1
|
Ahmad M, Roy NJ, Mondal D, Vijayakanth T, Lahiri M, Talukdar P. Illuminating apoptosis: a visible light-activated chloride carrier for chloride transport and cell death. J Mater Chem B 2025. [PMID: 40314174 DOI: 10.1039/d4tb02436b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Synthetic chloride carriers are known to induce chloride-mediated apoptosis inside cancer cells. One of the main disadvantages is the unfavorable cytotoxicity towards healthy cells due to the lack of selectivity. The use of stimuli, such as light, enzymes, ligands, etc., has enabled the selective activation of these systems in cancer cells. Light, notably, is a significant stimulus that has been utilized due to its excellent spatiotemporal control, remote addressability, and low cytotoxicity. However, previously reported photoresponsive systems require UV radiation for their activation, which has low tissue penetration and can lead to phototoxic cell damage or death. Herein, we report 3-substituted indole-2-carboxamide ion carriers and their o-nitrobenzyl (ONB) linked procarriers. The incorporation of the electron-donating substituents to the ONB photocleavable group leads to a significant red shift in the absorption wavelength, and for the N,N-dimethyl-based procarrier, the absorbance peak extends up to 500 nm. Eventually, all the synthesized procarriers were photoactivated inside MCF-7 cancer cells under 400 nm electromagnetic radiation, and the N,N-dimethyl-based procarrier was also photoactivated at 450 nm. This photoactivation at a higher wavelength of electromagnetic radiation is highly desirable for its practical biological applications.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Naveen J Roy
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Debashis Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Thangavel Vijayakanth
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| |
Collapse
|
2
|
Ahmad M, Muir A, Langton MJ. Off-On Photo- and Redox-Triggered Anion Transport Using an Indole-Based Hydrogen Bond Switch. ACS OMEGA 2024; 9:45572-45580. [PMID: 39554452 PMCID: PMC11561614 DOI: 10.1021/acsomega.4c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
A stimulus-responsive indole-based hydrogen bonding switch is reported, which enables off-on activation of transmembrane ion transport in response to photo- and redox triggers. This is achieved by alkylation of an indole-based anionophore, preorganized through intramolecular hydrogen bonding, with o-nitrobenzyl and azobenzene cages. This renders the anionophore inactive through formation of a six-membered intramolecular hydrogen bonding interaction and locking of the anion binding protons. Decaging with biologically relevant light and redox stimuli leads to efficient activation of anion transport across lipid bilayer membranes by unlocking the hydrogen bond donors, such that they are now available for anion binding and transport.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Andrew Muir
- Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K.
| | | |
Collapse
|
3
|
Arias-Betancur A, Fontova P, Alonso-Carrillo D, Carreira-Barral I, Duis J, García-Valverde M, Soto-Cerrato V, Quesada R, Pérez-Tomás R. Deregulation of lactate permeability using a small-molecule transporter (Lactrans-1) disturbs intracellular pH and triggers cancer cell death. Biochem Pharmacol 2024; 229:116469. [PMID: 39117009 DOI: 10.1016/j.bcp.2024.116469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Due to the relevance of lactic acidosis in cancer, several therapeutic strategies have been developed targeting its production and/or regulation. In this matter, inhibition approaches of key proteins such as lactate dehydrogenase or monocarboxylate transporters have showed promising results, however, metabolic plasticity and tumor heterogeneity limits their efficacy. In this study, we explored the anticancer potential of a new strategy based on disturbing lactate permeability independently of monocarboxylate transporters activity using a small molecule ionophore named Lactrans-1. Derived from click-tambjamines, Lactrans-1 facilitates transmembrane lactate transportation in liposome models and reduces cancer cell viability. The results showed that Lactrans-1 triggered both apoptosis and necrosis depending on the cell line tested, displaying a synergistic effect in combination with first-line standard chemotherapeutic cisplatin. The ability of this compound to transport outward lactate anions was confirmed in A549 and HeLa cells, two cancer cell lines having distinct rates of lactate production. In addition, through cell viability reversion experiments it was possible to establish a correlation between the amount of lactate transported and the cytotoxic effect exhibited. The movement of lactate anions was accompanied with intracellular pH disturbances that included basification of lysosomes and acidification of the cytosol and mitochondria. We also observed mitochondrial swelling, increased ROS production and activation of oxidative stress signaling pathways p38-MAPK and JNK/SAPK. Our findings provide evidence that enhancement of lactate permeability is critical for cellular pH homeostasis and effective to trigger cancer cell death, suggesting that Lactrans-1 may be a promising anticancer therapy.
Collapse
Affiliation(s)
- Alain Arias-Betancur
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907, L'Hospitalet de Llobregat, Barcelona, Spain; Molecular Signalling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO), Dental School, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Pere Fontova
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907, L'Hospitalet de Llobregat, Barcelona, Spain; Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Daniel Alonso-Carrillo
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Israel Carreira-Barral
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Janneke Duis
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907, L'Hospitalet de Llobregat, Barcelona, Spain; Avans University of Applied Science, 4818 AJ Breda, the Netherlands
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907, L'Hospitalet de Llobregat, Barcelona, Spain; Molecular Signalling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain.
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907, L'Hospitalet de Llobregat, Barcelona, Spain; Molecular Signalling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
4
|
Hassan SM, Farid A, Panda SS, Bekheit MS, Dinkins H, Fayad W, Girgis AS. Indole Compounds in Oncology: Therapeutic Potential and Mechanistic Insights. Pharmaceuticals (Basel) 2024; 17:922. [PMID: 39065774 PMCID: PMC11280311 DOI: 10.3390/ph17070922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer remains a formidable global health challenge, with current treatment modalities such as chemotherapy, radiotherapy, surgery, and targeted therapy often hindered by low efficacy and adverse side effects. The indole scaffold, a prominent heterocyclic structure, has emerged as a promising candidate in the fight against cancer. This review consolidates recent advancements in developing natural and synthetic indolyl analogs, highlighting their antiproliferative activities against various cancer types over the past five years. These analogs are categorized based on their efficacy against common cancer types, supported by biochemical assays demonstrating their antiproliferative properties. In this review, emphasis is placed on elucidating the mechanisms of action of these compounds. Given the limitations of conventional cancer therapies, developing targeted therapeutics with enhanced selectivity and reduced side effects remains a critical focus in oncological research.
Collapse
Affiliation(s)
- Sara M. Hassan
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Alyaa Farid
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Siva S. Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Holden Dinkins
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt;
| |
Collapse
|
5
|
Billamboz M, Jawhara S. Anti- Malassezia Drug Candidates Based on Virulence Factors of Malassezia-Associated Diseases. Microorganisms 2023; 11:2599. [PMID: 37894257 PMCID: PMC10609646 DOI: 10.3390/microorganisms11102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Malassezia is a lipophilic unicellular fungus that is able, under specific conditions, to cause severe cutaneous and systemic diseases in predisposed subjects. This review is divided into two complementary parts. The first one discusses how virulence factors contribute to Malassezia pathogenesis that triggers skin diseases. These virulence factors include Malassezia cell wall resistance, lipases, phospholipases, acid sphingomyelinases, melanin, reactive oxygen species (ROS), indoles, hyphae formation, hydrophobicity, and biofilm formation. The second section describes active compounds directed specifically against identified virulence factors. Among the strategies for controlling Malassezia spread, this review discusses the development of aryl hydrocarbon receptor (AhR) antagonists, inhibition of secreted lipase, and fighting biofilms. Overall, this review offers an updated compilation of Malassezia species, including their virulence factors, potential therapeutic targets, and strategies for controlling their spread. It also provides an update on the most active compounds used to control Malassezia species.
Collapse
Affiliation(s)
- Muriel Billamboz
- INSERM, CHU Lille, Institut Pasteur Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, F-59000 Lille, France;
- JUNIA, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
| | - Samir Jawhara
- CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, University of Lille, 1 Place Verdun, F-59000 Lille, France
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| |
Collapse
|
6
|
Villarón D, Bos JE, Kohl F, Mommer S, de Jong J, Wezenberg SJ. Photoswitchable Bis(amidopyrroles): Modulating Anion Transport Activity Independent of Binding Affinity. J Org Chem 2023; 88:11328-11334. [PMID: 37440304 PMCID: PMC10407928 DOI: 10.1021/acs.joc.3c01018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Indexed: 07/14/2023]
Abstract
Toward photocontrol of anion transport across the bilayer membrane, stiff-stilbene, which has dimethyl substituents in the five-membered rings, is functionalized with amidopyrrole units. UV-vis and 1H NMR studies show high photostability and photoconversion yields. Where the photoaddressable (E)- and (Z)-isomers exhibit comparable binding affinities, as determined by 1H NMR titrations, fluorescence-based transport assays reveal significantly higher transport activity for the (Z)-isomers. Changing the binding affinity is thus not a necessity for modulating transport. Additionally, transport can be triggered in situ by light.
Collapse
Affiliation(s)
| | | | | | | | - Jorn de Jong
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Sander J. Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
7
|
A Novel Late-Stage Autophagy Inhibitor That Efficiently Targets Lysosomes Inducing Potent Cytotoxic and Sensitizing Effects in Lung Cancer. Cancers (Basel) 2022; 14:cancers14143387. [PMID: 35884450 PMCID: PMC9324127 DOI: 10.3390/cancers14143387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Lung cancer is the main cause of cancer-related deaths worldwide, mainly due to treatment resistance. For that reason, it is necessary to develop novel therapeutic strategies to overcome this phenomenon. The aim of our study was to design and characterize a synthetic anionophore, LAI-1, that would be able to efficiently disrupt lysosomal activity, leading to autophagy blockage, one of the most important resistance mechanisms in cancer cells. We confirmed that LAI-1 selectively localized in lysosomes, deacidifying them. This effect produced a blockage of autophagy, characterized by an abrogation of autophagosomes and lysosomes fusion. Moreover, LAI-1 produced cell death in lung cancer cells from different histological subtypes, inducing cytotoxicity more efficiently than other known autophagy inhibitors. Finally, LAI-1 was evaluated in combination therapy, showing sensitization to the first-line chemotherapeutic agent cisplatin. Altogether, LAI-1 is a novel late-stage autophagy inhibitor with potential therapeutic applications in tumors with cytoprotective autophagy. Abstract Overcoming resistance is one of the most challenging features in current anticancer therapy. Autophagy is a cellular process that confers resistance in some advanced tumors, since it enables cancer cells to adapt to stressful situations, such as anticancer treatments. Hence, the inhibition of this cytoprotective autophagy leads to tumor cells sensitization and death. In this regard, we designed a novel potent anionophore compound that specifically targets lysosomes, called LAI-1 (late-stage autophagy inhibitor-1), and evaluated its role in blocking autophagy and its potential anticancer effects in three lung cancer cell lines from different histological subtypes. Compared to other autophagy inhibitors, such as chloroquine and 3-Methyladenine, the LAI-1 treatment induced more potent anticancer effects in all tested cancer cells. LAI-1 was able to efficiently target and deacidify lysosomes, while acidifying cytoplasmic pH. Consequently, LAI-1 efficiently blocked autophagy, indicated by the increased LC3-II/I ratio and p62/SQSTM1 levels. Moreover, no colocalization was observed between autophagosomes, marked with LC3 or p62/SQSTM1, and lysosomes, stained with LAMP-1, after the LAI-1 treatment, indicating the blockage of autophagolysosome formation. Furthermore, LAI-1 induced cell death by activating apoptosis (enhancing the cleavage of caspase-3 and PARP) or necrosis, depending on the cancer cell line. Finally, LAI-1 sensitized cancer cells to the first-line chemotherapeutic agent cisplatin. Altogether, LAI-1 is a new late-stage autophagy inhibitor that causes lysosomal dysfunction and the blockage of autophagolysosome formation, as well as potently induces cancer cell death and sensitization to conventional treatments at lower concentrations than other known autophagy inhibitors, appearing as a potential new therapeutic approach to overcome cancer resistance.
Collapse
|
8
|
Wezenberg SJ, Chen LJ, Bos JE, Feringa BL, Howe ENW, Wu X, Siegler MA, Gale PA. Photomodulation of Transmembrane Transport and Potential by Stiff-Stilbene Based Bis(thio)ureas. J Am Chem Soc 2022; 144:331-338. [PMID: 34932344 PMCID: PMC8759083 DOI: 10.1021/jacs.1c10034] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 12/14/2022]
Abstract
Membrane transport proteins fulfill important regulatory functions in biology with a common trait being their ability to respond to stimuli in the environment. Various small-molecule receptors, capable of mediating transmembrane transport, have been successfully developed. However, to confer stimuli-responsiveness on them poses a fundamental challenge. Here we demonstrate photocontrol of transmembrane transport and electric potential using bis(thio)ureas derived from stiff-stilbene. UV-vis and 1H NMR spectroscopy are used to monitor E-Z photoisomerization of these bis(thio)ureas and 1H NMR titrations reveal stronger binding of chloride to the (Z)-form than to the (E)-form. Additional insight into the binding properties is provided by single crystal X-ray crystallographic analysis and DFT geometry optimization. Importantly, the (Z)-isomers are much more active in transmembrane transport than the respective (E)-isomers as shown through various assays. As a result, both membrane transport and depolarization can be modulated upon irradiation, opening up new prospects toward light-based therapeutics as well as physiological and optopharmacological tools for studying anion transport-associated diseases and to stimulate neuronal activity, respectively.
Collapse
Affiliation(s)
- Sander J. Wezenberg
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Li-Jun Chen
- School
of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Jasper E. Bos
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ethan N. W. Howe
- School
of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Xin Wu
- School
of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Philip A. Gale
- School
of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
- The
University of Sydney Nano Institute (SydneyNano), The University of
Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
9
|
Mitra S, Prova SR, Sultana SA, Das R, Nainu F, Emran TB, Tareq AM, Uddin MS, Alqahtani AM, Dhama K, Simal-Gandara J. Therapeutic potential of indole alkaloids in respiratory diseases: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153649. [PMID: 34325978 DOI: 10.1016/j.phymed.2021.153649] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Indole alkaloids are very promising for potential therapeutic purposes and appear to be particularly effective against respiratory diseases. Several experimental studies have been performed, both in vivo and in vitro, to evaluate the effectiveness of indole alkaloids for the management of respiratory disorders, including asthma, emphysema, tuberculosis, cancer, and pulmonary fibrosis. PURPOSE The fundamental objective of this review was to summarize the in-depth therapeutic potential of indole alkaloids against various respiratory disorders. STUDY DESIGN In addition to describing the therapeutic potential, this review also evaluates the toxicity of these alkaloids, which have been utilized for therapeutic benefits but have demonstrated toxic consequences. Some indole alkaloids, including scholaricine, 19-epischolaricine, vallesamine, and picrinine, which are derived from the plant Alstonia scholaris, have shown toxic effects in non-rodent models. METHODS This review also discusses clinical studies exploring the therapeutic efficacy of indole alkaloids, which have confirmed the promising benefits observed in vivo and in vitro. RESULTS The indole alkaloidal compounds have shown efficacy in subjects with respiratory diseases. CONCLUSION The available data established both preclinical and clinical studies confirm the potential of indole alkaloids to treat the respiratory disorders.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Shajuthi Rahman Prova
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Sifat Ara Sultana
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004 Ourense, Spain.
| |
Collapse
|
10
|
Multi-Smart and Scalable Bioligands-Free Nanomedical Platform for Intratumorally Targeted Tambjamine Delivery, a Difficult to Administrate Highly Cytotoxic Drug. Biomedicines 2021; 9:biomedicines9050508. [PMID: 34064518 PMCID: PMC8147975 DOI: 10.3390/biomedicines9050508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 01/05/2023] Open
Abstract
Cancer is one of the leading causes of mortality worldwide due, in part, to limited success of some current therapeutic approaches. The clinical potential of many promising drugs is restricted by their systemic toxicity and lack of selectivity towards cancer cells, leading to insufficient drug concentration at the tumor site. To overcome these hurdles, we developed a novel drug delivery system based on polyurea/polyurethane nanocapsules (NCs) showing pH-synchronized amphoteric properties that facilitate their accumulation and selectivity into acidic tissues, such as tumor microenvironment. We have demonstrated that the anticancer drug used in this study, a hydrophobic anionophore named T21, increases its cytotoxic activity in acidic conditions when nanoencapsulated, which correlates with a more efficient cellular internalization. A biodistribution assay performed in mice has shown that the NCs are able to reach the tumor and the observed systemic toxicity of the free drug is significantly reduced in vivo when nanoencapsulated. Additionally, T21 antitumor activity is preserved, accompanied by tumor mass reduction compared to control mice. Altogether, this work shows these NCs as a potential drug delivery system able to reach the tumor microenvironment, reducing the undesired systemic toxic effects. Moreover, these nanosystems are prepared under scalable methodologies and straightforward process, and provide tumor selectivity through a smart mechanism independent of targeting ligands.
Collapse
|
11
|
Pan M, Zheng Q, Yu Y, Ai H, Xie Y, Zeng X, Wang C, Liu L, Zhao M. Seesaw conformations of Npl4 in the human p97 complex and the inhibitory mechanism of a disulfiram derivative. Nat Commun 2021; 12:121. [PMID: 33402676 PMCID: PMC7785736 DOI: 10.1038/s41467-020-20359-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
p97, also known as valosin-containing protein (VCP) or Cdc48, plays a central role in cellular protein homeostasis. Human p97 mutations are associated with several neurodegenerative diseases. Targeting p97 and its cofactors is a strategy for cancer drug development. Despite significant structural insights into the fungal homolog Cdc48, little is known about how human p97 interacts with its cofactors. Recently, the anti-alcohol abuse drug disulfiram was found to target cancer through Npl4, a cofactor of p97, but the molecular mechanism remains elusive. Here, using single-particle cryo-electron microscopy (cryo-EM), we uncovered three Npl4 conformational states in complex with human p97 before ATP hydrolysis. The motion of Npl4 results from its zinc finger motifs interacting with the N domain of p97, which is essential for the unfolding activity of p97. In vitro and cell-based assays showed that the disulfiram derivative bis-(diethyldithiocarbamate)-copper (CuET) can bypass the copper transporter system and inhibit the function of p97 in the cytoplasm by releasing cupric ions under oxidative conditions, which disrupt the zinc finger motifs of Npl4, locking the essential conformational switch of the complex.
Collapse
Affiliation(s)
- Man Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yuanyuan Yu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Huasong Ai
- Tsinghua-Peking Center for Life Sciences, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yuan Xie
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Xin Zeng
- Peking-Tsinghua Center for Life Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Chu Wang
- Peking-Tsinghua Center for Life Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
12
|
Barros-Nepomuceno FWA, de Araújo Viana D, Pinheiro DP, de Cássia Evangelista de Oliveira F, Magalhães Ferreira J, R de Queiroz MG, Ma X, Cavalcanti BC, Pessoa C, Banwell MG. The Effects of the Alkaloid Tambjamine J on Mice Implanted with Sarcoma 180 Tumor Cells. ChemMedChem 2020; 16:420-428. [PMID: 32886437 DOI: 10.1002/cmdc.202000387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/18/2020] [Indexed: 12/12/2022]
Abstract
The tambjamines are a small group of bipyrrolic alkaloids that, collectively, display a significant range of biological activities including antitumor, antimicrobial and immunosuppressive properties. The key objective of the present study was to undertake preclinical assessments of tambjamine J (T-J) so as to determine its in vivo antitumor effects. To that end, sarcoma 180 cells were transplanted in mice and the impacts of the title compound then evaluated using a range of protocols including hematological, biochemical, histopathological, genotoxic and clastogenic assays. As a result it was established that this alkaloid has a significant therapeutic window and effectively reduces tumor growth (by 40 % and 79 % at doses of 10 and 20 mg/kg/day, respectively). In this regard it displays similar antitumor activity to the anticancer agent cyclophosphamide and alters animal weight in an analogous manner.
Collapse
Affiliation(s)
- Francisco Washington A Barros-Nepomuceno
- Institute of Health Sciences, University for International Integration of the Afro-Brazilian Lusophony, Acarape, 62.785-000, CE, Brazil.,Center for Research and Drug Development, Federal University of Ceará, Fortaleza, 60.430.275, CE, Brazil
| | - Daniel de Araújo Viana
- PATHOVET Laboratory, Pathological Anatomy and Veterinary Clinic, Fortaleza, 60.020.001, CE, Brazil
| | - Daniel Pascoalino Pinheiro
- Center for Research and Drug Development, Federal University of Ceará, Fortaleza, 60.430.275, CE, Brazil
| | | | - Jamile Magalhães Ferreira
- Institute of Health Sciences, University for International Integration of the Afro-Brazilian Lusophony, Acarape, 62.785-000, CE, Brazil.,Clinical and Toxicological Analysis Department, Faculty of Pharmacy, Odontology and Nursing, Federal University of Ceará, Fortaleza, 60.714.903, CE, Brazil
| | - Maria Goretti R de Queiroz
- Clinical and Toxicological Analysis Department, Faculty of Pharmacy, Odontology and Nursing, Federal University of Ceará, Fortaleza, 60.714.903, CE, Brazil
| | - Xinghua Ma
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bruno Coêlho Cavalcanti
- Center for Research and Drug Development, Federal University of Ceará, Fortaleza, 60.430.275, CE, Brazil
| | - Claudia Pessoa
- Center for Research and Drug Development, Federal University of Ceará, Fortaleza, 60.430.275, CE, Brazil
| | - Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT, 2601, Australia.,Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, 519070, Guangdong, China
| |
Collapse
|
13
|
Davis JT, Gale PA, Quesada R. Advances in anion transport and supramolecular medicinal chemistry. Chem Soc Rev 2020; 49:6056-6086. [PMID: 32692794 DOI: 10.1039/c9cs00662a] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in anion transport by synthetic supramolecular systems are discussed in this article. Developments in the design of discrete molecular carriers for anions and supramolecular anion channels are reviewed followed by an overview of the use of these systems in biological systems as putative treatments for diseases such as cystic fibrosis and cancer.
Collapse
Affiliation(s)
- Jeffery T Davis
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Philip A Gale
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia.
| | - Roberto Quesada
- Departmento de Química, Universidad de Burgos, 09001 Burgos, Spain.
| |
Collapse
|
14
|
Akhtar N, Pradhan N, Barik GK, Chatterjee S, Ghosh S, Saha A, Satpati P, Bhattacharyya A, Santra MK, Manna D. Quinine-Based Semisynthetic Ion Transporters with Potential Antiproliferative Activities. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25521-25533. [PMID: 32425038 DOI: 10.1021/acsami.0c01259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthetic ion transporters have attracted tremendous attention for their therapeutic potential against various ion-transport-related diseases, including cancer. Inspired by the structure and biological activities of natural products, we synthesized a small series of squaramide and thiourea derivatives of quinine and investigated their ion transport activities. The involvement of a quinuclidine moiety for the cooperative interactions of Cl- and H+ ions with the thiourea or squaramide moiety resulted in an effectual transport of these ions across membranes. The interference of ionic equilibrium by the potent Cl- ion carrier selectively induced cancer cell death by endorsing caspase-arbitrated apoptosis. In vivo assessment of the potent ionophore showed an efficient reduction in tumor growth with negligible immunotoxicity to other organs.
Collapse
Affiliation(s)
- Nasim Akhtar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nirmalya Pradhan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | | | - Soumya Chatterjee
- Department of Zoology, University of Calcutta, Kolkata, West Bengal 700019, India
| | - Suvankar Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Abhishek Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Priyadarshi Satpati
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | | | | | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
15
|
Dhuguru J, Skouta R. Role of Indole Scaffolds as Pharmacophores in the Development of Anti-Lung Cancer Agents. Molecules 2020; 25:E1615. [PMID: 32244744 PMCID: PMC7181244 DOI: 10.3390/molecules25071615] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of death in men and women worldwide, affecting millions of people. Between the two types of lung cancers, non-small cell lung cancer (NSCLC) is more common than small cell lung cancer (SCLC). Besides surgery and radiotherapy, chemotherapy is the most important method of treatment for lung cancer. Indole scaffold is considered one of the most privileged scaffolds in heterocyclic chemistry. Indole may serve as an effective probe for the development of new drug candidates against challenging diseases, including lung cancer. In this review, we will focus on discussing the existing indole based pharmacophores in the clinical and pre-clinical stages of development against lung cancer, along with the synthesis of some of the selected anti-lung cancer drugs. Moreover, the basic mechanism of action underlying indole based anti-lung cancer treatment, such as protein kinase inhibition, histone deacetylase inhibition, DNA topoisomerase inhibition, and tubulin inhibition will also be discussed.
Collapse
Affiliation(s)
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
16
|
From Seabed to Bedside: A Review on Promising Marine Anticancer Compounds. Biomolecules 2020; 10:biom10020248. [PMID: 32041255 PMCID: PMC7072248 DOI: 10.3390/biom10020248] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
The marine environment represents an outstanding source of antitumoral compounds and, at the same time, remains highly unexplored. Organisms living in the sea synthesize a wide variety of chemicals used as defense mechanisms. Interestingly, a large number of these compounds exert excellent antitumoral properties and have been developed as promising anticancer drugs that have later been approved or are currently under validation in clinical trials. However, due to the high need for these compounds, new methodologies ensuring its sustainable supply are required. Also, optimization of marine bioactives is an important step for their success in the clinical setting. Such optimization involves chemical modifications to improve their half-life in circulation, potency and tumor selectivity. In this review, we outline the most promising marine bioactives that have been investigated in cancer models and/or tested in patients as anticancer agents. Moreover, we describe the current state of development of anticancer marine compounds and discuss their therapeutic limitations as well as different strategies used to overcome these limitations. The search for new marine antitumoral agents together with novel identification and chemical engineering approaches open the door for novel, more specific and efficient therapeutic agents for cancer treatment.
Collapse
|
17
|
|
18
|
Martínez-García D, Pérez-Hernández M, Korrodi-Gregório L, Quesada R, Ramos R, Baixeras N, Pérez-Tomás R, Soto-Cerrato V. The Natural-Based Antitumor Compound T21 Decreases Survivin Levels through Potent STAT3 Inhibition in Lung Cancer Models. Biomolecules 2019; 9:biom9080361. [PMID: 31412593 PMCID: PMC6724027 DOI: 10.3390/biom9080361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide; hence novel treatments for this malignancy are eagerly needed. Since natural-based compounds represent a rich source of novel chemical entities in drug discovery, we have focused our attention on tambjamines, natural compounds isolated from marine invertebrates that have shown diverse pharmacological activities. Based on these structures, we have recently identified the novel indole-based tambjamine analog 21 (T21) as a promising antitumor agent, which modulates the expression of apoptotic proteins such as survivin. This antiapoptotic protein plays an important role in carcinogenesis and chemoresistance. In this work, we have elucidated the molecular mechanism by which the anticancer compound T21 exerts survivin inhibition and have validated this protein as a therapeutic target in different lung cancer models. T21 was able to reduce survivin protein levels in vitro by repressing its gene expression through the blockade of Janus kinase/Signal Transducer and Activator of Transcription-3 (JAK/STAT3)/survivin signaling pathway. Interestingly, this occurred even when the pathway was overstimulated with its ligand interleukin 6 (IL-6), which is frequently overexpressed in lung cancer patients who show poor clinical outcomes. Altogether, these results show T21 as a potent anticancer compound that effectively decreases survivin levels through STAT3 inhibition in lung cancer, appearing as a promising therapeutic drug for cancer treatment.
Collapse
Affiliation(s)
- David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Marta Pérez-Hernández
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Luís Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain
| | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, 09001 Burgos, Spain
| | - Ricard Ramos
- Department of Thoracic Surgery and University of Barcelona, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Núria Baixeras
- Department of Pathology, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| |
Collapse
|
19
|
Chatterjee S, Patra D, Chakraborti U, Sengupta D, Ghosh P, Basu A, Sadhukhan GC, Chowdhury KD. Association of p38MAPK-p53-Fas aggregation in S-allyl cysteine mediated regulation of hepatocarcinoma. ENVIRONMENTAL TOXICOLOGY 2019; 34:928-940. [PMID: 31067004 DOI: 10.1002/tox.22764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Bioactive components of dietary phytochemicals have been reported to possess antitumor activities. Evidences suggested key role of stress responsive p38MAPK in the induction of nutraceuticals mediated apoptosis in hepatocellular carcinoma (HCC). Current study demonstrated detailed molecular bagatelle associated with p38 MAPK mediated effective suppression of cell growth both in HepG2 and chemically induced liver carcinoma after S-allyl cysteine (SAC) treatment. SAC promoted p38MAPK activity responsible for p53 phosphorylation, its stabilization followed by nuclear translocation leading to induction in expression and oligomerization of Fas protein. Distinctive p38MAPK-p53 axis dependent Fas-FasL-FADD mediated caspase activities along with perturbed cell cycling became normalized with continuation of SAC treatment for another month to diethylnitrosamine induced liver carcinoma. Co-treatment with SB203580, the p38MAPK inhibitor, prevented pro-apoptotic effect of SAC by altering p53 phosphorylation and death inducing signaling complex conformation in HepG2 and induced HCC. Collectively study suggested significant contribution of p38MAPK-p53-DISC-Caspase pathway in the regulation of anti-neoplastic activity of SAC against HCC.
Collapse
Affiliation(s)
- Sujan Chatterjee
- Molecular Biology and Tissue Culture Laboratory, Department of Zoology, Vidyasagar College, Kolkata, West Bengal, India
| | - Debajyoti Patra
- Molecular Biology and Tissue Culture Laboratory, Department of Zoology, Vidyasagar College, Kolkata, West Bengal, India
| | - Udipta Chakraborti
- Department of Zoology, University of Kalyani, Kalyani, West Bengal, India
| | - Dipanwita Sengupta
- Department of Comprehensive Cancer Center, Ohio State University College of Medicine, Columbus, Ohio
| | - Pujita Ghosh
- Cyto-genetics Laboratory, Department of Zoology, Rammohon College, Kolkata, West Bengal, India
| | - Anupam Basu
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Bardhaman, West Bengal, India
| | | | - Kaustav Dutta Chowdhury
- Cyto-genetics Laboratory, Department of Zoology, Rammohon College, Kolkata, West Bengal, India
| |
Collapse
|
20
|
Salunke SB, Malla JA, Talukdar P. Phototriggered Release of a Transmembrane Chloride Carrier from an
o
‐Nitrobenzyl‐Linked Procarrier. Angew Chem Int Ed Engl 2019; 58:5354-5358. [DOI: 10.1002/anie.201900869] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Swati Bansi Salunke
- Chemistry DepartmentIndian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Javid Ahmad Malla
- Chemistry DepartmentIndian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Chemistry DepartmentIndian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
21
|
Mousavi SM, Zarei M, Hashemi SA, Babapoor A, Amani AM. A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1132-1148. [DOI: 10.1080/21691401.2019.1573824] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zarei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Salunke SB, Malla JA, Talukdar P. Phototriggered Release of a Transmembrane Chloride Carrier from an
o
‐Nitrobenzyl‐Linked Procarrier. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Swati Bansi Salunke
- Chemistry DepartmentIndian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Javid Ahmad Malla
- Chemistry DepartmentIndian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Chemistry DepartmentIndian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
23
|
Song M, Wang S, Wang Z, Fu Z, Zhou S, Cheng H, Liang Z, Deng X. Synthesis, antimicrobial and cytotoxic activities, and molecular docking studies of N-arylsulfonylindoles containing an aminoguanidine, a semicarbazide, and a thiosemicarbazide moiety. Eur J Med Chem 2019; 166:108-118. [DOI: 10.1016/j.ejmech.2019.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/19/2018] [Accepted: 01/15/2019] [Indexed: 01/01/2023]
|
24
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
25
|
Martínez-García D, Manero-Rupérez N, Quesada R, Korrodi-Gregório L, Soto-Cerrato V. Therapeutic strategies involving survivin inhibition in cancer. Med Res Rev 2018; 39:887-909. [PMID: 30421440 DOI: 10.1002/med.21547] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Survivin is a small protein that belongs to the inhibitor of apoptosis protein family. It is abundantly expressed in tumors compared with adult differentiated tissues, being associated with poor prognosis in many human neoplasms. This apoptotic inhibitor has a relevant role in both the promotion of cancer cell survival and in the inhibition of cell death. Consequently, aberrant survivin expression stimulates tumor progression and confers resistance to several therapeutic strategies in a variety of tumors. In fact, efficient survivin downregulation or inhibition results in spontaneous apoptosis or sensitization to chemotherapy and radiotherapy. Therefore, all these features make survivin an attractive therapeutic target to treat cancer. Currently, there are several survivin inhibitors under clinical evaluation, although more specific and efficient survivin inhibitors are being developed. Moreover, novel combination regimens targeting survivin together with other therapeutic approaches are currently being designed and assessed. In this review, recent progress in the therapeutic options targeting survivin for cancer treatment is analyzed. Direct survivin inhibitors and their current development status are explored. Besides, the major signaling pathways implicated in survivin regulation are described and different therapeutic approaches involving survivin indirect inhibition are evaluated. Finally, promising novel inhibitors under preclinical or clinical evaluation as well as challenges of developing survivin inhibitors as a new therapy for cancer treatment are discussed.
Collapse
Affiliation(s)
- David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Noemí Manero-Rupérez
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, Burgos, Spain
| | - Luís Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| |
Collapse
|
26
|
Marques I, Costa PMR, Q. Miranda M, Busschaert N, Howe ENW, Clarke HJ, Haynes CJE, Kirby IL, Rodilla AM, Pérez-Tomás R, Gale PA, Félix V. Full elucidation of the transmembrane anion transport mechanism of squaramides using in silico investigations. Phys Chem Chem Phys 2018; 20:20796-20811. [DOI: 10.1039/c8cp02576b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The anion carrier mechanism promoted by squaramide-based molecules has been elucidated by molecular dynamics and chloride efflux studies.
Collapse
Affiliation(s)
- Igor Marques
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- Aveiro
- Portugal
| | - Pedro M. R. Costa
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- Aveiro
- Portugal
| | - Margarida Q. Miranda
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- Aveiro
- Portugal
| | | | - Ethan N. W. Howe
- Chemistry
- University of Southampton
- Southampton
- UK
- School of Chemistry
| | | | | | | | - Ananda M. Rodilla
- University of Barcelona
- Faculty of Medicine
- Dept. Pathology and Experimental Therapeutics
- CCBRG
- Barcelona
| | - Ricardo Pérez-Tomás
- University of Barcelona
- Faculty of Medicine
- Dept. Pathology and Experimental Therapeutics
- CCBRG
- Barcelona
| | - Philip A. Gale
- Chemistry
- University of Southampton
- Southampton
- UK
- School of Chemistry
| | - Vítor Félix
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- Aveiro
- Portugal
| |
Collapse
|
27
|
Jowett LA, Howe ENW, Soto-Cerrato V, Van Rossom W, Pérez-Tomás R, Gale PA. Indole-based perenosins as highly potent HCl transporters and potential anti-cancer agents. Sci Rep 2017; 7:9397. [PMID: 28839192 PMCID: PMC5570892 DOI: 10.1038/s41598-017-09645-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/24/2017] [Indexed: 11/19/2022] Open
Abstract
Prodigiosin is one of the most potent anion transporters in lipid bilayer membranes reported to date. Inspired by the structure of this natural product, we have recently designed and synthesised a new class of H+/Cl− cotransporters named ‘perenosins’. Here we report a new library of indole-based perenosins and their anion transport properties. The new transporters demonstrated superior transmembrane transport efficiency when compared to other indole-based transporters, due to favourable encapsulating effects from the substituents on the perenosin backbone. Anion transport assays were used to determine the mechanism of chloride transport revealing that the compounds function as ‘strict’ HCl cotransporters. Cell viability studies showed that some compounds specifically trigger late-onset cell death after 72 h with a unique correlation to the position of alkyl chains on the perenosins. Further investigations of cell death mechanism showed a mixture of cell cycle arrest and apoptosis was responsible for the observed decrease in cell viability.
Collapse
Affiliation(s)
- Laura A Jowett
- School of Chemistry (F11), The University of Sydney, 2006, Sydney, NSW, Australia
| | - Ethan N W Howe
- School of Chemistry (F11), The University of Sydney, 2006, Sydney, NSW, Australia
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Cancer Cell Biology Research Group, University of Barcelona, Barcelona, Spain
| | - Wim Van Rossom
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Cancer Cell Biology Research Group, University of Barcelona, Barcelona, Spain
| | - Philip A Gale
- School of Chemistry (F11), The University of Sydney, 2006, Sydney, NSW, Australia.
| |
Collapse
|
28
|
Song MX, Li SH, Peng JY, Guo TT, Xu WH, Xiong SF, Deng XQ. Synthesis and Bioactivity Evaluation of N-Arylsulfonylindole Analogs Bearing a Rhodanine Moiety as Antibacterial Agents. Molecules 2017; 22:molecules22060970. [PMID: 28613234 PMCID: PMC6152656 DOI: 10.3390/molecules22060970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 12/18/2022] Open
Abstract
Due to the rapidly growing bacterial resistance to antibiotics and the scarcity of novel agents under development, bacterial infections are still a pressing global problem, making new types of antibacterial agents, which are effective both alone and in combination with traditional antibiotics, urgently needed. In this paper, seven series of N-arylsulfonylindole analogs 5–11 bearing rhodanine moieties were synthesized, characterized, and evaluated for antibacterial activity. According to the in vitro antimicrobial results, half of the synthesized compounds showed potent inhibition against four Gram-positive bacteria, with MIC values in the range of 0.5–8 µg/mL. For multidrug-resistant strains, compounds 6a and 6c were the most potent, with MIC values of 0.5 µg/mL, having comparable activity to gatifloxacin, moxiflocaxin and norfloxacin and being 128-fold more potent than oxacillin (MIC = 64 µg/mL) and 64-fold more active than penicillin (MIC = 32 µg/mL) against Staphylococcus aureusATCC 43300.
Collapse
Affiliation(s)
- Ming-Xia Song
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Song-Hui Li
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Jiao-Yang Peng
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Ting-Ting Guo
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Wen-Hui Xu
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Shao-Feng Xiong
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Xian-Qing Deng
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| |
Collapse
|