1
|
Novak J, Nahacka Z, Oliveira GL, Brisudova P, Dubisova M, Dvorakova S, Miklovicova S, Dalecka M, Puttrich V, Grycova L, Magalhaes-Novais S, Correia CM, Levoux J, Stepanek L, Prochazka J, Svec D, Reguera DP, Lopez-Domenech G, Zobalova R, Sedlacek R, Terp MG, Gammage PA, Lansky Z, Kittler J, Oliveira PJ, Ditzel HJ, Berridge MV, Rodriguez AM, Boukalova S, Rohlena J, Neuzil J. The adaptor protein Miro1 modulates horizontal transfer of mitochondria in mouse melanoma models. Cell Rep 2025; 44:115154. [PMID: 39792553 DOI: 10.1016/j.celrep.2024.115154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 10/31/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Recent research has shown that mtDNA-deficient cancer cells (ρ0 cells) acquire mitochondria from tumor stromal cells to restore respiration, facilitating tumor formation. We investigated the role of Miro1, an adaptor protein involved in movement of mitochondria along microtubules, in this phenomenon. Inducible Miro1 knockout (Miro1KO) mice markedly delayed tumor formation after grafting ρ0 cancer cells. Miro1KO mice with fluorescently labeled mitochondria revealed that this delay was due to hindered mitochondrial transfer from the tumor stromal cells to grafted B16 ρ0 cells, which impeded recovery of mitochondrial respiration and tumor growth. Miro1KO led to the perinuclear accumulation of mitochondria and impaired mobility of the mitochondrial network. In vitro experiments revealed decreased association of mitochondria with microtubules, compromising mitochondrial transfer via tunneling nanotubes (TNTs) in mesenchymal stromal cells. Here we show the role of Miro1 in horizontal mitochondrial transfer in mouse melanoma models in vivo and its involvement with TNTs.
Collapse
Affiliation(s)
- Jaromir Novak
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Zuzana Nahacka
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic.
| | - Gabriela L Oliveira
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; NC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, Doctoral Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, 3060-197 Cantanhede, Portugal
| | - Petra Brisudova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Maria Dubisova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Sona Miklovicova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Marketa Dalecka
- Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Verena Puttrich
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Lenka Grycova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Silvia Magalhaes-Novais
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | | | - Jennifer Levoux
- Sorbonne University, Institute of Biology Paris-Seine, 75005 Paris, France
| | - Ludek Stepanek
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Jan Prochazka
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - David Svec
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - David Pajuelo Reguera
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Guillermo Lopez-Domenech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Radek Sedlacek
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Mikkel G Terp
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Payam A Gammage
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Josef Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Paulo J Oliveira
- NC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal
| | - Henrik J Ditzel
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
| | | | - Anne-Marie Rodriguez
- Sorbonne University, Institute of Biology Paris-Seine, 75005 Paris, France; University Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic; School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia; 1(st) Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic.
| |
Collapse
|
2
|
De S, Ehrlich M. Arrest and Attack: Microtubule-Targeting Agents and Oncolytic Viruses Employ Complementary Mechanisms to Enhance Anti-Tumor Therapy Efficacy. Genes (Basel) 2024; 15:1193. [PMID: 39336785 PMCID: PMC11431212 DOI: 10.3390/genes15091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Oncolytic viruses (OVs) are promising cancer immunotherapy agents that stimulate anti-tumor immunity through the preferential infection and killing of tumor cells. OVs are currently under limited clinical usage, due in part to their restricted efficacy as monotherapies. Current efforts for enhancement of the therapeutic potency of OVs involve their combination with other therapy modalities, aiming at the concomitant exploitation of complementary tumor weaknesses. In this context, microtubule-targeting agents (MTAs) pose as an enticing option, as they perturb microtubule dynamics and function, induce cell-cycle arrest, and cause mitotic cell death. MTAs induce therapeutic benefit through cancer-cell-autonomous and non-cell-autonomous mechanisms and are a main component of the standard of care for different malignancies. However, off-target effects and acquired resistance involving distinct cellular and molecular mechanisms may limit the overall efficacy of MTA-based therapy. When combined, OVs and MTAs may enhance therapeutic efficacy through increases in OV infection and immunogenic cell death and a decreased probability of acquired resistance. In this review, we introduce OVs and MTAs, describe molecular features of their activity in cancer cells, and discuss studies and clinical trials in which the combination has been tested.
Collapse
Affiliation(s)
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
3
|
Park D, Lee JH, Yoon SP. Anti-cancer effects of fenbendazole on 5-fluorouracil-resistant colorectal cancer cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:377-387. [PMID: 36039738 PMCID: PMC9437363 DOI: 10.4196/kjpp.2022.26.5.377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022]
Abstract
Benzimidazole anthelmintic agents have been recently repurposed to overcome cancers resistant to conventional therapies. To evaluate the anti-cancer effects of benzimidazole on resistant cells, various cell death pathways were investigated in 5-fluorouracil-resistant colorectal cancer cells. The viability of wild-type and 5-fluorouracil-resistant SNU-C5 colorectal cancer cells was assayed, followed by Western blotting. Flow cytometry assays for cell death and cell cycle was also performed to analyze the anti-cancer effects of benzimidazole. When compared with albendazole, fenbendazole showed higher susceptibility to 5-fluorouracil-resistant SNU-C5 cells and was used in subsequent experiments. Flow cytometry revealed that fenbendazole significantly induces apoptosis as well as cell cycle arrest at G2/M phase on both cells. When compared with wild-type SNU-C5 cells, 5-fluorouracil-resistant SNU-C5 cells showed reduced autophagy, increased ferroptosis and ferroptosis-augmented apoptosis, and less activation of caspase-8 and p53. These results suggest that fenbendazole may be a potential alternative treatment in 5-fluorouracil-resistant cancer cells, and the anticancer activity of fenbendazole does not require p53 in 5-fluorouracil-resistant SNU-C5 cells.
Collapse
Affiliation(s)
- Deokbae Park
- Department of Histology, College of Medicine, Jeju National University, Jeju 63243, Korea
| | - Jung-Hee Lee
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 61452, Korea
| | - Sang-Pil Yoon
- Department of Anatomy, College of Medicine, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
4
|
Manfredi B, Neighbors JD, Hohl RJ. Cytotoxic Effects of the Schweinfurthin Analog 5′-Methylschweinfurthin G in Malignant Plasma Cells. Pharmacology 2022; 107:510-523. [DOI: 10.1159/000525299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/25/2022] [Indexed: 11/19/2022]
Abstract
<b><i>Introduction:</i></b> Multiple myeloma (MM) is a B plasma cell malignancy currently incurable, and novel therapeutics are needed. Evidences regarding the effect of natural compound schweinfurthins suggest that hematological cancers showed growth inhibitory effects to this family of compounds at single nanomolar concentrations. In this study, we evaluated the cytotoxicity of the schweinfurthin synthetic analog 5′-methylschweinfurthin G (MeSG) in MM cell lines, to better understand the validity of this compound as a therapeutic candidate for further studies in MM. <b><i>Methods:</i></b> MeSG toxicity against MM cell lines RPMI-8226, MM.1S, and H-929 was evaluated. Trypan blue exclusion and MTT assays measured cell viability and mitochondrial activity, respectively. Flow cytometry was performed to detect apoptotic mitochondria. Flow cytometry and Western blotting techniques were used to investigate apoptosis and to examine the cell cycle. Western blotting was used to determine AKT activation upon MeSG treatment. <b><i>Results:</i></b> We provide evidence that in all MM cells analyzed, MeSG exerts diverse cytotoxic effects. MeSG treatment of MM.1S and H-929, but not in RPMI-8226, causes a loss of mitochondria membrane potential. MeSG causes an arrest in G<sub>2</sub>/M, especially in RPMI-8226, supported by decreased levels of cyclin-B1 and early increased levels of p21. Finally, there is a diverse response to the MeSG treatment for AKT phosphorylation. MM.1S and H-929 showed a marked decrease in AKT phosphorylation at earlier time points compared to the RPMI-8226 line. <b><i>Conclusions:</i></b> MeSG cytotoxicity has been confirmed in all of 3 cell lines studied. Results suggest an early event of increased reactive oxygen species, and/or involvement of cholesterol homeostasis via decreased AKT activation, both of which are currently under investigation.
Collapse
|
5
|
Sun SL, Wu SH, Kang JB, Ma YY, Chen L, Cao P, Chang L, Ding N, Xue X, Li NG, Shi ZH. Medicinal Chemistry Strategies for the Development of Bruton's Tyrosine Kinase Inhibitors against Resistance. J Med Chem 2022; 65:7415-7437. [PMID: 35594541 DOI: 10.1021/acs.jmedchem.2c00030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite significant efficacy, one of the major limitations of small-molecule Bruton's tyrosine kinase (BTK) agents is the presence of clinically acquired resistance, which remains a major clinical challenge. This Perspective focuses on medicinal chemistry strategies for the development of BTK small-molecule inhibitors against resistance, including the structure-based design of BTK inhibitors targeting point mutations, e.g., (i) developing noncovalent inhibitors from covalent inhibitors, (ii) avoiding steric hindrance from mutated residues, (iii) making interactions with the mutated residue, (iv) modifying the solvent-accessible region, and (v) developing new scaffolds. Additionally, a comparative analysis of multi-inhibitions of BTK is presented based on cross-comparisons between 2916 unique BTK ligands and 283 other kinases that cover 7108 dual/multiple inhibitions. Finally, targeting the BTK allosteric site and uding proteolysis-targeting chimera (PROTAC) as two potential strategies are addressed briefly, while also illustrating the possibilities and challenges to find novel ligands of BTK.
Collapse
Affiliation(s)
- Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shi-Han Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ji-Bo Kang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi-Yuan Ma
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lu Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Cao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
6
|
Stoeckle JH, Davies FE, Williams L, Boyle EM, Morgan GJ. The evolving role and utility of off-label drug use in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:355-373. [PMID: 36046752 PMCID: PMC9400732 DOI: 10.37349/etat.2021.00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/16/2021] [Indexed: 12/03/2022] Open
Abstract
The treatment landscape for multiple myeloma (MM) has dramatically changed over the last three decades, moving from no US Food and Drug Administration approvals and two active drug classes to over 19 drug approvals and at least eight different active classes. The advances seen in MM therapy have relied on both a structured approach to obtaining new labels and cautious off-label drug use. Although there are country and regional differences in drug approval processes, many of the basic principles behind off-label drug use in MM can be summarized into four main categories: 1) use of a therapy prior to the current approval regulations; 2) widespread use of a therapy following the release of promising clinical trial results but prior to drug approval; 3) use of a cheap therapy supported by clinical safety and efficacy data but without commercial backing; and 4) niche therapies for small well-defined patient populations where large clinical trials with sufficient power may be difficult to perform. This review takes a historical approach to discuss how off-label drug use has helped to shape the current treatment approach for MM.
Collapse
Affiliation(s)
- James H Stoeckle
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Faith E Davies
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Louis Williams
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Eileen M Boyle
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Gareth J Morgan
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
7
|
Abdel-Rahman SA, Wafa EI, Ebeid K, Geary SM, Naguib YW, El-Damasy AK, Salem AK. Thiophene derivative-loaded nanoparticles mediate anticancer activity through the inhibition of kinases and microtubule assembly. ADVANCED THERAPEUTICS 2021; 4. [PMID: 34423112 DOI: 10.1002/adtp.202100058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Different tetrahydrobenzo[b]thiophene derivatives were explored as new tubulin polymerization destabilizers to arrest tumor cell mitosis. A series of compounds incorporating the tetrahydrobenzo[b]thiophene scaffold were synthesized, and their biological activities were investigated. The cytotoxicity of each of the synthesized compounds was assessed against a range of cell lines. Specifically, the benzyl urea tetrahydrobenzo[b]thiophene derivative, 1-benzyl-3-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)urea (BU17), was identified as the most potent compound with broad-spectrum antitumor activity against several cancer cell lines. The potential mechanism(s) of action were investigated where dose-dependent G2/M accumulation and A549 cell cycle arrest were detected. Additionally, A549 cells treated with BU17 expressed enhanced levels of caspase 3 and 9, indicating the induction of apoptosis. Furthermore, it was found that BU17 inhibits WEE1 kinase and targets tubulin by blocking its polymerization. BU17 was also formulated into PLGA nanoparticles, and it was demonstrated that BU17-loaded nanoparticles could significantly enhance antitumor activity compared to the soluble counterpart.
Collapse
Affiliation(s)
- Somaya A Abdel-Rahman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.,Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Kareem Ebeid
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, New Minia City, Minia, 61519 Egypt
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Youssef W Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, New Minia City, Minia, 61519 Egypt
| | - Ashraf K El-Damasy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Ismail MMF, El-Sehrawi H, Elzahabi HSA, Shawer T, Ammar YA. Synthesis and Antitumor Activity of Novel Hybrids of Pyrimidine/Benzimidazole Scaffolds. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1833050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Magda M. F. Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hend El-Sehrawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Heba S. A. Elzahabi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Taghreed Shawer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Yousry A. Ammar
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
9
|
Abdel-Rahman SA, El-Damasy AK, Hassan GS, Wafa EI, Geary SM, Maarouf AR, Salem AK. Cyclohepta[ b]thiophenes as Potential Antiproliferative Agents: Design, Synthesis, In Vitro, and In Vivo Anticancer Evaluation. ACS Pharmacol Transl Sci 2020; 3:965-977. [PMID: 33073194 DOI: 10.1021/acsptsci.0c00096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 01/10/2023]
Abstract
Several thiophene featuring compounds are known for their promising antiproliferative activity. Prompted by the urgent need to identify new potent anticancer agents, 16 compounds of benzamides, benzylamines, and urea analogues incorporating a cyclohepta[b]thiophene scaffold were synthesized and biologically evaluated with a cell proliferation assay using the A549 nonsmall cell lung cancer cell line. Compound 17 demonstrated both potent and broad-spectrum anticancer activity with submicromolar 50% growth inhibition (GI50) values. It also showed superior antiproliferative activity (vs nocodazole) in OVACAR-4, OVACAR-5, CAKI-1, and T47D cell lines with GI50 values of 2.01 (vs 22.28), 2.27 (vs 20.75), 0.69 (vs 1.11), and 0.362 (vs 81.283) μM, respectively. Additionally, compound 17 displayed minimal cytotoxicity based on 50% lethal concentration (LC50) values toward all tested cell lines. Further cell-based mechanistic studies of compound 17 revealed its ability to induce cell cycle arrest of A549 cells as evidenced by dose dependent G2/M accumulation. Furthermore, induction of early apoptosis along with activation of caspase 3, 8, and 9 were confirmed in A549 cells treated with compound 17. Targeting tubulin polymerization may explain the mechanism of the antiproliferative activity of compound 17 based on cell cycle analysis, detected apoptosis, and in vitro inhibition of tubulin polymerization. In vitro data were further supported by in vivo antitumor efficacy studies of compound 17 in a CT26 murine model for which the results showed a reduction in the tumor growth compared to untreated mice. Overall, compound 17 has the potential to function as a promising candidate for further development of potent anticancer chemotherapeutics.
Collapse
Affiliation(s)
- Somaya A Abdel-Rahman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States.,Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ashraf K El-Damasy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ghada S Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Azza R Maarouf
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
10
|
Beri P, Popravko A, Yeoman B, Kumar A, Chen K, Hodzic E, Chiang A, Banisadr A, Placone JK, Carter H, Fraley SI, Katira P, Engler AJ. Cell Adhesiveness Serves as a Biophysical Marker for Metastatic Potential. Cancer Res 2019; 80:901-911. [PMID: 31857292 DOI: 10.1158/0008-5472.can-19-1794] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Tumors are heterogeneous and composed of cells with different dissemination abilities. Despite significant effort, there is no universal biological marker that serves as a metric for metastatic potential of solid tumors. Common to disseminating cells from such tumors, however, is the need to modulate their adhesion as they detach from the tumor and migrate through stroma to intravasate. Adhesion strength is heterogeneous even among cancer cells within a given population, and using a parallel plate flow chamber, we separated and sorted these populations into weakly and strongly adherent groups; when cultured under stromal conditions, this adhesion phenotype was stable over multiple days, sorting cycles, and common across all epithelial tumor lines investigated. Weakly adherent cells displayed increased migration in both two-dimensional and three-dimensional migration assays; this was maintained for several days in culture. Subpopulations did not show differences in expression of proteins involved in the focal adhesion complex but did exhibit intrinsic focal adhesion assembly as well as contractile differences that resulted from differential expression of genes involved in microtubules, cytoskeleton linkages, and motor activity. In human breast tumors, expression of genes associated with the weakly adherent population resulted in worse progression-free and disease-free intervals. These data suggest that adhesion strength could potentially serve as a stable marker for migration and metastatic potential within a given tumor population and that the fraction of weakly adherent cells present within a tumor could act as a physical marker for metastatic potential. SIGNIFICANCE: Cancer cells exhibit heterogeneity in adhesivity, which can be used to predict metastatic potential.
Collapse
Affiliation(s)
- Pranjali Beri
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Anna Popravko
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Benjamin Yeoman
- Department of Bioengineering, University of California, San Diego, La Jolla, California
- Department of Mechanical Engineering, San Diego State University, San Diego, California
| | - Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Kevin Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Enio Hodzic
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Alyssa Chiang
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Afsheen Banisadr
- Biomedical Sciences Program, University of California, San Diego, La Jolla, California
| | - Jesse K Placone
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Hannah Carter
- Moores Cancer Center, University of California, San Diego, La Jolla, California
- Department of Medicine/Division of Medical Genetics, University of California, San Diego, La Jolla, California
| | - Stephanie I Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, California
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, California
- Computational Sciences Research Center, San Diego State University, San Diego, California
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, California.
- Biomedical Sciences Program, University of California, San Diego, La Jolla, California
- Sanford Consortium for Regenerative Medicine, La Jolla, California
| |
Collapse
|
11
|
Rozic G, Paukov L, Jakubikova J, Ben-Shushan D, Duek A, Leiba A, Avigdor A, Nagler A, Leiba M. The novel compound STK405759 is a microtubule-targeting agent with potent and selective cytotoxicity against multiple myeloma in vitro and in vivo. Oncotarget 2018; 7:62572-62584. [PMID: 27613836 PMCID: PMC5308747 DOI: 10.18632/oncotarget.11539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022] Open
Abstract
Despite advances in treatment, multiple myeloma (MM) remains incurable. Here we propose the use of STK405759, a novel microtubule targeting agent (MTA) and member of the furan metotica family for MM therapy. STK405759 inhibited tubulin polymerization in a cell-free system and in myeloma cells. This molecule had potent cytotoxic activity against several MM cell lines and patient-derived MM cells. Moreover, STK405759 demonstrated cytotoxicity against drug-resistant myeloma cells that overexpressed the P-glycoprotein drug-efflux pump. STK405759 was not cytotoxic to peripheral blood mononuclear cells, including activated B and T lymphocytes. This compound caused mitotic arrest and apoptosis of myeloma cells characterized by cleavage of poly (ADP-ribose) polymerase-1 and caspase-8, as well as decreased protein expression of mcl-1. The combination of STK405759 with bortezomib, lenalidomide or dexamethasone had synergistic cytotoxic activity. In in vivo studies, STK405759-treated mice had significantly decreased MM tumor burden and prolonged survival compared to vehicle treated- mice. These results provide a rationale for further evaluation of STK405759 as monotherapy or part of combination therapy for treating patients with MM.
Collapse
Affiliation(s)
- Gabriela Rozic
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Lena Paukov
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Jana Jakubikova
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dikla Ben-Shushan
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Adrian Duek
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Adi Leiba
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Medical Education, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Abraham Avigdor
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arnon Nagler
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Merav Leiba
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Zhang YX, Zhao W, Tang YJ. Multilevel induction of apoptosis by microtubule-interfering inhibitors 4β-S-aromatic heterocyclic podophyllum derivatives causing multi-fold mitochondrial depolarization and PKA signaling pathways in HeLa cells. Oncotarget 2018; 7:24303-13. [PMID: 27007151 PMCID: PMC5029702 DOI: 10.18632/oncotarget.8147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/28/2016] [Indexed: 11/25/2022] Open
Abstract
Herein is a first effort to study effect of carbon-sulfur (C-S) and carbon-nitrogen (C-N) bonds modification on the antitumor activity of the podophyllum derivatives in HeLa cells. Compared with the derivative modified by the C-N bond, the C-S bond modification exhibited superior antitumor activity by further causing significant mitochondria depolarization from three signaling pathway. First, a large number of microtubules were depolymerized by 4β-S-heterocyclic substituted podophyllum derivatives. The increasing free tubulin bond with voltage-dependent anion-selective channel (VDAC). Second, cAMP-dependent protein kinase A (PKA) was activated by 4β-S-heterocyclic substituted podophyllum derivatives. And then the activated PKA further caused significantly mitochondria depolarization. Third, the activated PKA also activated c-Jun N-terminal kinase (JNK) and further deceased MMP by improving the level of reactive oxygen species. Understanding the molecular events that contribute to drug-induced tumors apoptosis should provide a paradigm for a more rational approach to antitumor drug design.
Collapse
Affiliation(s)
- Ya-Xuan Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Wei Zhao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
13
|
Pandey MK, Gowda K, Sung SS, Abraham T, Budak-Alpdogan T, Talamo G, Dovat S, Amin S. A novel dual inhibitor of microtubule and Bruton's tyrosine kinase inhibits survival of multiple myeloma and osteoclastogenesis. Exp Hematol 2017. [DOI: 10.1016/j.exphem.2017.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Methyl 5-[(1H-indol-3-yl)selanyl]-1H-benzoimidazol-2-ylcarbamate (M-24), a novel tubulin inhibitor, causes G2/M arrest and cell apoptosis by disrupting tubulin polymerization in human cervical and breast cancer cells. Toxicol In Vitro 2017; 42:139-149. [DOI: 10.1016/j.tiv.2017.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/02/2016] [Accepted: 04/12/2017] [Indexed: 11/20/2022]
|
15
|
Li S, Fu J, Lu C, Mapara MY, Raza S, Hengst U, Lentzsch S. Elevated Translation Initiation Factor eIF4E Is an Attractive Therapeutic Target in Multiple Myeloma. Mol Cancer Ther 2016; 15:711-9. [PMID: 26939700 DOI: 10.1158/1535-7163.mct-15-0798] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/08/2016] [Indexed: 11/16/2022]
Abstract
eIF4E is the key regulator of protein translation and critical for translation. The oncogenic potential of tumorigenesis, which is highly contingent on cap-dependent eIF4E, also arises from the critical role in the nuclear export and cytosolic translation of oncogenic transcripts. Inhibition of Exportin1 (XPO1), which is the major nuclear export protein for eIF4E-bound oncoprotein mRNAs, results in decreased tumor cell growth in vitro and in vivo, suggesting that eIF4E is critical in multiple myeloma. Indeed, we found that eIF4E is overexpressed in myeloma cell lines and primary myeloma cells compared with normal plasma cells. Although stable overexpression of eIF4E in multiple myeloma cells significantly increases tumorigenesis, knockdown of eIF4E impairs multiple myeloma tumor progression in a human xenograft mouse model. Using a tet-on-inducible eIF4E-knockdown system, eIF4E downregulation blocks multiple myeloma tumor growth in vivo, correlating with decreased eIF4E expression. Further overexpression and knockdown of eIF4E revealed that eIF4E regulates translation of mRNAs with highly complex 5'-untranslated regions, such as c-MYC and C/EBPβ, and subsequently proliferation in multiple myeloma cells, but not in nonmalignant bone marrow stromal cells. Because many transcription factors that are critical for multiple myeloma proliferation exhibit a higher dependency on protein translation, eIF4E is an ideal and selective tool to target multiple myeloma cell growth. Mol Cancer Ther; 15(4); 711-9. ©2016 AACR.
Collapse
Affiliation(s)
- Shirong Li
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jing Fu
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Caisheng Lu
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Markus Y Mapara
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Shahzad Raza
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Ulrich Hengst
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Suzanne Lentzsch
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York.
| |
Collapse
|
16
|
Liang K, Woodfin AR, Slaughter BD, Unruh JR, Box AC, Rickels RA, Gao X, Haug JS, Jaspersen SL, Shilatifard A. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis. Mol Cell 2016; 60:435-45. [PMID: 26527278 DOI: 10.1016/j.molcel.2015.09.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/04/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.
Collapse
Affiliation(s)
- Kaiwei Liang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA; Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Ashley R Woodfin
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Brian D Slaughter
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Andrew C Box
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Ryan A Rickels
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Xin Gao
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Jeffrey S Haug
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA; Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
17
|
Zhang X, Cai J, Zheng Z, Polin L, Lin Z, Dandekar A, Li L, Sun F, Finley RL, Fang D, Yang ZQ, Zhang K. A novel ER-microtubule-binding protein, ERLIN2, stabilizes Cyclin B1 and regulates cell cycle progression. Cell Discov 2015; 1:15024. [PMID: 27462423 PMCID: PMC4860859 DOI: 10.1038/celldisc.2015.24] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/10/2015] [Indexed: 12/11/2022] Open
Abstract
The gene encoding endoplasmic reticulum (ER) lipid raft-associated protein 2 (ERLIN2) is amplified in human breast cancers. ERLIN2 gene mutations were also found to be associated with human childhood progressive motor neuron diseases. Yet, an understanding of the physiological function and mechanism for ERLIN2 remains elusive. In this study, we reveal that ERLIN2 is a spatially and temporally regulated ER–microtubule-binding protein that has an important role in cell cycle progression by interacting with and stabilizing the mitosis-promoting factors. Whereas ERLIN2 is highly expressed in aggressive human breast cancers, during normal development ERLIN2 is expressed at the postnatal stage and becomes undetectable in adulthood. ERLIN2 interacts with the microtubule component α-tubulin, and this interaction is maximal during the cell cycle G2/M phase where ERLIN2 simultaneously interacts with the mitosis-promoting complex Cyclin B1/Cdk1. ERLIN2 facilitates K63-linked ubiquitination and stabilization of Cyclin B1 protein in G2/M phase. Downregulation of ERLIN2 results in cell cycle arrest, represses breast cancer proliferation and malignancy and increases sensitivity of breast cancer cells to anticancer drugs. In summary, our study revealed a novel ER–microtubule-binding protein, ERLIN2, which interacts with and stabilizes mitosis-promoting factors to regulate cell cycle progression associated with human breast cancer malignancy.
Collapse
Affiliation(s)
- Xuebao Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine , Detroit, MI, USA
| | - Juan Cai
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine , Detroit, MI, USA
| | - Ze Zheng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine , Detroit, MI, USA
| | - Lisa Polin
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhenghong Lin
- Department of Pathology, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| | - Aditya Dandekar
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, MI, USA
| | - Li Li
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine , Chicago, IL, USA
| | - Russell L Finley
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA; Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zeng-Quan Yang
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA; Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
18
|
Feng R, Tong Q, Xie Z, Cheng H, Wang L, Lentzsch S, Roodman GD, Xie XQ. Targeting cannabinoid receptor-2 pathway by phenylacetylamide suppresses the proliferation of human myeloma cells through mitotic dysregulation and cytoskeleton disruption. Mol Carcinog 2015; 54:1796-806. [PMID: 25640641 DOI: 10.1002/mc.22251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 10/06/2014] [Accepted: 10/21/2014] [Indexed: 01/19/2023]
Abstract
Cannabinoid receptor-2 (CB2) is expressed dominantly in the immune system, especially on plasma cells. Cannabinergic ligands with CB2 selectivity emerge as a class of promising agents to treat CB2-expressing malignancies without psychotropic concerns. In this study, we found that CB2 but not CB1 was highly expressed in human multiple myeloma (MM) and primary CD138+ cells. A novel inverse agonist of CB2, phenylacetylamide but not CB1 inverse agonist SR141716, inhibited the proliferation of human MM cells (IC50 : 0.62 ∼ 2.5 μM) mediated by apoptosis induction, but exhibited minor cytotoxic effects on human normal mononuclear cells. CB2 gene silencing or pharmacological antagonism markedly attenuated phenylacetylamide's anti-MM effects. Phenylacetylamide triggered the expression of C/EBP homologous protein at the early treatment stage, followed by death receptor-5 upregulation, caspase activation, and β-actin/tubulin degradation. Cell cycle related protein cdc25C and mitotic regulator Aurora A kinase were inactivated by phenylacetylamide treatment, leading to an increase in the ratio inactive/active cdc2 kinase. As a result, phosphorylation of CDK substrates was decreased, and the MM cell mitotic division was largely blocked by treatment. Importantly, phenylacetylamide could overcome the chemoresistance of MM cells against dexamethasone or melphalan. Thus, targeting CB2 may represent an attractive approach to treat cancers of immune origin.
Collapse
Affiliation(s)
- Rentian Feng
- Department of Pharmaceutical Sciences and Drug Discovery Institute, Computational Chemical Genomics Screening Center, School of Pharmacy, and NIH NIDA Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qin Tong
- Department of Pharmaceutical Sciences and Drug Discovery Institute, Computational Chemical Genomics Screening Center, School of Pharmacy, and NIH NIDA Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhaojun Xie
- Department of Pharmaceutical Sciences and Drug Discovery Institute, Computational Chemical Genomics Screening Center, School of Pharmacy, and NIH NIDA Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haizi Cheng
- Department of Pharmaceutical Sciences and Drug Discovery Institute, Computational Chemical Genomics Screening Center, School of Pharmacy, and NIH NIDA Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lirong Wang
- Department of Pharmaceutical Sciences and Drug Discovery Institute, Computational Chemical Genomics Screening Center, School of Pharmacy, and NIH NIDA Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Computational Biology, Joint Pitt/CMU Computational Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - G David Roodman
- Hematology/Oncology, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Drug Discovery Institute, Computational Chemical Genomics Screening Center, School of Pharmacy, and NIH NIDA Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Computational Biology, Joint Pitt/CMU Computational Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Feng R, Milcarek CA, Xie XQ. Antagonism of cannabinoid receptor 2 pathway suppresses IL-6-induced immunoglobulin IgM secretion. BMC Pharmacol Toxicol 2014; 15:30. [PMID: 24913620 PMCID: PMC4062519 DOI: 10.1186/2050-6511-15-30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 04/21/2014] [Indexed: 12/23/2022] Open
Abstract
Background Cannabinoid receptor 2 (CB2) is expressed predominantly in the immune system, particularly in plasma cells, raising the possibility that targeting the CB2 pathway could yield an immunomodulatory effect. Although the role of CB2 in mediating immunoglobulin class switching has been reported, the effects of targeting the CB2 pathway on immunoglobulin secretion per se remain unclear. Methods Human B cell line SKW 6.4, which is capable of differentiating into IgM-secreting cells once treated with human IL-6, was employed as the cell model. SKW 6.4 cells were incubated for 4 days with CB2 ligands plus IL-6 (100 U/ml). The amount of secreted IgM was determined by an ELISA. Cell proliferation was determined by the 3H-Thymidine incorporation assay. Signal molecules involved in the modulation of IgM secretion were examined by real-time RT-PCR and Western blot analyses or by using their specific inhibitors. Results We demonstrated that CB2 inverse agonists SR144528 and AM630, but not CB2 agonist HU308 or CB1 antagonist SR141716, effectively inhibited IL-6-induced secretion of soluble IgM without affecting cell proliferation as measured by thymidine uptake. SR144528 alone had no effects on the basal levels of IgM in the resting cells. These effects were receptor mediated, as pretreatment with CB2 agonist abrogated SR144528-mediated inhibition of IL-6 stimulated IgM secretion. Transcription factors relevant to B cell differentiation, Bcl-6 and PAX5, as well as the protein kinase STAT3 pathway were involved in the inhibition of IL-6-induced IgM by SR144528. Conclusions These results uncover a novel function of CB2 antagonists and suggest that CB2 ligands may be potential modulators of immunoglobulin secretion.
Collapse
Affiliation(s)
| | | | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Rai A, Gupta TK, Kini S, Kunwar A, Surolia A, Panda D. CXI-benzo-84 reversibly binds to tubulin at colchicine site and induces apoptosis in cancer cells. Biochem Pharmacol 2013; 86:378-391. [PMID: 23747346 DOI: 10.1016/j.bcp.2013.05.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 01/02/2023]
Abstract
Here, we have discovered CXI-benzo-84 as a potential anticancer agent from a library of benzimidazole derivatives using cell based screening strategy. CXI-benzo-84 inhibited cell cycle progression in metaphase stage of mitosis and accumulated spindle assembly checkpoint proteins Mad2 and BubR1 on kinetochores, which subsequently activated apoptotic cell death in cancer cells. CXI-benzo-84 depolymerized both interphase and mitotic microtubules, perturbed EB1 binding to microtubules and inhibited the assembly and GTPase activity of tubulin in vitro. CXI-benzo-84 bound to tubulin at a single binding site with a dissociation constant of 1.2±0.2μM. Competition experiments and molecular docking suggested that CXI-benzo-84 binds to tubulin at the colchicine-site. Further, computational analysis provided a significant insight on the binding site of CXI-benzo-84 on tubulin. In addition to its potential use in cancer chemotherapy, CXI-benzo-84 may also be useful to screen colchicine-site agents and to understand the colchicine binding site on tubulin.
Collapse
Affiliation(s)
- Ankit Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | | | | | | | | |
Collapse
|