1
|
Chen P, Bordeau BM, Zhang W, Balthasar JP. Investigations of Influence of Antibody Binding Kinetics on Tumor Distribution and Anti-Tumor Efficacy. AAPS J 2025; 27:91. [PMID: 40341444 DOI: 10.1208/s12248-025-01076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/19/2025] [Indexed: 05/10/2025] Open
Abstract
The pharmacokinetics of antibodies with varied binding kinetics were simulated to assess the role of affinity and binding microconstants (kon, koff) on tumor exposure and intra-tumoral distribution. Anti-HER2 constructs (trastuzumab, pertuzumab, VK3VH6, and conjugates with DM1 and gelonin) were produced, purified, and tested for binding and cytotoxicity in vitro, and for intra-tumoral distribution and anti-tumor efficacy in mice. Simulations demonstrated that homogeneity in intra-tumoral distribution increases with increases in koff and with decreases in kon. Interestingly, simulations also predicted that homogeneity in tumor distribution may be improved by decreasing kon and koff in parallel (without changing affinity). Relative to trastuzumab, pertuzumab exhibits similar affinity but a ~ fivefold smaller kon and koff, while VK3VH6 exhibits a similar koff but a ~ 30-fold lower kon and affinity. Conjugate concentrations associated with 50% inhibition of cell proliferation (IC50s) were found to vary with affinity, where IC50 values were similar for pertuzumab and trastuzumab, and higher for VK3VH6. Consistent with model simulations, VK3VH6 and pertuzumab demonstrated more homogeneous tumor distribution than trastuzumab. Although treatment differences were not statistically significant, pertuzumab and VK3VH6 conjugates showed trends for increased survival time relative to mice treated with trastuzumab conjugates. Our simulation and experimental results demonstrate complex relationships between antibody-antigen binding kinetics, intratumoral distribution, and efficacy. The rate constant of association, kon, is an underappreciated determinant of intra-tumoral distribution; among high-affinity antibodies, those with lower values of kon may be expected to exhibit improved intra-tumoral distribution and, potentially, efficacy.
Collapse
MESH Headings
- Animals
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/metabolism
- Mice
- Humans
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/administration & dosage
- Trastuzumab/pharmacokinetics
- Cell Line, Tumor
- Kinetics
- Female
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Agents, Immunological/pharmacology
- Xenograft Model Antitumor Assays
- Immunoconjugates/pharmacokinetics
- Immunoconjugates/pharmacology
Collapse
Affiliation(s)
- Ping Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 452 Pharmacy Building, Buffalo, New York, 14214, USA
| | - Brandon M Bordeau
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 452 Pharmacy Building, Buffalo, New York, 14214, USA
| | - Wenqiu Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 452 Pharmacy Building, Buffalo, New York, 14214, USA
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 452 Pharmacy Building, Buffalo, New York, 14214, USA.
| |
Collapse
|
2
|
Mihaylova R, Momekova D, Elincheva V, Momekov G. Immunoconjugates as an Efficient Platform for Drug Delivery: A Resurgence of Natural Products in Targeted Antitumor Therapy. Pharmaceuticals (Basel) 2024; 17:1701. [PMID: 39770542 PMCID: PMC11677665 DOI: 10.3390/ph17121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The present review provides a detailed and comprehensive discussion on antibody-drug conjugates (ADCs) as an evolving new modality in the current therapeutic landscape of malignant diseases. The principle concepts of targeted delivery of highly toxic agents forsaken as stand-alone drugs are examined in detail, along with the biochemical and technological tools for their successful implementation. An extensive analysis of ADCs' major components is conducted in parallel with their function and impact on the stability, efficacy, safety, and resistance profiles of the immunoconjugates. The scope of the article covers the major classes of currently validated natural compounds used as payloads, with an emphasis on their structural and mechanistic features, natural origin, and distribution. Future perspectives in ADCs' design are thoroughly explored, addressing their inherent or emerging challenges and limitations. The survey also provides a comprehensive overview of the molecular rationale for active tumor targeting of ADC-based platforms, exploring the cellular biology and clinical relevance of validated tumor markers used as a "homing" mechanism in both hematological and solid tumor malignancies.
Collapse
Affiliation(s)
- Rositsa Mihaylova
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (V.E.); (G.M.)
| | - Denitsa Momekova
- Department “Pharmaceutical Technology and Biopharmaceutics”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Viktoria Elincheva
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (V.E.); (G.M.)
| | - Georgi Momekov
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (V.E.); (G.M.)
| |
Collapse
|
3
|
Lee HJ, Chae BH, Ko DH, Lee SG, Yoon SR, Kim DS, Kim YS. Enhancing the cytotoxicity of immunotoxins by facilitating their dissociation from target receptors under the reducing conditions of the endocytic pathway. Int J Biol Macromol 2024; 278:134668. [PMID: 39137851 DOI: 10.1016/j.ijbiomac.2024.134668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Immunotoxins (ITs) are recombinant chimeric proteins that combine a protein toxin with a targeting moiety to facilitate the selective delivery of the toxin to cancer cells. Here, we present a novel strategy to enhance the cytosolic access of ITs by promoting their dissociation from target receptors under the reducing conditions of the endocytic pathway. We engineered monobodySS, a human fibronectin type III domain-based monobody with disulfide bond (SS)-containing paratopes, targeting receptors such as EGFR, EpCAM, Her2, and FAP. MonobodySS exhibited SS-dependent target receptor binding with a significant reduction in binding under reducing conditions. We then created monobodySS-based ITs carrying a 25 kDa fragment of Pseudomonas exotoxin A (PE25), termed monobodySS-PE25. These ITs showed dose-dependent cytotoxicity against target receptor-expressing cancer cells and a wider therapeutic window due to higher efficacy at lower doses compared to controls with SS reduction inhibited. ERSS/28-PE25, with a KD of 28 nM for EGFR, demonstrated superior tumor-killing potency compared to ER/21-PE25, which lacks an SS bond, at equivalent and lower doses. In vivo, ERSS/28-PE25 outperformed ER/21-PE25 in suppressing tumor growth in EGFR-overexpressing xenograft mouse models. This study presents a strategy for developing solid tumor-targeting ITs using SS-containing paratopes to enhance cytosolic delivery and antitumor efficacy.
Collapse
Affiliation(s)
- Hyun-Jin Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Byeong-Ho Chae
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Deok-Han Ko
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seul-Gi Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Sang-Rok Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dae-Seong Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; Advanced College of Bio-convergence Engineering, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
4
|
Heidarnejad K, Nooreddin Faraji S, Mahfoozi S, Ghasemi Z, Sadat Dashti F, Asadi M, Ramezani A. Breast cancer immunotherapy using scFv antibody-based approaches, a systematic review. Hum Immunol 2024; 85:111090. [PMID: 39214066 DOI: 10.1016/j.humimm.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer is considered as the most common malignancy in women and the second leading cause of death related to cancer. Recombinant DNA technologies accelerated the development of antibody-based cancer therapy, which is effective in a broad range of cancers. The objective of the present study was to perform a systematic review on breast cancer immunotherapy using single-chain fragment variable (scFv) antibody formats. Searches were performed up to March 2023 using PubMed, Scopus, and Web of Science (ISI) databases. Three reviewers independently assessed study eligibility, data extraction, and evaluated the methodological quality of included primary studies. Different immunotherapy approaches have been identified and the most common approaches were scFv-conjugates, followed by simple scFvs and chimeric antigen receptor (CAR) therapy, respectively. Among breast cancer antigens, HER superfamily, CD family, and EpCAM were applied as the most important breast cancer immunotherapy targets. The present study shed more lights on scFv-based breast cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Kamran Heidarnejad
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Nooreddin Faraji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shirin Mahfoozi
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghasemi
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Sadat Dashti
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Asadi
- School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Expanding the Therapeutic Window of EGFR-Targeted PE24 Immunotoxin for EGFR-Overexpressing Cancers by Tailoring the EGFR Binding Affinity. Int J Mol Sci 2022; 23:ijms232415820. [PMID: 36555466 PMCID: PMC9779439 DOI: 10.3390/ijms232415820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Immunotoxins (ITs), which are toxin-fused tumor antigen-specific antibody chimeric proteins, have been developed to selectively kill targeted cancer cells. The epidermal growth factor receptor (EGFR) is an attractive target for the development of anti-EGFR ITs against solid tumors due to its overexpression on the cell surface of various solid tumors. However, the low basal level expression of EGFR in normal tissue cells can cause undesirable on-target/off-tumor toxicity and reduce the therapeutic window of anti-EGFR ITs. Here, based on an anti-EGFR monobody with cross-reactivity to both human and murine EGFR, we developed a strategy to tailor the anti-EGFR affinity of the monobody-based ITs carrying a 24-kDa fragment of Pseudomonas exotoxin A (PE24), termed ER-PE24, to distinguish tumors that overexpress EGFR from normal tissues. Five variants of ER-PE24 were generated with different EGFR affinities (KD ≈ 0.24 nM to 104 nM), showing comparable binding activity for both human and murine EGFR. ER/0.2-PE24 with the highest affinity (KD ≈ 0.24 nM) exhibited a narrow therapeutic window of 19 pM to 93 pM, whereas ER/21-PE24 with an intermediate affinity (KD ≈ 21 nM) showed a much broader therapeutic window of 73 pM to 1.5 nM in in vitro cytotoxic assays using tumor model cell lines. In EGFR-overexpressing tumor xenograft mouse models, the maximum tolerated dose (MTD) of intravenous injection of ER/21-PE24 was found to be 0.4 mg/kg, which was fourfold higher than the MTD (0.1 mg/kg) of ER/0.2-PE24. Our study provides a strategy for the development of IT targeting tumor overexpressed antigens with basal expression in broad normal tissues by tailoring tumor antigen affinities.
Collapse
|
6
|
Li M, Mei S, Yang Y, Shen Y, Chen L. Strategies to mitigate the on- and off-target toxicities of recombinant immunotoxins: an antibody engineering perspective. Antib Ther 2022; 5:164-176. [PMID: 35928456 PMCID: PMC9344849 DOI: 10.1093/abt/tbac014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Targeted cancer therapies using immunotoxins has achieved remarkable efficacies in hematological malignancies. However, the clinical development of immunotoxins is also faced with many challenges like anti-drug antibodies and dose-limiting toxicity issues. Such a poor efficacy/safety ratio is also the major hurdle in the research and development of antibody-drug conjugates. From an antibody engineering perspective, various strategies were summarized/proposed to tackle the notorious on target off tumor toxicity issues, including passive strategy (XTENylation of immunotoxins) and active strategies (modulating the affinity and valency of the targeting moiety of immunotoxins, conditionally activating immunotoxins in the tumor microenvironments and reconstituting split toxin to reduce systemic toxicity etc.). By modulating the functional characteristics of the targeting moiety and the toxic moiety of immunotoxins, selective tumor targeting can be augmented while sparing the healthy cells in normal tissues expressing the same target of interest. If successful, the improved therapeutic index will likely help to address the dose-limiting toxicities commonly observed in the clinical trials of various immunotoxins.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Postgraduate , Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
| | - Sen Mei
- Biotherapeutics , Biocytogen Jiangsu Co. Ltd, Nantong, P.R. China
| | - Yi Yang
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
- Institute of Innovative Medicine , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| | - Yuelei Shen
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
- Biotherapeutics , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
- Institute of Innovative Medicine , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| | - Lei Chen
- Biotherapeutics , Biocytogen Jiangsu Co. Ltd, Nantong, P.R. China
- Biotherapeutics , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| |
Collapse
|
7
|
Mahmoudi R, Dianat-Moghadam H, Poorebrahim M, Siapoush S, Poortahmasebi V, Salahlou R, Rahmati M. Recombinant immunotoxins development for HER2-based targeted cancer therapies. Cancer Cell Int 2021; 21:470. [PMID: 34488747 PMCID: PMC8422749 DOI: 10.1186/s12935-021-02182-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Understanding the molecular mechanisms of cancer biology introduces targeted therapy as a complementary method along with other conventional therapies. Recombinant immunotoxins are tumor specific antibodies that their recognizing fragment is utilized for delivering modified toxins into tumor cells. These molecules have been considered as a targeted strategy in the treatment of human cancers. HER2 tumor biomarker is a transmembrane tyrosine kinase receptor that can be used for targeted therapies in the forms of anti-HER2 monoclonal antibodies, antibody-drug conjugates and immunotoxins. There have been many studies on HER2-based immunotoxins in recent years, however, little progress has been made in the clinical field which demanded more improvements. Here, we summarized the HER2 signaling and it's targeting using immunotherapeutic agents in human cancers. Then, we specifically reviewed anti-HER2 immunotoxins, and their strengths and drawbacks to highlight their promising clinical impact.
Collapse
Affiliation(s)
- Reza Mahmoudi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mansour Poorebrahim
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Samaneh Siapoush
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Wu WT, Lin WY, Chen YW, Lin CF, Wang HH, Wu SH, Lee YY. New Era of Immunotherapy in Pediatric Brain Tumors: Chimeric Antigen Receptor T-Cell Therapy. Int J Mol Sci 2021; 22:2404. [PMID: 33673696 PMCID: PMC7957810 DOI: 10.3390/ijms22052404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy, including chimeric antigen receptor (CAR) T-cell therapy, immune checkpoint inhibitors, cancer vaccines, and dendritic cell therapy, has been incorporated as a fifth modality of modern cancer care, along with surgery, radiation, chemotherapy, and target therapy. Among them, CAR T-cell therapy emerges as one of the most promising treatments. In 2017, the first two CAR T-cell drugs, tisagenlecleucel and axicabtagene ciloleucel for B-cell acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL), respectively, were approved by the Food and Drug Administration (FDA). In addition to the successful applications to hematological malignancies, CAR T-cell therapy has been investigated to potentially treat solid tumors, including pediatric brain tumor, which serves as the leading cause of cancer-associated death for children and adolescents. However, the employment of CAR T-cell therapy in pediatric brain tumors still faces multiple challenges, such as CAR T-cell transportation and expansion through the blood-brain barrier, and identification of the specific target antigen on the tumor surface and immunosuppressive tumor microenvironment. Nevertheless, encouraging outcomes in both clinical and preclinical trials are coming to light. In this article, we outline the current propitious progress and discuss the obstacles needed to be overcome in order to unveil a new era of treatment in pediatric brain tumors.
Collapse
Affiliation(s)
- Wan-Tai Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (W.-T.W.); (Y.-W.C.); (C.-F.L.)
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 112201, Taiwan
| | - Wen-Ying Lin
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
| | - Yi-Wei Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (W.-T.W.); (Y.-W.C.); (C.-F.L.)
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Chun-Fu Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (W.-T.W.); (Y.-W.C.); (C.-F.L.)
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Hsin-Hui Wang
- Department of Pediatrics, Division of Pediatric Immunology and Nephrology, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
- Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Szu-Hsien Wu
- Department of Plastic and Reconstructive Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Yen Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (W.-T.W.); (Y.-W.C.); (C.-F.L.)
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 112201, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| |
Collapse
|
9
|
Alvarez de Cienfuegos A, Cheung LH, Mohamedali KA, Whitsett TG, Winkles JA, Hittelman WN, Rosenblum MG. Therapeutic efficacy and safety of a human fusion construct targeting the TWEAK receptor Fn14 and containing a modified granzyme B. J Immunother Cancer 2020; 8:jitc-2020-001138. [PMID: 32958685 PMCID: PMC7507898 DOI: 10.1136/jitc-2020-001138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2020] [Indexed: 12/02/2022] Open
Abstract
Background Antibody-drug conjugates are an exceptional and useful therapeutic tool for multiple diseases, particularly for cancer treatment. We previously showed that the fusion of the serine protease granzyme B (GrB), the effector molecule or T and B cells, to a binding domain allows the controlled and effective delivery of the cytotoxic payload into the target cell. The production of these constructs induced the formation of high molecular aggregates with a potential impact on the efficacy and safety of the protein. Methods Our laboratory designed a new Fn14 targeted fusion construct designated GrB(C210A)-Fc-IT4 which contains a modified GrB payload for improved protein production and preserved biological activity. We assessed the construct’s enzymatic activity, as well as in vitro cytotoxicity and internalization into target cells. We also assessed pharmacokinetics, efficacy and toxicology parameters in vivo. Results GrB(C210A)-Fc-IT4 protein exhibited high affinity and selective cytotoxicity within the nanomolar range when tested against a panel of Fn14-positive human cancer cell lines. The construct rapidly internalized into target cells, activating the caspase cascade and causing mitochondrial membrane depolarization. Pharmacokinetic studies in mice revealed that GrB(C210A)-Fc-IT4 displayed a bi-exponential clearance from plasma with a fast initial clearance (t1/2α=0.36 hour) followed by a prolonged terminal-phase plasma half-life (t1/2β=35 hours). Mice bearing MDA-MB-231 orthotopic tumor xenografts treated with vehicle or GrB(C210A)-Fc-IT4 construct (QODx5) demonstrated tumor regression and long-term (>80 days) suppression of tumor growth. Treatment of mice bearing established, subcutaneous A549 lung tumors showed impressive, long-term tumor suppression compared with a control group treated with vehicle alone. Administration of GrB(C210A)-Fc-IT4 (100 mg/kg total dose) was well-tolerated by mice and resulted in significant reduction of tumor burden in a lung cancer patient-derived xenograft model. Toxicity studies revealed no statistically significant changes in aspartate transferase, alanine transferase or lactate dehydrogenase in treated mice. Histopathological analysis of tissues from treated mice did not demonstrate any specific drug-related changes. Conclusion GrB(C210A)-Fc-IT4 demonstrated excellent, specific cytotoxicity in vitro and impressive in vivo efficacy with no significant toxicity in normal murine models. These studies show GrB(C210A)-Fc-IT4 is an excellent candidate for further preclinical development.
Collapse
Affiliation(s)
- Ana Alvarez de Cienfuegos
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Lawrence H Cheung
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Khalid A Mohamedali
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | | | - Jeffrey A Winkles
- Department of Surgery, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Walter N Hittelman
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Michael G Rosenblum
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Goleij Z, Mahmoodzadeh Hosseini H, Sedighian H, Behzadi E, Halabian R, Sorouri R, Imani Fooladi AA. Breast cancer targeted/ therapeutic with double and triple fusion Immunotoxins. J Steroid Biochem Mol Biol 2020; 200:105651. [PMID: 32147458 DOI: 10.1016/j.jsbmb.2020.105651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 01/29/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
Target-specific transport of therapeutic agents holds promise to increase the efficacy of cancer treatment by decreasing injury to normal tissues and post treatment problems. HER2 is a tumor cell surface marker that is expressed in 25-30 % of breast cancer patients. The significant role of HER2 in cancer development and its biological feature makes it a highly appealing goal for the therapeutic treatment of cancer targeted therapy using HER2 monoclonal antibody. This approach is currently used as a special treatment against breast cancer in some research. In the present study, HER2 monoclonal antibody (mAb), (Herceptin) fused to PE38 by recombinant DNA technology and a new recombinant IT was developed. The scFv(Herceptin)-PE-STXA and scFv(Herceptin)-PE fusions cloned in pET28a and recombinant protein expression was carried out and then the proteins were purified. MCF-7 and SKBR-3 cells were used as HER2-negative and HER2-positive breast cancer cells, respectively. The cytotoxicity of its evaluated using MTT assay. The cell ELISA was used to determine the binding ability of immunotoxins (ITs) to the cell receptor and internalization and apoptosis were also assessed. The results revealed that cell cytotoxicity occurred in SKBR-3 cells in a dose-dependent manner but not in MCF-7 cells. It is possible that this ITs can attach to HER2-positive breast cancer cells and then, internalize and eradicate cancer cells by apoptosis. Here, we concluded that the recombinant ITs have therapeutic potential against HER2-positive breast cancer.
Collapse
Affiliation(s)
- Zoleikha Goleij
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rahim Sorouri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Rezaie E, Amani J, Bidmeshki Pour A, Mahmoodzadeh Hosseini H. A new scfv-based recombinant immunotoxin against EPHA2-overexpressing breast cancer cells; High in vitro anti-cancer potency. Eur J Pharmacol 2020; 870:172912. [PMID: 31926992 DOI: 10.1016/j.ejphar.2020.172912] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/12/2019] [Accepted: 01/07/2020] [Indexed: 11/25/2022]
Abstract
Immunotoxin therapy is one of the immunotherapy strategies providing a new, effective and high potency treatment against various cancers. Breast cancer is the most common cancer among women in many countries. The EPH receptors are a large part of tyrosine kinase receptors family and play an effective role in tumor development and angiogenesis. Among EPH receptors, EPHA2 is more commonly well-known and widely expressed in many cancers like breast cancer. In this study, we evaluated the specification of a designed immunotoxin formed by EPHA2-specific scfv linked with PE38KDEL on EPHA2-overexpressing breast cancer cell line. This new scfv-based recombinant immunotoxin was studied in terms of features such as binding potency, cytotoxicity effects, apoptosis induction ability, and internalization. The flow cytometry results showed that the immunotoxin can significantly (approximately 99%) bind to EPHA2-overexpressing breast cancer cell line (MDA-MB-231) in a low concentration (2.5 ng/ul) while cannot significantly bind to the normal cell line (HEK-293) or even EPHA2-very low expressing cell line (MCF-7). Using the MTT assay and Annexin V/Propidium iodide (PI) double staining method by flow cytometry, we observed significant killing and apoptosis induction of the MDA-MB-231 cells at different concentrations. Immunotoxin tracking by confocal microscopy at 2 h and 6 h revealed a massive presence of immunotoxin in the cytoplasm. Finally, given the in vitro results, it seems that this immunotoxin is competent enough to serve as a good candidate for in vivo studies to further explore the possibility of breast cancer treatment.
Collapse
Affiliation(s)
- Ehsan Rezaie
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran; Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Science, Tehran, Iran.
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ali Bidmeshki Pour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Farshdari F, Ahmadzadeh M, Nematollahi L, Mohit E. The improvement of anti-HER2 scFv soluble expression in Escherichia coli. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000317861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Farzaneh Farshdari
- Islamic Azad University, Iran; Shahid Beheshti University of Medical Sciences, Iran
| | | | | | - Elham Mohit
- Shahid Beheshti University of Medical Sciences, Iran; Shahid Beheshti University of Medical Sciences, Iran
| |
Collapse
|
13
|
Ahmadzadeh M, Farshdari F, Nematollahi L, Behdani M, Mohit E. Anti-HER2 scFv Expression in Escherichia coli SHuffle®T7 Express Cells: Effects on Solubility and Biological Activity. Mol Biotechnol 2019; 62:18-30. [DOI: 10.1007/s12033-019-00221-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Critical Issues in the Development of Immunotoxins for Anticancer Therapy. J Pharm Sci 2019; 109:104-115. [PMID: 31669121 DOI: 10.1016/j.xphs.2019.10.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/23/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
Immunotoxins (ITs) are attractive anticancer modalities aimed at cancer-specific delivery of highly potent cytotoxic protein toxins. An IT consists of a targeting domain (an antibody, cytokine, or another cell-binding protein) chemically conjugated or recombinantly fused to a highly cytotoxic payload (a bacterial and plant toxin or human cytotoxic protein). The mode of action of ITs is killing designated cancer cells through the effector function of toxins in the cytosol after cellular internalization via the targeted cell-specific receptor-mediated endocytosis. Although numerous ITs of diverse structures have been tested in the past decades, only 3 ITs-denileukin diftitox, tagraxofusp, and moxetumomab pasudotox-have been clinically approved for treating hematological cancers. No ITs against solid tumors have been approved for clinical use. In this review, we discuss critical research and development issues associated with ITs that limit their clinical success as well as strategies to overcome these obstacles. The issues include off-target and on-target toxicities, immunogenicity, human cytotoxic proteins, antigen target selection, cytosolic delivery efficacy, solid-tumor targeting, and developability. To realize the therapeutic promise of ITs, novel strategies for safe and effective cytosolic delivery into designated tumors, including solid tumors, are urgently needed.
Collapse
|
15
|
Shafiee F, Aucoin MG, Jahanian-Najafabadi A. Targeted Diphtheria Toxin-Based Therapy: A Review Article. Front Microbiol 2019; 10:2340. [PMID: 31681205 PMCID: PMC6813239 DOI: 10.3389/fmicb.2019.02340] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide. Conventional therapeutic strategies usually offer limited specificity, resulting in severe side effects and toxicity to normal tissues. Targeted cancer therapy, on the other hand, can improve the therapeutic potential of anti-cancer agents and decrease unwanted side effects. Targeted applications of cytolethal bacterial toxins have been found to be especially useful for the specific eradication of cancer cells. Targeting is either mediated by peptides or by protein-targeting moieties, such as antibodies, antibody fragments, cell-penetrating peptides (CPPs), growth factors, or cytokines. Together with a toxin domain, these molecules are more commonly referred to as immunotoxins. Targeting can also be achieved through gene delivery and cell-specific expression of a toxin. Of the available cytolethal toxins, diphtheria toxin (DT) is one of the most frequently used for these strategies. Of the many DT-based therapeutic strategies investigated to date, two immunotoxins, OntakTM and TagraxofuspTM, have gained FDA approval for clinical application. Despite some success with immunotoxins, suicide-gene therapy strategies, whereby controlled tumor-specific expression of DT is used for the eradication of malignant cells, are gaining prominence. The first part of this review focuses on DT-based immunotoxins, and it then discusses recent developments in tumor-specific expression of DT.
Collapse
Affiliation(s)
- Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marc G Aucoin
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Chen Y, Zhang M, Min KA, Wang H, Shin MC, Li F, Yang VC, Huang Y. Improved Protein Toxin Delivery Based on ATTEMPTS Systems. Curr Drug Targets 2019; 19:380-392. [PMID: 28260497 DOI: 10.2174/1389450118666170302094758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 03/26/2016] [Accepted: 08/16/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ribosome-inactivating proteins (RIPs) are wildly found in multiple species of plants, bacteria and fungi. As a special family of protein toxins, RIPs can inhibit protein synthesis and induce cell death via inactivating ribosome in eukaryotic cells. Thus, RIPs have been applied for anti-tumor therapy in the past two decades. However, because of poor cell permeability, nonselective mode of action for tumor cells, poor pharmacokinetic profiles and immunogenicity, their clinical application has been severely constrained. As an effort to overcome these obstacles, tumor-specific monoclonal antibodies (mAb) have been conjugated to RIPs (forming so called "immunotoxins") specifically to increase their cytotoxicity and provide tumor targeting. Nevertheless, immunotoxins yet have not fully resolved all the issues and critical challenges still remain, such as immunogenicity and inability to penetrate into the deep site of tumor. OBJECTIVE To overcome the constrain of immunotoxins, the novel cell-penetrating peptide (CPP)- modified ATTEMPTS systems based on combination of CPP-mediated penetration and antibodymediated tumor targeting, with triggerable drug release function, were developed to achieve effective and safe delivery of protein toxin. RESULTS The CPP-modified ATTEMPTS systems showed effective protamine-triggered CPP-toxin release and thus enhanced CPP-mediated cellular uptake and cytotoxicity. It also showed antibodymediated in vivo tumor targeting and significantly increased in vivo tumor growth suppression with limited systematic toxicity. CONCLUSION The CPP-modified ATTEMPTS systems were developed and demonstrated as a proof-ofconcept for CPP-based protein toxin delivery with triggerable antibody targeting to improve the druggability of protein toxin drugs. The systems showed the potential application of protein toxin clinical translation in anticancer treatment.
Collapse
Affiliation(s)
- Yingzhi Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Meng Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kyoung Ah Min
- Inje University College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Gimhae, Gyeongnam, China
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Meong Cheol Shin
- Gyeongsang National University College of Pharmacy and Research Institute of Pharmaceutical Sciences, Jinju, Gyeongnam, Korea.,University of Michigan College of Pharmacy, Ann Arbor, MI, United States
| | - Feng Li
- Hampton University School of Pharmacy, Hampton, VA, United States
| | - Victor C Yang
- University of Michigan College of Pharmacy, Ann Arbor, MI, United States
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Targeted human cytolytic fusion proteins at the cutting edge: harnessing the apoptosis-inducing properties of human enzymes for the selective elimination of tumor cells. Oncotarget 2019; 10:897-915. [PMID: 30783518 PMCID: PMC6368230 DOI: 10.18632/oncotarget.26618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
Patient-specific targeted therapy represents the holy grail of anti-cancer therapeutics, allowing potent tumor depletion without detrimental off-target toxicities. Disease-specific monoclonal antibodies have been employed to bind to oncogenic cell-surface receptors, representing the earliest form of immunotherapy. Targeted drug delivery was first achieved by means of antibody-drug conjugates, which exploit the differential expression of tumor-associated antigens as a guiding mechanism for the specific delivery of chemically-conjugated chemotherapeutic agents to diseased target cells. Biotechnological advances have expanded the repertoire of immunology-based tumor-targeting strategies, also paving the way for the next intuitive step in targeted drug delivery: the construction of recombinant protein drugs consisting of an antibody-based targeting domain genetically fused with a cytotoxic peptide, known as an immunotoxin. However, the most potent protein toxins have typically been derived from bacterial or plant virulence factors and commonly feature both off-target toxicity and immunogenicity in human patients. Further refinement of immunotoxin technology thus led to the replacement of monoclonal antibodies with humanized antibody derivatives, including the substitution of non-human toxic peptides with human cytolytic proteins. Preclinically tested human cytolytic fusion proteins (hCFPs) have proven promising as non-immunogenic combinatory anti-cancer agents, however they still require further enhancement to achieve convincing candidacy as a single-mode therapeutic. To date, a portfolio of highly potent human toxins has been established; ranging from microtubule-associated protein tau (MAP tau), RNases, granzyme B (GrB) and death-associated protein kinase (DAPk). In this review, we discuss the most recent findings on the use of these apoptosis-inducing hCFPs for the treatment of various cancers.
Collapse
|
18
|
Zhou Z, McDougald D, Devoogdt N, Zalutsky MR, Vaidyanathan G. Labeling Single Domain Antibody Fragments with Fluorine-18 Using 2,3,5,6-Tetrafluorophenyl 6-[ 18F]Fluoronicotinate Resulting in High Tumor-to-Kidney Ratios. Mol Pharm 2018; 16:214-226. [PMID: 30427188 DOI: 10.1021/acs.molpharmaceut.8b00951] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
ImmunoPET agents are being investigated to assess the status of epidermal growth factor receptor 2 (HER2) in breast cancer patients with the goal of selecting those likely to benefit from HER2-targeted therapies and monitoring their progress after these treatments. We have been exploring the use of single domain antibody fragments (sdAbs) labeled with 18F using residualizing prosthetic agents for this purpose. In this study, we have labeled two sdAbs that bind to different domains on the HER2 receptor, 2Rs15d and 5F7, using 2,3,5,6-tetrafluorophenyl 6-[18F]fluoronicotinate ([18F]TFPFN) and evaluated their HER2 targeting properties in vitro and in vivo. The overall decay-corrected radiochemical yield for the synthesis of [18F]TFPFN-2Rs15d and [18F]TFPFN-5F7 was 5.7 ± 3.6 and 4.0 ± 2.0%, respectively. The radiochemical purity of labeled sdAbs was >95%, immunoreactive fractions were about 60%, and affinity was in the low nanomolar range. Intracellularly trapped activity from [18F]TFPFN-2Rs15d and [18F]TFPFN-5F7 in HER2-expressing SKOV-3 ovarian and BT474M1 breast carcinoma cells were similar to the sdAbs labeled using the previously validated radioiodination residualizing prosthetic agents N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB) and N-succinimidyl 3-guanidinomethyl-5-[125I]iodobenzoate ( iso-[125I]SGMIB). Intracellular activity was about 2-fold higher for radiolabeled 5F7 compared with 2Rs15d for both 18F and 125I. While tumor uptake of both [18F]TFPFN-2Rs15d and [18F]TFPFN-5F7 was comparable to those for the coadministered 125I-labeled sdAb, renal uptake of the 18F-labeled sdAbs was substantially lower. In microPET images, the tumor was clearly delineated in SKOV-3 and BT474 xenograft-bearing athymic mice with low levels of background activity in normal tissues, except the bladder. These results indicate that the [18F]TFPFN prosthetic group could be a valuable reagent for developing sdAb-based immunoPET imaging agents.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Darryl McDougald
- Department of Radiology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Nick Devoogdt
- In vivo Cellular and Molecular Imaging laboratory , Vrije Universiteit Brussel, (VUB) , 1090 , Brussels , Belgium
| | - Michael R Zalutsky
- Department of Radiology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Ganesan Vaidyanathan
- Department of Radiology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| |
Collapse
|
19
|
Srivastava S, Riddell SR. Chimeric Antigen Receptor T Cell Therapy: Challenges to Bench-to-Bedside Efficacy. THE JOURNAL OF IMMUNOLOGY 2018; 200:459-468. [PMID: 29311388 DOI: 10.4049/jimmunol.1701155] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/29/2017] [Indexed: 12/23/2022]
Abstract
Immunotherapy with T cells genetically modified to express chimeric Ag receptors (CARs) that target tumor-associated molecules have impressive efficacy in hematological malignancies. The field has now embraced the challenge of applying this approach to treat common epithelial malignancies, which make up the majority of cancer cases but evade immunologic attack by a variety of subversive mechanisms. In this study, we review the principles that have guided CAR T cell design and the extraordinary clinical results being achieved in B cell malignancies targeting CD19 with a single infusion of engineered T cells. This success has raised expectations that CAR T cells can be applied to solid tumors, but numerous obstacles must be overcome to achieve the success observed in hematologic cancers. Potential solutions driven by advances in genetic engineering, synthetic biology, T cell biology, and improved tumor models that recapitulate the obstacles in human tumors are discussed.
Collapse
Affiliation(s)
- Shivani Srivastava
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Stanley R Riddell
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
20
|
Human Granzyme B Based Targeted Cytolytic Fusion Proteins. Biomedicines 2018; 6:biomedicines6020072. [PMID: 29925790 PMCID: PMC6027395 DOI: 10.3390/biomedicines6020072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer immunotherapy aims to selectively target and kill tumor cells whilst limiting the damage to healthy tissues. Controlled delivery of plant, bacterial and human toxins or enzymes has been shown to promote the induction of apoptosis in cancerous cells. The 4th generation of targeted effectors are being designed to be as humanized as possible—a solution to the problem of immunogenicity encountered with existing generations. Granzymes are serine proteases which naturally function in humans as integral cytolytic effectors during the programmed cell death of cancerous and pathogen-infected cells. Secreted predominantly by cytotoxic T lymphocytes and natural killer cells, granzymes function mechanistically by caspase-dependent or caspase-independent pathways. These natural characteristics make granzymes one of the most promising human enzymes for use in the development of fusion protein-based targeted therapeutic strategies for various cancers. In this review, we explore research involving the use of granzymes as cytolytic effectors fused to antibody fragments as selective binding domains.
Collapse
|
21
|
Ou-Yang Q, Yan B, Li A, Hu ZS, Feng JN, Lun XX, Zhang MM, Zhang MD, Wu KC, Xue FF, Yang AG, Zhao J. Construction of humanized anti-HER2 single-chain variable fragments (husFvs) and achievement of potent tumor suppression with the reconstituted husFv-Fdt-tBid immunoapoptotin. Biomaterials 2018; 178:170-182. [PMID: 29935385 DOI: 10.1016/j.biomaterials.2018.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
As HER2 is frequently overexpressed in various malignancies, targeting HER2 is considered an efficient, highly selective antitumor therapy. HER2-targeted immunoconjugates are being developed and result in persistent remission of HER2-overexpressing tumors. However, many of the antibodies used as the targeting moiety are of murine origin and exhibit risk of inducing immunogenicity, limiting their antitumor therapeutic efficacy. Here, we humanized e23sFv, an HER2-targeting murine scFv with excellent affinity and specificity, using a human antibody consensus sequence engraftment strategy. The affinity of the initially humanized e23sFv was then rescued and improved by selective mutagenesis followed by phage-display-based affinity panning of the mutant pool. The resulting humanized e23sFv candidates (husFvs) exhibited up-to-94-fold increased affinity to recombinant HER2. The immunogenicity of e23sFv was dramatically alleviated after humanization, as indicated by the impaired production of cytokines by husFv-stimulated human PBMCs. Two internalizable husFvs with optimal affinity were applied to generate humanized immunoapoptotins by infusion with the translocation domain Fdt and the proapoptotic domain truncated Bid. The husFv-immunoapoptotins demonstrated improved HER2-targeting and tumor-killing capacities in vitro and in vivo compared with the e23sFv-immunoapoptotins and would enable the administration of multiple treatment cycles to patients, resulting in improved antitumor efficacy. Furthermore, the husFvs recognized distinct HER2 epitopes and could thus be used in combination with trastuzumab or pertuzumab to achieve robust synergistic antitumor effects in HER2-positive malignancies.
Collapse
Affiliation(s)
- Qing Ou-Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, China
| | - Bo Yan
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ang Li
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhi-Song Hu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jian-Nan Feng
- Department of Immunology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xin-Xin Lun
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ming-Ming Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Meng-De Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kai-Chun Wu
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fang-Fang Xue
- First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jing Zhao
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
22
|
Pye H, Butt MA, Funnell L, Reinert HW, Puccio I, Rehman Khan SU, Saouros S, Marklew JS, Stamati I, Qurashi M, Haidry R, Sehgal V, Oukrif D, Gandy M, Whitaker HC, Rodriguez-Justo M, Novelli M, Hamoudi R, Yahioglu G, Deonarain MP, Lovat LB. Using antibody directed phototherapy to target oesophageal adenocarcinoma with heterogeneous HER2 expression. Oncotarget 2018; 9:22945-22959. [PMID: 29796164 PMCID: PMC5955430 DOI: 10.18632/oncotarget.25159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
Early oesophageal adenocarcinoma (OA) and pre-neoplastic dysplasia may be treated with endoscopic resection and ablative techniques such as photodynamic therapy (PDT). Though effective, discrete areas of disease may be missed leading to recurrence. PDT further suffers from the side effects of off-target photosensitivity. A tumour specific and light targeted therapeutic agent with optimised pharmacokinetics could be used to destroy residual cancerous cells left behind after resection. A small molecule antibody-photosensitizer conjugate was developed targeting human epidermal growth factor receptor 2 (HER2). This was tested in an in vivo mouse model of human OA using a xenograft flank model with clinically relevant low level HER2 expression and heterogeneity. In vitro we demonstrate selective binding of the conjugate to tumour versus normal tissue. Light dependent cytotoxicity of the phototherapy agent in vitro was observed. In an in vivo OA mouse xenograft model the phototherapy agent had desirable pharmacokinetic properties for tumour uptake and blood clearance time. PDT treatment caused tumour growth arrest in all the tumours despite the tumours having a clinically defined low/negative HER2 expression level. This new phototherapy agent shows therapeutic potential for treatment of both HER2 positive and borderline/negative OA.
Collapse
Affiliation(s)
- Hayley Pye
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK
| | - Mohammed Adil Butt
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK.,Upper Gastrointestinal Service, University College London Hospitals NHS Foundation Trust, London, UK
| | - Laura Funnell
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK
| | - Halla W Reinert
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK
| | - Ignazio Puccio
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK
| | - Saif U Rehman Khan
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK
| | - Savvas Saouros
- Antikor BioPharma, Stevenage, UK.,Imperial College London, London, UK
| | | | | | - Maryam Qurashi
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK.,Imperial College London, London, UK
| | - Rehan Haidry
- Upper Gastrointestinal Service, University College London Hospitals NHS Foundation Trust, London, UK
| | - Vinay Sehgal
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK.,Upper Gastrointestinal Service, University College London Hospitals NHS Foundation Trust, London, UK
| | - Dahmane Oukrif
- Department of Pathology, University College London, London, UK
| | - Michael Gandy
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK
| | - Hayley C Whitaker
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK
| | | | - Marco Novelli
- Department of Pathology, University College London, London, UK
| | - Rifat Hamoudi
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK.,Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Gokhan Yahioglu
- Antikor BioPharma, Stevenage, UK.,Imperial College London, London, UK
| | - Mahendra P Deonarain
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK.,Antikor BioPharma, Stevenage, UK.,Imperial College London, London, UK
| | - Laurence B Lovat
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK.,Upper Gastrointestinal Service, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
23
|
Barkhordari F, Raigani M, Garoosi YT, Mahboudi F, Davami F. Optimization of EnBase Fed-Batch Cultivation to Improve Soluble Fraction Ratio of α-Luffin Ribosome Inactivating Protein. IRANIAN JOURNAL OF BIOTECHNOLOGY 2018; 16:e1482. [PMID: 30555837 PMCID: PMC6217263 DOI: 10.21859/ijb.1482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 02/04/2017] [Accepted: 03/17/2018] [Indexed: 02/07/2023]
Abstract
Background The increase of the protein expression via ribosomal manipulation is one of the suggested cellular mechanisms involved in EnBase fed-batch mode of cultivation. However, this system has not been implemented for cytotoxic proteins. Objectives Here, the expression pattern of α-Luffin, a ribosome inactivation protein (RIP) with an innate toxicity, was investigated in EnBase system and the effect of low temperature cultivation on the increase of α-Luffin solubility was determined. Materials and Methods The encoding cDNA for mature α-Luffin was synthesized and subcloned into pET28a plasmid under the control of T7 promoter. The E. coli expression yield in EnBase® Flo fed-batch system was compared with traditional batch mode at two temperatures: 25 °C and 30 °C. Sampling was performed at several time intervals and solubility of recombinant-protein was checked on SDS-PAGE in pellet and supernatant samples. The purification of recombinant protein was performed by Ni-NTA column. Results In fed-batch cultivation mode, the early incubation time was desirable at 30 °C whereas the maximum amount of soluble α-Luffin was achieved from the extended protein synthesis period (12 and 24h post induction) at 25 °C. Conclusions Our founding showed that EnBase had a greater efficacy in producing higher soluble protein ratios compared to batch cultivation growth rate, however for cytotoxic proteins, incubation temperature and time need to be optimized. Owing to the advantages of natural toxins from RIP family for producing anticancer immune-conjugates, well optimization of this protein expression is of importance regarding industrial aspects. The optimized condition proposed here is promising in terms of large scale soluble production of α-Luffin without the need for refolding.
Collapse
Affiliation(s)
- Farzaneh Barkhordari
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Biology, Faculty of Sciences, Science and Technology Branch, Islamic Azad University, Tehran, Iran
| | - Mozhgan Raigani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
24
|
NAMVAR S, BARKHORDARI F, RAIGANI M, JAHANDAR H, NEMATOLLAHI L, DAVAMI F. Cloning and soluble expression of mature α-luffin from Luffa cylindrica in E. coli using SUMO fusion protein. Turk J Biol 2018; 42:23-32. [PMID: 30814867 PMCID: PMC6353257 DOI: 10.3906/biy-1708-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
α-Lufin, found in Luaf cylindrica seeds, is a type I ribosome inactivating proteins. Cytotoxic effects make it an appropriate candidate for the construction of immunotoxins and conjugates. Because of limited natural resources, recombinant technology is the best approach to achieve large-scale production of plant-based proteins. In the present study, α-lufin protein was expressed in E. coli and the effects of different temperature conditions, SUMO fusion tag, and cultivation strategies on total expression and solubility were investigated. Protein expression was evaluated at different intervals (0, 4, 6, 8, 24 h) postinduction. Our results showed that EnBase had higher eficiency than LB, and maximum solubility and total protein expression were achieved 24 h after induction at 30 °C and 25 °C, respectively. It was shown that SUMO tag is an effective strategy to improve protein solubility.
Collapse
Affiliation(s)
- Shaghayegh NAMVAR
- Biotechnology Research Center; Pasteur Institute of Iran
,
Tehran
- Pharmaceutical Sciences Research Center, Pharmaceutical Sciences Branch, Islamic Azad University
,
Tehran
,
Iran
| | | | - Mozhgan RAIGANI
- Biotechnology Research Center; Pasteur Institute of Iran
,
Tehran
| | - Hoda JAHANDAR
- Department of Biotechnology, Faculty of Advanced Sciences &Technology, Pharmaceutical Sciences Branch, Islamic Azad University
,
Tehran
,
Iran
- Pharmaceutical Sciences Research Center, Pharmaceutical Sciences Branch, Islamic Azad University
,
Tehran
,
Iran
| | | | - Fatemeh DAVAMI
- Biotechnology Research Center; Pasteur Institute of Iran
,
Tehran
| |
Collapse
|
25
|
Zhang H, Wang Y, Wu Y, Jiang X, Tao Y, Yao Y, Peng Y, Chen X, Fu Y, Yu L, Wang R, Lai Q, Lai W, Li W, Kang Y, Yi S, Lu Y, Gou L, Wu M, Yang J. Therapeutic potential of an anti-HER2 single chain antibody-DM1 conjugates for the treatment of HER2-positive cancer. Signal Transduct Target Ther 2017; 2:17015. [PMID: 29263918 PMCID: PMC5661626 DOI: 10.1038/sigtrans.2017.15] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 02/05/2023] Open
Abstract
Antibody-drug conjugates (ADCs) take the advantage of monoclonal antibodies to selectively deliver highly potent cytotoxic drugs to tumor cells, which have become a powerful measure for cancer treatment in recent years. To develop a more effective therapy for human epidermal growth factor receptor 2 (HER2)-positive cancer, we explored a novel ADCs composed of anti-HER2 scFv-HSA fusion antibodies conjugates with a potent cytotoxic drug DM1. The resulting ADCs, T-SA1-DM1 and T-SA2-DM1 (drug-to-antibody ratio in the range of 3.2-3.5) displayed efficient inhibition in the growth of HER2-positive tumor cell lines and the half-maximal inhibitory concentration on SKBR-3 and SKOV3 cells were both at the nanomolar levels in vitro. In HER2-positive human ovarian cancer xenograft models, T-SA1-DM1 and T-SA2-DM1 also showed remarkable antitumor activity. Importantly, three out of six mice exhibited complete remission without regrowth in the high-dose group of T-SA1-DM1. On the basis of the analysis of luminescence imaging, anti-HER2 scFv-HSA fusion antibodies, especially T-SA1, showed strong and rapid tumor tissue penetrability and distribution compared with trastuzumab. Collectively, the novel type of ADCs is effective and selective targeting to HER2-positive cancer, and may be a promising antitumor drug candidate for further studies.
Collapse
Affiliation(s)
- Hang Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yangping Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohua Jiang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yiran Tao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqin Yao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Research Center for Public Health and Preventive Medicine, West China School of Public, Health/No.4 West China Teaching Hospital, Sichuan University, Chengdu, China.,Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan, China
| | - Yujia Peng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangzheng Chen
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuyin Fu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ruixue Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qinhuai Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weirong Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenting Li
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhuan Kang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuli Yi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lantu Gou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan, China
| |
Collapse
|
26
|
Pinkston KL, Gao P, Singh KV, Azhdarinia A, Murray BE, Sevick-Muraca EM, Harvey BR. Antibody Guided Molecular Imaging of Infective Endocarditis. Methods Mol Biol 2017; 1535:229-241. [PMID: 27914083 DOI: 10.1007/978-1-4939-6673-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this protocol, we describe the application of using a high affinity monoclonal antibody generated against the major pilin protein component of the pilin structure of Enterococcus faecalis as a PET imaging agent for enterococcal endocarditis detection. The anti-pilin -mAb 64Cu conjugate was able to specifically label enterococcal endocarditis vegetation in vivo in a rodent endocarditis model. By targeting pili, a covalently linked surface antigen extending from the bacterial surface, we provided evidence that gram-positive pilin represent a logical surface antigen to define or target an infectious agent for molecularly guided imaging. Our goal in providing a detailed protocol of our efforts is to enable others to build upon this methodology to answer pertinent translational and basic research questions in the pursuit of diagnosis and treatment of infective endocarditis.
Collapse
Affiliation(s)
- Kenneth L Pinkston
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Peng Gao
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Kavindra V Singh
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ali Azhdarinia
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Barbara E Murray
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eva M Sevick-Muraca
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Barrett R Harvey
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA.
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
27
|
Geddie ML, Kohli N, Kirpotin DB, Razlog M, Jiao Y, Kornaga T, Rennard R, Xu L, Schoerberl B, Marks JD, Drummond DC, Lugovskoy AA. Improving the developability of an anti-EphA2 single-chain variable fragment for nanoparticle targeting. MAbs 2016; 9:58-67. [PMID: 27854147 DOI: 10.1080/19420862.2016.1259047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antibody-targeted nanoparticles have great promise as anti-cancer drugs; however, substantial developmental challenges of antibody modules prevent many candidates from reaching the clinic. Here, we describe a robust strategy for developing an EphA2-targeting antibody fragment for immunoliposomal drug delivery. A highly bioactive single-chain variable fragment (scFv) was engineered to overcome developmental liabilities, including low thermostability and weak binding to affinity purification resins. Improved thermostability was achieved by modifying the framework of the scFv, and complementarity-determining region (CDR)-H2 was modified to increase binding to protein A resins. The results of our engineering campaigns demonstrate that it is possible, using focused design strategies, to rapidly improve the stability and manufacturing characteristics of an antibody fragment for use as a component of a novel therapeutic construct.
Collapse
Affiliation(s)
| | | | | | | | - Yang Jiao
- a Merrimack, Inc. , Cambridge , MA , USA
| | | | | | - Lihui Xu
- a Merrimack, Inc. , Cambridge , MA , USA
| | | | - James D Marks
- a Merrimack, Inc. , Cambridge , MA , USA.,b Department of Anesthesia and Pharmaceutical Chemistry , University of California San Francisco , San Francisco , CA , USA
| | | | | |
Collapse
|
28
|
Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNFα-activated endothelial cells at physiologically relevant concentrations. Arch Biochem Biophys 2016; 599:51-9. [DOI: 10.1016/j.abb.2016.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 01/09/2023]
|
29
|
Bull-Hansen B, Berstad MB, Berg K, Cao Y, Skarpen E, Fremstedal AS, Rosenblum MG, Peng Q, Weyergang A. Photochemical activation of MH3-B1/rGel: a HER2-targeted treatment approach for ovarian cancer. Oncotarget 2016; 6:12436-51. [PMID: 26002552 PMCID: PMC4494949 DOI: 10.18632/oncotarget.3814] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/11/2015] [Indexed: 11/28/2022] Open
Abstract
HER2-targeted therapy has been shown to have limited efficacy in ovarian cancer despite frequent overexpression of this receptor. Photochemical internalization (PCI) is a modality for cytosolic drug delivery, currently undergoing clinical evaluation. In the present project we studied the application of PCI in combination with the HER2-targeted recombinant fusion toxin, MH3-B1/rGel, for the treatment of ovarian cancer. The SKOV-3 cell line, resistant to trastuzumab- and MH3-B1/rGel- monotherapy, was shown to respond strongly to PCI of MH3-B1/rGel to a similar extent as observed for the treatment-sensitive SK-BR-3 breast cancer cells. Extensive hydrolytic degradation of MH3-B1/rGel in acidic endocytic vesicles was indicated as the mechanism of MH3-B1/rGel resistance in SKOV-3 cells. This was shown by the positive Pearson's correlation coefficient between Alexa488-labeled MH3-B1/rGel and Lysotracker in SKOV-3 cells in contrast to the negative Pearson's correlation coefficient in SK-BR-3 cells. The application of PCI to induce the release of MH3-B1/rGel was also demonstrated to be effective on SKOV-3 xenografts. Application of PCI with MH3-B1/rGel was further found highly effective in the HER2 expressing HOC-7 and NuTu-19 ovarian cancer cell lines. The presented results warrant future development of PCI in combination with MH3-B1/rGel as a novel therapeutic approach in preclinical models of ovarian cancer.
Collapse
Affiliation(s)
- Bente Bull-Hansen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Maria B Berstad
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Yu Cao
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA.,Current address: The Scripps Research Institute, Department of Chemistry, La Jolla, CA, USA
| | - Ellen Skarpen
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ane Sofie Fremstedal
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Michael G Rosenblum
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - Qian Peng
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Anette Weyergang
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
30
|
Turini M, Chames P, Bruhns P, Baty D, Kerfelec B. A FcγRIII-engaging bispecific antibody expands the range of HER2-expressing breast tumors eligible to antibody therapy. Oncotarget 2015; 5:5304-19. [PMID: 24979648 PMCID: PMC4170649 DOI: 10.18632/oncotarget.2093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Trastuzumab is established as treatment of HER2high metastatic breast cancers but many limitations impair its efficacy. Here, we report the design of a Fab-like bispecific antibody (HER2bsFab) that displays a moderate affinity for HER2 and a unique, specific and high affinity for FcγRIII. In vitro characterization showed that ADCC was the major mechanism of action of HER2bsFab as no significant HER2-driven effect was observed. HER2bsFab mediated ADCC at picomolar concentration against HER2high, HER2low as well as trastuzumab-refractive cell lines. In vivo HER2bsFab potently inhibited HER2high tumor growth by recruitment of mouse FcγRIII and IV-positive resident effector cells and more importantly, exhibited a net superiority over trastuzumab at inhibiting HER2low tumor growth. Moreover, FcγRIIIA-engagement by HER2bsFab was independent of V/F158 polymorphism and induced a stronger NK cells activation in response to target cell recognition. Thus, taking advantage of its epitope specificity and affinity for HER2 and FcγRIIIA, HER2bsFab exhibits potent anti-tumor activity against HER2low tumors while evading most of trastuzumab Fc-linked limitations thereby potentially enlarging the number of patients eligible for breast cancer immunotherapy.
Collapse
Affiliation(s)
- Marc Turini
- INSERM, U1068, CRCM, Marseille, France. Institut Paoli-Calmettes, Marseille, France. Aix-Marseille Université, UM105, Marseille, France. CNRS, UMR7258, CRCM, Marseille, France
| | - Patrick Chames
- INSERM, U1068, CRCM, Marseille, France. Institut Paoli-Calmettes, Marseille, France. Aix-Marseille Université, UM105, Marseille, France. CNRS, UMR7258, CRCM, Marseille, France
| | - Pierre Bruhns
- Département d'Immunologie, Laboratoire Anticorps en Thérapie et Pathologie, Institut Pasteur, Paris, France. INSERM, U760, Paris, France
| | - Daniel Baty
- INSERM, U1068, CRCM, Marseille, France. Institut Paoli-Calmettes, Marseille, France. Aix-Marseille Université, UM105, Marseille, France. CNRS, UMR7258, CRCM, Marseille, France
| | - Brigitte Kerfelec
- INSERM, U1068, CRCM, Marseille, France. Institut Paoli-Calmettes, Marseille, France. Aix-Marseille Université, UM105, Marseille, France. CNRS, UMR7258, CRCM, Marseille, France
| |
Collapse
|
31
|
Eculizumab hepatotoxicity in pediatric aHUS. Pediatr Nephrol 2015; 30:775-81. [PMID: 25416628 DOI: 10.1007/s00467-014-2990-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/25/2014] [Accepted: 10/09/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Eculizumab is a humanized anti-C5 antibody approved for the treatment of atypical hemolytic uremic syndrome (aHUS). Its use is increasing in children following reports of its safety and efficacy. METHODS We reviewed biochemical and clinical data related to possible drug-induced liver injury in 11 children treated with eculizumab for aHUS in a single center. RESULTS Elevated aminotransferases were observed in 7 children aged 6 to 11 years following eculizumab treatment for aHUS. Internationally accepted liver enzyme thresholds for drug-induced liver injury were exceeded in 5 cases. In all cases, liver injury was classified as mixed hepatocellular and cholestatic. Infectious and other causes were excluded in each case. One patient with no pre-existing liver disease developed tender hepatomegaly and liver enzyme derangement exceeding 20 times the upper limit of normal following initiation of eculizumab. Recurrent liver injury following re-challenge with eculizumab necessitated its discontinuation and transition to plasma therapy. CONCLUSIONS Hepatotoxicity in association with eculizumab is a potentially important yet previously unreported adverse event. We recommend monitoring liver enzymes in all patients receiving eculizumab. Further research is required to clarify the impact of this adverse event, to characterize the mechanism of potential hepatotoxicity, and to identify which patients are most at risk.
Collapse
|
32
|
Deonarain MP, Yahioglu G, Stamati I, Marklew J. Emerging formats for next-generation antibody drug conjugates. Expert Opin Drug Discov 2015; 10:463-81. [PMID: 25797303 DOI: 10.1517/17460441.2015.1025049] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Antibody drug conjugates now make up a significant fraction of biopharma's oncology pipeline due to great advances in the understanding of the three key components and how they should be optimised together. With this clinical success comes innovation to produce new enabling technologies that can deliver more effective antibody-drug conjugates (ADCs) with a larger therapeutic index. AREAS COVERED There are many reviews that discuss the various strategies for ADCs design but the last 5 years or so have witnessed the emergence of a number of different antibody formats compete with the standard whole immunoglobulin. Using published research, patent applications and conference disclosures, the authors review the many antibody and antibody-like formats, discussing innovations in protein engineering and how these new formats impact on the conjugation strategy and ultimately the performance. The alternative chemistries that are now available offer new linkages, stability profiles, drug:antibody ratio, pharmacokinetics and efficacy. The different sizes being considered promise to address issues, such as tumour penetration, circulatory half-life and side-effects. EXPERT OPINION ADCs are at the beginning of the next stage in their evolution and as these newer formats are developed and examined in the clinic, we will discover if the predicted features have a clinical benefit. From the commercial activity, it is envisaged that smaller or fragment-based ADCs will expand oncological applications.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd, Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, Herts, SG1 2FX , UK
| | | | | | | |
Collapse
|
33
|
Klausz K, Kellner C, Derer S, Valerius T, Staudinger M, Burger R, Gramatzki M, Peipp M. The novel multispecies Fc-specific Pseudomonas exotoxin A fusion protein α-Fc-ETA' enables screening of antibodies for immunotoxin development. J Immunol Methods 2015; 418:75-83. [PMID: 25701195 DOI: 10.1016/j.jim.2015.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 01/18/2023]
Abstract
Immunoconjugates that deliver cytotoxic payloads to cancer cells represent a promising class of therapeutic agents which are intensively investigated in various clinical applications. Prerequisites for the generation of effective immunoconjugates are antibodies which efficiently deliver the respective cytotoxic payload. To facilitate the selection of human or mouse antibodies that display favorable characteristics as immunotoxins, we developed a novel Pseudomonas exotoxin A (ETA)-based screening protein. The α-Fc-ETA' consists of a multispecies-specific Fc-binding domain antibody genetically fused to a truncated ETA version (ETA'). α-Fc-ETA' non-covalently bound to human and mouse antibodies but did not form immune complexes with bovine immunoglobulins. In combination with antibodies harboring human or mouse Fc domains α-Fc-ETA' inhibited proliferation of antigen-expressing tumor cells. The cytotoxic effects were strictly antibody dependent and were observed with low α-Fc-ETA' concentrations. Mouse antibodies directed against CD7 and CD317/HM1.24 that previously had been used for the generation of functional recombinant immunotoxins, also showed activity in combination with α-Fc-ETA' by inhibiting growth of antigen-positive myeloma and leukemia cell lines. In contrast, α-kappa-ETA', a similarly designed human kappa light chain-specific fusion protein, was only specifically active in combination with antibodies containing a human kappa light chain. Thus, the novel α-Fc-ETA' fusion protein is broadly applicable in screening antibodies and Fc-containing antibody derivatives from different species to select for candidates with favorable characteristics for immunotoxin development.
Collapse
Affiliation(s)
- Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Stefanie Derer
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Matthias Staudinger
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
34
|
Berstad MB, Cheung LH, Berg K, Peng Q, Fremstedal ASV, Patzke S, Rosenblum MG, Weyergang A. Design of an EGFR-targeting toxin for photochemical delivery: in vitro and in vivo selectivity and efficacy. Oncogene 2015; 34:5582-92. [DOI: 10.1038/onc.2015.15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/16/2014] [Accepted: 01/02/2015] [Indexed: 12/24/2022]
|
35
|
Abstract
Immunoconjugates are specific, highly effective, minimally toxic anticancer therapies that are beginning to show promise in the clinic. Immunoconjugates consist of three separate components: an antibody that binds to a cancer cell antigen with high specificity, an effector molecule that has a high capacity to kill the cancer cell, and a linker that will ensure the effector does not separate from the antibody during transit and will reliably release the effector to the cancer cell or tumour stroma. The high affinity antibody-antigen interaction allows specific and selective delivery of a range of effectors, including pharmacologic agents, radioisotopes, and toxins, to cancer cells. Some anticancer molecules are not well tolerated when administered systemically owing to unacceptable toxicity to the host. However, this limitation can be overcome through the linking of such cytotoxins to specific antibodies, which mask the toxic effects of the drug until it reaches its target. Conversely, many unconjugated antibodies are highly specific for a cancer target, but have low therapeutic potential and can be repurposed as delivery vehicles for highly potent effectors. In this Review, we summarize the successes and shortcomings of immunoconjugates, and discuss the future potential for the development of these therapies.
Collapse
|
36
|
Hristodorov D, Amoury M, Mladenov R, Niesen J, Arens K, Berges N, Hein L, Di Fiore S, Pham AT, Huhn M, Helfrich W, Fischer R, Thepen T, Barth S. EpCAM-selective elimination of carcinoma cells by a novel MAP-based cytolytic fusion protein. Mol Cancer Ther 2014; 13:2194-202. [PMID: 24980949 DOI: 10.1158/1535-7163.mct-13-0781] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In normal epithelia, the epithelial cell adhesion molecule (EpCAM) expression is relatively low and only present at the basolateral cell surface. In contrast, EpCAM is aberrantly overexpressed in various human carcinomas. Therefore, EpCAM is considered to be a highly promising target for antibody-based cancer immunotherapy. Here, we present a new and fully human cytolytic fusion protein (CFP), designated "anti-EpCAM(scFv)-MAP," that is comprised of an EpCAM-specific antibody fragment (scFv) genetically fused to the microtubule-associated protein tau (MAP). Anti-EpCAM(scFv)-MAP shows potent EpCAM-restricted proapoptotic activity toward rapidly proliferating carcinoma cells. In vitro assays confirmed that treatment with anti-EpCAM(scFv)-MAP resulted in the colocalization and stabilization of microtubules, suggesting that this could be the potential mode of action. Dose-finding experiments indicated that anti-EpCAM(scFv)-MAP is well tolerated in mice. Using noninvasive far-red in vivo imaging in a tumor xenograft mouse model, we further demonstrated that anti-EpCAM(scFv)-MAP inhibited tumor growth in vivo. In conclusion, our data suggest that anti-EpCAM(scFv)-MAP may be of therapeutic value for the targeted elimination of EpCAM(+) carcinomas.
Collapse
Affiliation(s)
- Dmitrij Hristodorov
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Manal Amoury
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Radoslav Mladenov
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Katharina Arens
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Nina Berges
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Lea Hein
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Stefano Di Fiore
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Anh-Tuan Pham
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Huhn
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Wijnand Helfrich
- Laboratory for Translational Surgical Oncology, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany. Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Theo Thepen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Barth
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany. Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| |
Collapse
|
37
|
Bull-Hansen B, Cao Y, Berg K, Skarpen E, Rosenblum MG, Weyergang A. Photochemical activation of the recombinant HER2-targeted fusion toxin MH3-B1/rGel; Impact of HER2 expression on treatment outcome. J Control Release 2014; 182:58-66. [PMID: 24637464 DOI: 10.1016/j.jconrel.2014.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 11/25/2022]
Abstract
HER2 is overexpressed in 20-30% of breast tumors and is associated with aggressiveness and increased risk of recurrence and death. The HER2 protein is internalized as a part of its activity, and may therefore be utilized as a target for the specific intracellular delivery of drugs. Photochemical internalization (PCI) is a novel technology now undergoing clinical evaluation for its ability to improve the release into the cytosol of drugs entrapped in the endo/lysosomal compartment. PCI employs an amphiphilic photosensitizer which localizes in the membranes of endo/lysosomes. Subsequent light exposure (visible light) causes destabilization of the endo/lysosomal membranes. PCI has been proven highly effective for improving the cytosolic delivery of targeted toxins based on type I ribosome inactivating protein toxins such as gelonin. We examined the impact of the level of target antigen expression on PCI efficacy. Four human breast cancer cell lines (MDA-MB-231, BT-20, Zr-75-1 and SK-BR-3) covering a wide range of HER2 expression were included in the present study. PCI of the HER2-targeted fusion toxin MH3-B1/rGel was found to be highly effective in all four cell lines. The increase in PCI-mediated efficacy was not directly correlated with the cellular levels of HER2 as assessed by western blots, the overall uptake of MH3-B1/rGel as measured by flow cytometry, the amount of MH3-B1/rGel localized to endo/lysosomes assessed by confocal microscopy or the cell sensitivity to the photochemical treatment itself (photosensitizer and light without MH3-B1/rGel). However, correcting the PCI efficacy for the baseline cellular sensitivity to rGel revealed a linear correlation (R(2)=0.80) with HER2 expression. The present report therefore concludes the cellular sensitivity to the toxin as an important parameter for PCI efficacy and also indicates PCI of a HER2-targeted fusion toxin as an attractive treatment alternative for breast cancer patients with both HER2-low and -high expression.
Collapse
Affiliation(s)
- Bente Bull-Hansen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Yu Cao
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Ellen Skarpen
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Michael G Rosenblum
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Anette Weyergang
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Norway.
| |
Collapse
|
38
|
Boland EL, Van Dyken CM, Duckett RM, McCluskey AJ, Poon GMK. Structural complementation of the catalytic domain of pseudomonas exotoxin A. J Mol Biol 2014; 426:645-55. [PMID: 24211469 PMCID: PMC3997303 DOI: 10.1016/j.jmb.2013.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 12/17/2022]
Abstract
The catalytic moiety of Pseudomonas exotoxin A (domain III or PE3) inhibits protein synthesis by ADP-ribosylation of eukaryotic elongation factor 2. PE3 is widely used as a cytocidal payload in receptor-targeted protein toxin conjugates. We have designed and characterized catalytically inactive fragments of PE3 that are capable of structural complementation. We dissected PE3 at an extended loop and fused each fragment to one subunit of a heterospecific coiled coil. In vitro ADP-ribosylation and protein translation assays demonstrate that the resulting fusions-supplied exogenously as genetic elements or purified protein fragments-had no significant catalytic activity or effect on protein synthesis individually but, in combination, catalyzed the ADP-ribosylation of eukaryotic elongation factor 2 and inhibited protein synthesis. Although complementing PE3 fragments are catalytically less efficient than intact PE3 in cell-free systems, co-expression in live cells transfected with transgenes encoding the toxin fusions inhibits protein synthesis and causes cell death comparably as intact PE3. Complementation of split PE3 offers a direct extension of the immunotoxin approach to generate bispecific agents that may be useful to target complex phenotypes.
Collapse
Affiliation(s)
- Erin L Boland
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA
| | - Crystal M Van Dyken
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA
| | - Rachel M Duckett
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA
| | - Andrew J McCluskey
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Gregory M K Poon
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
39
|
Hanumanthappa P, Krishnamurthy RG. A comparative molecular dynamics simulation study to assess the exclusion ability of novel GSK3β inhibitors. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Cao Y, Mohamedali KA, Marks JW, Cheung LH, Hittelman WN, Rosenblum MG. Construction and characterization of novel, completely human serine protease therapeutics targeting Her2/neu. Mol Cancer Ther 2013; 12:979-91. [PMID: 23493312 DOI: 10.1158/1535-7163.mct-13-0002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Immunotoxins containing bacterial or plant toxins have shown promise in cancer-targeted therapy, but their long-term clinical use may be hampered by vascular leak syndrome and immunogenicity of the toxin. We incorporated human granzyme B (GrB) as an effector and generated completely human chimeric fusion proteins containing the humanized anti-Her2/neu single-chain antibody 4D5 (designated GrB/4D5). Introduction of a pH-sensitive fusogenic peptide (designated GrB/4D5/26) resulted in comparatively greater specific cytotoxicity although both constructs showed similar affinity to Her2/neu-positive tumor cells. Compared with GrB/4D5, GrB/4D5/26 showed enhanced and long-lasting cellular uptake and improved delivery of GrB to the cytosol of target cells. Treatment with nanomolar concentrations of GrB/4D5/26 resulted in specific cytotoxicity, induction of apoptosis, and efficient downregulation of PI3K/Akt and Ras/ERK pathways. The endogenous presence of the GrB proteinase inhibitor 9 did not impact the response of cells to the fusion construct. Surprisingly, tumor cells resistant to lapatinib or Herceptin, and cells expressing MDR-1 resistant to chemotherapeutic agents showed no cross-resistance to the GrB-based fusion proteins. Administration (intravenous, tail vein) of GrB/4D5/26 to mice bearing BT474 M1 breast tumors resulted in significant tumor suppression. In addition, tumor tissue excised from GrB/4D5/26-treated mice showed excellent delivery of GrB to tumors and a dramatic induction of apoptosis compared with saline treatment. This study clearly showed that the completely human, functionalized GrB construct can effectively target Her2/neu-expressing cells and displays impressive in vitro and in vivo activity. This construct should be evaluated further for clinical use.
Collapse
Affiliation(s)
- Yu Cao
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX 77054, USA
| | | | | | | | | | | |
Collapse
|
41
|
Su X, Yang N, Wittrup KD, Irvine DJ. Synergistic antitumor activity from two-stage delivery of targeted toxins and endosome-disrupting nanoparticles. Biomacromolecules 2013; 14:1093-102. [PMID: 23444913 PMCID: PMC3646422 DOI: 10.1021/bm3019906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Plant-derived Type I toxins are candidate
anticancer therapeutics
requiring cytosolic delivery into tumor cells. We tested a concept
for two-stage delivery, whereby tumor cells precoated with an antibody-targeted
gelonin toxin were killed by exposure to endosome-disrupting polymer
nanoparticles. Co-internalization of particles and tumor cell-bound
gelonin led to cytosolic delivery and >50-fold enhancement of toxin
efficacy. This approach allows the extreme potency of gelonin to be
focused on tumors with significantly reduced potential for off-target
toxicity.
Collapse
Affiliation(s)
- Xingfang Su
- Department of Material Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
42
|
Cao Y, Marks JW, Liu Z, Cheung LH, Hittelman WN, Rosenblum MG. Design optimization and characterization of Her2/neu-targeted immunotoxins: comparative in vitro and in vivo efficacy studies. Oncogene 2013; 33:429-39. [PMID: 23376850 DOI: 10.1038/onc.2012.612] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/05/2012] [Accepted: 11/14/2012] [Indexed: 01/01/2023]
Abstract
Targeted therapeutics are potential therapeutic agents because of their selectivity and efficacy against tumors resistant to conventional therapy. The goal of this study was to determine the comparative activity of monovalent, engineered anti-Her2/neu immunotoxins fused to recombinant gelonin (rGel) to the activity of bivalent IgG-containing immunoconjugates. Utilizing Herceptin and its derived humanized single-chain antibody (single-chain fragment variable, designated 4D5), we generated bivalent chemical Herceptin/rGel conjugate, and the corresponding monovalent recombinant immunotoxins in two orientations, 4D5/rGel and rGel/4D5. All the constructs showed similar affinity to Her2/neu-overexpressing cancer cells, but significantly different antitumor activities. The rGel/4D5 orientation construct and Herceptin/rGel conjugate were superior to 4D5/rGel construct in in vitro and in vivo efficacy. The enhanced activity was attributed to improved intracellular toxin uptake into target cells and efficient downregulation of Her2/neu-related signaling pathways. The Her2/neu-targeted immunotoxins effectively targeted cells with Her2/neu expression level >1.5 × 10(5) sites per cell. Cells resistant to Herceptin or chemotherapeutic agents were not cross-resistant to rGel-based immunotoxins. Against SK-OV-3 tumor xenografts, the rGel/4D5 construct with excellent tumor penetration showed impressive tumor inhibition. Although Herceptin/rGel conjugate demonstrated comparatively longer serum half-life, the in vivo efficacy of the conjugate was similar to the rGel/4D5 fusion. These comparative studies demonstrate that the monovalent, engineered rGel/4D5 construct displayed comparable in vitro and in vivo antitumor efficacy as bivalent Herceptin/rGel conjugate. Immunotoxin orientation can significantly impact the overall functionality and performance of these agents. The recombinant rGel/4D5 construct with excellent tumor penetration and rapid blood clearance may reduce the unwanted toxicity when administrating to patients, and warrants consideration for further clinical evaluation.
Collapse
Affiliation(s)
- Y Cao
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - J W Marks
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Z Liu
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - L H Cheung
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - W N Hittelman
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - M G Rosenblum
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci U S A 2012; 110:E15-22. [PMID: 23236148 DOI: 10.1073/pnas.1214638110] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The idea of targeted therapy, whereby drug or protein molecules are delivered to specific cells, is a compelling approach to treating disease. Immunotoxins are one such targeted therapeutic, consisting of an antibody domain for binding target cells and molecules of a toxin that inhibits the proliferation of the targeted cell. One major hurdle preventing these therapies from reaching the market has been the lack of a suitable production platform that allows the cost-effective production of these highly complex molecules. The chloroplast of the green alga Chlamydomonas reinhardtii has been shown to contain the machinery necessary to fold and assemble complex eukaryotic proteins. However, the translational apparatus of chloroplasts resembles that of a prokaryote, allowing them to accumulate eukaryotic toxins that otherwise would kill a eukaryotic host. Here we show expression and accumulation of monomeric and dimeric immunotoxin proteins in algal chloroplasts. These fusion proteins contain an antibody domain targeting CD22, a B-cell surface epitope, and the enzymatic domain of exotoxin A from Pseudomonas aeruginosa. We demonstrated that algal-produced immunotoxins accumulate as soluble and enzymatically active proteins that bind target B cells and efficiently kill them in vitro. We also show that treatment with either the mono- or dimeric immunotoxins significantly prolongs the survival of mice with implanted human B-cell tumors.
Collapse
|
44
|
Abstract
INTRODUCTION Antibody-drug conjugates (ADCs), as well as antibody conjugates of protein toxins (immunotoxins) and cytokines (immunocytokines), are showing clinical efficacy, with manageable toxicities, in cancer treatment. AREAS COVERED The utility of an ADC is governed by the antibody and the target, as well as by the drug-linker component of the conjugate. The conjugation site, conjugating group, drug/antibody ratios and site-specific conjugation for product homogeneity are all aspects to consider in optimizing the ADC and enhancing its therapeutic window. Immunotoxin and immunocytokine construction by recombinant methods can be modulated to improve efficacy and reduce toxicity. The Dock-and-Lock (DNL) platform technology provides a flexible approach to assemble mono- or bispecific constructs carrying multiple toxin or cytokine molecules for targeted therapy. EXPERT OPINION Conjugation chemistry and recombinant technologies have had a significant impact on the therapeutic prospects of immunoconjugates, particularly in hematopoietic diseases. Continued concerted efforts from different scientific disciplines are needed, together with newer treatment paradigms, for greater progress in the more challenging therapy of solid tumors.
Collapse
|
45
|
Pradeep H, Rajanikant GK. A rational approach to selective pharmacophore designing: an innovative strategy for specific recognition of Gsk3β. Mol Divers 2012; 16:553-62. [PMID: 22918724 PMCID: PMC7089308 DOI: 10.1007/s11030-012-9387-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/25/2012] [Indexed: 12/21/2022]
Abstract
We propose a novel cheminformatics approach that combines structure and ligand-based design to identify target-specific pharmacophores with well-defined exclusion ability. Our strategy includes the prediction of selective interactions, developing structure, and knowledge-based selective pharmacophore models, followed by database screening and molecular docking. This unique strategy was employed in addressing the off-target toxicity of Gsk3β and CDKs. The connections of Gsk3β in eukaryotic cell apoptosis and the extensive potency of Gsk3β inhibitors to block cell death have made it a potential drug-discovery target for many grievous human disorders. Gsk3β is phylogenetically very closely related to the CDKs, such as CDK1 and CDK2, which are suggested to be the off-target proteins of Gsk3β inhibitors. Here, we have employed novel computational approaches in designing the ligand candidates that are potentially inhibitory against Gsk3β, with well-defined the exclusion ability to CDKs. A structure-ligand -based selective pharmacophore was modeled. This model was used to retrieve molecules from the zinc database. The hits retrieved were further screened by molecular docking and protein–ligand interaction fingerprints. Based on these results, four molecules were predicted as selective Gsk3β antagonists. It is anticipated that this unique approach can be extended to investigate any protein–ligand specificity.
Collapse
Affiliation(s)
- H Pradeep
- Bioinformatics Centre, School of Biotechnology, National Institute of Technology, Calicut 673601, India
| | | |
Collapse
|
46
|
Abstract
INTRODUCTION Over a half a century ago, radiolabeled antibodies were shown to localize selectively in tissues based on the expression of unique antigens. Antibodies have since become the de facto targeting agent, even inspiring the development of non-antibody compounds for targeting purposes. AREAS COVERED In this article, we review various aspects of how antibodies are transforming the way cancer is being detected and treated, with the growing demand for unconjugated and many new antibody conjugates. While unconjugated antibodies continue to garner most of the attention, interest in new antibody drug conjugates and immunotoxins has expanded over the past few years. However, there continues to be active research with new radioimmunoconjugates for imaging and therapy, particularly with α-emitters, as well as antibody-targeted cytokines and other biological response modifiers. EXPERT OPINION The increasing number of new agents being developed and tested clinically suggests that antibody-targeted compounds will have an expanding role in the future.
Collapse
Affiliation(s)
- David M Goldenberg
- Center for Molecular Medicine and Immunology, 300 The American Road, Morris Plains, NJ 07950, USA
| | | |
Collapse
|
47
|
A novel antibody targeting the ligand binding domain of the thromboxane A2 receptor exhibits antithrombotic properties in vivo. Biochem Biophys Res Commun 2012; 421:456-61. [DOI: 10.1016/j.bbrc.2012.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/02/2012] [Indexed: 11/19/2022]
|