1
|
Corno C, Beretta GL, Perego P. Concomitant Targeting of MDM2 and MEK: A New Translatable Combinatorial Strategy? J Thorac Oncol 2023; 18:1111-1113. [PMID: 37599041 DOI: 10.1016/j.jtho.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 08/22/2023]
Affiliation(s)
- Cristina Corno
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
2
|
Goodwin CM, Waters AM, Klomp JE, Javaid S, Bryant KL, Stalnecker CA, Drizyte-Miller K, Papke B, Yang R, Amparo AM, Ozkan-Dagliyan I, Baldelli E, Calvert V, Pierobon M, Sorrentino JA, Beelen AP, Bublitz N, Lüthen M, Wood KC, Petricoin EF, Sers C, McRee AJ, Cox AD, Der CJ. Combination Therapies with CDK4/6 Inhibitors to Treat KRAS-Mutant Pancreatic Cancer. Cancer Res 2023; 83:141-157. [PMID: 36346366 PMCID: PMC9812941 DOI: 10.1158/0008-5472.can-22-0391] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/08/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Mutational loss of CDKN2A (encoding p16INK4A) tumor-suppressor function is a key genetic step that complements activation of KRAS in promoting the development and malignant growth of pancreatic ductal adenocarcinoma (PDAC). However, pharmacologic restoration of p16INK4A function with inhibitors of CDK4 and CDK6 (CDK4/6) has shown limited clinical efficacy in PDAC. Here, we found that concurrent treatment with both a CDK4/6 inhibitor (CDK4/6i) and an ERK-MAPK inhibitor (ERKi) synergistically suppresses the growth of PDAC cell lines and organoids by cooperatively blocking CDK4/6i-induced compensatory upregulation of ERK, PI3K, antiapoptotic signaling, and MYC expression. On the basis of these findings, a Phase I clinical trial was initiated to evaluate the ERKi ulixertinib in combination with the CDK4/6i palbociclib in patients with advanced PDAC (NCT03454035). As inhibition of other proteins might also counter CDK4/6i-mediated signaling changes to increase cellular CDK4/6i sensitivity, a CRISPR-Cas9 loss-of-function screen was conducted that revealed a spectrum of functionally diverse genes whose loss enhanced CDK4/6i growth inhibitory activity. These genes were enriched around diverse signaling nodes, including cell-cycle regulatory proteins centered on CDK2 activation, PI3K-AKT-mTOR signaling, SRC family kinases, HDAC proteins, autophagy-activating pathways, chromosome regulation and maintenance, and DNA damage and repair pathways. Novel therapeutic combinations were validated using siRNA and small-molecule inhibitor-based approaches. In addition, genes whose loss imparts a survival advantage were identified (e.g., RB1, PTEN, FBXW7), suggesting possible resistance mechanisms to CDK4/6 inhibition. In summary, this study has identified novel combinations with CDK4/6i that may have clinical benefit to patients with PDAC. SIGNIFICANCE CRISPR-Cas9 screening and protein activity mapping reveal combinations that increase potency of CDK4/6 inhibitors and overcome drug-induced compensations in pancreatic cancer.
Collapse
Affiliation(s)
- Craig M. Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andrew M. Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer E. Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sehrish Javaid
- Program in Oral and Craniofacial Biomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kirsten L. Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, George Mason University, Fairfax, Virginia
| | - Clint A. Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kristina Drizyte-Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bjoern Papke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Berlin Institute of Health (BIH), Anna-Louise-Karsch-Str. 2, 10178 Berlin, Germany
| | - Runying Yang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amber M. Amparo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia
| | | | | | - Natalie Bublitz
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Berlin Institute of Health (BIH), Anna-Louise-Karsch-Str. 2, 10178 Berlin, Germany
| | - Mareen Lüthen
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Berlin Institute of Health (BIH), Anna-Louise-Karsch-Str. 2, 10178 Berlin, Germany
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia
| | - Christine Sers
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Berlin Institute of Health (BIH), Anna-Louise-Karsch-Str. 2, 10178 Berlin, Germany
| | - Autumn J. McRee
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adrienne D. Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, George Mason University, Fairfax, Virginia
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, George Mason University, Fairfax, Virginia
| |
Collapse
|
3
|
Diehl JN, Klomp JE, Snare KR, Hibshman PS, Blake DR, Kaiser ZD, Gilbert TSK, Baldelli E, Pierobon M, Papke B, Yang R, Hodge RG, Rashid NU, Petricoin EF, Herring LE, Graves LM, Cox AD, Der CJ. The KRAS-regulated kinome identifies WEE1 and ERK coinhibition as a potential therapeutic strategy in KRAS-mutant pancreatic cancer. J Biol Chem 2021; 297:101335. [PMID: 34688654 PMCID: PMC8591367 DOI: 10.1016/j.jbc.2021.101335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/24/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Oncogenic KRAS drives cancer growth by activating diverse signaling networks, not all of which have been fully delineated. We set out to establish a system-wide profile of the KRAS-regulated kinase signaling network (kinome) in KRAS-mutant pancreatic ductal adenocarcinoma (PDAC). We knocked down KRAS expression in a panel of six cell lines and then applied multiplexed inhibitor bead/MS to monitor changes in kinase activity and/or expression. We hypothesized that depletion of KRAS would result in downregulation of kinases required for KRAS-mediated transformation and in upregulation of other kinases that could potentially compensate for the deleterious consequences of the loss of KRAS. We identified 15 upregulated and 13 downregulated kinases in common across the panel of cell lines. In agreement with our hypothesis, all 15 of the upregulated kinases have established roles as cancer drivers (e.g., SRC, TGF-β1, ILK), and pharmacological inhibition of one of these upregulated kinases, DDR1, suppressed PDAC growth. Interestingly, 11 of the 13 downregulated kinases have established driver roles in cell cycle progression, particularly in mitosis (e.g., WEE1, Aurora A, PLK1). Consistent with a crucial role for the downregulated kinases in promoting KRAS-driven proliferation, we found that pharmacological inhibition of WEE1 also suppressed PDAC growth. The unexpected paradoxical activation of ERK upon WEE1 inhibition led us to inhibit both WEE1 and ERK concurrently, which caused further potent growth suppression and enhanced apoptotic death compared with WEE1 inhibition alone. We conclude that system-wide delineation of the KRAS-regulated kinome can identify potential therapeutic targets for KRAS-mutant pancreatic cancer.
Collapse
Affiliation(s)
- J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer E Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kayla R Snare
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Priya S Hibshman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Devon R Blake
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zane D Kaiser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas S K Gilbert
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Björn Papke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Runying Yang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard G Hodge
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Naim U Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Laura E Herring
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lee M Graves
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Adrienne D Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Channing J Der
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
4
|
Dual Specificity Kinase DYRK3 Promotes Aggressiveness of Glioblastoma by Altering Mitochondrial Morphology and Function. Int J Mol Sci 2021; 22:ijms22062982. [PMID: 33804169 PMCID: PMC8000785 DOI: 10.3390/ijms22062982] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant primary brain tumor with poor patient prognosis. Although the standard treatment of GBM is surgery followed by chemotherapy and radiotherapy, often a small portion of surviving tumor cells acquire therapeutic resistance and become more aggressive. Recently, altered kinase expression and activity have been shown to determine metabolic flux in tumor cells and metabolic reprogramming has emerged as a tumor progression regulatory mechanism. Here we investigated novel kinase-mediated metabolic alterations that lead to acquired GBM radioresistance and malignancy. We utilized transcriptomic analyses within a radioresistant GBM orthotopic xenograft mouse model that overexpresses the dual specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3). We find that within GBM cells, radiation exposure induces DYRK3 expression and DYRK3 regulates mammalian target of rapamycin complex 1 (mTORC1) activity through phosphorylation of proline-rich AKT1 substrate 1 (PRAS40). We also find that DYRK3 knockdown inhibits dynamin-related protein 1 (DRP1)-mediated mitochondrial fission, leading to increased oxidative phosphorylation (OXPHOS) and reduced glycolysis. Importantly, enforced DYRK3 downregulation following irradiation significantly impaired GBM cell migration and invasion. Collectively, we suggest DYRK3 suppression may be a novel strategy for preventing GBM malignancy through regulating mitochondrial metabolism.
Collapse
|
5
|
The role of chronobiology in drug-resistance epilepsy: The potential use of a variability and chronotherapy-based individualized platform for improving the response to anti-seizure drugs. Seizure 2020; 80:201-211. [DOI: 10.1016/j.seizure.2020.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
|
6
|
Ilan Y. Overcoming Compensatory Mechanisms toward Chronic Drug Administration to Ensure Long-Term, Sustainable Beneficial Effects. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:335-344. [PMID: 32671136 PMCID: PMC7341037 DOI: 10.1016/j.omtm.2020.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic administration of drugs leads to the activation of compensatory mechanisms that may inhibit some of their activity and induce unwanted toxicity. These mechanisms are an obstacle for maintaining a sustainable effect for many chronic medications. Pathways that adapt to the burden induced by chronic drugs, whether or not related to the underlying disease, can lead to a partial or complete loss of effect. Variability characterizes many biological systems and manifests itself as large intra- and inter-individual differences in the response to drugs. Circadian rhythm-based chronotherapy is further associated with variability in responses noted among patients. This paper reviews current knowledge regarding the loss of effect of chronic medications and the range of variabilities that have been described in responses and loss of responses. Establishment of a personalized platform for overcoming these prohibitive mechanisms is presented as a model for ensuring long-term sustained medication effects. This novel platform implements personalized variability signatures and individualized circadian rhythms for preventing and opposing the prohibitive effect of the compensatory mechanisms induced by chronic drug administration.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, IL91120 Jerusalem, Israel
- Corresponding author: Yaron Ilan, MD, Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, POB 1200, IL91120 Jerusalem, Israel
| |
Collapse
|
7
|
Hastings JF, O'Donnell YEI, Fey D, Croucher DR. Applications of personalised signalling network models in precision oncology. Pharmacol Ther 2020; 212:107555. [PMID: 32320730 DOI: 10.1016/j.pharmthera.2020.107555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
As our ability to provide in-depth, patient-specific characterisation of the molecular alterations within tumours rapidly improves, it is becoming apparent that new approaches will be required to leverage the power of this data and derive the full benefit for each individual patient. Systems biology approaches are beginning to emerge within this field as a potential method of incorporating large volumes of network level data and distilling a coherent, clinically-relevant prediction of drug response. However, the initial promise of this developing field is yet to be realised. Here we argue that in order to develop these precise models of individual drug response and tailor treatment accordingly, we will need to develop mathematical models capable of capturing both the dynamic nature of drug-response signalling networks and key patient-specific information such as mutation status or expression profiles. We also review the modelling approaches commonly utilised within this field, and outline recent examples of their use in furthering the application of systems biology for a precision medicine approach to cancer treatment.
Collapse
Affiliation(s)
- Jordan F Hastings
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | | | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland; St Vincent's Hospital Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
8
|
Remmerie M, Janssens V. PP2A: A Promising Biomarker and Therapeutic Target in Endometrial Cancer. Front Oncol 2019; 9:462. [PMID: 31214504 PMCID: PMC6558005 DOI: 10.3389/fonc.2019.00462] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, the use of targeted therapies has immensely increased in the treatment of cancer. However, treatment for endometrial carcinomas (ECs) has lagged behind, although potential molecular markers have been identified. This is particularly problematic for the type II ECs, since these aggressive tumors are usually not responsive toward the current standard therapies. Therefore, type II ECs are responsible for most EC-related deaths, indicating the need for new treatment options. Interestingly, molecular analyses of type II ECs have uncovered frequent genetic alterations (up to 40%) in PPP2R1A, encoding the Aα subunit of the tumor suppressive heterotrimeric protein phosphatase type 2A (PP2A). PPP2R1A mutations were also reported in type I ECs and other common gynecologic cancers, albeit at much lower frequencies (0-7%). Nevertheless, PP2A inactivation in the latter cancer types is common via other mechanisms, in particular by increased expression of Cancerous Inhibitor of PP2A (CIP2A) and PP2A Methylesterase-1 (PME-1) proteins. In this review, we discuss the therapeutic potential of direct and indirect PP2A targeting compounds, possibly in combination with other anti-cancer drugs, in EC. Furthermore, we investigate the potential of the PP2A status as a predictive and/or prognostic marker for type I and II ECs.
Collapse
Affiliation(s)
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Transporter and Lysosomal Mediated (Multi)drug Resistance to Tyrosine Kinase Inhibitors and Potential Strategies to Overcome Resistance. Cancers (Basel) 2018; 10:cancers10120503. [PMID: 30544701 PMCID: PMC6315453 DOI: 10.3390/cancers10120503] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosine kinase inhibitors are a class of chemotherapeutic drugs that target specific protein kinases. These tyrosine kinase inhibitors constitute a relatively new class of drugs which target for instance Bcr-Abl, Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Despite some initial successes, the overall therapeutic benefit of tyrosine kinase inhibitors in the clinic has been mixed. Next to mutations in the target, multidrug resistance is a major obstacle for which still no clinically effective strategies have been developed. Major mechanisms of multidrug resistance are mediated by drug efflux transporter proteins. Moreover, there is accumulating evidence that multidrug resistance can also be caused by lysosomal sequestration of drugs, effectively trapping tyrosine kinase inhibitors and preventing them from reaching their target. Lysosomal drug sequestration seems to work together with ATP-binding cassette transporters, increasing the capacity of lysosomes to mediate sequestration. Both membrane efflux transporter proteins and lysosomes present potential therapeutic targets that could reverse multidrug resistance and increase drug efficacy in combination therapy. This review describes both mechanisms and discusses a number of proposed strategies to circumvent or reverse tyrosine kinase inhibitor-related multidrug resistance.
Collapse
|
10
|
Hastings JF, Skhinas JN, Fey D, Croucher DR, Cox TR. The extracellular matrix as a key regulator of intracellular signalling networks. Br J Pharmacol 2018; 176:82-92. [PMID: 29510460 DOI: 10.1111/bph.14195] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a salient feature of all solid tissues within the body. This complex, acellular entity is composed of hundreds of individual molecules whose assembly, architecture and biomechanical properties are critical to controlling the behaviour and phenotype of the different cell types residing within tissues. Cells are the basic unit of life and the core building block of tissues and organs. At their simplest, they follow a set of rules, governed by their genetic code and effected through the complex protein signalling networks that these genes encode. These signalling networks assimilate and process the information received by the cell to control cellular decisions that govern cell fate. The ECM is the biggest provider of external stimuli to cells and as such is responsible for influencing intracellular signalling dynamics. In this review, we discuss the inclusion of ECM as a central regulatory signalling sub-network in computational models of cellular decision making, with a focus on its role in diseases such as cancer. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- Jordan F Hastings
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Darlinghurst, NSW, 2010, Australia
| | - Joanna N Skhinas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Darlinghurst, NSW, 2010, Australia
| | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - David R Croucher
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2010, Australia.,School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2010, Australia
| |
Collapse
|
11
|
Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med 2017; 40:271-280. [PMID: 28656226 PMCID: PMC5500920 DOI: 10.3892/ijmm.2017.3036] [Citation(s) in RCA: 790] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Protein phosphorylation is an important cellular regulatory mechanism as many enzymes and receptors are activated/deactivated by phosphorylation and dephosphorylation events, by means of kinases and phosphatases. In particular, the protein kinases are responsible for cellular transduction signaling and their hyperactivity, malfunction or overexpression can be found in several diseases, mostly tumors. Therefore, it is evident that the use of kinase inhibitors can be valuable for the treatment of cancer. In this review, we discuss the mechanism of action of phosphorylation, with particular attention to the importance of phosphorylation under physiological and pathological conditions. We also discuss the possibility of using kinase inhibitors in the treatment of tumors.
Collapse
Affiliation(s)
- Fatima Ardito
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Michele Giuliani
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Donatella Perrone
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| |
Collapse
|
12
|
Panicker PS, Melge AR, Biswas L, Keechilat P, Mohan CG. Epidermal growth factor receptor (EGFR) structure-based bioactive pharmacophore models for identifying next-generation inhibitors against clinically relevant EGFR mutations. Chem Biol Drug Des 2017; 90:629-636. [DOI: 10.1111/cbdd.12977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Pooja S. Panicker
- Centre for Nanosciences and Molecular Medicine; Amrita Institute of Medical Sciences and Research Centre; Amrita University; Kochi Kerala India
| | - Anu R. Melge
- Centre for Nanosciences and Molecular Medicine; Amrita Institute of Medical Sciences and Research Centre; Amrita University; Kochi Kerala India
| | - Lalitha Biswas
- Centre for Nanosciences and Molecular Medicine; Amrita Institute of Medical Sciences and Research Centre; Amrita University; Kochi Kerala India
| | - Pavithran Keechilat
- Centre for Nanosciences and Molecular Medicine; Amrita Institute of Medical Sciences and Research Centre; Amrita University; Kochi Kerala India
| | - Chethampadi G. Mohan
- Centre for Nanosciences and Molecular Medicine; Amrita Institute of Medical Sciences and Research Centre; Amrita University; Kochi Kerala India
| |
Collapse
|
13
|
Ember SW, Lambert QT, Berndt N, Gunawan S, Ayaz M, Tauro M, Zhu JY, Cranfill PJ, Greninger P, Lynch CC, Benes CH, Lawrence HR, Reuther GW, Lawrence NJ, Schönbrunn E. Potent Dual BET Bromodomain-Kinase Inhibitors as Value-Added Multitargeted Chemical Probes and Cancer Therapeutics. Mol Cancer Ther 2017; 16:1054-1067. [PMID: 28336808 DOI: 10.1158/1535-7163.mct-16-0568-t] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/01/2016] [Accepted: 03/02/2017] [Indexed: 12/22/2022]
Abstract
Synergistic action of kinase and BET bromodomain inhibitors in cell killing has been reported for a variety of cancers. Using the chemical scaffold of the JAK2 inhibitor TG101348, we developed and characterized single agents which potently and simultaneously inhibit BRD4 and a specific set of oncogenic tyrosine kinases including JAK2, FLT3, RET, and ROS1. Lead compounds showed on-target inhibition in several blood cancer cell lines and were highly efficacious at inhibiting the growth of hematopoietic progenitor cells from patients with myeloproliferative neoplasm. Screening across 931 cancer cell lines revealed differential growth inhibitory potential with highest activity against bone and blood cancers and greatly enhanced activity over the single BET inhibitor JQ1. Gene drug sensitivity analyses and drug combination studies indicate synergism of BRD4 and kinase inhibition as a plausible reason for the superior potency in cell killing. Combined, our findings indicate promising potential of these agents as novel chemical probes and cancer therapeutics. Mol Cancer Ther; 16(6); 1054-67. ©2017 AACR.
Collapse
Affiliation(s)
- Stuart W Ember
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Que T Lambert
- Tumor Biology Department, Moffitt Cancer Center, Tampa, Florida
| | - Norbert Berndt
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Steven Gunawan
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Muhammad Ayaz
- Chemical Biology Core, Moffitt Cancer Center, Tampa, Florida
| | - Marilena Tauro
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jin-Yi Zhu
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Paula J Cranfill
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Patricia Greninger
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Conor C Lynch
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Harshani R Lawrence
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida.,Chemical Biology Core, Moffitt Cancer Center, Tampa, Florida
| | - Gary W Reuther
- Tumor Biology Department, Moffitt Cancer Center, Tampa, Florida
| | | | - Ernst Schönbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
14
|
Chojnacki K, Wińska P, Skierka K, Wielechowska M, Bretner M. Synthesis, in vitro antiproliferative activity and kinase profile of new benzimidazole and benzotriazole derivatives. Bioorg Chem 2017; 72:1-10. [PMID: 28340404 DOI: 10.1016/j.bioorg.2017.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/10/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
Abstract
Protein kinase 2 (CK2), a member of the serine/threonine kinase family, has been established as a promising target in anticancer therapy. New derivatives of known CK2 inhibitors 4,5,6,7-tetrabromo-1H-benzimidazole (TBBi) and 4,5,6,7-tetrabromo-1H-benzotriazole (TBBt) bearing azide or substituted triazole groups were synthesized. Their influence on the activity of human recombinant CK2α and cytotoxicity against normal and cancer cell lines were evaluated. TBBi derivatives with triazole substituted with carboxyl substituent (7 and 10) exhibited the most potent inhibitory activity against CK2 with Ki value in the range of 1.96-0.91μM, respectively. New TBBi derivatives 2, 3, 5 and 9 have demonstrated the EC50, in the range of 12-25μM and 13-29μM respectively towards CCRF-CEM and MCF-7 cells. Derivatives TBBi decreased viability of cancer cells more efficiently than BALB cells and the biggest differences were observed for the azide substituted compounds 3 and 5. The effect of the most active compounds on the activity of eight off-target kinases was evaluated. Inhibitory efficiency of CK2-mediated p65 phosphorylation was demonstrated for the TBBi and compound 12.
Collapse
Affiliation(s)
- Konrad Chojnacki
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland.
| | - Katarzyna Skierka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Maria Bretner
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| |
Collapse
|
15
|
Sarvagalla S, Coumar MS. Protein-Protein Interactions (PPIs) as an Alternative to Targeting the ATP Binding Site of Kinase. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Most of the developed kinase inhibitor drugs are ATP competitive and suffer from drawbacks such as off-target kinase activity, development of resistance due to mutation in the ATP binding pocket and unfavorable intellectual property situations. Besides the ATP binding pocket, protein kinases have binding sites that are involved in Protein-Protein Interactions (PPIs); these PPIs directly or indirectly regulate the protein kinase activity. Of recent, small molecule inhibitors of PPIs are emerging as an alternative to ATP competitive agents. Rational design of inhibitors for kinase PPIs could be carried out using molecular modeling techniques. In silico tools available for the prediction of hot spot residues and cavities at the PPI sites and the means to utilize this information for the identification of inhibitors are discussed. Moreover, in silico studies to target the Aurora B-INCENP PPI sites are discussed in context. Overall, this chapter provides detailed in silico strategies that are available to the researchers for carrying out structure-based drug design of PPI inhibitors.
Collapse
|
16
|
Neul C, Schaeffeler E, Sparreboom A, Laufer S, Schwab M, Nies AT. Impact of Membrane Drug Transporters on Resistance to Small-Molecule Tyrosine Kinase Inhibitors. Trends Pharmacol Sci 2016; 37:904-932. [PMID: 27659854 DOI: 10.1016/j.tips.2016.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/21/2022]
Abstract
Small-molecule inhibitors of tyrosine kinases (TKIs) are the mainstay of treatment for many malignancies and represent novel treatment options for other diseases such as idiopathic pulmonary fibrosis. Twenty-five TKIs are currently FDA-approved and >130 are being evaluated in clinical trials. Increasing evidence suggests that drug exposure of TKIs may significantly contribute to drug resistance, independently from somatic variation of TKI target genes. Membrane transport proteins may limit the amount of TKI reaching the target cells. This review highlights current knowledge on the basic and clinical pharmacology of membrane transporters involved in TKI disposition and their contribution to drug efficacy and adverse drug effects. In addition to non-genetic and epigenetic factors, genetic variants, particularly rare ones, in transporter genes are promising novel factors to explain interindividual variability in the response to TKI therapy.
Collapse
Affiliation(s)
- Claudia Neul
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| | - Alex Sparreboom
- Division of Pharmaceutics, College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - Stefan Laufer
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany; Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| |
Collapse
|
17
|
Chen P, Lee NV, Hu W, Xu M, Ferre RA, Lam H, Bergqvist S, Solowiej J, Diehl W, He YA, Yu X, Nagata A, VanArsdale T, Murray BW. Spectrum and Degree of CDK Drug Interactions Predicts Clinical Performance. Mol Cancer Ther 2016; 15:2273-2281. [DOI: 10.1158/1535-7163.mct-16-0300] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/22/2016] [Indexed: 11/16/2022]
|
18
|
Cheng H, Nair SK, Murray BW. Recent progress on third generation covalent EGFR inhibitors. Bioorg Med Chem Lett 2016; 26:1861-8. [DOI: 10.1016/j.bmcl.2016.02.067] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 11/24/2022]
|
19
|
Puppala M, Zhao X, Casemore D, Zhou B, Aridoss G, Narayanapillai S, Xing C. 4H-Chromene-based anticancer agents towards multi-drug resistant HL60/MX2 human leukemia: SAR at the 4th and 6th positions. Bioorg Med Chem 2016; 24:1292-7. [PMID: 26867486 PMCID: PMC6131690 DOI: 10.1016/j.bmc.2016.01.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
4H-Chromene-based compounds, for example, CXL017, CXL035, and CXL055, have a unique anticancer potential that they selectively kill multi-drug resistant cancer cells. Reported herein is the extended structure-activity relationship (SAR) study, focusing on the ester functional group at the 4th position and the conformation at the 6th position. Sharp SARs were observed at both positions with respect to cellular cytotoxic potency and selectivity between the parental HL60 and the multi-drug resistant HL60/MX2 cells. These results provide critical guidance for future medicinal optimization.
Collapse
Affiliation(s)
- Manohar Puppala
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Xinghua Zhao
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei 071001, People's Republic of China
| | - Denise Casemore
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Bo Zhou
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Gopalakrishnan Aridoss
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; LG Life Sciences Ltd, 104-1, Munji-dong, Yuseong-gu, Daejeon 305-380, South Korea
| | - Sreekanth Narayanapillai
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|