1
|
Liang H, Zhou B, Li P, Zhang X, Zhang S, Zhang Y, Yao S, Qu S, Chen J. Stemness regulation in prostate cancer: prostate cancer stem cells and targeted therapy. Ann Med 2025; 57:2442067. [PMID: 39711287 DOI: 10.1080/07853890.2024.2442067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Increasing evidence indicates that cancer stem cells (CSCs) and cancer stem-like cells form a special subpopulation of cells that are ubiquitous in tumors. These cells exhibit similar characteristics to those of normal stem cells in tissues; moreover, they are capable of self-renewal and differentiation, as well as high tumorigenicity and drug resistance. In prostate cancer (PCa), it is difficult to kill these cells using androgen signaling inhibitors and chemotherapy drugs. Consequently, the residual prostate cancer stem cells (PCSCs) mediate tumor recurrence and progression. OBJECTIVE This review aims to provide a comprehensive and up-to-date overview of PCSCs, with a particular emphasis on potential therapeutic strategies targeting these cells. METHODS After searching in PubMed and Embase databases using 'prostate cancer' and 'cancer stem cells' as keywords, studies related were compiled and examined. RESULTS In this review, we detail the origin and characteristics of PCSCs, introduce the regulatory pathways closely related to CSC survival and stemness maintenance, and discuss the link between epithelial-mesenchymal transition, tumor microenvironment and tumor stemness. Furthermore, we introduce the currently available therapeutic strategies targeting CSCs, including signaling pathway inhibitors, anti-apoptotic protein inhibitors, microRNAs, nanomedicine, and immunotherapy. Lastly, we summarize the limitations of current CSC research and mention future research directions. CONCLUSION A deeper understanding of the regulatory network and molecular markers of PCSCs could facilitate the development of novel therapeutic strategies targeting these cells. Previous preclinical studies have demonstrated the potential of this treatment approach. In the future, this may offer alternative treatment options for PCa patients.
Collapse
Affiliation(s)
- Hao Liang
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Bin Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Peixin Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyi Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shijie Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Yaozhong Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shengwen Yao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Sifeng Qu
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Jun Chen
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
2
|
Yuan B, Kikuchi H. Harnessing Arsenic Derivatives and Natural Agents for Enhanced Glioblastoma Therapy. Cells 2024; 13:2138. [PMID: 39768226 PMCID: PMC11674460 DOI: 10.3390/cells13242138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/05/2025] Open
Abstract
Glioblastoma (GBM) is the most common and lethal intracranial tumor in adults. Despite advances in the understanding of the molecular events responsible for disease development and progression, survival rates and mortality statistics for GBM patients have been virtually unchanged for decades and chemotherapeutic drugs used to treat GBM are limited. Arsenic derivatives, known as highly effective anticancer agents for leukemia therapy, has been demonstrated to exhibit cytocidal effects toward GBM cells by inducing cell death, cell cycle arrest, inhibition of migration/invasion, and angiogenesis. Differentiation induction of glioma stem-like cells (GSCs) and inhibition of neurosphere formation have also been attributed to the cytotoxicity of arsenic derivatives. Intriguingly, similar cytotoxic effects against GBM cells and GSCs have also been observed in natural agents such as anthocyanidins, tetrandrine, and bufadienolides. In the current review, we highlight the available data on the molecular mechanisms underlying the multifaceted anticancer activity of arsenic compounds and natural agents against cancer cells, especially focusing on GBM cells and GCSs. We also outline possible strategies for developing anticancer therapy by combining natural agents and arsenic compounds, as well as temozolomide, an alkylating agent used to treat GBM, in terms of improvement of chemotherapy sensitivity and minimization of side effects.
Collapse
Affiliation(s)
- Bo Yuan
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Hidetomo Kikuchi
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan;
| |
Collapse
|
3
|
Hu Y, Peng L, Zhuo X, Yang C, Zhang Y. Hedgehog Signaling Pathway in Fibrosis and Targeted Therapies. Biomolecules 2024; 14:1485. [PMID: 39766192 PMCID: PMC11727624 DOI: 10.3390/biom14121485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025] Open
Abstract
Hedgehog (Hh) signaling is a well-established developmental pathway; it is crucial for early embryogenesis, cell differentiation, and damage-driven regeneration. It is being increasingly recognized that dysregulated Hh signaling is also involved in fibrotic diseases, which are characterized by excessive extracellular matrix deposition that compromises tissue architecture and function. As in-depth insights into the mechanisms of Hh signaling are obtained, its complex involvement in fibrosis is gradually being illuminated. Notably, some Hh-targeted inhibitors are currently under exploration in preclinical and clinical trials as a means to prevent fibrosis progression. In this review, we provide a concise overview of the biological mechanisms involved in Hh signaling. We summarize the latest advances in our understanding of the roles of Hh signaling in fibrogenesis across the liver, kidneys, airways, and lungs, as well as other tissues and organs, with an emphasis on both the shared features and, more critically, the distinct functional variations observed across these tissues and organs. We thus highlight the context dependence of Hh signaling, as well as discuss the current status and the challenges of Hh-targeted therapies for fibrosis.
Collapse
Affiliation(s)
- Yuchen Hu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.H.); (L.P.); (X.Z.)
- Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linrui Peng
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.H.); (L.P.); (X.Z.)
- Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Zhuo
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.H.); (L.P.); (X.Z.)
- Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.H.); (L.P.); (X.Z.)
- Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Guo YY, Zhang JY, Sun JF, Nie P, Gao H. Synthesis and application of small molecules approved for the treatment of lymphoma. Eur J Med Chem 2023; 261:115835. [PMID: 37801827 DOI: 10.1016/j.ejmech.2023.115835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Lymphoma is a form of cancer that impacts the lymphatic system, which plays a crucial role in defending the body against infections and illnesses. It is characterized by the atypical proliferation of lymphocytes, a type of white blood cell, which can form tumors in the lymph nodes, bone marrow, spleen, etc. Lymphoma is usually treated using a combination of targeted therapy, chemotherapy, and radiation therapy. In recent years, there has been a growing interest in the development of new drugs to treat lymphoma, which has led to the discovery of several promising compounds. The primary targets for lymphoma treatment have been identified as Bruton's tyrosine kinase (BTK), phosphoinositide3-kinase (PI3K), histone deacetylase (HDAC), and DNA polymerase (POLA). This review aims to provide an overview of the clinical applications and synthesis of several notable drugs approved to treat lymphoma, to expedite the exploration of more potent novel medications for the management of lymphoma.
Collapse
Affiliation(s)
- Yuan-Yuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, 450044, China.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Peng Nie
- Medicinal Chemistry, Rega Institute of Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Hua Gao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y, Zhou C. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther 2023; 8:315. [PMID: 37596267 PMCID: PMC10439210 DOI: 10.1038/s41392-023-01559-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of Hedgehog (HH) signaling pathway in various biological events. HH signaling pathway exerts its biological effects through a complex signaling cascade involved with primary cilium. HH signaling pathway has important functions in embryonic development and tissue homeostasis. It plays a central role in the regulation of the proliferation and differentiation of adult stem cells. Importantly, it has become increasingly clear that HH signaling pathway is associated with increased cancer prevalence, malignant progression, poor prognosis and even increased mortality. Understanding the integrative nature of HH signaling pathway has opened up the potential for new therapeutic targets for cancer. A variety of drugs have been developed, including small molecule inhibitors, natural compounds, and long non-coding RNA (LncRNA), some of which are approved for clinical use. This review outlines recent discoveries of HH signaling in tissue homeostasis and cancer and discusses how these advances are paving the way for the development of new biologically based therapies for cancer. Furthermore, we address status quo and limitations of targeted therapies of HH signaling pathway. Insights from this review will help readers understand the function of HH signaling in homeostasis and cancer, as well as opportunities and challenges of therapeutic targets for cancer.
Collapse
Affiliation(s)
- Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hengyi Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Paul NP, Galván AE, Yoshinaga-Sakurai K, Rosen BP, Yoshinaga M. Arsenic in medicine: past, present and future. Biometals 2023; 36:283-301. [PMID: 35190937 PMCID: PMC8860286 DOI: 10.1007/s10534-022-00371-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/05/2022] [Indexed: 12/17/2022]
Abstract
Arsenicals are one of the oldest treatments for a variety of human disorders. Although infamous for its toxicity, arsenic is paradoxically a therapeutic agent that has been used since ancient times for the treatment of multiple diseases. The use of most arsenic-based drugs was abandoned with the discovery of antibiotics in the 1940s, but a few remained in use such as those for the treatment of trypanosomiasis. In the 1970s, arsenic trioxide, the active ingredient in a traditional Chinese medicine, was shown to produce dramatic remission of acute promyelocytic leukemia similar to the effect of all-trans retinoic acid. Since then, there has been a renewed interest in the clinical use of arsenicals. Here the ancient and modern medicinal uses of inorganic and organic arsenicals are reviewed. Included are antimicrobial, antiviral, antiparasitic and anticancer applications. In the face of increasing antibiotic resistance and the emergence of deadly pathogens such as the severe acute respiratory syndrome coronavirus 2, we propose revisiting arsenicals with proven efficacy to combat emerging pathogens. Current advances in science and technology can be employed to design newer arsenical drugs with high therapeutic index. These novel arsenicals can be used in combination with existing drugs or serve as valuable alternatives in the fight against cancer and emerging pathogens. The discovery of the pentavalent arsenic-containing antibiotic arsinothricin, which is effective against multidrug-resistant pathogens, illustrates the future potential of this new class of organoarsenical antibiotics.
Collapse
Affiliation(s)
- Ngozi P Paul
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Adriana E Galván
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
7
|
Cao GZ, Ma LY, Zhang ZH, Wang XL, Hua JH, Zhang JH, Lv Y, Zhang SB, Ou J, Lin WC. Darinaparsin (ZIO-101) enhances the sensitivity of small-cell lung cancer to PARP inhibitors. Acta Pharmacol Sin 2023; 44:841-852. [PMID: 36253561 PMCID: PMC10042828 DOI: 10.1038/s41401-022-00994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Small-cell lung cancer (SCLC) is an aggressive high-grade neuroendocrine carcinoma of the lung associated with early metastasis and an exceptionally poor prognosis. Little progress has been made in developing efficacious targeted therapy for this recalcitrant disease. Herein, we showed that H3.3, encoded by two genes (H3F3A and H3F3B), was prominently overexpressed in SCLC. Darinaparsin (ZIO-101), a derivative of arsenic trioxide, dose- and time-dependently inhibited the viability of SCLC cells in an H3.3-dependent manner. More importantly, ZIO-101 treatment resulted in substantial accumulation of H3.3 and PARP1 besides induction of G2/M cell cycle arrest and apoptosis in SCLC cells. Through integrative analysis of the RNA-seq data from Cancer Cell Line Encyclopedia dataset, JNCI and Genomics of Drug Sensitivity in Cancer 2 datasets, we found that H3F3A expression was negatively correlated with the IC50 values of PARP inhibitors (PARPi). Furthermore, co-targeting H3.3 and PARP1 by ZIO-101 and BMN673/olaparib achieved synergistic growth inhibition against SCLC in vitro and in vivo. In conclusion, it is feasible to target H3.3 by ZIO-101 to potentiate the response rate of PARPi in SCLC patients.
Collapse
Affiliation(s)
- Guo-Zhen Cao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230036, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Li-Ying Ma
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230036, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zong-Hui Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Lin Wang
- University of Science and Technology of China, Hefei, 230036, China
| | - Jing-Han Hua
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230036, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jia-Hui Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230036, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yang Lv
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230036, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Shao-Bo Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Jian Ou
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Wen-Chu Lin
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- University of Science and Technology of China, Hefei, 230036, China.
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
8
|
Yuan B, Kikuchi H, Li J, Kawabata A, Yao K, Takagi N, Okazaki M. Cytotoxic Effects of Darinaparsin, a Novel Organic Arsenical, against Human Leukemia Cells. Int J Mol Sci 2023; 24:2282. [PMID: 36768603 PMCID: PMC9916914 DOI: 10.3390/ijms24032282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
To explore the molecular mechanisms of action underlying the antileukemia activities of darinaparsin, an organic arsenical approved for the treatment of peripheral T-cell lymphoma in Japan, cytotoxicity of darinaparsin was evaluated in leukemia cell lines NB4, U-937, MOLT-4 and HL-60. Darinaparsin was a more potent cytotoxic than sodium arsenite, and induced apoptosis/necrosis in NB4 and HL-60 cells. In NB4 cells exhibiting the highest susceptibility to darinaparsin, apoptosis induction was accompanied by the activation of caspase-8/-9/-3, a substantial decrease in Bid expression, and was suppressed by Boc-D-FMK, a pancaspase inhibitor, suggesting that darinaparsin triggered a convergence of the extrinsic and intrinsic pathways of apoptosis via Bid truncation. A dramatic increase in the expression level of γH2AX, a DNA damage marker, occurred in parallel with G2/M arrest. Activation of p53 and the inhibition of cdc25C/cyclin B1/cdc2 were concomitantly observed in treated cells. Downregulation of c-Myc, along with inactivation of E2F1 associated with the activation of Rb, was observed, suggesting the critical roles of p53 and c-Myc in darinaparsin-mediated G2/M arrest. Trolox, an antioxidative reagent, suppressed the apoptosis induction but failed to correct G2/M arrest, suggesting that oxidative stress primarily contributed to apoptosis induction. Suppression of Notch1 signaling was also confirmed. Our findings provide novel insights into molecular mechanisms underlying the cytotoxicity of darinaparsin and strong rationale for its new clinical application for patients with different types of cancer.
Collapse
Affiliation(s)
- Bo Yuan
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Sakado 350-0295, Japan
| | - Hidetomo Kikuchi
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Sakado 350-0295, Japan
| | - Jingmei Li
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Sakado 350-0295, Japan
| | - Atsushi Kawabata
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Sakado 350-0295, Japan
| | - Kozo Yao
- Product Development Division, Solasia Pharma K.K., Tokyo 105-0011, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Hachioji 192-0392, Japan
| | - Mari Okazaki
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Sakado 350-0295, Japan
| |
Collapse
|
9
|
The cell-line-derived subcutaneous tumor model in preclinical cancer research. Nat Protoc 2022; 17:2108-2128. [PMID: 35859135 DOI: 10.1038/s41596-022-00709-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/31/2022] [Indexed: 01/09/2023]
Abstract
Tumor-bearing experimental animals are essential for preclinical cancer drug development. A broad range of tumor models is available, with the simplest and most widely used involving a tumor of mouse or human origin growing beneath the skin of a mouse: the subcutaneous tumor model. Here, we outline the different types of in vivo tumor model, including some of their advantages and disadvantages and how they fit into the drug-development process. We then describe in more detail the subcutaneous tumor model and key steps needed to establish it in the laboratory, namely: choosing the mouse strain and tumor cells; cell culture, preparation and injection of tumor cells; determining tumor volume; mouse welfare; and an appropriate experimental end point. The protocol leads to subcutaneous tumor growth usually within 1-3 weeks of cell injection and is suitable for those with experience in tissue culture and mouse experimentation.
Collapse
|
10
|
Rahi S, Mehan S. Understanding Abnormal SMO-SHH Signaling in Autism Spectrum Disorder: Potential Drug Target and Therapeutic Goals. Cell Mol Neurobiol 2022; 42:931-953. [PMID: 33206287 PMCID: PMC11441210 DOI: 10.1007/s10571-020-01010-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Autism is a multifactorial neurodevelopmental condition; it demonstrates some main characteristics, such as impaired social relationships and increased repetitive behavior. The initiation of autism spectrum disorder is mostly triggered during brain development by the deregulation of signaling pathways. Sonic hedgehog (SHH) signaling is one such mechanism that influences neurogenesis and neural processes during the development of the central nervous system. SMO-SHH signaling is also an important part of a broad variety of neurological processes, including neuronal cell differentiation, proliferation, and survival. Dysregulation of SMO-SHH signaling leads to many physiological changes that lead to neurological disorders such as ASD and contribute to cognitive decline. The aberrant downregulation of SMO-SHH signals contributes to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which increases oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis by suppressing target gene expression. We outlined in this review that SMO-SHH deregulation plays a crucial role in the pathogenesis of autism and addresses the current status of SMO-SHH pathway modulators. Additionally, a greater understanding of the SHH signaling pathway is an effort to improve successful treatment for autism and other neurological disorders.
Collapse
Affiliation(s)
- Saloni Rahi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
11
|
Zhang M, Gao L, Ye Y, Li X. Advances in glioma-associated oncogene (GLI) inhibitors for cancer therapy. Invest New Drugs 2022; 40:370-388. [PMID: 34837604 DOI: 10.1007/s10637-021-01187-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
The Hedgehog/Glioma-associated oncogene homolog (HH/GLI) signaling pathway regulates self-renewal of rare and highly malignant cancer stem cells, which have been shown to account for the initiation and maintenance of tumor growth as well as for drug resistance, metastatic spread and relapse. As an important component of the Hh signaling pathway, glioma-associated oncogene (GLI) acts as a key signal transmission hub for various signaling pathways in many tumors. Here, we review direct and indirect inhibitors of GLI; summarize the abundant active structurally diverse natural GLI inhibitors; and discuss how to better develop and utilize GLI inhibitors to solve the problem of drug resistance in tumors of interest. In summary, GLI inhibitors will be promising candidates for various cancer treatments.
Collapse
Affiliation(s)
- Meng Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijuan Gao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiping Ye
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoyu Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Xu Y, Zhong Z, Gao Y, Wang Y, Zhang L, Huang H, Zheng J, Zhang K, Zheng X, Goodin S. The Mangrove-Derived Diterpenoid Diaporthe B Inhibits the Stemness and Increases the Efficacy of Docetaxel in Prostate Cancer PC-3 Cells. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211049688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The absolute configuration of diaporthe B, a pimarane diterpene isolated from the mangrove derived endophytic fungus Eutypella sp #3E, was determined by a single-crystal x-ray diffraction study. The present study aimed to investigate the effects of diaporthe B on docetaxel-resistant prostate cancer PC-3 cells. Results of our studies showed that docetaxel-resistant PC-3 cells had higher sphere-forming efficiency and an increase in adherence to collagen-coated culture plates. The protein levels of cancer stem cell (CSC)-related markers CD44, CD133, and ALDH1A1 were higher in the docetaxel-resistant PC-3 cells than in the parental cells. Treatment with diaporthe B dose-dependently inhibited the growth and induced apoptosis in the resistant cells. Moreover, diaporthe B treatment decreased the sphere-forming efficiency and the adherence to collagen-coated plates in docetaxel-resistant PC-3 cells. Diaporthe B also decreased the protein levels of CSC-related markers CD44, CD133, and ALDH1A1 in the resistant cells. In addition, a combination of diaporthe B and docetaxel had a more potent effect on growth inhibition and apoptosis in the resistant cells than either agent alone. Our studies suggest that diaporthe B inhibits the stemness of prostate cancer cells and may have therapeutic potential for enhancing the efficacy of docetaxel in docetaxel-resistant prostate cancer cells.
Collapse
Affiliation(s)
- Yao Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Zhiwei Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Yiwen Gao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Yuhui Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Huarong Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City, People’s Republic of China
| | - Xi Zheng
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Susan Goodin
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
13
|
Abstract
Background: The hedgehog pathway (HH) is one of the key regulators involved in many biological events. Malfunction of this pathway is associated with a variety of diseases including several types of cancers. Methods: We collected data from public databases and conducted a comprehensive search linking the HH pathway with female cancers. In addition, we overviewed clinical trials of targeting HH pathway in female cancers. Results: The activation of HH pathway and its role in female cancers, including breast cancer, ovarian cancer, cervical cancer, endometrial cancer, and uterine leiomyosarcoma were summarized. Treatment options targeting SMO and GLI in HH pathway were reviewed and discussed. Conclusions: The hedgehog pathway was shown to be activated in several types of female cancers. Therefore, targeting HH pathway may be considered as a therapeutic option to be acknowledged in the treatment of female cancers.
Collapse
Affiliation(s)
| | | | | | - Qiwei Yang
- Corresponding Author: Dr. Qiwei Yang, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, USA, Tel: 312-996-5689;
| |
Collapse
|
14
|
Lu YB, Sun TJ, Chen YT, Cai ZY, Zhao JY, Miao F, Yang YN, Wang SX. Targeting the Epithelial-to-Mesenchymal Transition in Cancer Stem Cells for a Better Clinical Outcome of Glioma. Technol Cancer Res Treat 2020; 19:1533033820948053. [PMID: 33089751 PMCID: PMC7586027 DOI: 10.1177/1533033820948053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/19/2020] [Accepted: 07/09/2020] [Indexed: 02/05/2023] Open
Abstract
Glioma is one of the most common malignant tumors of the central nervous system with a poor prognosis at present due to lack of effective treatment options. Its initiation, migration, and multipotency are affected by cancer stem cell's transition. Previous studies imply that changes in the cancer stem cells can affect the malignant differentiation of the tumor. We found that the epithelial-to-mesenchymal transition (EMT)-related regulatory pathway is an important target for tumor therapy. In this review, we discuss the transition factor of EMT and 3 specific pathways that affect the EMT of cancer stem cells during tumor development. We conclude that targeting the EMT process of cancer stem cells can be a feasible approach in the treatment of glioma.
Collapse
Affiliation(s)
- Yu-bao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- *Both authors contributed equally to this study and share first authorship
| | - Tian-Jiao Sun
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- *Both authors contributed equally to this study and share first authorship
| | - Yu-tong Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Zong-Yan Cai
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Jia-Yu Zhao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Feng Miao
- Zhangye People's Hospital Affiliated to Hexi University, Zhangye, Gansu, China
| | - Yong-na Yang
- Department of Neurology, The First People’s Hospital of Lanzhou City, Lanzhou, Gansu, China
| | - Shi-Xin Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Jiao M, Qi M, Zhang F, Hu J, Feng T, Zhao M, Li X, Liu H, Teng W, Zhang J, Liu Z, Zhang L, Wu Z, Han B. CUL4B regulates cancer stem-like traits of prostate cancer cells by targeting BMI1 via miR200b/c. Prostate 2019; 79:1294-1303. [PMID: 31111526 DOI: 10.1002/pros.23835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/03/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cancer stem-like traits contribute to prostate cancer (PCa) progression and metastasis. Cullin 4B (CUL4B) is a member of the ubiquitin E3 ligase family and overexpressed in several solid malignancies including PCa. CUL4B has been suggested to be an oncogene through epigenetic repression of tumor suppressors. However, the link between CUL4B expression and cancer stem-like phenotype remains unclear. METHODS Western blot analysis, sphere formation, and colony formation assays were used to examine the effect of CUL4B on cancer stem-like traits in PCa cells. Mechanically, bioinformatic analysis was utilized to evaluate whether BMI1 was a target of CUL4B. Moreover, real-time polymerase chain reaction, chromatin immunoprecipitation, and luciferase reporter assays were performed to identify microRNAs regulated by CUL4B. Finally, Western blot assay was used to validate the regulation of CUL4B, miR200b, and miR200c (miR200b/c) on the stem-like characteristics of PCa cells. RESULTS CUL4B promotes PCa pluripotency-associated markers expression, sphere formation, and anchorage-independent growth ability in vitro. Mechanically, CUL4B upregulates BMI1 expression via epigenetically repressing miR200b/c expression. In addition, miR200b/c could partially reverse CUL4B-induced BMI1 and pluripotency-associated marker expression. CONCLUSIONS Our study revealed that CUL4B regulates cancer stem-like traits of prostate cancer cells by targeting BMI1 via miR200b/c, which might give novel insight into how CUL4B promotes PCa progression through regulating cancer stem-like traits.
Collapse
Affiliation(s)
- Meng Jiao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Department of Pathology, Second Hospital of Shandong University, Jinan, China
| | - Mei Qi
- Department of Pathology, Shandong University Qilu Hospital, Jinan, China
| | - Facai Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Jing Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Mingfeng Zhao
- Department of Pathology, Binzhou Medical University, Binzhou, China
| | - Xinjun Li
- Department of Pathology, Binzhou People's Hospital, Binzhou, China
| | - Hui Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wei Teng
- Education Quality Management Office, Institute of Continuing Education, Shandong University, Jinan, China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhiyan Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Department of Pathology, Shandong University Qilu Hospital, Jinan, China
| | - Lili Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhen Wu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Department of Pathology, Shandong University Qilu Hospital, Jinan, China
| |
Collapse
|
16
|
Zheng JC, Chang KJ, Jin YX, Zhao XW, Li B, Yang MH. Arsenic Trioxide Inhibits the Metastasis of Small Cell Lung Cancer by Blocking Calcineurin-Nuclear Factor of Activated T Cells (NFAT) Signaling. Med Sci Monit 2019; 25:2228-2237. [PMID: 30913205 PMCID: PMC6446656 DOI: 10.12659/msm.913091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The inhibitory effect of arsenic trioxide (As₂O₃) on lung cancer has been reported in some preclinical studies. However, its effect on small cell lung cancer (SCLC) has been poorly explored. Calcineurin and its substrate, nuclear factor of activated T cells (NFAT), mediate the downstream signaling of VEGF, and is critical in the process endothelium activation and tumor metastasis. In this study, we aimed to evaluate whether As₂O₃ had inhibitory effects on endothelial cells activation and the metastasis of SCLC, and to explore the possible mechanisms. MATERIAL AND METHODS In vitro, human umbilical vein endothelial cells (HUVECs) were used. Cell Counting Kit-8 assay and cell migration assay were performed to determine the effect of As₂O₃ on HUVECs proliferation and migration. The level of calcineurin, NFAT, downstream factors for Down syndrome candidate region 1 (DSCR1), and the endogenous inhibitor of calcineurin, were evaluated by quantitative PCR and western blotting. In vivo, SCLC metastasis models were established by injecting NCI-H446 cells into tail veins of nude mice. Tumor-bearing mice were treated with As₂O₃ or calcineurin inhibitor for 10 days, after which tumor metastasis in target organs was evaluated. RESULTS As₂O₃ significantly inhibited the proliferation and migration of endothelial cells. Also, As₂O₃ inhibited the expression levels of calcineurin, NFAT, and the downstream target genes CXCR7 and RND1, while it upregulated the level of DSCR1. Both As₂O₃ and calcineurin inhibitor exhibited notable inhibitory effect on the metastasis of SCLC, without obvious side effects. CONCLUSIONS These findings suggested that As₂O₃ had remarkable inhibitory effects on the endothelial cell activation and SCLC metastasis, and the mechanism might be related to the blocking of calcineurin-NFAT signaling by upregulating DSCR1.
Collapse
Affiliation(s)
- Jin-Cheng Zheng
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Ke-Jie Chang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Yu-Xiang Jin
- Department of Thoracic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Xue-Wei Zhao
- Department of Thoracic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Meng-Hang Yang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| |
Collapse
|
17
|
Wu X, Xiao Y, Yan W, Ji Z, Zheng G. The human oncogene SCL/TAL1 interrupting locus (STIL) promotes tumor growth through MAPK/ERK, PI3K/Akt and AMPK pathways in prostate cancer. Gene 2018; 686:220-227. [PMID: 30453068 DOI: 10.1016/j.gene.2018.11.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/13/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023]
Abstract
The morbidity and mortality of prostate cancer (PCa) in China have increased obviously, which became the second leading cause of death in men with cancer. Hedgehog (Hh) signaling pathway is a key signaling pathway involved in the prostate cancer progression. The human oncogene SCL/TAL1 interrupting locus (STIL) can modulate the Hh signaling pathway, but its function in PCa has not been reported. Here, we showed that STIL was increased in high grade prostate cancer tissue. Knockdown of STIL in prostate cancer cells PC-3 and DU 145 significantly decreased the proliferation of cells and induced cellular apoptosis through casepase3/7 mediated pathway. Moreover, the colony formation ability was also inhibited when knockdown of STIL by lentivirus-mediated shRNA. Furthermore, the cellular signaling antibody array analysis revealed which signaling pathway was affected when silencing STIL. Altogether, we found that STIL could affect MAPK/ERK, PI3K/Akt and AMPK signaling pathways, thus promoting cellular proliferation, colony formation and suppressing cellular apoptosis in prostate cancer.
Collapse
Affiliation(s)
- Xingcheng Wu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Xiao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weigang Yan
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guoyang Zheng
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Abstract
The Hedgehog (Hh) signaling pathway plays an essential role in the growth, development, and homeostatis of many tissues in vertebrates and invertebrates. Much of what is known about Hh signaling is in the context of embryonic development and tumor formation. However, a growing body of evidence is emerging indicating that Hh signaling is also involved in postnatal processes such as tissue repair and adult immune responses. To that extent, Hh signaling has also been shown to be a target for some pathogens that presumably utilize the pathway to control the local infected environment. In this review, we discuss what is currently known regarding pathogenic interactions with Hh signaling and speculate on the reasons for this pathway being a target. We also hope to shed light on the possibility of using small molecule modulators of Hh signaling as effective therapies for a wider range of human diseases beyond their current use in a limited number of cancers.
Collapse
|
19
|
Qin W, Zheng Y, Qian BZ, Zhao M. Prostate Cancer Stem Cells and Nanotechnology: A Focus on Wnt Signaling. Front Pharmacol 2017; 8:153. [PMID: 28400729 PMCID: PMC5368180 DOI: 10.3389/fphar.2017.00153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is the most common cancer among men worldwide. However, current treatments for prostate cancer patients in advanced stage often fail because of relapse. Prostate cancer stem cells (PCSCs) are resistant to most standard therapies, and are considered to be a major mechanism of cancer metastasis and recurrence. In this review, we summarized current understanding of PCSCs and their self-renewal signaling pathways with a specific focus on Wnt signaling. Although multiple Wnt inhibitors have been developed to target PCSCs, their application is still limited by inefficient delivery and toxicity in vivo. Recently, nanotechnology has opened a new avenue for cancer drug delivery, which significantly increases specificity and reduces toxicity. These nanotechnology-based drug delivery methods showed great potential in targeting PCSCs. Here, we summarized current advancement of nanotechnology-based therapeutic strategies for targeting PCSCs and highlighted the challenges and perspectives in designing future therapies to eliminate PCSCs.
Collapse
Affiliation(s)
- Wei Qin
- The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China
| | - Yongjiang Zheng
- The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University Guangzhou, China
| | - Bin-Zhi Qian
- Edinburgh Cancer Research UK Centre and MRC University of Edinburgh Centre for Reproductive Health, University of Edinburgh Edinburgh, UK
| | - Meng Zhao
- The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
20
|
Takeishi S, Nakayama KI. To wake up cancer stem cells, or to let them sleep, that is the question. Cancer Sci 2016; 107:875-81. [PMID: 27116333 PMCID: PMC4946711 DOI: 10.1111/cas.12958] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/22/2016] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) generate transient-amplifying cells and thereby contribute to cancer propagation. A fuller understanding of the biological features of CSCs is expected to lead to the development of new anticancer therapies capable of eradicating this life-threatening disease. Cancer stem cells are known to maintain a non-proliferative state and to enter the cell cycle only infrequently. Given that conventional anticancer therapies preferentially target dividing cells, CSCs are resistant to such treatments, with those remaining after elimination of bulk cancer cells potentially giving rise to disease relapse and metastasis as they re-enter the cell cycle after a period of latency. Targeting of the switch between quiescence and proliferation in CSCs is therefore a potential strategy for preventing the reinitiation of malignancy, underscoring the importance of elucidation of the mechanisms by which these cells are maintained in the quiescent state. The fundamental properties of CSCs are thought to be governed cooperatively by internal molecules and cues from the external microenvironment (stem cell niche). Several such intrinsic and extrinsic regulators are responsible for the control of cell cycle progression in CSCs. In this review, we address two opposite approaches to the therapeutic targeting of CSCs - wake-up and hibernation therapies - that either promote or prevent the entry of CSCs into the cell cycle, respectively, and we discuss the potential advantages and risks of each strategy.
Collapse
Affiliation(s)
- Shoichiro Takeishi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW. Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors. Cancers (Basel) 2016; 8:cancers8020022. [PMID: 26891329 PMCID: PMC4773745 DOI: 10.3390/cancers8020022] [Citation(s) in RCA: 429] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/25/2016] [Accepted: 02/05/2016] [Indexed: 12/25/2022] Open
Abstract
The sonic hedgehog (Shh) signaling pathway is a major regulator of cell differentiation, cell proliferation, and tissue polarity. Aberrant activation of the Shh pathway has been shown in a variety of human cancers, including, basal cell carcinoma, malignant gliomas, medulloblastoma, leukemias, and cancers of the breast, lung, pancreas, and prostate. Tumorigenesis, tumor progression and therapeutic response have all been shown to be impacted by the Shh signaling pathway. Downstream effectors of the Shh pathway include smoothened (SMO) and glioma-associated oncogene homolog (GLI) family of zinc finger transcription factors. Both are regarded as important targets for cancer therapeutics. While most efforts have been devoted towards pharmacologically targeting SMO, developing GLI-targeted approach has its merit because of the fact that GLI proteins can be activated by both Shh ligand-dependent and -independent mechanisms. To date, two SMO inhibitors (LDE225/Sonidegib and GDC-0449/Vismodegib) have received FDA approval for treating basal cell carcinoma while many clinical trials are being conducted to evaluate the efficacy of this exciting class of targeted therapy in a variety of cancers. In this review, we provide an overview of the biology of the Shh pathway and then detail the current landscape of the Shh-SMO-GLI pathway inhibitors including those in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Tadas K Rimkus
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Richard L Carpenter
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Shadi Qasem
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Michael Chan
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
22
|
Prostate Cancer Stem Cells: Viewing Signaling Cascades at a Finer Resolution. Arch Immunol Ther Exp (Warsz) 2016; 64:217-23. [DOI: 10.1007/s00005-016-0383-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
|
23
|
Trinh TN, McLaughlin EA, Abdel-Hamid MK, Gordon CP, Bernstein IR, Pye V, Cossar P, Sakoff JA, McCluskey A. Quinolone-1-(2H)-ones as hedgehog signalling pathway inhibitors. Org Biomol Chem 2016; 14:6304-15. [DOI: 10.1039/c6ob00606j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of quinolone-2-(1H)-ones derived from a Ugi-Knoevenagel three- and four-component reaction were prepared exhibiting low micromolar cytotoxicity against a panel of eight human cancer cell lines known to possess the Hedgehog Signalling Pathway (HSP) components, as well as the seminoma TCAM-2 cell line.
Collapse
Affiliation(s)
- Trieu N. Trinh
- Chemistry
- Priority Research Centre for Chemical Biology
- University of Newcastle
- Callaghan
- Australia
| | - Eileen A. McLaughlin
- Biology
- Priority Research Centre for Chemical Biology
- University of Newcastle
- Callaghan
- Australia
| | - Mohammed K. Abdel-Hamid
- Chemistry
- Priority Research Centre for Chemical Biology
- University of Newcastle
- Callaghan
- Australia
| | - Christopher P. Gordon
- Nanoscale Organization and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Penrith South DC
- Australia
| | - Ilana R. Bernstein
- Biology
- Priority Research Centre for Chemical Biology
- University of Newcastle
- Callaghan
- Australia
| | - Victoria Pye
- Biology
- Priority Research Centre for Chemical Biology
- University of Newcastle
- Callaghan
- Australia
| | - Peter Cossar
- Chemistry
- Priority Research Centre for Chemical Biology
- University of Newcastle
- Callaghan
- Australia
| | | | - Adam McCluskey
- Chemistry
- Priority Research Centre for Chemical Biology
- University of Newcastle
- Callaghan
- Australia
| |
Collapse
|
24
|
Németi B, Poór M, Gregus Z. Reduction of the Pentavalent Arsenical Dimethylarsinic Acid and the GSTO1 Substrate S-(4-Nitrophenacyl)glutathione by Rat Liver Cytosol: Analyzing the Role of GSTO1 in Arsenic Reduction. Chem Res Toxicol 2015; 28:2199-209. [DOI: 10.1021/acs.chemrestox.5b00368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Balázs Németi
- Department of Pharmacology
and Pharmacotherapy, Toxicology Section, University of Pécs, Medical School, Pécs, Hungary
| | - Miklós Poór
- Department of Pharmacology
and Pharmacotherapy, Toxicology Section, University of Pécs, Medical School, Pécs, Hungary
| | - Zoltán Gregus
- Department of Pharmacology
and Pharmacotherapy, Toxicology Section, University of Pécs, Medical School, Pécs, Hungary
| |
Collapse
|
25
|
Kramann R, Fleig SV, Schneider RK, Fabian SL, DiRocco DP, Maarouf O, Wongboonsin J, Ikeda Y, Heckl D, Chang SL, Rennke HG, Waikar SS, Humphreys BD. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J Clin Invest 2015; 125:2935-51. [PMID: 26193634 PMCID: PMC4563736 DOI: 10.1172/jci74929] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 06/04/2015] [Indexed: 12/21/2022] Open
Abstract
Chronic kidney disease is characterized by interstitial fibrosis and proliferation of scar-secreting myofibroblasts, ultimately leading to end-stage renal disease. The hedgehog (Hh) pathway transcriptional effectors GLI1 and GLI2 are expressed in myofibroblast progenitors; however, the role of these effectors during fibrogenesis is poorly understood. Here, we demonstrated that GLI2, but not GLI1, drives myofibroblast cell-cycle progression in cultured mesenchymal stem cell-like progenitors. In animals exposed to unilateral ureteral obstruction, Hh pathway suppression by expression of the GLI3 repressor in GLI1+ myofibroblast progenitors limited kidney fibrosis. Myofibroblast-specific deletion of Gli2, but not Gli1, also limited kidney fibrosis, and induction of myofibroblast-specific cell-cycle arrest mediated this inhibition. Pharmacologic targeting of this pathway with darinaparsin, an arsenical in clinical trials, reduced fibrosis through reduction of GLI2 protein levels and subsequent cell-cycle arrest in myofibroblasts. GLI2 overexpression rescued the cell-cycle effect of darinaparsin in vitro. While darinaparsin ameliorated fibrosis in WT and Gli1-KO mice, it was not effective in conditional Gli2-KO mice, supporting GLI2 as a direct darinaparsin target. The GLI inhibitor GANT61 also reduced fibrosis in mice. Finally, GLI1 and GLI2 were upregulated in the kidneys of patients with high-grade fibrosis. Together, these data indicate that GLI inhibition has potential as a therapeutic strategy to limit myofibroblast proliferation in kidney fibrosis.
Collapse
Affiliation(s)
- Rafael Kramann
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Susanne V. Fleig
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Rebekka K. Schneider
- Division of Hematology, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven L. Fabian
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Derek P. DiRocco
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Omar Maarouf
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Janewit Wongboonsin
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Yoichiro Ikeda
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Dirk Heckl
- Division of Hematology, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Helmut G. Rennke
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Sushrut S. Waikar
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin D. Humphreys
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|