavoisier, Université de Versailles St Quentin, UMR CNRS 8180, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
- Institut des Matériaux Poreux de Paris, FRE CNRS 2000, École Normale Supérieure, École Supérieure de Physique et de Chimie Industrielles de Paris, PSL Research University, 75005, Paris, France
| | - Elena Bellido
- Institut Lavoisier, Université de Versailles St Quentin, UMR CNRS 8180, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Thomas Berthelot
- NIMBE, CEA, CNRS Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette Cedex, 91191, France
| | - Teresa Simón-Yarza
- INSERM U1148, Laboratory for Vascular Translational Science, Bichat Hospital Paris Diderot University, Paris 13 University, 75018, Paris, France
- Institut Lavoisier, Université de Versailles St Quentin, UMR CNRS 8180, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Tania Hidalgo
- Institut Lavoisier, Université de Versailles St Quentin, UMR CNRS 8180, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Rosana Simón-Vázquez
- Immunology, Biomedical Research Center (CINBIO), and Institute of Biomedical Research of Vigo (IBIV), Universidad de Vigo, Campus Lagoas Marcosende, 36310, Vigo, Pontevedra, Spain
| | - África González-Fernández
- Immunology, Biomedical Research Center (CINBIO), and Institute of Biomedical Research of Vigo (IBIV), Universidad de Vigo, Campus Lagoas Marcosende, 36310, Vigo, Pontevedra, Spain
| | - José Avila
- Synchrotron SOLEIL, Université Paris-Saclay, L'Orme des Merisiers, Saint-Aubin - BP48, 91192, Gif-sur-Yvette Cedex, France
| | - Maria Carmen Asensio
- Synchrotron SOLEIL, Université Paris-Saclay, L'Orme des Merisiers, Saint-Aubin - BP48, 91192, Gif-sur-Yvette Cedex, France
| | - Ruxandra Gref
- Institut de Sciences Moléculaires, Université Paris-Sud, UMR CNRS 8214, 91405, Orsay Cedex, France
| | - Patrick Couvreur
- Institut Galien, Université Paris-Sud, UMR CNRS 8612, Université Paris Saclay, 92290, Châtenay-Malabry, France
| | - Christian Serre
- Institut Lavoisier, Université de Versailles St Quentin, UMR CNRS 8180, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
- Institut des Matériaux Poreux de Paris, FRE CNRS 2000, École Normale Supérieure, École Supérieure de Physique et de Chimie Industrielles de Paris, PSL Research University, 75005, Paris, France
| | - Patricia Horcajada
- Institut Lavoisier, Université de Versailles St Quentin, UMR CNRS 8180, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
- Advanced Porous Materials Unit, IMDEA Energy, Av. Ramón de la Sagra 3, 28935, Móstoles-Madrid, Spain
| |
Collapse
|
17
|
Li L, Li Y, Shao Z, Luo G, Ding M, Liang Q. Simultaneous Assay of Oxygen-Dependent Cytotoxicity and Genotoxicity of Anticancer Drugs on an Integrated Microchip. Anal Chem 2018; 90:11899-11907. [PMID: 30168712 DOI: 10.1021/acs.analchem.8b02070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxygen deprivation is a common feature in a variety of cancer tissues and associated with tumor progression, acquisition of antiapoptotic potential, and clinical therapeutic resistance. Thus, great interest has been aroused to develop new platforms or approaches of activity assays to impact on the hypoxic microenvironment and oxygen-dependent drug responses to improve the productivity of new drug discovery. In this study, an integrated microsystem is established to combine the cytotoxic and genotoxic tests together for continuous multiple measurements under mimicking hypoxic tumor microenvironment. We fabricated a double-layer chip device by combining a single-cell-arrayed agarose layer with a microfluidics-based oxygen gradient-generating layer using a PDMS membrane. Using tirapazamine (TPZ) and blemycin (BLM) as model anticancer drugs, we demonstrated its application and performance in single cell loading, cell cultivation, and subsequent drug treatment as well as in situ analysis of oxygen-dependent cytotoxicity and genotoxicity of anticancer drugs. The results demonstrated the opposite oxygen-dependent toxicity of TPZ and BLM, which also indicated that the formation of DNA breaks is related with cell apoptosis. Compared with the traditional assays, this device takes advantage of microfluidic phenomena to generate various oxygen concentrations while exhibiting the combinatorial diversities achieved by the single cell microarray, offering a powerful tool to study single cell behaviors and responses under different oxygen conditions with desired high-content and high-throughput capabilities.
Collapse
Affiliation(s)
- Lili Li
- MOE Key Laboratory Bioorganic Phosphorous Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China.,Department of Pharmacy , Beijing Pharmaceutical University of Staff and Workers , Beijing 100079 , P. R. China
| | - Yaqiong Li
- MOE Key Laboratory Bioorganic Phosphorous Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Zixing Shao
- MOE Key Laboratory Bioorganic Phosphorous Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Guoan Luo
- MOE Key Laboratory Bioorganic Phosphorous Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Mingyu Ding
- MOE Key Laboratory Bioorganic Phosphorous Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Qionglin Liang
- MOE Key Laboratory Bioorganic Phosphorous Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
18
|
Russell J, Pillarsetty N, Kramer RM, Romesser PB, Desai P, Haimovitz-Friedman A, Lowery MA, Humm JL. In Vitro and In Vivo Comparison of Gemcitabine and the Gemcitabine Analog 1-(2'-deoxy-2'-fluoroarabinofuranosyl) Cytosine (FAC) in Human Orthotopic and Genetically Modified Mouse Pancreatic Cancer Models. Mol Imaging Biol 2018; 19:885-892. [PMID: 28349292 DOI: 10.1007/s11307-017-1078-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Although gemcitabine is a mainstay of pancreatic cancer therapy, it is only moderately effective, and it would be desirable to measure drug uptake in patients. 1-(2'-deoxy-2'-fluoroarabinofuranosyl) cytosine (FAC), is an analog of gemcitabine, and when labeled with F-18, it may be a potential surrogate PET tracer for the drug. PROCEDURES [18F]FAC was synthesized to a radiochemical purity of >96 %. The human tumor lines AsPC1, BxPC3, Capan-1, Panc1, and MiaPaca2 were grown orthotopically in nude mice. KPC mice that conditionally express oncogenic K-ras and p53 mutations in pancreatic tissue were also used. The intra-tumoral distributions of [14C]gemcitabine and [18F]FAC were mapped with autoradiography. The inter-tumor correlation between [14C]gemcitabine and [18F]FAC was established in the orthotopic tumors. Expression of the equilibrative and concentrative nucleoside transporters (ENT, CNT) in vitro was detected by western blotting. Drug uptake was characterized in vitro using [3H]gemcitabine and the effect of transporter inhibition on gemcitabine and FAC uptake was investigated. The relative affinity of cells for gemcitabine and FAC was tested in competition assays. The cell lines differed in sensitivity to transport inhibitors and in competition studies. There was a good in vivo correlation between the total uptake of [18F]FAC and [14C]gemcitabine, measured across all orthotopic tumors. Using the KPC and BxPC3 models, we found that [14C]gemcitabine and [18F]FAC were largely co-localized. CONCLUSIONS In the lines examined here, [18F]FAC uptake correlates well with gemcitabine in vivo, supporting the notion that [18F]FAC can serve as a PET radiotracer surrogate to determine the uptake and distribution of gemcitabine within pancreatic tumors.
Collapse
Affiliation(s)
- James Russell
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | | | - Robin M Kramer
- Research Animal Resource Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul B Romesser
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pooja Desai
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Maeve A Lowery
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
19
|
Gonzalez C, de Cabrera M, Wnuk SF. Gemcitabine analogues with 4-N-alkyl chain modified with fluoromethyl ketone group. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:248-260. [PMID: 29750577 DOI: 10.1080/15257770.2018.1465186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gemcitabine analogues with a lipophilic 4-N-alkyl chain bearing a terminal β-keto sulfonate moiety suitable for fluorination compatible with 18F-radiolabeling have been explored. Displacement of p-toluenesulfonylamino in protected 4-N-tosylgemcitabine with 1-amino-10-undecene gave 4-N-(10-undecenyl)-3',5'-di-O-benzoyl-2'-deoxy-2',2'-difluorocytidine. Oxidation of the terminal double bond in the latter with OsO4/NMO afforded 4-N-(10,11-dihydroxyundecanyl) derivative. Regioselective sulfonation of primary hydroxyl followed by oxidation of secondary hydroxyl with Collin's reagent yielded desired β-keto sulfonate analogues 8 or 9. Subsequent displacement of the mesylate or tosylate group with KF in the presence of Kryptofix 2.2.2. or 18-crown-6 ether followed by deprotection with NH3/MeOH gave 4-N-(11-fluoro-10-oxoundecanyl)-2'-deoxy-2',2'-difluorocytidine 11.
Collapse
Affiliation(s)
- Cesar Gonzalez
- a Department of Chemistry and Biochemistry , Florida International University , Miami , Florida , United States
| | | | - Stanislaw F Wnuk
- a Department of Chemistry and Biochemistry , Florida International University , Miami , Florida , United States
| |
Collapse
|
20
|
Derissen EJB, Huitema ADR, Rosing H, Schellens JHM, Beijnen JH. Intracellular pharmacokinetics of gemcitabine, its deaminated metabolite 2',2'-difluorodeoxyuridine and their nucleotides. Br J Clin Pharmacol 2018; 84:1279-1289. [PMID: 29451684 DOI: 10.1111/bcp.13557] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/01/2018] [Accepted: 01/28/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS Gemcitabine (2',2'-difluoro-2'-deoxycytidine; dFdC) is a prodrug that has to be phosphorylated within the tumour cell to become active. Intracellularly formed gemcitabine diphosphate (dFdCDP) and triphosphate (dFdCTP) are considered responsible for the antineoplastic effects of gemcitabine. However, a major part of gemcitabine is converted into 2',2'-difluoro-2'-deoxyuridine (dFdU) by deamination. In the cell, dFdU can also be phosphorylated to its monophosphate (dFdUMP), diphosphate (dFdUDP) and triphosphate (dFdUTP). In vitro data suggest that these dFdU nucleotides might also contribute to the antitumour effects, although little is known about their intracellular pharmacokinetics (PK). Therefore, the objective of the present study was to gain insight into the intracellular PK of all dFdC and dFdU nucleotides formed during gemcitabine treatment. METHODS Peripheral blood mononuclear cell (PBMC) samples were collected from 38 patients receiving gemcitabine, at multiple time points after infusion. Gemcitabine, dFdU and their nucleotides were quantified in PBMCs. In addition, gemcitabine and dFdU plasma concentrations were monitored. The individual PK parameters in plasma and in PBMCs were determined. RESULTS Both in plasma and in PBMCs, dFdU was present in higher concentrations than gemcitabine [mean intracellular area under the concentration-time curve from time zero to 24 h (AUC0-24 h ) 1650 vs. 95 μM*h]. However, the dFdUMP, dFdUDP and dFdUTP concentrations in PBMCs were much lower than the dFdCDP and dFdCTP concentrations. The mean AUC0-24 h for dFdUTP was 312 μM*h vs. 2640 μM*h for dFdCTP. CONCLUSIONS The study provides the first complete picture of all nucleotides that are formed intracellularly during gemcitabine treatment. Low intracellular dFdU nucleotide concentrations were found, which calls into question the relevance of these nucleotides for the cytotoxic effects of gemcitabine.
Collapse
Affiliation(s)
- Ellen J B Derissen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg, 6, 1066, EC, Amsterdam, The Netherlands.,Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg, 6, 1066, EC, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg, 6, 1066, EC, Amsterdam, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.,Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmaco-epidemiology & Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508, TB, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg, 6, 1066, EC, Amsterdam, The Netherlands.,Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmaco-epidemiology & Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508, TB, Utrecht, The Netherlands
| |
Collapse
|
21
|
Gonzalez C, Sanchez A, Collins J, Lisova K, Lee JT, Michael van Dam R, Alejandro Barbieri M, Ramachandran C, Wnuk SF. The 4-N-acyl and 4-N-alkyl gemcitabine analogues with silicon-fluoride-acceptor: Application to 18F-Radiolabeling. Eur J Med Chem 2018; 148:314-324. [PMID: 29471120 PMCID: PMC5841594 DOI: 10.1016/j.ejmech.2018.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/24/2018] [Accepted: 02/06/2018] [Indexed: 01/05/2023]
Abstract
The coupling of gemcitabine with functionalized carboxylic acids using peptide coupling conditions afforded 4-N-alkanoyl analogues with a terminal alkyne or azido moiety. Reaction of 4-N-tosylgemcitabine with azidoalkyl amine provided 4-N-alkyl gemcitabine with a terminal azido group. Click reaction with silane building blocks afforded 4-N-alkanoyl or 4-N-alkyl gemcitabine analogues suitable for fluorination. RP-HPLC analysis indicated better chemical stability of 4-N-alkyl gemcitabine analogues versus 4-N-alkanoyl analogues in acidic aqueous conditions. The 4-N-alkanoyl gemcitabine analogues showed potent cytostatic activity against L1210 cell line, but cytotoxicity of the 4-N-alkylgemcitabine analogues was low. However, 4-N-alkanoyl and 4-N-alkyl analogues had comparable antiproliferative activities in the HEK293 cells. The 4-N-alkyl analogue with a terminal azide group was shown to be localized inside HEK293 cells by fluorescence microscopy after labelling with Fluor 488-alkyne. The [18F]4-N-alkyl or alkanoyl silane gemcitabine analogues were successfully synthesized using microscale and conventional silane-labeling radiochemical protocols. Preliminary positron-emission tomography (PET) imaging in mice showed the biodistribution of [18F]4-N-alkyl to have initial concentration in the liver, kidneys and GI tract followed by increasing signal in the bone.
Collapse
Affiliation(s)
- Cesar Gonzalez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| | - Andersson Sanchez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| | - Jeffrey Collins
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, United States
| | - Ksenia Lisova
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, United States; Physics & Biology in Medicine Interdepartmental Graduate Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, United States
| | - Jason T Lee
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, United States
| | - R Michael van Dam
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, United States; Physics & Biology in Medicine Interdepartmental Graduate Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, United States
| | - M Alejandro Barbieri
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, United States
| | | | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States.
| |
Collapse
|
22
|
Abstract
Chemotherapy is widely used for cancer treatment, but its effectiveness is limited by drug resistance. Here, we report a mechanism by which cell density activates the Hippo pathway, which in turn inactivates YAP, leading to changes in the regulation of genes that control the intracellular concentrations of gemcitabine and several other US Food and Drug Administration (FDA)-approved oncology drugs. Hippo inactivation sensitizes a diverse panel of cell lines and human tumors to gemcitabine in 3D spheroid, mouse xenografts, and patient-derived xenograft models. Nuclear YAP enhances gemcitabine effectiveness by down-regulating multidrug transporters as well by converting gemcitabine to a less active form, both leading to its increased intracellular availability. Cancer cell lines carrying genetic aberrations that impair the Hippo signaling pathway showed heightened sensitivity to gemcitabine. These findings suggest that "switching off" of the Hippo-YAP pathway could help to prevent or reverse resistance to some cancer therapies.
Collapse
|
23
|
Grixti JM, O'Hagan S, Day PJ, Kell DB. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine. Front Pharmacol 2017; 8:155. [PMID: 28396636 PMCID: PMC5366350 DOI: 10.3389/fphar.2017.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a “binary weapon” strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.
Collapse
Affiliation(s)
- Justine M Grixti
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Steve O'Hagan
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| | - Philip J Day
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| |
Collapse
|
24
|
Genotoxicity kinetics in murine normoblasts as an approach for the in vivo action of difluorodeoxycytidine. Cancer Chemother Pharmacol 2017; 79:843-853. [DOI: 10.1007/s00280-017-3290-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/14/2017] [Indexed: 12/30/2022]
|
25
|
Lombardo R, Priami C. Graphical Modeling Meets Systems Pharmacology. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017691937. [PMID: 28469411 PMCID: PMC5398309 DOI: 10.1177/1177625017691937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/16/2016] [Indexed: 01/09/2023]
Abstract
A main source of failures in systems projects (including systems pharmacology) is poor communication level and different expectations among the stakeholders. A common and not ambiguous language that is naturally comprehensible by all the involved players is a boost to success. We present bStyle, a modeling tool that adopts a graphical language close enough to cartoons to be a common media to exchange ideas and data and that it is at the same time formal enough to enable modeling, analysis, and dynamic simulations of a system. Data analysis and simulation integrated in the same application are fundamental to understand the mechanisms of actions of drugs: a core aspect of systems pharmacology.
Collapse
Affiliation(s)
- Rosario Lombardo
- The Microsoft Research, University of Trento Centre for Computational and Systems Biology (COSBI), Trento, Italy
| | - Corrado Priami
- The Microsoft Research, University of Trento Centre for Computational and Systems Biology (COSBI), Trento, Italy.,Department of Mathematics, University of Trento, Trento, Italy.,Department of Computer Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
26
|
Zhang Z, Yang E, Hu C, Cheng H, Chen CY, Huang D, Wang R, Zhao Y, Rong L, Vignuzzi M, Shen H, Shen L, Chen ZW. Cell-Based High-Throughput Screening Assay Identifies 2',2'-Difluoro-2'-deoxycytidine Gemcitabine as a Potential Antipoliovirus Agent. ACS Infect Dis 2017; 3:45-53. [PMID: 27733043 DOI: 10.1021/acsinfecdis.6b00116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As we approach the global eradication of circulating wild-type polioviruses (PV), vaccination with oral poliovirus vaccine (OPV) has led to the emergence of circulating vaccine-derived poliovirus (cVDPV) and vaccine-associated paralytic poliomyelitis (VAPP). Complete cessation of all poliovirus infections may require stopping use of OPV and formulating improved vaccines and new antiviral drugs. Currently, no licensed drugs are available to treat chronically infected poliovirus excretors. Here, we created a modified PV expressing Gaussia Luciferase (Sb-Gluc) and developed a cell-based high-throughput screening (HTS) antiviral assay. Using the validated HTS assay, we screened the FDA-approved drug library of compounds and identified candidate agents capable of inhibiting PV replication. We then characterized antipoliovirus activity for the best hit, gemcitabine, a nucleoside analogue used in tumor chemotherapy. We found that gemcitabine inhibited PV Mahoney replication with an IC50 of 0.3 μM. It completely protected HeLa cells from PV-induced cytopathic effects at 25 μM, without detectable toxicity for cell viability. Furthermore, a gemcitabine metabolite directly inhibited the ability of PV RNA polymerase to synthesize or elongate PV RNA. Because PV RNA polymerase is somehow conserved among species in the Picornaviridae family, gemcitabine may be further developed as an attractive broad-spectrum antiviral for PV and others.
Collapse
Affiliation(s)
- Zhuoran Zhang
- Department of Microbiology and Immunology and Center for Primate
Biomedical Research, University of Illinois College of Medicine, 909 South Wolcott Avenue, E704, M/C790, Chicago, Illinois 60612, United States
| | - Enzhuo Yang
- Department of Microbiology and Immunology and Center for Primate
Biomedical Research, University of Illinois College of Medicine, 909 South Wolcott Avenue, E704, M/C790, Chicago, Illinois 60612, United States
- Unit of anti-tuberculosis immunity, CAS
Key Laboratory of Molecular Virology and Immunology, Institut Pasteur
of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunmiao Hu
- Department of Microbiology and Immunology and Center for Primate
Biomedical Research, University of Illinois College of Medicine, 909 South Wolcott Avenue, E704, M/C790, Chicago, Illinois 60612, United States
| | - Han Cheng
- Department of Microbiology and Immunology and Center for Primate
Biomedical Research, University of Illinois College of Medicine, 909 South Wolcott Avenue, E704, M/C790, Chicago, Illinois 60612, United States
| | - Crystal Y. Chen
- Department of Microbiology and Immunology and Center for Primate
Biomedical Research, University of Illinois College of Medicine, 909 South Wolcott Avenue, E704, M/C790, Chicago, Illinois 60612, United States
| | - Dan Huang
- Department of Microbiology and Immunology and Center for Primate
Biomedical Research, University of Illinois College of Medicine, 909 South Wolcott Avenue, E704, M/C790, Chicago, Illinois 60612, United States
| | - Richard Wang
- Department of Microbiology and Immunology and Center for Primate
Biomedical Research, University of Illinois College of Medicine, 909 South Wolcott Avenue, E704, M/C790, Chicago, Illinois 60612, United States
| | - Yue Zhao
- Department of Microbiology and Immunology and Center for Primate
Biomedical Research, University of Illinois College of Medicine, 909 South Wolcott Avenue, E704, M/C790, Chicago, Illinois 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology and Center for Primate
Biomedical Research, University of Illinois College of Medicine, 909 South Wolcott Avenue, E704, M/C790, Chicago, Illinois 60612, United States
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 25-28 rue du Dr. Roux, 75724 Paris cedex
15, France
| | - Hongbo Shen
- Unit of anti-tuberculosis immunity, CAS
Key Laboratory of Molecular Virology and Immunology, Institut Pasteur
of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling Shen
- Department of Microbiology and Immunology and Center for Primate
Biomedical Research, University of Illinois College of Medicine, 909 South Wolcott Avenue, E704, M/C790, Chicago, Illinois 60612, United States
| | - Zheng W. Chen
- Department of Microbiology and Immunology and Center for Primate
Biomedical Research, University of Illinois College of Medicine, 909 South Wolcott Avenue, E704, M/C790, Chicago, Illinois 60612, United States
- Institut Pasteur of Shanghai, Shanghai 200031, China
| |
Collapse
|
27
|
McCluskey GD, Mohamady S, Taylor SD, Bearne SL. Exploring the Potent Inhibition of CTP Synthase by Gemcitabine-5'-Triphosphate. Chembiochem 2016; 17:2240-2249. [PMID: 27643605 DOI: 10.1002/cbic.201600405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/10/2022]
Abstract
CTP synthase (CTPS) catalyzes the conversion of UTP to CTP and is a target for the development of antiviral, anticancer, antiprotozoal, and immunosuppressive agents. Exposure of cell lines to the antineoplastic cytidine analogue gemcitabine causes depletion of intracellular CTP levels, but the direct inhibition of CTPS by its metabolite gemcitabine-5'-triphosphate (dF-dCTP) has not been demonstrated. We show that dF-dCTP is a potent competitive inhibitor of Escherichia coli CTPS with respect to UTP [Ki =(3.0±0.1) μm], and that its binding affinity exceeds that of CTP ≈75-fold. Site-directed mutagenesis studies indicated that Glu149 is an important binding determinant for both CTP and dF-dCTP. Comparison of the binding affinities of the 5'-triphosphates of 2'-fluoro-2'-deoxycytidine and 2'-fluoro-2'-deoxyarabinocytidine revealed that the 2'-F-arabino group contributes markedly to the strong binding of dF-dCTP. Geminal 2'-F substitution on UTP (dF-dUTP) did not result in an increase in binding affinity with CTPS. Remarkably, CTPS catalyzed the conversion of dF-dUTP into dF-dCTP, thus suggesting that dF-dCTP might be regenerated in vivo from its catabolite dF-dUTP.
Collapse
Affiliation(s)
- Gregory D McCluskey
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Samy Mohamady
- Faculty of Pharmacy, The British University in Egypt, 11837, Cairo, Egypt
| | - Scott D Taylor
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
28
|
Scharadin TM, Zhang H, Zimmermann M, Wang S, Malfatti MA, Cimino GD, Turteltaub K, de Vere White R, Pan CX, Henderson PT. Diagnostic Microdosing Approach to Study Gemcitabine Resistance. Chem Res Toxicol 2016; 29:1843-1848. [PMID: 27657672 DOI: 10.1021/acs.chemrestox.6b00247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gemcitabine metabolites cause the termination of DNA replication and induction of apoptosis. We determined whether subtherapeutic "microdoses" of gemcitabine are incorporated into DNA at levels that correlate to drug cytotoxicity. A pair of nearly isogenic bladder cancer cell lines differing in resistance to several chemotherapy drugs were treated with various concentrations of 14C-labeled gemcitabine for 4-24 h. Drug incorporation into DNA was determined by accelerator mass spectrometry. A mechanistic analysis determined that RRM2, a DNA synthesis protein and a known resistance factor, substantially mediated gemcitabine toxicity. These results support gemcitabine levels in DNA as a potential biomarker of drug cytotoxicity.
Collapse
Affiliation(s)
- Tiffany M Scharadin
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis , Sacramento, California 95817, United States
| | - Hongyong Zhang
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis , Sacramento, California 95817, United States
| | - Maike Zimmermann
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis , Sacramento, California 95817, United States.,Accelerated Medical Diagnostics Incorporated , Berkeley, California 95618, United States
| | - Sisi Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis , Sacramento, California 95817, United States
| | - Michael A Malfatti
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - George D Cimino
- Accelerated Medical Diagnostics Incorporated , Berkeley, California 95618, United States
| | - Kenneth Turteltaub
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Ralph de Vere White
- Department of Urology, University of California Davis Medical Center , Sacramento, California 95817, United States
| | - Chong-Xian Pan
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis , Sacramento, California 95817, United States.,Accelerated Medical Diagnostics Incorporated , Berkeley, California 95618, United States
| | - Paul T Henderson
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis , Sacramento, California 95817, United States.,Accelerated Medical Diagnostics Incorporated , Berkeley, California 95618, United States
| |
Collapse
|
29
|
Lamarca A, Asselin MC, Manoharan P, McNamara MG, Trigonis I, Hubner R, Saleem A, Valle JW. 18F-FLT PET imaging of cellular proliferation in pancreatic cancer. Crit Rev Oncol Hematol 2016; 99:158-69. [PMID: 26778585 DOI: 10.1016/j.critrevonc.2015.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/19/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is known for its poor prognosis. Since the development of computerized tomography, magnetic resonance and endoscopic ultrasound, novel imaging techniques have struggled to get established in the management of patients diagnosed with pancreatic adenocarcinoma for several reasons. Thus, imaging assessment of pancreatic cancer remains a field with scope for further improvement. In contrast to cross-sectional anatomical imaging methods, molecular imaging modalities such as positron emission tomography (PET) can provide information on tumour function. Particularly, tumour proliferation may be assessed by measurement of intracellular thymidine kinase 1 (TK1) activity level using thymidine analogues radiolabelled with a positron emitter for use with PET. This approach, has been widely explored with [(18)F]-fluoro-3'-deoxy-3'-L-fluorothymidine ((18)F-FLT) PET. This manuscript reviews the rationale and physiology behind (18)F-FLT PET imaging, with special focus on pancreatic cancer and other gastrointestinal malignancies. Potential benefit and challenges of this imaging technique for diagnosis, staging and assessment of treatment response in abdominal malignancies are discussed.
Collapse
Affiliation(s)
- Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Marie-Claude Asselin
- University of Manchester Wolfson Molecular Imaging Centre (WMIC), Manchester, United Kingdom
| | - Prakash Manoharan
- Department of Radiology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Mairéad G McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom; University of Manchester, Institute of Cancer Sciences, Manchester Academic Health Science Centre, Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Ioannis Trigonis
- University of Manchester Wolfson Molecular Imaging Centre (WMIC), Manchester, United Kingdom
| | - Richard Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Azeem Saleem
- University of Manchester Wolfson Molecular Imaging Centre (WMIC), Manchester, United Kingdom; Imanova Centre for Imaging Sciences, Imperial College Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom; University of Manchester, Institute of Cancer Sciences, Manchester Academic Health Science Centre, Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|
30
|
Shibata T, Ebata T, Fujita KI, Shimokata T, Maeda O, Mitsuma A, Sasaki Y, Nagino M, Ando Y. Optimal dose of gemcitabine for the treatment of biliary tract or pancreatic cancer in patients with liver dysfunction. Cancer Sci 2016; 107:168-72. [PMID: 26595259 PMCID: PMC4768397 DOI: 10.1111/cas.12851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/09/2015] [Accepted: 11/15/2015] [Indexed: 11/26/2022] Open
Abstract
A clear consensus does not exist about whether the initial dose of gemcitabine, an essential anticancer antimetabolite, should be reduced in patients with liver dysfunction. Adult patients with biliary tract or pancreatic cancer were divided into three groups according to whether they had mild, moderate, or severe liver dysfunction, evaluated on the basis of serum bilirubin and liver transaminase levels at baseline. As anticancer treatment, gemcitabine at a dose of 800 or 1000 mg/m(2) was given as an i.v. infusion once weekly for 3 weeks of a 4-week cycle. The patients were prospectively evaluated for adverse events during the first cycle, and the pharmacokinetics of gemcitabine and its inactive metabolite, difluorodeoxyuridine, were studied to determine the optimal initial dose of gemcitabine as monotherapy according to the severity of liver dysfunction. A total of 15 patients were studied. Liver dysfunction was mild in one patient, moderate in six, and severe in eight. All 15 patients had been undergoing biliary drainage for obstructive jaundice when they received gemcitabine. Grade 3 cholangitis developed in one patient with moderate liver dysfunction who received gemcitabine at the dose level of 1000 mg/m(2). No other patients had severe treatment-related adverse events resulting in the omission or discontinuation of gemcitabine treatment. The plasma concentrations of gemcitabine and difluorodeoxyuridine were similar among the groups. An initial dose reduction of gemcitabine as monotherapy for the treatment of biliary tract or pancreatic cancers is not necessary for patients with hyperbilirubinemia, provided that obstructive jaundice is well managed. (Clinical trial registration no. UMIN000005363.)
Collapse
Affiliation(s)
- Takashi Shibata
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Tomoki Ebata
- Department of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken-ichi Fujita
- Institute of Molecular Oncology, Showa University, Tokyo, Japan
| | - Tomoya Shimokata
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Osamu Maeda
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Ayako Mitsuma
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Yasutsuna Sasaki
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masato Nagino
- Department of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
31
|
May JP, Undzys E, Roy A, Li SD. Synthesis of a Gemcitabine Prodrug for Remote Loading into Liposomes and Improved Therapeutic Effect. Bioconjug Chem 2015; 27:226-37. [DOI: 10.1021/acs.bioconjchem.5b00619] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan P. May
- Faculty
of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Drug
Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Elijus Undzys
- Drug
Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Aniruddha Roy
- Faculty
of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Drug
Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Shyh-Dar Li
- Faculty
of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Drug
Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| |
Collapse
|
32
|
Neef AB, Pernot L, Schreier VN, Scapozza L, Luedtke NW. A Bioorthogonal Chemical Reporter of Viral Infection. Angew Chem Int Ed Engl 2015; 54:7911-4. [PMID: 25974835 PMCID: PMC7159598 DOI: 10.1002/anie.201500250] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/16/2015] [Indexed: 01/20/2023]
Abstract
Pathogen‐selective labeling was achieved by using the novel gemcitabine metabolite analogue 2′‐deoxy‐2′,2′‐difluoro‐5‐ethynyluridine (dF‐EdU) and click chemistry. Cells infected with Herpes Simplex Virus‐1 (HSV‐1), but not uninfected cells, exhibit nuclear staining upon the addition of dF‐EdU and a fluorescent azide. The incorporation of the dF‐EdU into DNA depends on its phosphorylation by a herpes virus thymidine kinase (TK). Crystallographic analyses revealed how dF‐EdU is well accommodated in the active site of HSV‐1 TK, but steric clashes prevent dF‐EdU from binding human TK. These results provide the first example of pathogen‐enzyme‐dependent incorporation and labeling of bioorthogonal functional groups in human cells.
Collapse
Affiliation(s)
- Anne B Neef
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland) http://www.bioorganic-chemistry.com
| | - Lucile Pernot
- Pharmaceutical Biochemistry, University of Geneva (Switzerland)
| | - Verena N Schreier
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland) http://www.bioorganic-chemistry.com
| | | | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland) http://www.bioorganic-chemistry.com.
| |
Collapse
|
33
|
Neef AB, Pernot L, Schreier VN, Scapozza L, Luedtke NW. A Bioorthogonal Chemical Reporter of Viral Infection. ACTA ACUST UNITED AC 2015; 127:8022-8025. [PMID: 32313318 PMCID: PMC7159771 DOI: 10.1002/ange.201500250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/16/2015] [Indexed: 01/05/2023]
Abstract
Pathogen‐selective labeling was achieved by using the novel gemcitabine metabolite analogue 2′‐deoxy‐2′,2′‐difluoro‐5‐ethynyluridine (dF‐EdU) and click chemistry. Cells infected with Herpes Simplex Virus‐1 (HSV‐1), but not uninfected cells, exhibit nuclear staining upon the addition of dF‐EdU and a fluorescent azide. The incorporation of the dF‐EdU into DNA depends on its phosphorylation by a herpes virus thymidine kinase (TK). Crystallographic analyses revealed how dF‐EdU is well accommodated in the active site of HSV‐1 TK, but steric clashes prevent dF‐EdU from binding human TK. These results provide the first example of pathogen‐enzyme‐dependent incorporation and labeling of bioorthogonal functional groups in human cells.
Collapse
Affiliation(s)
- Anne B Neef
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland) http://www.bioorganic-chemistry.com
| | - Lucile Pernot
- Pharmaceutical Biochemistry, University of Geneva (Switzerland)
| | - Verena N Schreier
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland) http://www.bioorganic-chemistry.com
| | | | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland) http://www.bioorganic-chemistry.com
| |
Collapse
|
34
|
de Sousa Cavalcante L, Monteiro G. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol 2014; 741:8-16. [PMID: 25084222 DOI: 10.1016/j.ejphar.2014.07.041] [Citation(s) in RCA: 398] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 12/15/2022]
Abstract
Gemcitabine is the first-line treatment for pancreatic adenocarcinoma, but is increasingly used to treat breast, bladder, and non-small cell lung cancers. Despite such broad use, intrinsic and acquired chemoresistance is common. In general, the underlying mechanisms of chemoresistance are poorly understood. Here, current knowledge of gemcitabine metabolism, mechanisms of action, sensitivity and chemoresistance reported over the past two decades are reviewed; and we also offer new perspectives to improve gemcitabine efficacy with particular reference to the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Lucas de Sousa Cavalcante
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
35
|
Bapiro TE, Frese KK, Courtin A, Bramhall JL, Madhu B, Cook N, Neesse A, Griffiths JR, Tuveson DA, Jodrell DI, Richards FM. Gemcitabine diphosphate choline is a major metabolite linked to the Kennedy pathway in pancreatic cancer models in vivo. Br J Cancer 2014; 111:318-25. [PMID: 24874484 PMCID: PMC4102943 DOI: 10.1038/bjc.2014.288] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/15/2014] [Accepted: 04/30/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The modest benefits of gemcitabine (dFdC) therapy in patients with pancreatic ductal adenocarcinoma (PDAC) are well documented, with drug delivery and metabolic lability cited as important contributing factors. We have used a mouse model of PDAC: KRAS(G12D); p53(R172H); pdx-Cre (KPC) that recapitulates the human disease to study dFdC intra-tumoural metabolism. METHODS LC-MS/MS and NMR were used to measure drug and physiological analytes. Cytotoxicity was assessed by the Sulphorhodamine B assay. RESULTS In KPC tumour tissue, we identified a new, Kennedy pathway-linked dFdC metabolite (gemcitabine diphosphate choline (GdPC)) present at equimolar amounts to its precursor, the accepted active metabolite gemcitabine triphosphate (dFdCTP). Utilising additional subcutaneous PDAC tumour models, we demonstrated an inverse correlation between GdPC/dFdCTP ratios and cytidine triphosphate (CTP). In tumour homogenates in vitro, CTP inhibited GdPC formation from dFdCTP, indicating competition between CTP and dFdCTP for CTP:phosphocholine cytidylyltransferase (CCT). As the structure of GdPC precludes entry into cells, potential cytotoxicity was assessed by stimulating CCT activity using linoleate in KPC cells in vitro, leading to increased GdPC concentration and synergistic growth inhibition after dFdC addition. CONCLUSIONS GdPC is an important element of the intra-tumoural dFdC metabolic pathway in vivo.
Collapse
Affiliation(s)
- T E Bapiro
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Box 278, Robinson Way, Cambridge CB2 0RE, UK
| | - K K Frese
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Box 278, Robinson Way, Cambridge CB2 0RE, UK
| | - A Courtin
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Box 278, Robinson Way, Cambridge CB2 0RE, UK
| | - J L Bramhall
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Box 278, Robinson Way, Cambridge CB2 0RE, UK
| | - B Madhu
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Box 278, Robinson Way, Cambridge CB2 0RE, UK
| | - N Cook
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Box 278, Robinson Way, Cambridge CB2 0RE, UK
| | - A Neesse
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Box 278, Robinson Way, Cambridge CB2 0RE, UK
| | - J R Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Box 278, Robinson Way, Cambridge CB2 0RE, UK
| | - D A Tuveson
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - D I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Box 278, Robinson Way, Cambridge CB2 0RE, UK
| | - F M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Box 278, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
36
|
The dipeptide monoester prodrugs of floxuridine and gemcitabine-feasibility of orally administrable nucleoside analogs. Pharmaceuticals (Basel) 2014; 7:169-91. [PMID: 24473270 PMCID: PMC3942691 DOI: 10.3390/ph7020169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/15/2014] [Accepted: 01/22/2014] [Indexed: 12/19/2022] Open
Abstract
Dipeptide monoester prodrugs of floxuridine and gemcitabine were synthesized. Their chemical stability in buffers, enzymatic stability in cell homogenates, permeability in mouse intestinal membrane along with drug concentration in mouse plasma, and anti-proliferative activity in cancer cells were determined and compared to their parent drugs. Floxuridine prodrug was more enzymatically stable than floxuridine and the degradation from prodrug to parent drug works as the rate-limiting step. On the other hand, gemcitabine prodrug was less enzymatically stable than gemcitabine. Those dipeptide monoester prodrugs exhibited 2.4- to 48.7-fold higher uptake than their parent drugs in Caco-2, Panc-1, and AsPC-1 cells. Floxuridine and gemcitabine prodrugs showed superior permeability in mouse jejunum to their parent drugs and exhibited the higher drug concentration in plasma after in situ mouse perfusion. Cell proliferation assays in ductal pancreatic cancer cells, AsPC-1 and Panc-1, indicated that dipeptide prodrugs of floxuridine and gemcitabine were more potent than their parent drugs. The enhanced potency of nucleoside analogs was attributed to their improved membrane permeability. The prodrug forms of 5′-l-phenylalanyl-l-tyrosyl-floxuridine and 5′-l-phenylalanyl-l-tyrosyl-gemcitabine appeared in mouse plasma after the permeation of intestinal membrane and the first-pass effect, suggesting their potential for the development of oral dosage form for anti-cancer agents.
Collapse
|
37
|
Tsume Y, Incecayir T, Song X, Hilfinger JM, Amidon GL. The development of orally administrable gemcitabine prodrugs with D-enantiomer amino acids: enhanced membrane permeability and enzymatic stability. Eur J Pharm Biopharm 2013; 86:514-23. [PMID: 24361461 DOI: 10.1016/j.ejpb.2013.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/23/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Gemcitabine prodrugs with D- and L-configuration amino acids were synthesized and their chemical stability in buffers, resistance to glycosidic bond metabolism, enzymatic activation, permeability in Caco-2 cells and mouse intestinal membrane, anti-proliferation activity in cancer cell were determined and compared to that of parent drug, gemcitabine. Prodrugs containing D-configuration amino acids were enzymatically more stable than ones with L-configuration amino acids. The activation of all gemcitabine prodrugs was 1.3-17.6-fold faster in cancer cell homogenate than their hydrolysis in buffer, suggesting enzymatic action. The enzymatic activation of amino acid monoester prodrugs containing D-configuration amino acids in cell homogenates was 2.2-10.9-fold slower than one of amino acid monoester prodrugs with L-configuration amino acids. All prodrugs exhibited enhanced resistance to glycosidic bond metabolism by thymidine phosphorylase compared to parent gemcitabine. Gemcitabine prodrugs showed superior the effective permeability in mouse jejunum to gemcitabine. More importantly, the high plasma concentration of d-amino acid gemcitabine prodrugs was observed more than one of L-amino acid gemcitabine prodrugs. In general, the 5'-mono-amino acid monoester gemcitabine prodrugs exhibited higher permeability and uptake than their parent drug, gemcitabine. Cell proliferation assays in AsPC-1 pancreatic ductal cell line indicated that gemcitabine prodrugs were more potent than their parent drug, gemcitabine. The transport and enzymatic profiles of 5'-D-valyl-gemcitabine and 5'-D-phenylalanyl-gemcitabine suggest their potential for increased oral uptake and delayed enzymatic bioconversion as well as enhanced uptake and cytotoxic activity in cancer cells, would facilitate the development of oral dosage form for anti-cancer agents and, hence, improve the quality of life for the cancer patients.
Collapse
Affiliation(s)
- Yasuhiro Tsume
- Department of Pharmaceutical Science, University of Michigan, Ann Arbor, MI, USA
| | - Tuba Incecayir
- Department of Pharmaceutical Technology, Gazi University, Etiler-Ankara, Turkey
| | | | | | - Gordon L Amidon
- Department of Pharmaceutical Science, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Khatri A, Williams BW, Fisher J, Brundage RC, Gurvich VJ, Lis LG, Skubitz KM, Dudek AZ, Greeno EW, Kratzke RA, Lamba JK, Kirstein MN. SLC28A3 genotype and gemcitabine rate of infusion affect dFdCTP metabolite disposition in patients with solid tumours. Br J Cancer 2013; 110:304-12. [PMID: 24300978 PMCID: PMC3899768 DOI: 10.1038/bjc.2013.738] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/15/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
Background: Gemcitabine is used for the treatment of several solid tumours and exhibits high inter-individual pharmacokinetic variability. In this study, we explore possible predictive covariates on drug and metabolite disposition. Methods: Forty patients were enrolled. Gemcitabine and dFdU concentrations in the plasma and dFdCTP concentrations in peripheral blood mononuclear cell were measured to 72 h post infusion, and pharmacokinetic parameters were estimated by nonlinear mixed-effects modelling. Patient-specific covariates were tested in model development. Results: The pharmacokinetics of gemcitabine was best described by a two-compartment model with body surface area, age and NT5C2 genotype as significant covariates. The pharmacokinetics of dFdU and dFdCTP were adequately described by three-compartment models. Creatinine clearance and cytidine deaminase genotype were significant covariates for dFdU pharmacokinetics. Rate of infusion of <25 mg m−2 min−1 and the presence of homozygous major allele for SLC28A3 (CC genotype) were each associated with an almost two-fold increase in the formation clearance of dFdCTP. Conclusion: Prolonged dFdCTP systemic exposures (⩾72 h) were commonly observed. Infusion rate <25 mg m−2 min−1 and carriers for SLC28A3 variant were each associated with about two-fold higher dFdCTP formation clearance. The impacts of these covariates on treatment-related toxicity in more selected patient populations (that is, first-line treatment, single disease state and so on) are not yet clear.
Collapse
Affiliation(s)
- A Khatri
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | - B W Williams
- 1] Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA [2] Clinical Pharmacology Shared Resource of Masonic Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN 55414, USA
| | - J Fisher
- 1] Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA [2] Clinical Pharmacology Shared Resource of Masonic Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN 55414, USA
| | - R C Brundage
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | - V J Gurvich
- 1] Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA [2] Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA [3] Masonic Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - L G Lis
- Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | - K M Skubitz
- 1] Masonic Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA [2] Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - A Z Dudek
- 1] Masonic Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA [2] Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - E W Greeno
- 1] Masonic Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA [2] Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - R A Kratzke
- 1] Masonic Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA [2] Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - J K Lamba
- 1] Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA [2] Masonic Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA [3] PUMA-Institute of Personalized Medicine, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - M N Kirstein
- 1] Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA [2] Clinical Pharmacology Shared Resource of Masonic Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN 55414, USA [3] Masonic Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA [4] PUMA-Institute of Personalized Medicine, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
39
|
Methods of biological network inference for reverse engineering cancer chemoresistance mechanisms. Drug Discov Today 2013; 19:151-63. [PMID: 24211413 DOI: 10.1016/j.drudis.2013.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 01/22/2023]
Abstract
We review recent Bayesian network inference methodologies we developed to infer genetic and metabolic pathways associated to oncological drug chemoresistance. Bayesian inference is supported by a rigorous and widely accepted mathematical formalization of predictive analytics. It is an inherently integrative approach allowing the incorporation of prior knowledge and constraints. Moreover, it is recommended to treat noisy data, and large amount of data whose dynamics laws are mostly unknown. We focus on variational Bayesian methods for the inference of stochastic reaction processes and we present a compendium of the recent results of inference of gene and metabolic networks presiding at the development of pancreas cancer resistance to gemcitabine.
Collapse
|
40
|
Li YY, Qin YZ, Wang RQ, Li WB, Qu XJ. SL-01, an oral derivative of gemcitabine, inhibited human breast cancer growth through induction of apoptosis. Biochem Biophys Res Commun 2013; 438:402-9. [PMID: 23899521 DOI: 10.1016/j.bbrc.2013.07.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED SL-01 is an oral derivative of gemcitabine that was synthesized by introducing the moiety of 3-(dodecyloxycarbonyl) pyrazine-2-carbonyl at N4-position on cytidine ring of gemcitabine. We aimed to evaluate the efficacy of SL-01 on human breast cancer growth. SL-01 significantly inhibited MCF-7 proliferation as estimated by colorimetric assay. Flow cytometry assay indicated the apoptotic induction and cell cycle arrest in G1 phase. SL-01 modulated the expressions of p-ATM, p53 and p21 and decrease of cyclin D1 in MCF-7 cells. Further experiments were performed in a MCF-7 xenografts mouse model. SL-01 by oral administration strongly inhibited MCF-7 xenografts growth. This effect of SL-01 might arise from its roles in the induction of apoptosis. Immunohistochemistry assay showed the increase of TUNEL staining cells. Western blotting indicated the modulation of apoptotic proteins in SL-01-treated xenografts. During the course of study, there was no evidence of toxicity to mice. In contrast, the decrease of neutrophil cells in peripheral and increase of AST and ALT levels in serum were observed in the gemcitabine-treated mice. CONCLUSION SL-01 possessed similar activity against human breast cancer growth with gemcitabine, whereas, with lower toxicity to gemcitabine. SL-01 is a potent oral agent that may supplant the use of gemcitabine.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | | | | | | | | |
Collapse
|
41
|
Yamamoto N, Nokihara H, Yamada Y, Uenaka K, Sekiguchi R, Makiuchi T, Slapak CA, Benhadji KA, Tamura T. Phase I study of oral gemcitabine prodrug (LY2334737) in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 2013; 71:1645-55. [PMID: 23616084 DOI: 10.1007/s00280-013-2165-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/12/2013] [Indexed: 01/17/2023]
Abstract
PURPOSE LY2334737 is an oral gemcitabine prodrug. This Phase I study assessed the safety and tolerability of LY2334737 in Japanese patients with solid tumors and evaluated pharmacokinetics (PK), pharmacodynamics, and antitumor activity. METHODS Patients with advanced/metastatic solid tumors received escalating doses of LY2334737 once daily for 14 days, followed by a 7-day drug-free period. Cycles were repeated until discontinuation criteria were met. RESULTS Of 13 patients treated, 3 received 20 mg/day, 6 received 30 mg/day, 4 received 40 mg/day. On the 40 mg dose, 3 patients experienced dose-limiting toxicities (DLTs): hepatic toxicities (e.g., Grade [G]3/4 transaminase and G1-3 bilirubin elevation) and G4 thrombocytopenia; all 3 showed features of disseminated intravascular coagulation. One additional DLT occurred on the 30 mg dose (G3 transaminase elevation). Exploratory pharmacogenetic analyses identified a genetic variation in the CES2 gene potentially associated with these DLTs. PK data showed no clear relationship between the AUC of gemcitabine and its incorporation into leukocyte DNA; 2 of the 3 DLT patients had high incorporation. Two patients (30 mg/day) achieved stable disease with progression-free survival lasting 135 and 155 days. CONCLUSIONS LY2334737 was tolerated by Japanese patients up to 30 mg/day. The toxicities observed at the 40 mg dose may require the development of alternative dosing schedules.
Collapse
Affiliation(s)
- Noboru Yamamoto
- Division of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Paproski RJ, Yao SYM, Favis N, Evans D, Young JD, Cass CE, Zemp RJ. Human concentrative nucleoside transporter 3 transfection with ultrasound and microbubbles in nucleoside transport deficient HEK293 cells greatly increases gemcitabine uptake. PLoS One 2013; 8:e56423. [PMID: 23441192 PMCID: PMC3575408 DOI: 10.1371/journal.pone.0056423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/09/2013] [Indexed: 02/06/2023] Open
Abstract
Gemcitabine is a hydrophilic clinical anticancer drug that requires nucleoside transporters to cross plasma membranes and enter cells. Pancreatic adenocarcinomas with low levels of nucleoside transporters are generally resistant to gemcitabine and are currently a clinical problem. We tested whether transfection of human concentrative nucleoside transporter 3 (hCNT3) using ultrasound and lipid stabilized microbubbles could increase gemcitabine uptake and sensitivity in HEK293 cells made nucleoside transport deficient by pharmacologic treatment with dilazep. To our knowledge, no published data exists regarding the utility of using hCNT3 as a therapeutic gene to reverse gemcitabine resistance. Our ultrasound transfection system - capable of transfection of cell cultures, mouse muscle and xenograft CEM/araC tumors - increased hCNT3 mRNA and 3H-gemcitabine uptake by >2,000– and 3,400–fold, respectively, in dilazep-treated HEK293 cells. Interestingly, HEK293 cells with both functional human equilibrative nucleoside transporters and hCNT3 displayed 5% of 3H-gemcitabine uptake observed in cells with only functional hCNT3, suggesting that equilibrative nucleoside transporters caused significant efflux of 3H-gemcitabine. Efflux assays confirmed that dilazep could inhibit the majority of 3H-gemcitabine efflux from HEK293 cells, suggesting that hENTs were responsible for the majority of efflux from the tested cells. Oocyte uptake transport assays were also performed and provided support for our hypothesis. Gemcitabine uptake and efflux assays were also performed on pancreatic cancer AsPC-1 and MIA PaCa-2 cells with similar results to that of HEK293 cells. Using the MTS proliferation assay, dilazep-treated HEK293 cells demonstrated 13-fold greater resistance to gemcitabine compared to dilazep-untreated HEK293 cells and this resistance could be reversed by transfection of hCNT3 cDNA. We propose that transfection of hCNT3 cDNA using ultrasound and microbubbles may be a method to reverse gemcitabine resistance in pancreatic tumors that have little nucleoside transport activity which are resistant to almost all current anticancer therapies.
Collapse
Affiliation(s)
- Robert J. Paproski
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvia Y. M. Yao
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Favis
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - David Evans
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - James D. Young
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Carol E. Cass
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Roger J. Zemp
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
43
|
De Angel RE, Blando JM, Hogan MG, Sandoval MA, Lansakara-P DSP, Dunlap SM, Hursting SD, Cui Z. Stearoyl gemcitabine nanoparticles overcome obesity-induced cancer cell resistance to gemcitabine in a mouse postmenopausal breast cancer model. Cancer Biol Ther 2013; 14:357-64. [PMID: 23358472 DOI: 10.4161/cbt.23623] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Obesity is associated with increased breast tumor aggressiveness and decreased response to multiple modalities of therapy in postmenopausal women. Delivering cancer chemotherapeutic drugs using nanoparticles has evolved as a promising approach to improve the efficacy of anticancer agents. However, the application of nanoparticles in cancer chemotherapy in the context of obesity has not been studied before. The nucleoside analog gemcitabine is widely used in solid tumor therapy. Previously, we developed a novel stearoyl gemcitabine solid-lipid nanoparticle formulation (GemC18-NPs) and showed that the GemC18-NPs are significantly more effective than gemcitabine in controlling tumor growth in mouse models. In the present study, using ovariectomized diet-induced obese female C57BL/6 mice with orthotopically transplanted MMTV-Wnt-1 mammary tumors as a model of postmenopausal obesity and breast cancer, we discovered that obesity induces tumor cell resistance to gemcitabine. Furthermore, our GemC18-NPs can overcome the obesity-related resistance to gemcitabine chemotherapy. These findings have important clinical implications for cancer chemotherapies involving gemcitabine or other nucleoside analogs in the context of obesity.
Collapse
Affiliation(s)
- Rebecca E De Angel
- College of Pharmacy, Pharmaceutics Division, University of Texas at Austin, Austin, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Stuurman FE, Voest EE, Awada A, Witteveen PO, Bergeland T, Hals PA, Rasch W, Schellens JHM, Hendlisz A. Phase I study of oral CP-4126, a gemcitabine derivative, in patients with advanced solid tumors. Invest New Drugs 2013; 31:959-66. [PMID: 23345000 DOI: 10.1007/s10637-013-9925-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/06/2013] [Indexed: 02/04/2023]
Abstract
CP-4126 is a gemcitabine (2',2'-difluorodeoxycytidine; dFdC) 5' elaidic acid ester. The purpose of this dose-escalating study was to assess safety, pharmacokinetics (PK) and preliminary antitumor activity of the oral formulation and to determine the recommended dose (RD) for phase II studies. The study had a two-step design: a non-randomized dose-escalating step I with oral CP-4126 alone, followed by a randomized, cross-over step II that compared oral CP-4126 with dFdC i.v.. CP-4126 was given on days 1,8,15 in a 4-week schedule with increasing doses until the RD was established. 26 patients with different solid tumours were enrolled in step I at seven dose levels (100-3,000 mg/day). The most frequent drug-related AEs were fatigue and dysgeusia, the majority being grade 1-2. One patient experienced a dose limiting toxicity after one dose of CP-4126 at 1,300 mg/day (ASAT grade 3). PK of CP-4126 could not be determined. The metabolites dFdC and dFdU obeyed dose-dependent pharmacokinetics. Exposures to dFdC were about ten-fold lower compared to exposures after comparable doses of dFdC i.v.. Nine patients reached stable disease as best response, whereby in one patient with vaginal carcinoma a 25 % reduction of tumor volume was reached. This study demonstrates that CP-4126 can be safely administered orally to patients up to 3,000 mg/day in a d1,8,15 q4w schedule with a tolerable safety profile. CP-4126 acts as a prodrug for dFdC when given orally, but because of the poor absorption and the rapid pre-systemic metabolism the study was terminated early and no RD could be determined.
Collapse
Affiliation(s)
- F E Stuurman
- Division of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lecca P. An integrative network inference approach to predict mechanisms of cancer chemoresistance. Integr Biol (Camb) 2013; 5:458-73. [DOI: 10.1039/c2ib20205k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Kahramanoğullari O, Fantaccini G, Lecca P, Morpurgo D, Priami C. Algorithmic modeling quantifies the complementary contribution of metabolic inhibitions to gemcitabine efficacy. PLoS One 2012; 7:e50176. [PMID: 23239976 PMCID: PMC3519828 DOI: 10.1371/journal.pone.0050176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/22/2012] [Indexed: 01/19/2023] Open
Abstract
Gemcitabine (2,2-difluorodeoxycytidine, dFdC) is a prodrug widely used for treating various carcinomas. Gemcitabine exerts its clinical effect by depleting the deoxyribonucleotide pools, and incorporating its triphosphate metabolite (dFdC-TP) into DNA, thereby inhibiting DNA synthesis. This process blocks the cell cycle in the early S phase, eventually resulting in apoptosis. The incorporation of gemcitabine into DNA takes place in competition with the natural nucleoside dCTP. The mechanisms of indirect competition between these cascades for common resources are given with the race for DNA incorporation; in clinical studies dedicated to singling out mechanisms of resistance, ribonucleotide reductase (RR) and deoxycytidine kinase (dCK) and human equilibrative nucleoside transporter1 (hENT1) have been associated to efficacy of gemcitabine with respect to their roles in the synthesis cascades of dFdC-TP and dCTP. However, the direct competition, which manifests itself in terms of inhibitions between these cascades, remains to be quantified. We propose an algorithmic model of gemcitabine mechanism of action, verified with respect to independent experimental data. We performed in silico experiments in different virtual conditions, otherwise difficult in vivo, to evaluate the contribution of the inhibitory mechanisms to gemcitabine efficacy. In agreement with the experimental data, our model indicates that the inhibitions due to the association of dCTP with dCK and the association of gemcitabine diphosphate metabolite (dFdC-DP) with RR play a key role in adjusting the efficacy. While the former tunes the catalysis of the rate-limiting first phosphorylation of dFdC, the latter is responsible for depletion of dCTP pools, thereby contributing to gemcitabine efficacy with a dependency on nucleoside transport efficiency. Our simulations predict the existence of a continuum of non-efficacy to high-efficacy regimes, where the levels of dFdC-TP and dCTP are coupled in a complementary manner, which can explain the resistance to this drug in some patients.
Collapse
Affiliation(s)
- Ozan Kahramanoğullari
- The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto (Trento), Italy.
| | | | | | | | | |
Collapse
|
47
|
Lecca P, Morpurgo D. Modelling non-homogeneous stochastic reaction-diffusion systems: the case study of gemcitabine-treated non-small cell lung cancer growth. BMC Bioinformatics 2012; 13 Suppl 14:S14. [PMID: 23095709 PMCID: PMC3439681 DOI: 10.1186/1471-2105-13-s14-s14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Reaction-diffusion based models have been widely used in the literature for modeling the growth of solid tumors. Many of the current models treat both diffusion/consumption of nutrients and cell proliferation. The majority of these models use classical transport/mass conservation equations for describing the distribution of molecular species in tumor spheroids, and the Fick's law for describing the flux of uncharged molecules (i.e oxygen, glucose). Commonly, the equations for the cell movement and proliferation are first order differential equations describing the rate of change of the velocity of the cells with respect to the spatial coordinates as a function of the nutrient's gradient. Several modifications of these equations have been developed in the last decade to explicitly indicate that the tumor includes cells, interstitial fluids and extracellular matrix: these variants provided a model of tumor as a multiphase material with these as the different phases. Most of the current reaction-diffusion tumor models are deterministic and do not model the diffusion as a local state-dependent process in a non-homogeneous medium at the micro- and meso-scale of the intra- and inter-cellular processes, respectively. Furthermore, a stochastic reaction-diffusion model in which diffusive transport of the molecular species of nutrients and chemotherapy drugs as well as the interactions of the tumor cells with these species is a novel approach. The application of this approach to he scase of non-small cell lung cancer treated with gemcitabine is also novel. Methods We present a stochastic reaction-diffusion model of non-small cell lung cancer growth in the specification formalism of the tool Redi, we recently developed for simulating reaction-diffusion systems. We also describe how a spatial gradient of nutrients and oncological drugs affects the tumor progression. Our model is based on a generalization of the Fick's first diffusion law that allows to model diffusive transport in non-homogeneous media. The diffusion coefficient is explicitly expressed as a function depending on the local conditions of the medium, such as the concentration of molecular species, the viscosity of the medium and the temperature. We incorporated this generalized law in a reaction-based stochastic simulation framework implementing an efficient version of Gillespie algorithm for modeling the dynamics of the interactions between tumor cell, nutrients and gemcitabine in a spatial domain expressing a nutrient and drug concentration gradient. Results Using the mathematical framework of model we simulated the spatial growth of a 2D spheroidal tumor model in response to a treatment with gemcitabine and a dynamic gradient of oxygen and glucose. The parameters of the model have been taken from recet literature and also inferred from real tumor shrinkage curves measured in patients suffering from non-small cell lung cancer. The simulations qualitatively reproduce the time evolution of the morphologies of these tumors as well as the morphological patterns follow the growth curves observed in patients. Conclusions s This model is able to reproduce the observed increment/decrement of tumor size in response to the pharmacological treatment with gemcitabine. The formal specification of the model in Redi can be easily extended in an incremental way to include other relevant biophysical processes, such as local extracellular matrix remodelling, active cell migration and traction, and reshaping of host tissue vasculature, in order to be even more relevant to support the experimental investigation of cancer.
Collapse
Affiliation(s)
- Paola Lecca
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Italy.
| | | |
Collapse
|
48
|
Lecca P, Morpurgo D, Fantaccini G, Casagrande A, Priami C. Inferring biochemical reaction pathways: the case of the gemcitabine pharmacokinetics. BMC SYSTEMS BIOLOGY 2012; 6:51. [PMID: 22640931 PMCID: PMC3536593 DOI: 10.1186/1752-0509-6-51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/23/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND The representation of a biochemical system as a network is the precursor of any mathematical model of the processes driving the dynamics of that system. Pharmacokinetics uses mathematical models to describe the interactions between drug, and drug metabolites and targets and through the simulation of these models predicts drug levels and/or dynamic behaviors of drug entities in the body. Therefore, the development of computational techniques for inferring the interaction network of the drug entities and its kinetic parameters from observational data is raising great interest in the scientific community of pharmacologists. In fact, the network inference is a set of mathematical procedures deducing the structure of a model from the experimental data associated to the nodes of the network of interactions. In this paper, we deal with the inference of a pharmacokinetic network from the concentrations of the drug and its metabolites observed at discrete time points. RESULTS The method of network inference presented in this paper is inspired by the theory of time-lagged correlation inference with regard to the deduction of the interaction network, and on a maximum likelihood approach with regard to the estimation of the kinetic parameters of the network. Both network inference and parameter estimation have been designed specifically to identify systems of biotransformations, at the biochemical level, from noisy time-resolved experimental data. We use our inference method to deduce the metabolic pathway of the gemcitabine. The inputs to our inference algorithm are the experimental time series of the concentration of gemcitabine and its metabolites. The output is the set of reactions of the metabolic network of the gemcitabine. CONCLUSIONS Time-lagged correlation based inference pairs up to a probabilistic model of parameter inference from metabolites time series allows the identification of the microscopic pharmacokinetics and pharmacodynamics of a drug with a minimal a priori knowledge. In fact, the inference model presented in this paper is completely unsupervised. It takes as input the time series of the concetrations of the parent drug and its metabolites. The method, applied to the case study of the gemcitabine pharmacokinetics, shows good accuracy and sensitivity.
Collapse
Affiliation(s)
- Paola Lecca
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, , 38068 Rovereto, Italy
| | - Daniele Morpurgo
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, , 38068 Rovereto, Italy
| | - Gianluca Fantaccini
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, , 38068 Rovereto, Italy
| | - Alessandro Casagrande
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, , 38068 Rovereto, Italy
- Department of Information Engineering and Computer Science - University of Trento, , Trento, Italy
| | - Corrado Priami
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, , 38068 Rovereto, Italy
- Department of Information Engineering and Computer Science - University of Trento, , Trento, Italy
| |
Collapse
|
49
|
Honeywell RJ, Giovannetti E, Peters GJ. Determination of the phosphorylated metabolites of gemcitabine and of difluorodeoxyuridine by LCMSMS. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 30:1203-13. [PMID: 22132976 DOI: 10.1080/15257770.2011.632389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Gemcitabine is an established chemotherapy agent in several solid tumors. Its mechanism of action has been theoretically established and this is supported with strong experimental evidence. However, certain aspects of the resistance mechanism for this agent remain elusive. We present a method of analysis using tandem liquid chromatography and mass spectrometry that provides a broader, yet more focused view of the action of gemcitabine and its primary metabolite, difluorodeoxyuridine in relation to the (deoxy) nucleoside and (deoxy) nucleotide pools in tumor cell lines. Alcoholic cytosole extracts were incubated with alkaline phosphatase reducing the nucleotide pools to their respective nucleosides. Determination of the nucleoside content by a sensitive LCMSMS method before and after incubation enables the calculation of the total amount of phosphorylation of each (deoxy) nucleoside in the cell. Incubation with clinically relevant levels of gemcitabine (dFdC) or difluorodeoxyuridine (dFdU) for 24 hours enabled the determination of the changes in the (deoxy) nucleotide pools in relation to chemotherapeutic and toxicological effects. Confirmation of the presence of dFdC phosphorylation is presented as well as direct evidence of dFdU phosphorylation after both dFdC and dFdU treatment. Differences in the nucleotide pools are presented after dFdC and dFdU incubation, indicating that dFdU might have more chemotherapeutic properties than previously believed.
Collapse
Affiliation(s)
- Richard J Honeywell
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
50
|
Jansen RS, Rosing H, Wijermans PW, Keizer RJ, Schellens JHM, Beijnen JH. Decitabine triphosphate levels in peripheral blood mononuclear cells from patients receiving prolonged low-dose decitabine administration: a pilot study. Cancer Chemother Pharmacol 2012; 69:1457-66. [PMID: 22382880 DOI: 10.1007/s00280-012-1850-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Decitabine is a nucleoside analog used in the treatment for myelodysplastic syndrome. The compound requires intracellular conversion to its triphosphate to become active. Decitabine triphosphate has, however, never been quantified in peripheral blood mononuclear cells (PBMCs) from patients. METHOD This article describes a method for the quantitative determination of decitabine triphosphate in PBMCs using liquid chromatography coupled to tandem mass spectrometry. The method was applied to ex vivo incubated whole blood samples and samples from three patients receiving prolonged low-dose decitabine treatment. RESULTS We successfully quantitated decitabine triphosphate in PBMCs. Considerable levels were detected in PBMCs from two patients that responded well to therapy, whereas only low levels were present in a non-responding patient. Moreover, the data show that, in contrast to plasma decitabine, intracellular decitabine triphosphate accumulates during a treatment cycle of nine infusions at a dose of 15 mg/m(2). CONCLUSIONS The results suggest a relationship between decitabine triphosphate levels and response to therapy. Based on the observed accumulation of decitabine triphosphate during a treatment cycle, a less intensive dose scheme could be feasible.
Collapse
Affiliation(s)
- Robert S Jansen
- Department of Pharmacy and Pharmacology, Slotervaart Hospital/The Netherlands Cancer Institute, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|