1
|
Mechahougui H, Gutmans J, Gouasmi R, Smekens L, Friedlaender A. BRAF Targeting Across Solid Tumors: Molecular Aspects and Clinical Applications. Int J Mol Sci 2025; 26:3757. [PMID: 40332392 PMCID: PMC12027668 DOI: 10.3390/ijms26083757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
BRAF mutations are critical drivers in cancers such as melanoma, colorectal cancer, and non-small-cell lung cancer. The most common mutation, BRAF V600E, is a key therapeutic target. Targeted treatments with BRAF and MEK inhibitors have significantly improved progression-free and overall survival in melanoma patients. However, in cancers like metastatic colorectal cancer, BRAF mutations are associated with poor outcomes due to aggressive disease behavior and resistance to conventional chemotherapy. Despite progress, resistance to BRAF/MEK inhibitors remains a major challenge, often driven by secondary mutations in the mitogen-activated protein kinase (MAPK) pathway, activation of alternative pathways such as phosphoinositide 3-kinases (PI3Ks)/protein kinase B (AKT), or changes in the tumor microenvironment. These challenges have motivated ongoing research into combining BRAF inhibitors with immunotherapies to enhance and prolong treatment effectiveness. Future research must also account for the role of the cancer's tissue of origin, as the biological context significantly influences response to targeted therapies, highlighting the need for a deeper understanding of tumor biology, micro-environment, and genetics.
Collapse
Affiliation(s)
- Hiba Mechahougui
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (J.G.); (L.S.)
| | - James Gutmans
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (J.G.); (L.S.)
| | - Roumaïssa Gouasmi
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, 69100 Lyon, France;
| | - Laure Smekens
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (J.G.); (L.S.)
| | | |
Collapse
|
2
|
Emelyanova A, Zolotovskaia M, Poddubskaya E, Modestov A, Buzdin A, Kuzmin D. Activation of P38 MAPK Signaling Cascade is Linked with Clinical Outcomes and Therapeutic Responses in Human Cancers. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2155-2173. [PMID: 39865029 DOI: 10.1134/s0006297924120058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 01/28/2025]
Abstract
Activation of the p38 mitogen-activated protein kinase (MAPK) pathways is vital in regulating cell growth, differentiation, apoptosis, and stress response, significantly affecting tumorigenesis and cancer progression. We developed a bioinformatic technique to construct an interactome network-based molecular pathways for genes of interest and quantify their activation levels using high-throughput gene expression data. This study is focused on the p38α, p38β, p38γ, and p38δ kinases, examining their activation levels (PALs) based on transcriptomic data and their associations with survival and drug responsiveness across various cancer types. We analyzed 11,287 human tumor profiles from 31 cancer types and 53 datasets to assess patient survival and clinical response to 29 therapies. Activation of p38 pathways showed varying prognostic significance depending on the cancer type. In astrocytoma, glioblastoma, thymoma, renal, bladder, esophageal, colorectal, stomach cancers, and lung squamous cell carcinoma, p38 pathway activation correlated with poor survival. Conversely, it indicated better survival in the gender-associated tumors (HER2+, luminal A and B subtypes of breast cancer, prostate carcinoma), sarcomas, lung adenocarcinoma, and others. These trends are aligned with the response-to-therapy analysis. For instance, higher activation of the p38β and p38γ pathways was linked to positive responses to taxane and anthracycline therapies in breast cancer, while lower activation of the p38α and p38β pathways correlated with better responses to 5-fluorouracil-based treatments in colorectal cancer. However, associations with individual MAPK14, MAPK11, MAPK12, and MAPK13 gene expression levels were less robust. Hence, the p38 pathway activation levels could serve as potential biomarkers for predicting clinical outcomes and personalizing treatment strategies, including use of the selective p38 MAPK inhibitors.
Collapse
Affiliation(s)
- Aleksandra Emelyanova
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Marianna Zolotovskaia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Elena Poddubskaya
- I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Aleksander Modestov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, 1200, Belgium
| | - Denis Kuzmin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| |
Collapse
|
3
|
Wang W, Lian B, Xu C, Wang Q, Li Z, Zheng N, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Feng J, Ge R, Dai E, Han Y, Pan W, Pang F, Huang X, Hu M, Hao Q, Wang K, Wu F, Song B, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yang S, Kang J, Zhang J, Zhang C, et alWang W, Lian B, Xu C, Wang Q, Li Z, Zheng N, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Feng J, Ge R, Dai E, Han Y, Pan W, Pang F, Huang X, Hu M, Hao Q, Wang K, Wu F, Song B, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yang S, Kang J, Zhang J, Zhang C, Li W, Fu J, Wu L, Lan S, Ou J, Shi L, Zhai Z, Wang Y, Li B, Zhang Z, Wang K, Ma X, Li Z, Liu Z, Yang N, Wu L, Wang H, Jin G, Wang G, Wang J, Shi H, Fang M, Fang Y, Li Y, Wang X, Chen J, Zhang Y, Zhu X, Shen Y, Ma S, Wang B, Song Y, Song Z, Fang W, Lu Y, Si L. Expert consensus on the diagnosis and treatment of solid tumors with BRAF mutations. Innovation (N Y) 2024; 5:100661. [PMID: 39529955 PMCID: PMC11551471 DOI: 10.1016/j.xinn.2024.100661] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
The BRAF gene is an important signaling molecule in human cells that is involved in the regulation of cell growth, differentiation, and survival. When the BRAF gene mutates, it can lead to abnormal activation of the signaling pathway, which promotes cell proliferation, inhibits cell apoptosis, and ultimately contributes to the occurrence and development of cancer. BRAF mutations are widely present in various cancers, including malignant melanoma, thyroid cancer, colorectal cancer, non-small cell lung cancer, and hairy cell leukemia, among others. BRAF is an important target for the treatment of various solid tumors, and targeted combination therapies, represented by BRAF inhibitors, have become one of the main treatment modalities for a variety of BRAF-mutation-positive solid tumors. Dabrafenib plus trametinib, as the first tumor-agnostic therapy, has been approved by the US Food and Drug Administration for the treatment of adult and pediatric patients aged 6 years and older harboring a BRAF V600E mutation with unresectable or metastatic solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options. This is also the first time a BRAF/MEK inhibitor combination has been approved for use in pediatric patients. As research into the diagnosis and treatment of BRAF mutations advances, standardizing the detection of BRAF mutations and the clinical application of BRAF inhibitors becomes increasingly important. Therefore, we have established a universal and systematic strategy for diagnosing and treating solid tumors with BRAF mutations. In this expert consensus, we (1) summarize the epidemiology and clinical characteristics of BRAF mutations in different solid tumors, (2) provide recommendations for the selection of genetic testing methods and platforms, and (3) establish a universal strategy for the diagnosis and treatment of patients with solid tumors harboring BRAF mutations.
Collapse
Affiliation(s)
- Wenxian Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Nan Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 200030, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 200030, China
| | - Aijun Liu
- Senior Department of Pathology, the 7 Medical Center of PLA General Hospital, Beijing 100700, P.R. China
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingjing Liu
- Department of Thoracic Cancer, Jilin Cancer Hospital, Jilin, Changchun 130012, P.R. China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, West Lake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. ChinaP.R. China
| | - Anwen Liu
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Ping Zhan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hongbing Liu
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Liyun Miao
- Department of Respiratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Lingfeng Min
- Department of Respiratory Medicine, Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Wang
- Department of Internal Medicine, Cancer Center of PLA, Qinhuai Medical Area, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhansheng Jiang
- Derpartment of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Gen Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Long Huang
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Rongbo Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan Hospital, Peking University, Beijing 100035, P.R. China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Dongqing Lv
- Department of Pulmonary Medicine, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Zongyang Yu
- Department of Respiratory Medicine, the 900 Hospital of the Joint Logistics Team (the Former Fuzhou General Hospital), Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100700, P.R. China
| | - Chuanhao Tang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510300, P.R. China
| | - Junping Zhang
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, P.R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P.R. China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xuewen Liu
- Department of Oncology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingxun Wu
- Department of Medical Oncology, the First Affiliated Hospital of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Rui Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology, Chengdu, Sichuan 610041, P.R. China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fan Xia
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032, P.R. China
| | - Xiaofeng Chen
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Rui Ge
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 13003, P.R. China
| | - Yu Han
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 1550081, P.R. China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Fei Pang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Xin Huang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Meizhen Hu
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Qing Hao
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Kai Wang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Fan Wu
- Department of Medical, Menarini Silicon Biosystems Spa, Shanghai 400000, P.R. China
| | - Binbin Song
- Department of Medical Oncology, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Bingwei Xu
- Department of Biotherapy, Cancer Institute, First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Liping Wang
- Department of Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia 014000, P.R. China
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Li Lin
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Yanru Xie
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Xinqing Lin
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Jing Cai
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Xu
- Department of Interventional Pulmonary Diseases, Anhui Chest Hospital, Hefei, Anhui 230011, P.R. China
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinnan, Shangdong 250012, P.R. China
| | - Xiaodong Jiao
- Department of Medical Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200070, P.R. China
| | - Kainan Li
- Department of Oncology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250031, P.R. China
| | - Jia Wei
- Department of the Comprehensive Cancer Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Huijing Feng
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Lin Wang
- Department of Pathology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Yingying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wang Yao
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, P.R. China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yanwen Yao
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianhui Huang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Yue Feng
- Department of Gynecologic Radiation Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Yinbin Zhang
- Department of Oncology, the Second Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Pingli Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Hong Wang
- Senior Department of Oncology, The 5 Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Dong Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yue Hao
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Zhen Wang
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Bin Wan
- Department of Respiratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Donglai Lv
- Department of Clinical Oncology, The 901 Hospital of Joint Logistics Support Force of People Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Shengjie Yang
- Department of Thoracic Surgery, Chuxiong Yi Autonomous Prefecture People’s Hospital, Chuxiong, Yunnan 675000, P.R. China
| | - Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Wenfeng Li
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Lizhi Wu
- Department of Microsurgery, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Shijie Lan
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Lin Shi
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhanqiang Zhai
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yina Wang
- Department of Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Bihui Li
- Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210000, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Zhefeng Liu
- Senior Department of Oncology, The 5 Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Huijuan Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Gu Jin
- Department of Bone and Soft-tissue Surgery, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jiandong Wang
- Department of Pathology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hubing Shi
- Frontier Science Center for Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meiyu Fang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaojia Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yiping Zhang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Xixu Zhu
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yi Shen
- Department of Thoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Biyun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yong Song
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhengbo Song
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| |
Collapse
|
4
|
Özgü E, Kaplan BG, Sivakumar S, Sokol ES, Aydın E, Tokat ÜM, Adibi A, Karakoç EG, Hu J, Kurzrock R, Demiray M. Therapeutic vulnerabilities and pan-cancer landscape of BRAF class III mutations in epithelial solid tumors. BJC REPORTS 2024; 2:77. [PMID: 39516363 PMCID: PMC11524077 DOI: 10.1038/s44276-024-00086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Kinase-impaired class III BRAF mutations have recently received attention as a possible prognostic factor and therapeutic target. Class III BRAF variants differ from class I and class II mutations in terms of mechanism of pathway activation and therapeutic vulnerabilities. Genomic landscape analyses of tumors in large real-world cohorts represent a great opportunity to further characterize tumor-related molecular events and treatment vulnerabilities, however, such data is not yet available for tumors with BRAF class III mutations. METHODS We investigated the pan-cancer genomic landscape of BRAF class III mutations in 376,302 patients. Patients had comprehensive genomic profiling either by FoundationOne® or FoundationOne®CDx from formalin-fixed, paraffin embedded tissue biopsies. 2 patient cases that harbored BRAF class III mutations who demonstrated dramatic response to anti-EGFR treatment were presented. RESULTS BRAF class III mutations are likely to co-occur with RAF1, NRAS and HRAS alterations, while concomitant KRAS alterations were rare. Moreover, we found that alterations that predict resistance to anti-EGFR agents were significantly less common in tumors harboring BRAF class III mutations, which is of great importance as anti-EGFR therapies are a potential targeted treatment option in these tumors. DISCUSSION Our findings suggest a heterogenous interplay of oncogenic alterations in BRAF class III mutated tumors and have important implications for the molecular mechanisms of carcinogenesis while revealing potential therapeutic vulnerabilities. HIGHLIGHTS Tumors harboring BRAF class III (BRAF vIII) mutations comprise a novel subset with distinct genomic heterogeneity. BRAF vIII mutations may sensitize tumors to anti-EGFR treatments. BRAF vIII alterations show significantly less co-occurrence with alterations that predict resistance to anti-EGFR agents. Rare tumors with limited therapy options should be screened for BRAF vIII mutations as they may benefit from anti-EGFR agents.
Collapse
Affiliation(s)
- Eylül Özgü
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey
| | | | | | | | - Esranur Aydın
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey
| | - Ünal Metin Tokat
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey
| | - Ashkan Adibi
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey
| | - Ebru Gül Karakoç
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey
| | - Jiancheng Hu
- National Cancer Center Singapore, Division of Cellular and Molecular Research, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS National Cancer Centre, 8 College Road, 169857, Singapore, Singapore
| | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukee, WI, USA
- WIN Consortium, Paris, France
| | - Mutlu Demiray
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey.
| |
Collapse
|
5
|
Ngo VA. Insight into molecular basis and dynamics of full-length CRaf kinase in cellular signaling mechanisms. Biophys J 2024; 123:2623-2637. [PMID: 38946141 PMCID: PMC11365224 DOI: 10.1016/j.bpj.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024] Open
Abstract
Raf kinases play key roles in signal transduction in cells for regulating proliferation, differentiation, and survival. Despite decades of research into functions and dynamics of Raf kinases with respect to other cytosolic proteins, understanding Raf kinases is limited by the lack of their full-length structures at the atomic resolution. Here, we present the first model of the full-length CRaf kinase obtained from artificial intelligence/machine learning algorithms with a converging ensemble of structures simulated by large-scale temperature replica exchange simulations. Our model is validated by comparing simulated structures with the latest cryo-EM structure detailing close contacts among three key domains and regions of the CRaf. Our simulations identify potentially new epitopes of intramolecule interactions within the CRaf and reveal a dynamical nature of CRaf kinases, in which the three domains can move back and forth relative to each other for regulatory dynamics. The dynamic conformations are then used in a docking algorithm to shed insight into the paradoxical effect caused by vemurafenib in comparison with a paradox breaker PLX7904. We propose a model of Raf-heterodimer/KRas-dimer as a signalosome based on the dynamics of the full-length CRaf.
Collapse
Affiliation(s)
- Van A Ngo
- Advanced Computing for Life Sciences and Engineering, Science Engagement Section, Computing and Computational Sciences, National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| |
Collapse
|
6
|
Nikanjam M, Wells K, Kato S, Adashek JJ, Block S, Kurzrock R. Reverse repurposing: Potential utility of cancer drugs in nonmalignant illnesses. MED 2024; 5:689-717. [PMID: 38749442 PMCID: PMC11246816 DOI: 10.1016/j.medj.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 06/02/2024]
Abstract
Growth and immune process dysregulation can result in both cancer and nonmalignant disease (hereditary or acquired, with and without predisposition to malignancy). Moreover, perhaps unexpectedly, many nonmalignant illnesses harbor genomic alterations indistinguishable from druggable oncogenic drivers. Therefore, targeted compounds used successfully to treat cancer may have therapeutic potential for nonmalignant conditions harboring the same target. MEK, PI3K/AKT/mTOR, fibroblast growth factor receptor (FGFR), and NRG1/ERBB pathway genes have all been implicated in both cancer and noncancerous conditions, and several cognate antagonists, as well as Bruton's tyrosine kinase inhibitors, JAK inhibitors, and CD20-directed antibodies, have established or theoretical therapeutic potential to bridge cancer and benign diseases. Intriguingly, pharmacologically tractable cancer drivers characterize a wide spectrum of disorders without malignant potential, including but not limited to Alzheimer's disease and a variety of other neurodegenerative conditions, rheumatoid arthritis, achondroplastic dwarfism, and endometriosis. Expanded repositioning of oncology agents in order to benefit benign but serious medical illnesses is warranted.
Collapse
Affiliation(s)
- Mina Nikanjam
- Division of Hematology-Oncology, University of California, San Diego, La Jolla, CA, USA.
| | - Kaitlyn Wells
- Department of Pharmacy, University of California, San Diego, La Jolla, CA, USA
| | - Shumei Kato
- Division of Hematology-Oncology, University of California, San Diego, La Jolla, CA, USA
| | - Jacob J Adashek
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Shanna Block
- Department of Pharmacy, University of California, San Diego, La Jolla, CA, USA
| | - Razelle Kurzrock
- Division of Hematology-Oncology, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA; WIN Consortium, Chevilly-Larue, France.
| |
Collapse
|
7
|
Pujari AN, Cullen PJ. Modulators of MAPK pathway activity during filamentous growth in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2024; 14:jkae072. [PMID: 38560781 PMCID: PMC11152069 DOI: 10.1093/g3journal/jkae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK pathway-dependent growth reporter (ste4 FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and loss-of-function alleles in RGA1, which encodes a GTPase-activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1, and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). Mutations leading to C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, identifying an inhibitory domain of the protein from residues 491 to 688. We also find that a diversity of filamentous growth phenotypes can result from combinatorial effects of multiple mutations and by loss of different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.
Collapse
Affiliation(s)
- Atindra N Pujari
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
8
|
Tanaka R, Mrachek K, Arocho-Quinones E, Carlberg VM, Smith C, Kurzrock R, Deshmukh T. Dabrafenib for Pilocytic Astrocytoma With BRAF V599ins. JCO Precis Oncol 2024; 8:e2400055. [PMID: 38781546 DOI: 10.1200/po.24.00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
This report highlights the first pediatric case of pilocytic astrocytoma with BRAF V599ins mutation, successfully treated with dabrafenib.
Collapse
Affiliation(s)
- Ryuma Tanaka
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Kelly Mrachek
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | | | | | - Candice Smith
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Razelle Kurzrock
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | | |
Collapse
|
9
|
Adashek JJ, Kato S, Sicklick JK, Lippman SM, Kurzrock R. If it's a target, it's a pan-cancer target: Tissue is not the issue. Cancer Treat Rev 2024; 125:102721. [PMID: 38522181 PMCID: PMC11093268 DOI: 10.1016/j.ctrv.2024.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Cancer is traditionally diagnosed and treated on the basis of its organ of origin (e.g., lung or colon cancer). However, organ-of-origin diagnostics does not reveal the underlying oncogenic drivers. Fortunately, molecular diagnostics have advanced at a breathtaking pace, and it is increasingly apparent that cancer is a disease of the genome. Hence, we now have multiple genomic biomarker-based, tissue-agnostic Food and Drug Administration approvals for both gene- and immune-targeted therapies (larotrectinib/entrectinib, for NTRK fusions; selpercatinib, RET fusions; dabrafenib plus trametinib, BRAFV600E mutations; pembrolizumab/dostarlimab, microsatellite instability; and pembrolizumab for high tumor mutational burden; pemigatinib is also approved for FGFR1-rearranged myeloid/lymphoid neoplasms). There are emerging targets as well, including but not limited to ALK, BRCA and/or homologous repair deficiency, ERBB2 (HER2), IDH1/2, KIT, KRASG12C, NRG1, and VHL. Many tissue-agnostic approvals center on rare/ultra-rare biomarkers (often < 1 % of cancers), necessitating screening hundreds of tumors to find a single one harboring the cognate molecular alteration. Approval has generally been based on small single-arm studies (<30-100 patients) with high response rates (>30 % to > 75 %) of remarkable durability. Because of biomarker rarity, single-gene testing is not practical; next generation sequencing of hundreds of genes must be performed to obtain timely answers. Resistance to biomarker-driven therapeutics is often due to secondary mutations or co-driver gene defects; studies are now addressing the need for customized drug combinations matched to the complex molecular alteration portfolio in each tumor. Future investigation should expand tissue-agnostic therapeutics to encompass both hematologic and solid malignancies and include biomarkers beyond those that are DNA-based.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, USA.
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Jason K Sicklick
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA; Department of Surgery, Division of Surgical Oncology, University of California San Diego, UC San Diego Health, San Diego, CA, USA; Department of Pharmacology, University of California San Diego, UC San Diego Health, San Diego, CA, USA
| | - Scott M Lippman
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee Wisconsin, USA; WIN Consortium, Paris France; University of Nebraska, United States.
| |
Collapse
|
10
|
Lajmi N, Alves-Vasconcelos S, Tsiachristas A, Haworth A, Woods K, Crichton C, Noble T, Salih H, Várnai KA, Branford-White H, Orrell L, Osman A, Bradley KM, Bonney L, McGowan DR, Davies J, Prime MS, Hassan AB. Challenges and solutions to system-wide use of precision oncology as the standard of care paradigm. CAMBRIDGE PRISMS. PRECISION MEDICINE 2024; 2:e4. [PMID: 38699518 PMCID: PMC11062796 DOI: 10.1017/pcm.2024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 05/05/2024]
Abstract
The personalised oncology paradigm remains challenging to deliver despite technological advances in genomics-based identification of actionable variants combined with the increasing focus of drug development on these specific targets. To ensure we continue to build concerted momentum to improve outcomes across all cancer types, financial, technological and operational barriers need to be addressed. For example, complete integration and certification of the 'molecular tumour board' into 'standard of care' ensures a unified clinical decision pathway that both counteracts fragmentation and is the cornerstone of evidence-based delivery inside and outside of a research setting. Generally, integrated delivery has been restricted to specific (common) cancer types either within major cancer centres or small regional networks. Here, we focus on solutions in real-world integration of genomics, pathology, surgery, oncological treatments, data from clinical source systems and analysis of whole-body imaging as digital data that can facilitate cost-effectiveness analysis, clinical trial recruitment, and outcome assessment. This urgent imperative for cancer also extends across the early diagnosis and adjuvant treatment interventions, individualised cancer vaccines, immune cell therapies, personalised synthetic lethal therapeutics and cancer screening and prevention. Oncology care systems worldwide require proactive step-changes in solutions that include inter-operative digital working that can solve patient centred challenges to ensure inclusive, quality, sustainable, fair and cost-effective adoption and efficient delivery. Here we highlight workforce, technical, clinical, regulatory and economic challenges that prevent the implementation of precision oncology at scale, and offer a systematic roadmap of integrated solutions for standard of care based on minimal essential digital tools. These include unified decision support tools, quality control, data flows within an ethical and legal data framework, training and certification, monitoring and feedback. Bridging the technical, operational, regulatory and economic gaps demands the joint actions from public and industry stakeholders across national and global boundaries.
Collapse
Affiliation(s)
- Nesrine Lajmi
- Diagnostics Division, Roche Information Solutions, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Sofia Alves-Vasconcelos
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Apostolos Tsiachristas
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, Oxford, UK
| | - Andrew Haworth
- Diagnostics Division, Roche Information Solutions, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Kerrie Woods
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Theresa Noble
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Hizni Salih
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kinga A. Várnai
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Liam Orrell
- Diagnostics Division, Roche Information Solutions, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Andrew Osman
- Roche Healthcare Consulting, Roche Diagnostics Limited, West Sussex, UK
| | - Kevin M. Bradley
- Wales Research and Diagnostic PET Imaging Centre, University Hospital of Wales, Cardiff, UK
| | - Lara Bonney
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Jim Davies
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, UK
| | - Matthew S. Prime
- Diagnostics Division, Roche Information Solutions, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Andrew Bassim Hassan
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
11
|
Shimoi T, Sunami K, Tahara M, Nishiwaki S, Tanaka S, Baba E, Kanai M, Kinoshita I, Shirota H, Hayashi H, Nishida N, Kubo T, Mamesaya N, Ando Y, Okita N, Shibata T, Nakamura K, Yamamoto N. Dabrafenib and trametinib administration in patients with BRAF V600E/R or non-V600 BRAF mutated advanced solid tumours (BELIEVE, NCCH1901): a multicentre, open-label, and single-arm phase II trial. EClinicalMedicine 2024; 69:102447. [PMID: 38333370 PMCID: PMC10850114 DOI: 10.1016/j.eclinm.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Background BRAF V600 mutations are common in melanoma, thyroid, and non-small-cell lung cancers. Despite dabrafenib and trametinib being standard treatments for certain cancers, their efficacy across various solid tumours remains unelucidated. The BELIEVE trial assessed the efficacy of dabrafenib and trametinib in solid tumours with BRAF V600E/R or non-V600 BRAF mutations. Methods Between October 1, 2019, and June 2022, at least 50 patients with measurable and seven without measurable diseases examined were enrolled in a subcohort of the BELIEVE trial (NCCH1901, jRCTs031190104). BRAF mutated solid tumour cases other than BRAF V600E mutated colorectal cancer, melanoma, and non-small cell lung cancer cases were included. Patients with solid tumours received dabrafenib (150 mg) twice daily and trametinib (2 mg) once daily until disease progression or intolerable toxicity was observed. The primary endpoint was overall response rate (ORR), and secondary endpoints included progression-free survival (PFS), 6-month PFS, and overall survival (OS). Bayesian analysis was performed using a prior distribution with a 30% expected response rate [Beta (0.6, 1.4)]. Findings Fourty-seven patients with measurable disease, mainly with the BRAF V600E mutation (94%), and three others with non-V600E BRAF mutations (V600R, G466A, and N486_P490del) were enrolled. The primary sites included the thyroid gland, central nervous system, liver, bile ducts, colorectum, and pancreas. The confirmed ORR was 28.0%; the expected value of posterior distribution [Beta (14.6, 37.4)] was 28.1%, although the primary endpoint was achieved, not exceeding an unexpectedly high response rate of 60% obtained using Bayesian analysis. The disease control rate (DCR) was 84.0%. The median PFS was 6.5 months (95% confidence interval [CI]; 4.2-7.2 months, 87.8% at 6 months). Responses were observed across seven tumour types. Median OS was 9.7 months (95% CI, 7.5-12.2 months). Additional patients without measurable diseases had a median PFS of 4.5 months. Adverse events (AEs) were consistent with previous reports, with 45.6% of patients experiencing grade ≥3 AEs. Interpretation This study reported promising efficacy against BRAF V600-mutant tumours. Dabrafenib and trametinib would offer a new therapeutic option for rare cancers, such as high-grade gliomas, biliary tract cancer, and thyroid cancer. Funding This study was funded by the Japan Agency for Medical Research and Development (22ck0106622h0003) and a Health and Labour Sciences Research Grant (19EA1008).
Collapse
Affiliation(s)
- Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Makoto Tahara
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Satoshi Nishiwaki
- Department of Advanced Medicine, Nagoya University Hospital, Aichi, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masashi Kanai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Kinoshita
- Department of Medical Oncology, Hokkaido University Hospital, Hokkaido, Japan
| | - Hidekazu Shirota
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Hideyuki Hayashi
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Naohiro Nishida
- Center for Cancer Genomics and Personalized Medicine, Osaka University Hospital, Osaka, Japan
| | - Toshio Kubo
- Center for Clinical Oncology, Okayama University Hospital, Japan
| | - Nobuaki Mamesaya
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yayoi Ando
- Research Management Division, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Natsuko Okita
- Research Management Division, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Taro Shibata
- Biostatistics Division, Center for Research Administration and Support, National Cancer Center, Tokyo, Japan
| | - Kenichi Nakamura
- Department of International Clinical Development, National Cancer Center Hospital, Tokyo, Japan
- Research Management Division, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
12
|
Liu J, Hu X, Xin W, Wang X. Exosomal Non-coding RNAs: A New Approach to Melanoma Diagnosis and Therapeutic Strategy. Curr Med Chem 2024; 31:6084-6109. [PMID: 37877505 DOI: 10.2174/0109298673267553231017053329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Malignant melanoma (MM) is a highly aggressive cancer with a poor prognosis. Currently, although a variety of therapies are available for treating melanoma, MM is still a serious threat to the patient's life due to numerous factors, such as the recurrence of tumors, the emergence of drug resistance, and the lack of effective therapeutic agents. Exosomes are biologically active lipid-bilayer extracellular vesicles secreted by diverse cell types that mediate intercellular signal communication. Studies found that exosomes are involved in cancer by carrying multiple bioactive molecules, including non-- coding RNAs (ncRNAs). The ncRNAs have been reported to play an important role in regulating proliferation, angiogenesis, immune regulation, invasion, metastasis, and treatment resistance of tumors. However, the functional role of exosomal ncRNAs in MM remains unknown. Therefore, this review summarizes the current state of melanoma diagnosis, treatment, and the application of exosomal ncRNAs in MM patients, which may provide new insights into the mechanisms involved in melanoma progression and serve as biomarkers for diagnosis and therapeutic targets.
Collapse
Affiliation(s)
- Jie Liu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Xiaoping Hu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China, 300052
| | - Xianbin Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Baotou Medical College, Baotou 014030, China
| |
Collapse
|
13
|
Pujari AN, Cullen PJ. Modulators of MAPK pathway activity during filamentous growth in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573138. [PMID: 38187743 PMCID: PMC10769413 DOI: 10.1101/2023.12.22.573138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK-pathway dependent growth reporter (ste4 FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay, and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and RGA1, which encodes a GTPase activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1 and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, presumably identifying an inhibitory domain in the C-terminus of the protein. We also show that a wide variety of filamentous growth phenotypes result from mutations in different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.
Collapse
Affiliation(s)
- Atindra N. Pujari
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260
| |
Collapse
|
14
|
Lauinger M, Christen D, Klar RF, Roubaty C, Heilig CE, Stumpe M, Knox JJ, Radulovich N, Tamblyn L, Xie IY, Horak P, Forschner A, Bitzer M, Wittel UA, Boerries M, Ball CR, Heining C, Glimm H, Fröhlich M, Hübschmann D, Gallinger S, Fritsch R, Fröhling S, O’Kane GM, Dengjel J, Brummer T. BRAF Δβ3-αC in-frame deletion mutants differ in their dimerization propensity, HSP90 dependence, and druggability. SCIENCE ADVANCES 2023; 9:eade7486. [PMID: 37656784 PMCID: PMC11804575 DOI: 10.1126/sciadv.ade7486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/02/2023] [Indexed: 09/03/2023]
Abstract
In-frame BRAF exon 12 deletions are increasingly identified in various tumor types. The resultant BRAFΔβ3-αC oncoproteins usually lack five amino acids in the β3-αC helix linker and sometimes contain de novo insertions. The dimerization status of BRAFΔβ3-αC oncoproteins, their precise pathomechanism, and their direct druggability by RAF inhibitors (RAFi) has been under debate. Here, we functionally characterize BRAFΔLNVTAP>F and two novel mutants, BRAFdelinsFS and BRAFΔLNVT>F, and compare them with other BRAFΔβ3-αC oncoproteins. We show that BRAFΔβ3-αC oncoproteins not only form stable homodimers and large multiprotein complexes but also require dimerization. Nevertheless, details matter as aromatic amino acids at the deletion junction of some BRAFΔβ3-αC oncoproteins, e.g., BRAFΔLNVTAP>F, increase their stability and dimerization propensity while conferring resistance to monomer-favoring RAFi such as dabrafenib or HSP 90/CDC37 inhibition. In contrast, dimer-favoring inhibitors such as naporafenib inhibit all BRAFΔβ3-αC mutants in cell lines and patient-derived organoids, suggesting that tumors driven by such oncoproteins are vulnerable to these compounds.
Collapse
Affiliation(s)
- Manuel Lauinger
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Daniel Christen
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rhena F. U. Klar
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Freeze-O Organoid Bank, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Internal Medicine I (Hematology, Oncology, and Stem Cell Transplantation), University Hospital of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carole Roubaty
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christoph E. Heilig
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jennifer J. Knox
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laura Tamblyn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Irene Y. Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Peter Horak
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Michael Bitzer
- German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University, Tübingen, Germany
- Center for Personalized Medicine Tübingen, Eberhard Karls University, Tübingen, Germany
- Department of Internal Medicine I, Eberhard-Karls University, Tübingen, Germany
| | - Uwe A. Wittel
- Department of General and Visceral Surgery, University of Freiburg Medical Center, Faculty of Medicine, 79106 Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Claudia R. Ball
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Technische Universität Dresden, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Christoph Heining
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
| | - Hanno Glimm
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Fröhlich
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Hübschmann
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ralph Fritsch
- Department of Internal Medicine I (Hematology, Oncology, and Stem Cell Transplantation), University Hospital of Freiburg, Freiburg, Germany
- Department of Medical Oncology and Haematology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Grainne M. O’Kane
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Freeze-O Organoid Bank, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
15
|
Castellani G, Buccarelli M, Arasi MB, Rossi S, Pisanu ME, Bellenghi M, Lintas C, Tabolacci C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2023; 15:4026. [PMID: 37627054 PMCID: PMC10452867 DOI: 10.3390/cancers15164026] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| |
Collapse
|
16
|
Rasco DW, Medina T, Corrie P, Pavlick AC, Middleton MR, Lorigan P, Hebert C, Plummer R, Larkin J, Agarwala SS, Daud AI, Qiu J, Bozon V, Kneissl M, Barry E, Olszanski AJ. Phase 1 study of the pan-RAF inhibitor tovorafenib in patients with advanced solid tumors followed by dose expansion in patients with metastatic melanoma. Cancer Chemother Pharmacol 2023; 92:15-28. [PMID: 37219686 PMCID: PMC10261210 DOI: 10.1007/s00280-023-04544-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE Genomic alterations of BRAF and NRAS are oncogenic drivers in malignant melanoma and other solid tumors. Tovorafenib is an investigational, oral, selective, CNS-penetrant, small molecule, type II pan‑RAF inhibitor. This first-in-human phase 1 study explored the safety and antitumor activity of tovorafenib. METHODS This two-part study in adult patients with relapsed or refractory advanced solid tumors included a dose escalation phase and a dose expansion phase including molecularly defined cohorts of patients with melanoma. Primary objectives were to evaluate the safety of tovorafenib administered once every other day (Q2D) or once weekly (QW), and to determine the maximum-tolerated and recommended phase 2 dose (RP2D) on these schedules. Secondary objectives included evaluation of antitumor activity and tovorafenib pharmacokinetics. RESULTS Tovorafenib was administered to 149 patients (Q2D n = 110, QW n = 39). The RP2D of tovorafenib was defined as 200 mg Q2D or 600 mg QW. In the dose expansion phase, 58 (73%) of 80 patients in Q2D cohorts and 9 (47%) of 19 in the QW cohort had grade ≥ 3 adverse events. The most common of these overall were anemia (14 patients, 14%) and maculo-papular rash (8 patients, 8%). Responses were seen in 10 (15%) of 68 evaluable patients in the Q2D expansion phase, including in 8 of 16 (50%) patients with BRAF mutation-positive melanoma naïve to RAF and MEK inhibitors. In the QW dose expansion phase, there were no responses in 17 evaluable patients with NRAS mutation-positive melanoma naïve to RAF and MEK inhibitors; 9 patients (53%) had a best response of stable disease. QW dose administration was associated with minimal accumulation of tovorafenib in systemic circulation in the dose range of 400-800 mg. CONCLUSIONS The safety profile of both schedules was acceptable, with QW dosing at the RP2D of 600 mg QW preferred for future clinical studies. Antitumor activity of tovorafenib in BRAF-mutated melanoma was promising and justifies continued clinical development across multiple settings. CLINICALTRIALS GOV IDENTIFIER NCT01425008.
Collapse
Affiliation(s)
- Drew W Rasco
- South Texas Accelerated Research Therapeutics, LLC, San Antonio, TX, USA
| | | | - Pippa Corrie
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anna C Pavlick
- Laura & Isaac Perlmutter Cancer Center at NYU Langone, New York, NY, USA
| | - Mark R Middleton
- Department of Oncology, NIHR Biomedical Research Centre, Oxford, UK
| | - Paul Lorigan
- The Christie NHS Foundation Trust and Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Chris Hebert
- Bristol Haematology and Oncology Centre, Bristol, UK
| | - Ruth Plummer
- The Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | - Adil I Daud
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Jiaheng Qiu
- Day One Biopharmaceuticals, 2000 Sierra Point Parkway, Suite 501, Brisbane, CA, 94005, USA
| | - Viviana Bozon
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Michelle Kneissl
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Elly Barry
- Day One Biopharmaceuticals, 2000 Sierra Point Parkway, Suite 501, Brisbane, CA, 94005, USA.
| | | |
Collapse
|
17
|
Wang A, Liu J, Li X, Zou F, Qi Z, Qi S, Liu Q, Wang Z, Cao J, Jiang Z, Wang B, Ge J, Wang L, Wang W, Liu J, Liu Q. Discovery of a highly potent pan-RAF inhibitor IHMT-RAF-128 for cancer treatment. Eur J Pharmacol 2023; 952:175752. [PMID: 37164118 DOI: 10.1016/j.ejphar.2023.175752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Although rat sarcoma viral oncogene homolog (RAS) mutations occur in about 30% of solid tumors, targeting RAS mutations other than KRAS-G12C is still challenging. As an alternative approach, developing inhibitors targeting RAF, the downstream effector of RAS signaling, is currently one of the main strategies for cancer therapy. Selective v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-V600E inhibitors Vemurafenib, Encorafenib, and Dabrafenib have been approved by FDA and received remarkable clinical responses, but these drugs are ineffective against RAS mutant tumors due to limited inhibition on dimerized RAF. In this study, we developed a highly potent pan-RAF inhibitor, IHMT-RAF-128, which exhibited similarly high efficacies in inhibiting both partners of the RAF dimer, and showed potent anti-tumor efficacy against a variety of cancer cells harboring either RAF or RAS mutations, especially Adagrasib and Sotorasib (AMG510) resistant-KRAS-G12C secondary mutations, such as KRAS-G12C-Y96C and KRAS-G12C-H95Q. In addition, IHMT-RAF-128 showed excellent pharmacokinetic profile (PK), and the bioavailability in mice and rats were 63.9%, and 144.1%, respectively. Furthermore, IHMT-RAF-128 exhibited potent anti-tumor efficacy on xenograft mouse tumor models in a dose-dependent manner without any obvious toxicities. Together, these results support further investigation of IHMT-RAF-128 as a potential clinical drug candidate for the treatment of cancer patients with RAF or RAS mutations.
Collapse
Affiliation(s)
- Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Juan Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Xixiang Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Shuang Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Qingwang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zuowei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Jiangyan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zongru Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Juan Ge
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China.
| |
Collapse
|
18
|
Wu P, Sun R, Fahira A, Chen Y, Jiangzhou H, Wang K, Yang Q, Dai Y, Pan D, Shi Y, Wang Z. DROEG: a method for cancer drug response prediction based on omics and essential genes integration. Brief Bioinform 2023; 24:7008798. [PMID: 36715269 DOI: 10.1093/bib/bbad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/06/2022] [Accepted: 12/30/2022] [Indexed: 01/31/2023] Open
Abstract
Predicting therapeutic responses in cancer patients is a major challenge in the field of precision medicine due to high inter- and intra-tumor heterogeneity. Most drug response models need to be improved in terms of accuracy, and there is limited research to assess therapeutic responses of particular tumor types. Here, we developed a novel method DROEG (Drug Response based on Omics and Essential Genes) for prediction of drug response in tumor cell lines by integrating genomic, transcriptomic and methylomic data along with CRISPR essential genes, and revealed that the incorporation of tumor proliferation essential genes can improve drug sensitivity prediction. Concisely, DROEG integrates literature-based and statistics-based methods to select features and uses Support Vector Regression for model construction. We demonstrate that DROEG outperforms most state-of-the-art algorithms by both qualitative (prediction accuracy for drug-sensitive/resistant) and quantitative (Pearson correlation coefficient between the predicted and actual IC50) evaluation in Genomics of Drug Sensitivity in Cancer and Cancer Cell Line Encyclopedia datasets. In addition, DROEG is further applied to the pan-gastrointestinal tumor with high prevalence and mortality as a case study at both cell line and clinical levels to evaluate the model efficacy and discover potential prognostic biomarkers in Cisplatin and Epirubicin treatment. Interestingly, the CRISPR essential gene information is found to be the most important contributor to enhance the accuracy of the DROEG model. To our knowledge, this is the first study to integrate essential genes with multi-omics data to improve cancer drug response prediction and provide insights into personalized precision treatment.
Collapse
Affiliation(s)
- Peike Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Renliang Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aamir Fahira
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yongzhou Chen
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Huiting Jiangzhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Dai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Tan L, Li QS, Peng D, Cheng Y. Does PD-1 blockade play a decisive role in the pathological complete remission of unresectable MSS, BRAF V600E-mutated metastatic colorectal cancer: A case report. Front Oncol 2023; 12:976622. [PMID: 36713544 PMCID: PMC9880525 DOI: 10.3389/fonc.2022.976622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Background Colorectal cancer (CRC) ranks third in highest incidence among human cancers. With the continuous development of anti-cancer drugs, CRC patients are treated more and more effectively. However, the treatment of patients with unresectable metastatic CRC (mCRC) remains a core point for surgeons worldwide, especially for those with microsatellite stability (MSS) and BRAF V600E mutation, who have been reported to have the worst prognosis. Case description We report a case of pathological complete remission in a patient with unresectable MSS, BRAF V600E-mutated metastatic rectal cancer after using Vemurafenib and Cetuximab in combination with Camrelizumab. Conclusions This case suggested that Vemurafenib and Cetuximab combined with Camrelizumab is effective in the treatment of MSS, BRAF V600E-mutated mCRC. To benefit more patients, further studies need to be completed.
Collapse
Affiliation(s)
- Li Tan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing-Shu Li
- Department of Pathology, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Dong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Yong Cheng, ; Dong Peng,
| | - Yong Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Yong Cheng, ; Dong Peng,
| |
Collapse
|
20
|
Wahida A, Buschhorn L, Fröhling S, Jost PJ, Schneeweiss A, Lichter P, Kurzrock R. The coming decade in precision oncology: six riddles. Nat Rev Cancer 2023; 23:43-54. [PMID: 36434139 DOI: 10.1038/s41568-022-00529-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
Abstract
High-throughput methods to investigate tumour omic landscapes have quickly catapulted cancer specialists into the precision oncology era. The singular lesson of precision oncology might be that, for it to be precise, treatment must be personalized, as each cancer's complex molecular and immune landscape differs from patient to patient. Transformative therapies include those that are targeted at the sequelae of molecular abnormalities or at immune mechanisms, and, increasingly, pathways previously thought to be undruggable have become druggable. Critical to applying precision medicine is the concept that the right combination of drugs must be chosen for each patient and used at the right stage of the disease. Multiple puzzles remain that complicate therapy choice, including evidence that deleterious mutations are common in normal tissues and non-malignant conditions. The host's role is also likely to be key in determining treatment response, especially for immunotherapy. Indeed, maximizing the impact of immunotherapy will require omic analyses to match the right immune-targeted drugs to the individualized patient and tumour setting. In this Perspective, we discuss six key riddles that must be solved to optimize the application of precision oncology to otherwise lethal malignancies.
Collapse
Affiliation(s)
- Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany.
- Medical Department III for Hematology and Oncology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany.
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Gynecological Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.
| | - Lars Buschhorn
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Gynecological Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Philipp J Jost
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Schneeweiss
- Division of Gynecological Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Razelle Kurzrock
- WIN Consortium, Paris, France.
- Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
21
|
Deshpande A, Munoz J. Targeted and cellular therapies in lymphoma: Mechanisms of escape and innovative strategies. Front Oncol 2022; 12:948513. [PMID: 36172151 PMCID: PMC9510896 DOI: 10.3389/fonc.2022.948513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
The therapeutic landscape for lymphomas is quite diverse and includes active surveillance, chemotherapy, immunotherapy, radiation therapy, and even stem cell transplant. Advances in the field have led to the development of targeted therapies, agents that specifically act against a specific component within the critical molecular pathway involved in tumorigenesis. There are currently numerous targeted therapies that are currently Food and Drug Administration (FDA) approved to treat certain lymphoproliferative disorders. Of many, some of the targeted agents include rituximab, brentuximab vedotin, polatuzumab vedotin, nivolumab, pembrolizumab, mogamulizumab, vemurafenib, crizotinib, ibrutinib, cerdulatinib, idelalisib, copanlisib, venetoclax, tazemetostat, and chimeric antigen receptor (CAR) T-cells. Although these agents have shown strong efficacy in treating lymphoproliferative disorders, the complex biology of the tumors have allowed for the malignant cells to develop various mechanisms of resistance to the targeted therapies. Some of the mechanisms of resistance include downregulation of the target, antigen escape, increased PD-L1 expression and T-cell exhaustion, mutations altering the signaling pathway, and agent binding site mutations. In this manuscript, we discuss and highlight the mechanism of action of the above listed agents as well as the different mechanisms of resistance to these agents as seen in lymphoproliferative disorders.
Collapse
Affiliation(s)
- Anagha Deshpande
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, United States
- *Correspondence: Anagha Deshpande,
| | - Javier Munoz
- Division of Hematology and Oncology, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
22
|
Cronise KE, Das S, Hernandez BG, Regan DP, Dailey DD, McGeachan RI, Lana SE, Page RL, Gustafson DL, Duval DL. Characterizing the molecular and immune landscape of canine bladder cancer. Vet Comp Oncol 2022; 20:69-81. [PMID: 34021685 PMCID: PMC8606617 DOI: 10.1111/vco.12740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022]
Abstract
Transitional cell carcinoma (TCC), also known as urothelial carcinoma, is the most common bladder cancer in humans and dogs. Approximately one-quarter of human TCCs are muscle-invasive and associated with a high risk of death from metastasis. Canine TCC (cTCC) tumours are typically high-grade and muscle-invasive. Shared similarities in risk factors, histopathology, and clinical presentation suggest that cTCC may serve as a model for the assessment of novel therapeutics that may inform therapies for human muscle-invasive TCC. The goal of this study was to characterize cTCC at the molecular level to identify drivers of oncogenesis and druggable targets. We performed whole exome sequencing (WES) of 11 cTCC tumours and three matched normal samples, identifying 583 variants in protein-coding genes. The most common variant was a V-to-E missense mutation in BRAF, identified in 4 out of 11 samples (36%) via WES. Sanger sequencing identified BRAF variants in 8 out of the same 11 cTCC samples, as well as in 22 out of 32 formalin-fixed paraffin embedded (FFPE) cTCC samples, suggesting an overall prevalence of 70%. RNA-Seq was performed to compare the gene expression profiles of cTCC tumours to normal bladder tissue. cTCC tumours exhibited up-regulation of genes involved in the cell cycle, DNA repair, and antiviral immunity. We also analysed the immune landscape of cTCC using immune gene signatures and immunohistochemical analysis. A subset of tumours had characteristics of a hot tumour microenvironment and exhibited high expression of signatures associated with complete response to PD-1/PD-L1 blockade in human bladder cancer.
Collapse
Affiliation(s)
- Kathryn E. Cronise
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA
| | - Sunetra Das
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Belen G. Hernandez
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Daniel P. Regan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Deanna D. Dailey
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Robert I. McGeachan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Susan E. Lana
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Rodney L. Page
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel L. Gustafson
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dawn L. Duval
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
23
|
Chao WR, Lee YJ, Lee MY, Sheu GT, Han CP. High frequency of BRAF mutations in primary mucinous ovarian carcinoma of Taiwanese patients. Taiwan J Obstet Gynecol 2021; 60:1072-1077. [PMID: 34794740 DOI: 10.1016/j.tjog.2021.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE Considering the clinical evidence of BRAF inhibitors that can treat melanoma patients successfully, we aimed to investigate the status of BRAF mutations of primary mucinous ovarian carcinomas (MOC) in Taiwanese women, and apply the emerging paradigm classification of BRAF mutation groups. MATERIALS AND METHODS 20 archived primary MOC samples were analyzed. The BRAF mutations of activation segment (exon 15), CR3 (conserved regions 3), kinase domain of the BRAF gene were analyzed using the highly sensitive BRAF mutant enriched kit (FemtoPath®) with Sanger sequencing method. Additionally, we extended our prior reported data of HER2 aberrations and KRAS mutation into this study in order to compare with the status of BRAF mutation. RESULTS Of them (n = 20), 16 (80%) harbored BRAF missense mutations. Their mutation profile and case number (n) were categorized as (1) class I: V600E (n=1), V600M (n = 1); (2) class II: A598V (n = 1), T599I (n = 10); (3) class III: none (n = 0); and (4) unclassified variants: S602F (n = 2), T599I/S602F (n = 1). The BRAF S602F is novel. The prevalence of BRAF mutation is significantly higher than either HER2 mutation (80% vs. 35%; p = 0.022) or HER2 amplification (80% vs. 35%; p = 0.022). However, the mutation rates of BRAF and KRAS were not significantly different (80% vs. 60%; p = 0.289). CONCLUSION Activating BRAF mutation, HER2 amplification, HER2 mutation and KRAS mutation were not mutually exclusive. However, they may even have a synergistic effect in tumorigenesis. BRAF mutation is not uncommon in primary MOC of Taiwanese. The BRAF mutant (T599I) stands the majority. We suggested that there was a lower potential response to the existing V600 BRAF inhibitors, but may be responsive to dual BRAF plus MEK inhibitors or single MEK inhibitor. Further studies are warranted to investigate the clinical benefits of newly targeted therapy in recurrent or advanced stage primary MOC patients carrying different classes of BRAF mutation.
Collapse
Affiliation(s)
- Wan-Ru Chao
- Department of Pathology, Chung-Shan Medical University, Taichung, Taiwan; Department of Pathology, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Ju Lee
- Department of Pathology, Chung-Shan Medical University, Taichung, Taiwan; Department of Pathology, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Yung Lee
- Department of Statistics and Informatics Science, Providence University, Taichung, Taiwan
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Chih-Ping Han
- Department of Pathology, Chung-Shan Medical University, Taichung, Taiwan; Department of Pathology, Chung-Shan Medical University Hospital, Taichung, Taiwan; Department of Obstetrics and Gynecology, Chung-Shan Medical University and Chung-Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
24
|
Tan AC, Bagley SJ, Wen PY, Lim M, Platten M, Colman H, Ashley DM, Wick W, Chang SM, Galanis E, Mansouri A, Khagi S, Mehta MP, Heimberger AB, Puduvalli VK, Reardon DA, Sahebjam S, Simes J, Antonia SJ, Berry D, Khasraw M. Systematic review of combinations of targeted or immunotherapy in advanced solid tumors. J Immunother Cancer 2021; 9:jitc-2021-002459. [PMID: 34215688 PMCID: PMC8256733 DOI: 10.1136/jitc-2021-002459] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2021] [Indexed: 01/02/2023] Open
Abstract
With rapid advances in our understanding of cancer, there is an expanding number of potential novel combination therapies, including novel-novel combinations. Identifying which combinations are appropriate and in which subpopulations are among the most difficult questions in medical research. We conducted a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-guided systematic review of trials of novel-novel combination therapies involving immunotherapies or molecular targeted therapies in advanced solid tumors. A MEDLINE search was conducted using a modified Cochrane Highly Sensitive Search Strategy for published clinical trials between July 1, 2017, and June 30, 2020, in the top-ranked medical and oncology journals. Trials were evaluated according to a criterion adapted from previously published Food and Drug Administration guidance and other key considerations in designing trials of combinations. This included the presence of a strong biological rationale, the use of a new established or emerging predictive biomarker prospectively incorporated into the clinical trial design, appropriate comparator arms of monotherapy or supportive external data sources and a primary endpoint demonstrating a clinically meaningful benefit. Of 32 identified trials, there were 11 (34%) trials of the novel-novel combination of anti-programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) therapy, and 10 (31%) trials of anti-PD-1/PD-L1 and anti-vascular endothelial growth factor (VEGF) combination therapy. 20 (62.5%) trials were phase II trials, while 12 (37.5%) were phase III trials. Most (72%) trials lacked significant preclinical evidence supporting the development of the combination in the given indication. A majority of trials (69%) were conducted in biomarker unselected populations or used pre-existing biomarkers within the given indication for patient selection. Most studies (66%) were considered to have appropriate comparator arms or had supportive external data sources such as prior studies of monotherapy. All studies were evaluated as selecting a clinically meaningful primary endpoint. In conclusion, designing trials to evaluate novel-novel combination therapies presents numerous challenges to demonstrate efficacy in a comprehensive manner. A greater understanding of biological rationale for combinations and incorporating predictive biomarkers may improve effective evaluation of combination therapies. Innovative statistical methods and increasing use of external data to support combination approaches are potential strategies that may improve the efficiency of trial design. Designing trials to evaluate novel-novel combination therapies presents numerous challenges to demonstrate efficacy in a comprehensive manner. A greater understanding of biological rationale for combinations and incorporating predictive biomarkers may improve effective evaluation of combination therapies. Innovative statistical methods and increasing use of external data to support combination approaches are potential strategies that may improve the efficiency of trial design.
Collapse
Affiliation(s)
- Aaron C Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Stephen J Bagley
- Abramson Cancer Center and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Michael Platten
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany.,DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Centre, Heidelberg, Germany
| | - Howard Colman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - David M Ashley
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Evanthia Galanis
- Division of Medical Oncology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | - Simon Khagi
- Division of Medical Oncology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| | - Amy B Heimberger
- Department of Neurosurgery, Northwestern University, Chicago, Illinois, USA
| | - Vinay K Puduvalli
- Department of Neurooncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Solmaz Sahebjam
- Department of Neuro-oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - John Simes
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Scott J Antonia
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Don Berry
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mustafa Khasraw
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
25
|
Hasegawa H, Miyo M, Mori K, Mano M, Ishida H, Mita E. A Rare BRAF Fusion in Advanced Rectal Cancer Treated with Anti-Epidermal Growth Factor Receptor Therapy. Case Rep Oncol 2021; 14:938-943. [PMID: 34267639 PMCID: PMC8261262 DOI: 10.1159/000517007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 11/19/2022] Open
Abstract
Recently, v-raf murine sarcoma viral oncogene homologue B (BRAF) fusions have been identified in multiple cancer types using comprehensive genomic profiling (CGP) assays. BRAF fusions are extremely rare, occurring in <0.5% of patients with metastatic colorectal cancer (mCRC). Until now, there is no standard treatment for mCRC with BRAF fusions. Here, we report a recurrent colorectal cancer case that harbored an EXOC4-BRAF fusion. A 40-year-old female patient with a 2-year history of type 2 diabetes was diagnosed with pathologically confirmed stage IV rectal adenocarcinoma with liver metastasis. She underwent R0 resection after neoadjuvant therapy; however, her disease recurred at multiple metastatic sites (lymph nodes, ovary, and peritoneal gland). A rectal cancer surgical specimen was submitted for CGP (Foundation One) to identify potential targets to develop treatment strategies. An EXOC4-BRAF fusion was identified, and she achieved partial response to FOLFOX + panitumumab which is a fully human antibody directed against epidermal growth factor receptor. No EXOC4-BRAF fusions in colorectal cancer cases have been reported to date. Further studies investigating molecular mechanisms and novel targeted therapy approaches are required.
Collapse
Affiliation(s)
- Hiroko Hasegawa
- Department of Gastroenterology and Hepatology, National Hospital Organization, Osaka National Hospital, Osaka, Japan
| | - Masaaki Miyo
- Department of Surgery, National Hospital Organization, Osaka National Hospital, Osaka, Japan
| | - Kiyoshi Mori
- Department of Pathology, National Hospital Organization, Osaka National Hospital, Osaka, Japan
| | - Masayuki Mano
- Department of Pathology, National Hospital Organization, Osaka National Hospital, Osaka, Japan
| | - Hisashi Ishida
- Department of Gastroenterology and Hepatology, National Hospital Organization, Osaka National Hospital, Osaka, Japan
| | - Eiji Mita
- Department of Gastroenterology and Hepatology, National Hospital Organization, Osaka National Hospital, Osaka, Japan
| |
Collapse
|
26
|
Voith von Voithenberg L, Kashyap A, Opitz L, Aquino C, Sykes T, Nieser M, Petrini LFT, Enrriquez Casimiro N, van Kooten XF, Biskup S, Schlapbach R, Schraml P, Kaigala GV. Mapping Spatial Genetic Landscapes in Tissue Sections through Microscale Integration of Sampling Methodology into Genomic Workflows. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007901. [PMID: 33852760 DOI: 10.1002/smll.202007901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/12/2021] [Indexed: 06/12/2023]
Abstract
In cancer research, genomic profiles are often extracted from homogenized macrodissections of tissues, with the histological context lost and a large fraction of material underutilized. Pertinently, the spatial genomic landscape provides critical complementary information in deciphering disease heterogeneity and progression. Microscale sampling methods such as microdissection to obtain such information are often destructive to a sizeable fraction of the biopsy sample, thus showing limited multiplexability and adaptability to different assays. A modular microfluidic technology is here implemented to recover cells at the microscale from tumor tissue sections, with minimal disruption of unsampled areas and tailored to interface with genome profiling workflows, which is directed here toward evaluating intratumoral genomic heterogeneity. The integrated workflow-GeneScape-is used to evaluate heterogeneity in a metastatic mammary carcinoma, showing distinct single nucleotide variants and copy number variations in different tumor tissue regions, suggesting the polyclonal origin of the metastasis as well as development driven by multiple location-specific drivers.
Collapse
Affiliation(s)
| | - Aditya Kashyap
- IBM Research Europe, Säumerstrasse 4, Rüschlikon, CH-8803, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, Winterthurerstr. 190, Zurich, CH-8057, Switzerland
| | - Catharine Aquino
- Functional Genomics Center Zurich, Winterthurerstr. 190, Zurich, CH-8057, Switzerland
| | - Timothy Sykes
- Functional Genomics Center Zurich, Winterthurerstr. 190, Zurich, CH-8057, Switzerland
| | - Maike Nieser
- Center for Genomics and Transcriptomics, Paul-Ehrlich-Str. 23, 72076, Tübingen, Germany
| | | | | | | | - Saskia Biskup
- Center for Genomics and Transcriptomics, Paul-Ehrlich-Str. 23, 72076, Tübingen, Germany
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, Winterthurerstr. 190, Zurich, CH-8057, Switzerland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstr. 12, Zurich, CH-8091, Switzerland
| | - Govind V Kaigala
- IBM Research Europe, Säumerstrasse 4, Rüschlikon, CH-8803, Switzerland
| |
Collapse
|
27
|
Bu R, Siraj AK, Masoodi T, Parvathareddy SK, Iqbal K, Al-Rasheed M, Haqawi W, Diaz M, Victoria IG, Aldughaither SM, Al-Sobhi SS, Al-Dayel F, Al-Kuraya KS. Recurrent Somatic MAP2K1 Mutations in Papillary Thyroid Cancer and Colorectal Cancer. Front Oncol 2021; 11:670423. [PMID: 34046359 PMCID: PMC8144646 DOI: 10.3389/fonc.2021.670423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinase kinase 1 (MAP2K1) is a dual specificity protein kinase that phosphorylates both threonine and tyrosine residues in ERK. MAP2K1 mutations have been identified in several cancers. However, their role in Middle Eastern papillary thyroid cancer (PTC) and colorectal cancer (CRC) is lacking. In this study, we evaluated the prevalence of MAP2K1 mutations in a large cohort of Middle Eastern PTC and CRC using whole-exome and Sanger sequencing technology. In the discovery cohort of 100 PTC and 100 CRC cases (comprising 50 MAPK mutant and 50 MAPK wildtype cases each), we found one MAP2K1 mutation each in PTC and CRC, both of which were MAPK wildtype. We further analyzed 286 PTC and 289 CRC MAPK wildtype cases and found three MAP2K1 mutant PTC cases and two MAP2K1 mutant CRC cases. Thus, the overall prevalence of MAP2K1 mutation in MAPK wildtype cases was 1.1% (4/336) in PTC and 0.9% (3/339) in CRC. Histopathologically, three of the four MAP2K1 mutant PTC cases were follicular variant and all four tumors were unifocal with absence of extra-thyroidal extension. All the three CRC cases harboring MAP2K1 mutation were of older age (> 50 years) and had moderately differentiated stage II/III tumors located in the left colon. In conclusion, this is the first comprehensive report of MAP2K1 somatic mutations prevalence in PTC and CRC from this ethnicity. The mutually exclusive nature of MAP2K1 and MAPK mutations suggests that each of these mutation may function as an initiating mutation driving tumorigenesis through MAPK signaling pathway.
Collapse
Affiliation(s)
- Rong Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdul K Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tariq Masoodi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kaleem Iqbal
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maha Al-Rasheed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Wael Haqawi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mark Diaz
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ingrid G Victoria
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saud M Aldughaither
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saif S Al-Sobhi
- Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Abstract
Colorectal cancers (CRC) with B-RAF mutation carry a particularly poor prognosis. In this context, the value of first-line intensified chemotherapy associated with an anti-VEGF (Vascular endothelial growth factor) to treat metastatic CRC has recently been called into question. In patients with mutated B-RAF, the efficacy of first-line anti-EGFR (Epidermal Growth Factor Receptor) associated with chemotherapy for treatment of metastatic CRC is uncertain while that of anti-VEGF has been shown to be effective. The therapeutic pathways involving inhibition of B-RAF activity, although ineffective as monotherapy, have received marketing authorization when used in association with anti-EGFR for second-line treatment of metastatic CRC. Immunotherapy has provided very encouraging results in a recent phase III study in patients with microsatellite instability, irrespective of their B-RAF status. Finally, new therapies, targeting other RAF proteins and other specific receptors are currently under development. Surgery for liver metastases in patients with the B-RAF mutation should be considered whenever possible, after a complete search for peritoneal carcinomatosis and distant metastases, similarly to workup for patients without the B-RAF mutation.
Collapse
|
29
|
Deep generative neural network for accurate drug response imputation. Nat Commun 2021; 12:1740. [PMID: 33741950 PMCID: PMC7979803 DOI: 10.1038/s41467-021-21997-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/16/2021] [Indexed: 01/22/2023] Open
Abstract
Drug response differs substantially in cancer patients due to inter- and intra-tumor heterogeneity. Particularly, transcriptome context, especially tumor microenvironment, has been shown playing a significant role in shaping the actual treatment outcome. In this study, we develop a deep variational autoencoder (VAE) model to compress thousands of genes into latent vectors in a low-dimensional space. We then demonstrate that these encoded vectors could accurately impute drug response, outperform standard signature-gene based approaches, and appropriately control the overfitting problem. We apply rigorous quality assessment and validation, including assessing the impact of cell line lineage, cross-validation, cross-panel evaluation, and application in independent clinical data sets, to warrant the accuracy of the imputed drug response in both cell lines and cancer samples. Specifically, the expression-regulated component (EReX) of the observed drug response achieves high correlation across panels. Using the well-trained models, we impute drug response of The Cancer Genome Atlas data and investigate the features and signatures associated with the imputed drug response, including cell line origins, somatic mutations and tumor mutation burdens, tumor microenvironment, and confounding factors. In summary, our deep learning method and the results are useful for the study of signatures and markers of drug response.
Collapse
|
30
|
Nikanjam M, Tinajero J, Barkauskas DA, Kurzrock R. BRAF V600E/V600K Mutations versus Nonstandard Alterations: Prognostic Implications and Therapeutic Outcomes. Mol Cancer Ther 2021; 20:1072-1079. [PMID: 33722853 DOI: 10.1158/1535-7163.mct-20-0861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/05/2020] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
BRAF and MEK inhibitors are standard of care for BRAF V600E/K-mutated melanoma, but the benefit of BRAF and/or MEK inhibitors for nonstandard BRAF alterations for melanoma and other cancers is unclear. Patients with diverse malignancies whose cancers had undergone next-generation sequencing were screened for BRAF alterations. Demographics, treatment with BRAF and/or MEK inhibitors, clinical response, progression-free survival (PFS), and overall survival (OS) were determined from review of the electronic medical records for patients with standard BRAF V600E/K versus nonstandard BRAF alterations. A total of 213 patients with BRAF alterations (87 with nonstandard alterations) were identified; OS from diagnosis was significantly worse with nonstandard BRAF versus standard alterations, regardless of therapy [HR (95% confidence interval), 0.58 (0.38-0.88); P = 0.01]. Overall, 45 patients received BRAF/MEK-directed therapy (eight with nonstandard alterations); there were no significant differences in clinical benefit rate [stable disease ≥6 months/partial/complete response (74% vs. 63%; P = 0.39) or PFS (P = 0.24; BRAF V600E/K vs. others)]. In conclusion, patients with nonstandard versus standard BRAF alterations (BRAF V600E/K) have a worse prognosis with shorter survival from diagnosis. Even so, 63% of patients with nonstandard BRAF alterations achieved clinical benefit with BRAF/MEK inhibitors. Larger prospective studies are warranted to better understand the prognostic versus predictive implication of standard versus nonstandard BRAF alterations.
Collapse
Affiliation(s)
- Mina Nikanjam
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, California.
| | - Jose Tinajero
- Deparatment of Pharmacy, UC San Diego Health, San Diego, California
| | - Donald A Barkauskas
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, California
| |
Collapse
|
31
|
Adashek JJ, Subbiah V, Kurzrock R. From Tissue-Agnostic to N-of-One Therapies: (R)Evolution of the Precision Paradigm. Trends Cancer 2021; 7:15-28. [DOI: 10.1016/j.trecan.2020.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
|
32
|
Provenzano A, La Barbera A, Scagnet M, Pagliazzi A, Traficante G, Pantaleo M, Tiberi L, Vergani D, Kurtas NE, Guarducci S, Bargiacchi S, Forzano G, Artuso R, Palazzo V, Kura A, Giordano F, di Feo D, Mortilla M, De Filippi C, Mattei G, Garavelli L, Giusti B, Genitori L, Zuffardi O, Giglio S. Chiari 1 malformation and exome sequencing in 51 trios: the emerging role of rare missense variants in chromatin-remodeling genes. Hum Genet 2020; 140:625-647. [PMID: 33337535 PMCID: PMC7981314 DOI: 10.1007/s00439-020-02231-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Type 1 Chiari malformation (C1M) is characterized by cerebellar tonsillar herniation of 3–5 mm or more, the frequency of which is presumably much higher than one in 1000 births, as previously believed. Its etiology remains undefined, although a genetic basis is strongly supported by C1M presence in numerous genetic syndromes associated with different genes. Whole-exome sequencing (WES) in 51 between isolated and syndromic pediatric cases and their relatives was performed after confirmation of the defect by brain magnetic resonance image (MRI). Moreover, in all the cases showing an inherited candidate variant, brain MRI was performed in both parents and not only in the carrier one to investigate whether the defect segregated with the variant. More than half of the variants were Missense and belonged to the same chromatin-remodeling genes whose protein truncation variants are associated with severe neurodevelopmental syndromes. In the remaining cases, variants have been detected in genes with a role in cranial bone sutures, microcephaly, neural tube defects, and RASopathy. This study shows that the frequency of C1M is widely underestimated, in fact many of the variants, in particular those in the chromatin-remodeling genes, were inherited from a parent with C1M, either asymptomatic or with mild symptoms. In addition, C1M is a Mendelian trait, in most cases inherited as dominant. Finally, we demonstrate that modifications of the genes that regulate chromatin architecture can cause localized anatomical alterations, with symptoms of varying degrees.
Collapse
Affiliation(s)
- Aldesia Provenzano
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Andrea La Barbera
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Mirko Scagnet
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Angelica Pagliazzi
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giovanna Traficante
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Marilena Pantaleo
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Lucia Tiberi
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Debora Vergani
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Nehir Edibe Kurtas
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Silvia Guarducci
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Sara Bargiacchi
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Giulia Forzano
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rosangela Artuso
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Ada Kura
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, University of Florence, Careggi Hospital, Florence, Italy
| | - Flavio Giordano
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Daniele di Feo
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Marzia Mortilla
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Claudio De Filippi
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Department of Mother and Child, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, University of Florence, Careggi Hospital, Florence, Italy
| | - Lorenzo Genitori
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.,Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| |
Collapse
|
33
|
Horizontal Combination of MEK and PI3K/mTOR Inhibition in BRAF Mutant Tumor Cells with or without Concomitant PI3K Pathway Mutations. Int J Mol Sci 2020; 21:ijms21207649. [PMID: 33081092 PMCID: PMC7589607 DOI: 10.3390/ijms21207649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/22/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
The RAS/RAF and PI3K/Akt pathways play a key regulatory role in cancer and are often hit by oncogenic mutations. Despite molecular targeting, the long-term success of monotherapy is often hampered by de novo or acquired resistance. In the case of concurrent mutations in both pathways, horizontal combination could be a reasonable approach. In our study, we investigated the MEK inhibitor selumetinib and PI3K/mTOR dual inhibitor BEZ235 alone and in combination in BRAF-only mutant and BRAF + PI3K/PTEN double mutant cancer cells using short- and long-term 2D viability assays, spheroid assays, and immunoblots. In the 2D assays, selumetinib was more effective on BRAF-only mutant lines when compared to BRAF + PI3K/PTEN double mutants. Furthermore, combination therapy had an additive effect in most of the lines while synergism was observed in two of the double mutants. Importantly, in the SW1417 BRAF + PI3K double mutant cells, synergism was also confirmed in the spheroid and in the in vivo model. Mechanistically, p-Akt level decreased only in the SW1417 cell line after combination treatment. In conclusion, the presence of concurrent mutations alone did not predict a stronger response to combination treatment. Therefore, additional investigations are warranted to identify predictive factors that can select patients who can benefit from the horizontal combinational inhibition of these two pathways.
Collapse
|
34
|
Imyanitov EN, Levchenko EV, Kuligina ES, Orlov SV. Treating non-small cell lung cancer with selumetinib: an up-to-date drug evaluation. Expert Opin Pharmacother 2020; 21:1943-1953. [DOI: 10.1080/14656566.2020.1798930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia
- Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 191015, Russia
- Department of Oncology, I.P. Pavlov St.-Petersburg State Medical University, St.-Petersburg, 197022, Russia
- Institute of Medical Primatology, Sochi, 354376, Russia
| | - Evgeny V. Levchenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
- Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 191015, Russia
| | - Ekatherina S. Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
| | - Sergey V. Orlov
- Department of Oncology, I.P. Pavlov St.-Petersburg State Medical University, St.-Petersburg, 197022, Russia
- Institute of Medical Primatology, Sochi, 354376, Russia
| |
Collapse
|
35
|
Busch E, Kreutzfeldt S, Agaimy A, Mechtersheimer G, Horak P, Brors B, Hutter B, Fröhlich M, Uhrig S, Mayer P, Schröck E, Stenzinger A, Glimm H, Jäger D, Springfeld C, Fröhling S, Zschäbitz S. Successful BRAF/MEK inhibition in a patient with BRAF V600E-mutated extrapancreatic acinar cell carcinoma. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a005553. [PMID: 32843432 PMCID: PMC7476408 DOI: 10.1101/mcs.a005553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic acinar cell carcinoma (PAC) is a rare disease with a poor prognosis. Treatment options for metastatic PAC are limited and often follow chemotherapeutic regimens for pancreatic ductal adenocarcinoma. Although recurrent genomic alterations, such as BRAF fusions and defects in genes involved in homologous recombination DNA repair, have been described in PAC, data on the clinical efficacy of molecularly guided, targeted treatment are scarce. Here we describe the case of a 27-yr-old patient with BRAFV600E-mutated PAC who was successfully treated with a combination of BRAF and MEK inhibitors. The patient presented to our clinic with abdominal pain and weight loss. Imaging showed extensive retroperitoneal disease as well as mediastinal lymphadenopathy. Because of elevated α-fetoprotein (AFP) levels and inconclusive histologic findings, a germ cell tumor was suspected; however, PEI chemotherapy was unsuccessful. A repeat biopsy yielded the diagnosis of PAC and treatment with FOLFIRINOX was initiated. Comprehensive molecular profiling within the MASTER (Molecularly Aided Stratification for Tumor Eradication Research) precision oncology program revealed a somatic BRAFV600E mutation and a germline PALB2 stop-gain mutation. Therapy was therefore switched to BRAF/MEK inhibition, resulting in almost complete remission and disease control for 12 mo and a remarkable improvement in the patient's general condition. These results indicate that BRAF alterations are a valid therapeutic target in PAC that should be routinely assessed in this patient population.
Collapse
Affiliation(s)
- Elena Busch
- Department of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, 69120, Germany
| | - Simon Kreutzfeldt
- Department of Translational Medical Oncology, NCT Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Erlangen, 91054, Germany
| | | | - Peter Horak
- Department of Translational Medical Oncology, NCT Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, 69120, Germany.,German Cancer Consortium
| | - Barbara Hutter
- Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, 69120, Germany.,Molecular Diagnostics Program, NCT Heidelberg and DKFZ, Heidelberg, 69120, Germany
| | - Martina Fröhlich
- Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, 69120, Germany.,Molecular Diagnostics Program, NCT Heidelberg and DKFZ, Heidelberg, 69120, Germany
| | - Sebastian Uhrig
- Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, 69120, Germany.,Molecular Diagnostics Program, NCT Heidelberg and DKFZ, Heidelberg, 69120, Germany
| | - Philipp Mayer
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Evelin Schröck
- NCT Partner Site Dresden, University Cancer Center (UCC) Dresden, Dresden, 01307, Germany.,Institute of Clinical Genetics, Technical University of Dresden, Dresden, 01307, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Hanno Glimm
- NCT Partner Site Dresden, University Cancer Center (UCC) Dresden, Dresden, 01307, Germany
| | - Dirk Jäger
- Department of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, 69120, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, 69120, Germany
| | - Stefan Fröhling
- Department of Translational Medical Oncology, NCT Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,German Cancer Consortium
| | - Stefanie Zschäbitz
- Department of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, 69120, Germany
| |
Collapse
|
36
|
Campos LE, Garibotto F, Angelina E, Kos J, Gonec T, Marvanova P, Vettorazzi M, Oravec M, Jendrzejewska I, Jampilek J, Alvarez SE, Enriz RD. Hydroxynaphthalenecarboxamides and substituted piperazinylpropandiols, two new series of BRAF inhibitors. A theoretical and experimental study. Bioorg Chem 2020; 103:104145. [PMID: 32801082 DOI: 10.1016/j.bioorg.2020.104145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/17/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022]
Abstract
The oncogenic mutated kinase BRAFV600E is an attractive molecular target because it is expressed in several human cancers, including melanoma. To present, only three BRAF small inhibitors are approved by the FDA for the treatment of patients with metastatic melanoma: Vemurafenib, Dabrafenib and Encorafenib. Although many protocol treatments have been probed in clinical trials, BRAF inhibition has a limited effectiveness because patients invariably develop resistance and secondary toxic effects associated with the therapy. These limitations highlight the importance of designing new and better inhibitors with different structures that could establish different interactions in the active site of the enzyme and therefore decrease resistance progress. Considering the data from our previous report, here we studied two series of derivatives of structural scaffolds as potential BRAF inhibitors: hydroxynaphthalenecarboxamides and substituted piperazinylpropandiols. Our results indicate that structural analogues of substituted piperazinylpropandiols do not show significantly better activities to that previously reported. In contrast, the hydroxynaphthalenecarboxamides derivatives significantly inhibited cell viability and ERK phosphorylation, a measure of BRAF activity, in Lu1205 BRAFV600E melanoma cells. In order to better understand these experimental results, we carried out a molecular modeling study using different combined techniques: docking, MD simulations and quantum theory of atoms in molecules (QTAIM) calculations. Thus, by using this approach we determined that the molecular interactions that stabilize the different molecular complexes are closely related to Vemurafenib, a well-documented BRAF inhibitor. Furthermore, we found that bi-substituted compounds may interact more strongly respect to the mono-substituted analogues, by establishing additional interactions with the DFG-loop at the BRAF-active site. On the bases of these results we synthesized and tested a new series of hydroxynaphthalenecarboxamides bi-substituted. Remarkably, all these compounds displayed significant inhibitory effects on the bioassays performed. Thus, the structural information reported here is important for the design of new BRAFV600E inhibitors possessing this type of structural scaffold.
Collapse
Affiliation(s)
- Ludmila E Campos
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700 San Luis, Argentina
| | - Francisco Garibotto
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700 San Luis, Argentina
| | - Emilio Angelina
- Laboratorio de Estructura Molecular y Propiedades, Área de Química Física, Departamento de Química, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5460, (3400) Corrientes, Argentina
| | - Jiri Kos
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho 1, 612 00 Brno, Czech Republic
| | - Pavlina Marvanova
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho 1, 612 00 Brno, Czech Republic
| | - Marcela Vettorazzi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700 San Luis, Argentina
| | - Michal Oravec
- Global Change Research Institute CAS, Belidla 986/4a, 603 00 Brno, Czech Republic
| | | | - Josef Jampilek
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Sergio E Alvarez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700 San Luis, Argentina.
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700 San Luis, Argentina.
| |
Collapse
|
37
|
Adashek JJ, Kato S, Lippman SM, Kurzrock R. The paradox of cancer genes in non-malignant conditions: implications for precision medicine. Genome Med 2020; 12:16. [PMID: 32066498 PMCID: PMC7027240 DOI: 10.1186/s13073-020-0714-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Next-generation sequencing has enabled patient selection for targeted drugs, some of which have shown remarkable efficacy in cancers that have the cognate molecular signatures. Intriguingly, rapidly emerging data indicate that altered genes representing oncogenic drivers can also be found in sporadic non-malignant conditions, some of which have negligible and/or low potential for transformation to cancer. For instance, activating KRAS mutations are discerned in endometriosis and in brain arteriovenous malformations, inactivating TP53 tumor suppressor mutations in rheumatoid arthritis synovium, and AKT, MAPK, and AMPK pathway gene alterations in the brains of Alzheimer's disease patients. Furthermore, these types of alterations may also characterize hereditary conditions that result in diverse disabilities and that are associated with a range of lifetime susceptibility to the development of cancer, varying from near universal to no elevated risk. Very recently, the repurposing of targeted cancer drugs for non-malignant conditions that are associated with these genomic alterations has yielded therapeutic successes. For instance, the phenotypic manifestations of CLOVES syndrome, which is characterized by tissue overgrowth and complex vascular anomalies that result from the activation of PIK3CA mutations, can be ameliorated by the PIK3CA inhibitor alpelisib, which was developed and approved for breast cancer. In this review, we discuss the profound implications of finding molecular alterations in non-malignant conditions that are indistinguishable from those driving cancers, with respect to our understanding of the genomic basis of medicine, the potential confounding effects in early cancer detection that relies on sensitive blood tests for oncogenic mutations, and the possibility of reverse repurposing drugs that are used in oncology in order to ameliorate non-malignant illnesses and/or to prevent the emergence of cancer.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Internal Medicine, University of South Florida, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, Health Sciences Drive, La Jolla, CA, 92093, USA
| | - Scott M Lippman
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, Health Sciences Drive, La Jolla, CA, 92093, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, Health Sciences Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
38
|
Facchinetti F, Hollebecque A, Bahleda R, Loriot Y, Olaussen KA, Massard C, Friboulet L. Facts and New Hopes on Selective FGFR Inhibitors in Solid Tumors. Clin Cancer Res 2020; 26:764-774. [PMID: 31585937 PMCID: PMC7024606 DOI: 10.1158/1078-0432.ccr-19-2035] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/06/2019] [Accepted: 10/01/2019] [Indexed: 12/22/2022]
Abstract
Precision oncology relies on the identification of molecular alterations, responsible for tumor initiation and growth, which are suitable targets of specific inhibitors. The development of FGFR inhibitors represents an edifying example of the rapid evolution in the field of targeted oncology, with 10 different FGFR tyrosine kinase inhibitors actually under clinical investigation. In parallel, the discovery of FGFR activating molecular alterations (mainly FGFR3 mutations and FGFR2 fusions) across many tumor types, especially urothelial carcinomas and intrahepatic cholangiocarcinomas, widens the selection of patients that might benefit from selective FGFR inhibitors. The ongoing concomitant clinical evaluation of selective FGFR inhibitors in molecularly selected solid tumors brings new hopes for patients with metastatic cancer, for tumors so far excluded from molecularly guided treatments. Matching molecularly selected tumors with selective FGFR inhibitors has indeed led to promising results in phase I and II trials, justifying their registration to be expected in a near future, such as the recent accelerated approval of erdafitinib granted by the FDA for urothelial cancer. Widening our knowledge of the activity, efficacy, and toxicities relative to the selective FGFR tyrosine kinase inhibitors under clinical investigation, according to the exact FGFR molecular alteration, will be crucial to determine the optimal therapeutic strategy for patients suffering from FGFR-driven tumors. Similarly, identifying with appropriate molecular diagnostic, every single tumor harboring targetable FGFR alterations will be of utmost importance to attain the best outcomes for patients with FGFR-driven cancer.
Collapse
Affiliation(s)
- Francesco Facchinetti
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Antoine Hollebecque
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Rastislav Bahleda
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Yohann Loriot
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ken A Olaussen
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Christophe Massard
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Luc Friboulet
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France.
| |
Collapse
|
39
|
Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. Genome Med 2020; 12:8. [PMID: 31937368 PMCID: PMC6961404 DOI: 10.1186/s13073-019-0703-1] [Citation(s) in RCA: 524] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
The number of druggable tumor-specific molecular aberrations has grown substantially in the past decade, with a significant survival benefit obtained from biomarker matching therapies in several cancer types. Molecular pathology has therefore become fundamental not only to inform on tumor diagnosis and prognosis but also to drive therapeutic decisions in daily practice. The introduction of next-generation sequencing technologies and the rising number of large-scale tumor molecular profiling programs across institutions worldwide have revolutionized the field of precision oncology. As comprehensive genomic analyses become increasingly available in both clinical and research settings, healthcare professionals are faced with the complex tasks of result interpretation and translation. This review summarizes the current and upcoming approaches to implement precision cancer medicine, highlighting the challenges and potential solutions to facilitate the interpretation and to maximize the clinical utility of molecular profiling results. We describe novel molecular characterization strategies beyond tumor DNA sequencing, such as transcriptomics, immunophenotyping, epigenetic profiling, and single-cell analyses. We also review current and potential applications of liquid biopsies to evaluate blood-based biomarkers, such as circulating tumor cells and circulating nucleic acids. Last, lessons learned from the existing limitations of genotype-derived therapies provide insights into ways to expand precision medicine beyond genomics.
Collapse
Affiliation(s)
- Eoghan R Malone
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Department of Medicine, University Avenue, University of Toronto, Toronto, Ontario, M5G 1Z5, Canada
| | - Marc Oliva
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Department of Medicine, University Avenue, University of Toronto, Toronto, Ontario, M5G 1Z5, Canada
| | - Peter J B Sabatini
- Department of Clinical Laboratory Genetics, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Tracy L Stockley
- Department of Clinical Laboratory Genetics, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Department of Medicine, University Avenue, University of Toronto, Toronto, Ontario, M5G 1Z5, Canada.
| |
Collapse
|
40
|
Bergdorf KN, Lee LA, Weiss VL. BRAF molecular testing in cytopathology: Implications for diagnosis, prognosis, and targeted therapeutics. Cancer Cytopathol 2020; 128:9-11. [PMID: 31765065 PMCID: PMC10089280 DOI: 10.1002/cncy.22209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Laura A. Lee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center
| | - Vivian L. Weiss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center
- Correspondence should be addressed to: Vivian Lee Weiss, MD, Ph.D., Vanderbilt University Medical Center, CC-2213 MCN, Nashville, TN 37232. Phone: 615-875-3002, Fax: 615-343-7023,
| |
Collapse
|
41
|
Weinberg F, Griffin R, Fröhlich M, Heining C, Braun S, Spohr C, Iconomou M, Hollek V, Röring M, Horak P, Kreutzfeldt S, Warsow G, Hutter B, Uhrig S, Neumann O, Reuss D, Heiland DH, von Kalle C, Weichert W, Stenzinger A, Brors B, Glimm H, Fröhling S, Brummer T. Identification and characterization of a BRAF fusion oncoprotein with retained autoinhibitory domains. Oncogene 2019; 39:814-832. [PMID: 31558800 DOI: 10.1038/s41388-019-1021-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
Fusion proteins involving the BRAF serine/threonine kinase occur in many cancers. The oncogenic potential of BRAF fusions has been attributed to the loss of critical N-terminal domains that mediate BRAF autoinhibition. We used whole-exome and RNA sequencing in a patient with glioblastoma multiforme to identify a rearrangement between TTYH3, encoding a membrane-resident, calcium-activated chloride channel, and BRAF intron 1, resulting in a TTYH3-BRAF fusion protein that retained all features essential for BRAF autoinhibition. Accordingly, the BRAF moiety of the fusion protein alone, which represents full-length BRAF without the amino acids encoded by exon 1 (BRAFΔE1), did not induce MEK/ERK phosphorylation or transformation. Likewise, neither the TTYH3 moiety of the fusion protein nor full-length TTYH3 provoked ERK pathway activity or transformation. In contrast, TTYH3-BRAF displayed increased MEK phosphorylation potential and transforming activity, which were caused by TTYH3-mediated tethering of near-full-length BRAF to the (endo)membrane system. Consistent with this mechanism, a synthetic approach, in which BRAFΔE1 was tethered to the membrane by fusing it to the cytoplasmic tail of CD8 also induced transformation. Furthermore, we demonstrate that TTYH3-BRAF signals largely independent of a functional RAS binding domain, but requires an intact BRAF dimer interface and activation loop phosphorylation sites. Cells expressing TTYH3-BRAF exhibited increased MEK/ERK signaling, which was blocked by clinically achievable concentrations of sorafenib, trametinib, and the paradox breaker PLX8394. These data provide the first example of a fully autoinhibited BRAF protein whose oncogenic potential is dictated by a distinct fusion partner and not by a structural change in BRAF itself.
Collapse
Affiliation(s)
- Florian Weinberg
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Ricarda Griffin
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martina Fröhlich
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Christoph Heining
- Department of Translational Medical Oncology, NCT Dresden, Dresden, and DKFZ, Heidelberg, Germany.,University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Sandra Braun
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Corinna Spohr
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Mary Iconomou
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Viola Hollek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Röring
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Horak
- Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany.,DKTK, Heidelberg, Germany
| | - Simon Kreutzfeldt
- Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany.,DKTK, Heidelberg, Germany
| | - Gregor Warsow
- Omics IT and Data Management Core Facility, DKFZ, Heidelberg, Germany.,Division of Theoretical Bioinformatics, DKFZ, Heidelberg, Germany
| | - Barbara Hutter
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Sebastian Uhrig
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Olaf Neumann
- DKTK, Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Reuss
- DKTK, Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, Munich, Germany.,DKTK, Munich, Germany
| | - Albrecht Stenzinger
- DKTK, Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,DKTK, Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, NCT Dresden, Dresden, and DKFZ, Heidelberg, Germany.,University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Stefan Fröhling
- Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany. .,DKTK, Heidelberg, Germany.
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany. .,Comprehensive Cancer Centre Freiburg, University of Freiburg, Freiburg, Germany. .,DKTK Partner Site Freiburg and DKFZ, Heidelberg, Germany.
| |
Collapse
|
42
|
Garattini S, Fuso Nerini I, D'Incalci M. Not only tumor but also therapy heterogeneity. Ann Oncol 2019; 29:13-19. [PMID: 29045538 DOI: 10.1093/annonc/mdx646] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- S Garattini
- Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - I Fuso Nerini
- Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - M D'Incalci
- Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
43
|
Grinshpun A, Zarbiv Y, Roszik J, Subbiah V, Hubert A. Beyond KRAS: Practical Molecular Targets in Pancreatic Adenocarcinoma. Case Rep Oncol 2019; 12:7-13. [PMID: 30792639 PMCID: PMC6381925 DOI: 10.1159/000496018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 01/10/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) has a grim prognosis. Molecular and genomic analyses revealed that the striking majority of these tumors are driven by KRAS mutation, currently not amenable to targeted therapy. However, other driver mutations were found in a small fraction of patients. Herein we report of 3 cases of patients with metastatic PDAC and wildtype KRAS, found to harbor BRAF or RET pathogenic alterations. The patients were treated with targeted therapies with variable success. In our opinion, those proof-of-concept cases argue in favor of additional research and clinical trials' effort in this small but significant PDAC population with uncommon driver mutations.
Collapse
Affiliation(s)
- Albert Grinshpun
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yonaton Zarbiv
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jason Roszik
- Melanoma Medical Oncology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ayala Hubert
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
44
|
Galanina N, Bejar R, Choi M, Goodman A, Wieduwilt M, Mulroney C, Kim L, Yeerna H, Tamayo P, Vergilio JA, Mughal TI, Miller V, Jamieson C, Kurzrock R. Comprehensive Genomic Profiling Reveals Diverse but Actionable Molecular Portfolios across Hematologic Malignancies: Implications for Next Generation Clinical Trials. Cancers (Basel) 2018; 11:E11. [PMID: 30583461 PMCID: PMC6356731 DOI: 10.3390/cancers11010011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Background: The translation of genomic discoveries to the clinic is the cornerstone of precision medicine. However, incorporating next generation sequencing (NGS) of hematologic malignancies into clinical management remains limited. Methods: We describe 235 patients who underwent integrated NGS profiling (406 genes) and analyze the alterations and their potential actionability. Results: Overall, 227 patients (96.5%) had adequate tissue. Most common diagnoses included myelodysplastic syndrome (22.9%), chronic lymphocytic leukemia (17.2%), non-Hodgkin lymphoma (13.2%), acute myeloid leukemia (11%), myeloproliferative neoplasm (9.2%), acute lymphoblastic leukemia (8.8%), and multiple myeloma (7.5%). Most patients (N = 197/227 (87%)) harbored ≥1 genomic alteration(s); 170/227 (75%), ≥1 potentially actionable alteration(s) targetable by an FDA-approved (mostly off-label) or an investigational agent. Altogether, 546 distinct alterations were seen, most commonly involving TP53 (10.8%), TET2 (4.6%), and DNMT3A (4.2%). The median tumor mutational burden (TMB) was low (1.7 alterations/megabase); 12% of patients had intermediate or high TMB (higher TMB correlates with favorable response to anti-PD1/PDL1 inhibition in solid tumors). In conclusion, 96.5% of patients with hematologic malignancies have adequate tissue for comprehensive genomic profiling. Most patients had unique molecular signatures, and 75% had alterations that may be pharmacologically tractable with gene- or immune-targeted agents.
Collapse
Affiliation(s)
- Natalie Galanina
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
| | - Rafael Bejar
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
| | - Michael Choi
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
| | - Aaron Goodman
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA 92093, USA.
| | - Matthew Wieduwilt
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA 92093, USA.
| | - Carolyn Mulroney
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA 92093, USA.
| | - Lisa Kim
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
| | - Huwate Yeerna
- Department of Medicine, Division of Statistical Physics, University of California San Diego, La Jolla, CA 92093, USA.
| | - Pablo Tamayo
- Department of Medicine, Division of Statistical Physics, University of California San Diego, La Jolla, CA 92093, USA.
| | | | - Tariq I Mughal
- Foundation Medicine Inc., Cambridge, MA 02141, USA.
- Tufts University Medical Center, Boston, MA 02111, USA.
| | | | - Catriona Jamieson
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
| | - Razelle Kurzrock
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
| |
Collapse
|
45
|
Vairy S, Jouan L, Bilodeau M, Dormoy-Raclet V, Gendron P, Couture F, Léveillé F, Tihy F, Lemyre E, Bouron-Dal Soglio D, Jabado N, Kleinman CL, Marzouki M, Cellot S. Novel PDE10A-BRAF Fusion With Concomitant NF1 Mutation Identified in an Undifferentiated Sarcoma of Infancy With Sustained Response to Trametinib. JCO Precis Oncol 2018; 2:1-13. [DOI: 10.1200/po.18.00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Stéphanie Vairy
- Stéphanie Vairy, Mélanie Bilodeau, Monia Marzouki, and Sonia Cellot, Charles-Bruneau Cancer Center; Stéphanie Vairy, Loubna Jouan, Mélanie Bilodeau, Françoise Couture, France Léveillé, Frédérique Tihy, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Centre Hospitalier Universitaire Sainte-Justine; Patrick Gendron, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Université de Montréal; Nada Jabado and Claudia L. Kleinman, McGill University
| | - Loubna Jouan
- Stéphanie Vairy, Mélanie Bilodeau, Monia Marzouki, and Sonia Cellot, Charles-Bruneau Cancer Center; Stéphanie Vairy, Loubna Jouan, Mélanie Bilodeau, Françoise Couture, France Léveillé, Frédérique Tihy, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Centre Hospitalier Universitaire Sainte-Justine; Patrick Gendron, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Université de Montréal; Nada Jabado and Claudia L. Kleinman, McGill University
| | - Mélanie Bilodeau
- Stéphanie Vairy, Mélanie Bilodeau, Monia Marzouki, and Sonia Cellot, Charles-Bruneau Cancer Center; Stéphanie Vairy, Loubna Jouan, Mélanie Bilodeau, Françoise Couture, France Léveillé, Frédérique Tihy, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Centre Hospitalier Universitaire Sainte-Justine; Patrick Gendron, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Université de Montréal; Nada Jabado and Claudia L. Kleinman, McGill University
| | - Virginie Dormoy-Raclet
- Stéphanie Vairy, Mélanie Bilodeau, Monia Marzouki, and Sonia Cellot, Charles-Bruneau Cancer Center; Stéphanie Vairy, Loubna Jouan, Mélanie Bilodeau, Françoise Couture, France Léveillé, Frédérique Tihy, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Centre Hospitalier Universitaire Sainte-Justine; Patrick Gendron, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Université de Montréal; Nada Jabado and Claudia L. Kleinman, McGill University
| | - Patrick Gendron
- Stéphanie Vairy, Mélanie Bilodeau, Monia Marzouki, and Sonia Cellot, Charles-Bruneau Cancer Center; Stéphanie Vairy, Loubna Jouan, Mélanie Bilodeau, Françoise Couture, France Léveillé, Frédérique Tihy, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Centre Hospitalier Universitaire Sainte-Justine; Patrick Gendron, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Université de Montréal; Nada Jabado and Claudia L. Kleinman, McGill University
| | - Françoise Couture
- Stéphanie Vairy, Mélanie Bilodeau, Monia Marzouki, and Sonia Cellot, Charles-Bruneau Cancer Center; Stéphanie Vairy, Loubna Jouan, Mélanie Bilodeau, Françoise Couture, France Léveillé, Frédérique Tihy, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Centre Hospitalier Universitaire Sainte-Justine; Patrick Gendron, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Université de Montréal; Nada Jabado and Claudia L. Kleinman, McGill University
| | - France Léveillé
- Stéphanie Vairy, Mélanie Bilodeau, Monia Marzouki, and Sonia Cellot, Charles-Bruneau Cancer Center; Stéphanie Vairy, Loubna Jouan, Mélanie Bilodeau, Françoise Couture, France Léveillé, Frédérique Tihy, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Centre Hospitalier Universitaire Sainte-Justine; Patrick Gendron, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Université de Montréal; Nada Jabado and Claudia L. Kleinman, McGill University
| | - Frédérique Tihy
- Stéphanie Vairy, Mélanie Bilodeau, Monia Marzouki, and Sonia Cellot, Charles-Bruneau Cancer Center; Stéphanie Vairy, Loubna Jouan, Mélanie Bilodeau, Françoise Couture, France Léveillé, Frédérique Tihy, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Centre Hospitalier Universitaire Sainte-Justine; Patrick Gendron, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Université de Montréal; Nada Jabado and Claudia L. Kleinman, McGill University
| | - Emmanuelle Lemyre
- Stéphanie Vairy, Mélanie Bilodeau, Monia Marzouki, and Sonia Cellot, Charles-Bruneau Cancer Center; Stéphanie Vairy, Loubna Jouan, Mélanie Bilodeau, Françoise Couture, France Léveillé, Frédérique Tihy, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Centre Hospitalier Universitaire Sainte-Justine; Patrick Gendron, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Université de Montréal; Nada Jabado and Claudia L. Kleinman, McGill University
| | - Dorothée Bouron-Dal Soglio
- Stéphanie Vairy, Mélanie Bilodeau, Monia Marzouki, and Sonia Cellot, Charles-Bruneau Cancer Center; Stéphanie Vairy, Loubna Jouan, Mélanie Bilodeau, Françoise Couture, France Léveillé, Frédérique Tihy, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Centre Hospitalier Universitaire Sainte-Justine; Patrick Gendron, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Université de Montréal; Nada Jabado and Claudia L. Kleinman, McGill University
| | - Nada Jabado
- Stéphanie Vairy, Mélanie Bilodeau, Monia Marzouki, and Sonia Cellot, Charles-Bruneau Cancer Center; Stéphanie Vairy, Loubna Jouan, Mélanie Bilodeau, Françoise Couture, France Léveillé, Frédérique Tihy, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Centre Hospitalier Universitaire Sainte-Justine; Patrick Gendron, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Université de Montréal; Nada Jabado and Claudia L. Kleinman, McGill University
| | - Claudia L. Kleinman
- Stéphanie Vairy, Mélanie Bilodeau, Monia Marzouki, and Sonia Cellot, Charles-Bruneau Cancer Center; Stéphanie Vairy, Loubna Jouan, Mélanie Bilodeau, Françoise Couture, France Léveillé, Frédérique Tihy, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Centre Hospitalier Universitaire Sainte-Justine; Patrick Gendron, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Université de Montréal; Nada Jabado and Claudia L. Kleinman, McGill University
| | - Monia Marzouki
- Stéphanie Vairy, Mélanie Bilodeau, Monia Marzouki, and Sonia Cellot, Charles-Bruneau Cancer Center; Stéphanie Vairy, Loubna Jouan, Mélanie Bilodeau, Françoise Couture, France Léveillé, Frédérique Tihy, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Centre Hospitalier Universitaire Sainte-Justine; Patrick Gendron, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Université de Montréal; Nada Jabado and Claudia L. Kleinman, McGill University
| | - Sonia Cellot
- Stéphanie Vairy, Mélanie Bilodeau, Monia Marzouki, and Sonia Cellot, Charles-Bruneau Cancer Center; Stéphanie Vairy, Loubna Jouan, Mélanie Bilodeau, Françoise Couture, France Léveillé, Frédérique Tihy, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Centre Hospitalier Universitaire Sainte-Justine; Patrick Gendron, Emmanuelle Lemyre, Dorothée Bouron-Dal Soglio, Monia Marzouki, and Sonia Cellot, Université de Montréal; Nada Jabado and Claudia L. Kleinman, McGill University
| |
Collapse
|
46
|
No BRAF V600E Mutation Identified in 28 Periocular Pyogenic Granuloma. Ophthalmic Plast Reconstr Surg 2018; 34:525-527. [DOI: 10.1097/iop.0000000000001075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Ikeda S, Elkin SK, Tomson BN, Carter JL, Kurzrock R. Next-generation sequencing of prostate cancer: genomic and pathway alterations, potential actionability patterns, and relative rate of use of clinical-grade testing. Cancer Biol Ther 2018; 20:219-226. [PMID: 30339521 PMCID: PMC6343723 DOI: 10.1080/15384047.2018.1523849] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite being one of the most common cancers, treatment options for prostate cancer are limited. Novel approaches for advanced disease are needed. We evaluated the relative rate of use of clinical-grade next generation sequencing (NGS) in prostate cancer, as well as genomic alterations identified and their potential actionability. Of 4864 patients from multiple institutions for whom NGS was ordered by physicians, only 67 (1.4%) had prostate cancer, representing 1/10 the ordering rate for lung cancer. Prostate cancers harbored 148 unique alterations affecting 63 distinct genes. No two patients had an identical molecular portfolio. The median number of characterized genomic alterations per patient was 3 (range, 1 to 9). Fifty-six of 67 patients (84%) had ≥ 1 potentially actionable alteration. TMPRSS2 fusions affected 28.4% of patients. Genomic aberrations were most frequently detected in TP53 (55.2% of patients), PTEN (29.9%), MYC (17.9%), PIK3CA (13.4%), APC (9.0%), BRCA2 (9.0%), CCND1 (9.0%), and RB1 genes (9.0%). The PI3K (52.2% of patients), WNT (13.5%), DNA repair (17.9%), cell cycle (19.4%), and MAPK (14.9%) machinery were commonly impacted. A minority of patients harbored BRAF, NTRK, ERBB2, or mismatch repair gene abnormalities, which are highly druggable in some cancers. Only ~ 10% of prostate cancer trials (clinicaltrials.gov, year 2017) applied a (non-hormone) biomarker before intervention. In conclusion, though use of clinical-grade NGS is relatively low and only a minority of trials deploy DNA-based biomarkers, many prostate cancer-associated molecular alterations may be pharmacologically tractable with genomcially targeted therapy or, in the case of mismatch repair anomalies, with checkpoint inhibitor immunotherapy.
Collapse
Affiliation(s)
- Sadakatsu Ikeda
- a Center for Personalized Cancer Therapy, Division of Hematology/Oncology, Department of Medicine , University of California, San Diego, Moores Cancer Center , La Jolla , CA , USA.,b Cancer Center , Tokyo Medical and Dental University , Tokyo , Japan
| | | | | | | | - Razelle Kurzrock
- a Center for Personalized Cancer Therapy, Division of Hematology/Oncology, Department of Medicine , University of California, San Diego, Moores Cancer Center , La Jolla , CA , USA
| |
Collapse
|
48
|
Sato K, Kawazu M, Yamamoto Y, Ueno T, Kojima S, Nagae G, Abe H, Soda M, Oga T, Kohsaka S, Sai E, Yamashita Y, Iinuma H, Fukayama M, Aburatani H, Watanabe T, Mano H. Fusion Kinases Identified by Genomic Analyses of Sporadic Microsatellite Instability-High Colorectal Cancers. Clin Cancer Res 2018; 25:378-389. [PMID: 30279230 DOI: 10.1158/1078-0432.ccr-18-1574] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 09/27/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Colorectal cancers with microsatellite instability-high (MSI-H) status, due to mismatch repair deficiency, are associated with poor patient outcomes after relapse. We aimed to identify novel therapeutic targets for them. EXPERIMENTAL DESIGN We performed MSI analyses of over 2,800 surgically resected colorectal tumors obtained from consecutive patients treated in Japan from 1998 through June 2016. Whole-exome sequencing, transcriptome sequencing, and methylation analyses were performed on 149 of 162 tumors showing MSI in BAT25 and BAT26 loci. We analyzed patient survival times using Bonferroni-adjusted log-rank tests. RESULTS Sporadic MSI-H colorectal cancers with promoter methylation of MLH1 (called MM) had a clinicopathological profile that was distinct from that of colorectal cancers of patients with germline mutations (Lynch syndrome, LS-associated) or somatic, Lynch-like mutations in mismatch repair genes. MM tumors had more insertions and deletions and more recurrent mutations in BRAF and RNF43 than LS-associated or Lynch-like MSI-H tumors. Eleven fusion kinases were exclusively detected in MM MSI-H colorectal cancers lacking oncogenic KRAS/BRAF missense mutations and were associated with worse post-relapse prognosis. We developed a simple method to identify MM tumors and applied it to a validation cohort of 28 MSI-H colorectal cancers, identifying 16 MM tumors and 2 fusion kinases. CONCLUSIONS We discovered that fusion kinases are frequently observed among sporadic MM MSI-H colorectal cancers. The new method to identify MM tumors enables us to straightforwardly group MSI-H patients into candidates of LS or fusion kinase carriers.
Collapse
Affiliation(s)
- Kazuhito Sato
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahito Kawazu
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Yoko Yamamoto
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihide Ueno
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinya Kojima
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Manabu Soda
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takafumi Oga
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinji Kohsaka
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eirin Sai
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Yamashita
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisae Iinuma
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Watanabe
- Department of Surgical Oncology and Vascular Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
49
|
Subbiah V, Sen S, Hess KR, Janku F, Hong DS, Khatua S, Karp DD, Munoz J, Falchook GS, Groisberg R, Tsimberidou AM, Sherman SI, Hwu P, Meric-Bernstam F. Phase I Study of the BRAF Inhibitor Vemurafenib in Combination With the Mammalian Target of Rapamycin Inhibitor Everolimus in Patients With BRAF-Mutated Malignancies. JCO Precis Oncol 2018; 2:1800189. [PMID: 32913986 DOI: 10.1200/po.18.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose Parallel activation of the phosphatidylinositol 3-kinase-mammalian target of rapamycin pathway represents a mechanism of primary and acquired resistance to BRAF-targeted therapy, but the two pathways have yet to be cotargeted in humans. We performed a phase I study to evaluate the safety and activity of the BRAF inhibitor vemurafenib in combination with the mammalian target of rapamycin inhibitor everolimus in BRAF-mutated advanced solid tumors. Patients and Methods We performed a 3+3 dose-escalation study with escalating doses of both oral (PO) vemurafenib administered twice a day and PO everolimus administered daily. Results Twenty patients with advanced cancers were enrolled. The median adult age was 64 years (range, 17 to 85 years); two pediatric patients were 10 and 13 years old. Patients were heavily pretreated with prior BRAF or MEK inhibitors (n = 11), phase I clinical trial therapy (n = 10), surgery (n = 18), radiation therapy (n = 11), and chemotherapy (n=13). One of the two pediatric patients initially experienced grade 3 rash, but after dermatologic intervention, the patient remains on trial with partial response and no dose reduction at time of analysis. Four dose-limiting toxicities (rash, n = 1; fatigue, n = 3) were observed at dose level 2. Therefore, dose level 1 (vemurafenib 720 mg PO twice a day and everolimus 5 mg PO daily) was the maximum-tolerated dose. Overall, four patients (22%) had a partial response and nine patients (50%) had stable disease as best response. One pediatric patient with pleomorphic xanthroastrocytoma remains on protocol with continued clinical response after 38 cycles. Conclusion The combination of vemurafenib 720 mg PO twice a day and everolimus 5 mg PO daily is safe and well tolerated and has activity across histologies, with partial responses noted in advanced non-small-cell lung cancer, melanoma, optic nerve glioma, and xanthroastrocytoma, including patients who previously experienced progression on BRAF and/or MEK inhibitor therapy. Further investigation in a larger cohort of molecularly matched patients is warranted.
Collapse
Affiliation(s)
- Vivek Subbiah
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Shiraj Sen
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Kenneth R Hess
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Filip Janku
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - David S Hong
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Soumen Khatua
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Daniel D Karp
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Javier Munoz
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Gerald S Falchook
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Roman Groisberg
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Apostolia M Tsimberidou
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Steven I Sherman
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Patrick Hwu
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| | - Funda Meric-Bernstam
- , , , , , , , , , , , , and , The University of Texas MD Anderson Cancer Center, Houston, TX; and , Sarah Cannon Research Institute at HealthONE, Denver, CO
| |
Collapse
|
50
|
Chae YK, Pan AP, Davis AA, Patel SP, Carneiro BA, Kurzrock R, Giles FJ. Path toward Precision Oncology: Review of Targeted Therapy Studies and Tools to Aid in Defining "Actionability" of a Molecular Lesion and Patient Management Support. Mol Cancer Ther 2018; 16:2645-2655. [PMID: 29203694 DOI: 10.1158/1535-7163.mct-17-0597] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/04/2017] [Accepted: 08/16/2017] [Indexed: 11/16/2022]
Abstract
Precision medicine trials and targeted therapies have shifted to the forefront of oncology. Although targeted therapies have shown initial promise, implementation across the broad landscape of oncology has many challenges. These limitations include an incomplete understanding of the functional significance of variant alleles as well as the need for clinical research and practice models that are more patient-centered and account for the complexity of individual patient tumors. Furthermore, successful implementation of targeted therapies will also be predicated on efforts to standardize the framework for patient management support. Here, we review current implementations of targeted therapies in precision oncology and discuss how "actionability" is defined for molecular targets in cancer therapeutics. We also comment on the growing need for bioinformatics tools and data platforms to complement advances in precision oncology. Finally, we discuss current frameworks for integrating precision oncology into patient management and propose an integrated model that combines features of molecular tumor boards and decision support systems. Mol Cancer Ther; 16(12); 2645-55. ©2017 AACRSee related article by Pilié et al., p. 2641.
Collapse
Affiliation(s)
- Young Kwang Chae
- Developmental Therapeutics Program, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alan P Pan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Andrew A Davis
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sandip P Patel
- Center for Personalized Cancer Therapy, Moores Cancer Center at the University of California San Diego, La Jolla, California
| | - Benedito A Carneiro
- Developmental Therapeutics Program, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, Moores Cancer Center at the University of California San Diego, La Jolla, California
| | - Francis J Giles
- Developmental Therapeutics Program, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|