1
|
Li X, Mamouni K, Zhao R, Bai L, Chen Y, Wu Y, Xie ZR, Sautto GA, Liu D, Bowen NJ, Danaher A, Li D, Cook N, Grayson S, Zhu J, Coleman IM, Nelson PS, Bao Q, Zhou J, Osunkoya AO, Kucuk O, Gera L, Wu D. Novel Skp1 inhibitor has potent preclinical efficacy against castration-resistant prostate cancer. Br J Cancer 2025:10.1038/s41416-025-02993-8. [PMID: 40253488 DOI: 10.1038/s41416-025-02993-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/01/2025] [Accepted: 03/21/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Metastatic, castration-resistant prostate cancer (mCRPC) directly contributes to the mortality and morbidity of prostate cancer. It is imperative to identify new molecular targets and discover effective therapeutic agents against lethal mCRPC. METHODS The anticancer activities and mechanism of action of the small-molecule lead compound were investigated in preclinical models of human prostate cancer. Immunohistochemistry was employed to determine the expression of S-phase kinase-associated protein 1 (Skp1) in human prostate tissues. RESULTS GH501 demonstrates nanomolar potency in the NCI-60 human cancer cell panel and multiple mCRPC cell lines with diverse genetic backgrounds, including those resistant to androgen deprivation therapy drugs. Mechanistically, GH501 may bind Skp1 and disrupt the physical interaction between Skp1 and S-phase kinase-associated protein 2 (Skp2) within the Skp1-Cullin1-F-box protein ubiquitin ligase complexes (SCF), thereby affecting multiple oncogenic signals implicated in mCRPC progression, including p21, p27, β-catenin, cyclin D1, enhancer of zeste homolog 2 (EZH2), c-Myc, and survivin. GH501 exhibits excellent in vitro and in vivo safety pharmacology, and GH501 monotherapy effectively inhibits the in vivo growth of cell- and patient-derived xenografts in intraosseous and subcutaneous models. Skp1 expression is significantly increased in human prostate cancer specimens. CONCLUSION These results indicate that interrupting Skp1-Skp2 interaction is an effective approach to target mCRPC and warrant further preclinical development of GH501 as a promising therapeutic candidate.
Collapse
Affiliation(s)
- Xin Li
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kenza Mamouni
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rui Zhao
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lijuan Bai
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanhua Chen
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yifei Wu
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Zhong-Ru Xie
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port St, Lucie, FL, USA
| | | | - Nathan J Bowen
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Alira Danaher
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Dehong Li
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Nicholas Cook
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Skylar Grayson
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Jedidiah Zhu
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Qichao Bao
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Adeboye O Osunkoya
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Omer Kucuk
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Lajos Gera
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, School of Medicine, Aurora, CO, USA.
- MetCure Therapeutics LLC, Atlanta, GA, USA.
| | - Daqing Wu
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA.
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA.
- MetCure Therapeutics LLC, Atlanta, GA, USA.
| |
Collapse
|
2
|
Zhong R, Xu Z, Zhang S, Zeng M, Li H, Liu S, Lin S. Development of novel bisphenol derivatives with a membrane-targeting mechanism as potent gram-positive antibacterial agents. Eur J Med Chem 2024; 274:116544. [PMID: 38850855 DOI: 10.1016/j.ejmech.2024.116544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Antibiotic resistance is becoming increasingly severe. The development of small molecular antimicrobial peptides is regarded as a promising design strategy for antibiotics. Here, a series of bisphenol derivatives with amphiphilic structures were designed and synthesized as antibacterial agents by imitating the design strategy of antimicrobial peptides. After a series of structural optimizations, lead compound 43 was identified, which exhibited excellent antibacterial activity against Gram-positive bacterial strains (MICs = 0.78-1.56 μg/mL), poor hemolytic activity (HC50 > 200 μg/mL), and low cytotoxicity (CC50 > 100 μg/mL). Further biological evaluation results indicated that 43 exerted antibacterial effects by directly destroying bacterial cell membranes and displayed rapid bactericidal properties (within 0.5-1 h), leading to a very low probability of drug resistance. Moreover, in a murine model of corneal infection, 43 exhibited a strong in vivo antibacterial efficacy. These findings indicate that 43 is a promising candidate compound for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Rongcui Zhong
- Affiliated Qingyuan Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zikai Xu
- Affiliated Qingyuan Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shujun Zhang
- Affiliated Qingyuan Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Minghui Zeng
- Affiliated Qingyuan Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haizhou Li
- Affiliated Qingyuan Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shouping Liu
- Affiliated Qingyuan Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Shuimu Lin
- Affiliated Qingyuan Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
3
|
Liadi YM, Campbell T, Hwang BJ, Elliott B, Odero-Marah V. High Mobility Group AT-hook 2: A Biomarker Associated with Resistance to Enzalutamide in Prostate Cancer Cells. Cancers (Basel) 2024; 16:2631. [PMID: 39123360 PMCID: PMC11311100 DOI: 10.3390/cancers16152631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Metastatic prostate cancer (mPCa) is a leading cause of mortality, partly due to its resistance to anti-androgens like enzalutamide. Snail can promote this resistance by increasing full-length AR and AR-V7. High Mobility Group AT-hook 2 (HMGA2), a DNA-binding protein upstream of Snail, is crucial in proliferation and epithelial-mesenchymal transition (EMT). This study examines HMGA2's role in enzalutamide resistance. LNCaP and 22Rv1 cells overexpressing wild-type HMGA2, but not truncated HMGA2, showed EMT. Both variants led to a decreased sensitivity to enzalutamide but not alisertib compared to Neo control cells. The overexpression of HMGA2 did not alter AR expression. Enzalutamide-resistant C4-2B cells (C4-2B MDVR) had higher HMGA2 and AR/AR variant expression than enzalutamide-sensitive C4-2B cells but remained sensitive to alisertib. The HMGA2 knockdown in C4-2B MDVR cells increased sensitivity to both enzalutamide and alisertib without changing AR expression. A clinical analysis via cBioPortal revealed HMGA2 alterations in 3% and AR alterations in 59% of patients. The HMGA2 changes were linked to treatments like enzalutamide, abiraterone, or alisertib, with amplifications more prevalent in bone, lymph node, and liver metastases. Conclusively, HMGA2 is a potential biomarker for enzalutamide resistance in mPCa, independent of Snail and AR signaling, and alisertib may be an effective treatment for mPCa that expresses HMGA2.
Collapse
Affiliation(s)
- Yusuf Mansur Liadi
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
- Department of Biology, Umaru Musa Yar’adua University, Katsina 820102, Nigeria
| | - Taaliah Campbell
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA;
| | - Bor-Jang Hwang
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
| | - Bethtrice Elliott
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
| | - Valerie Odero-Marah
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
| |
Collapse
|
4
|
Nazir SU, Mishra J, Maurya SK, Ziamiavaghi N, Bodas S, Teply BA, Dutta S, Datta K. Deciphering the genetic and epigenetic architecture of prostate cancer. Adv Cancer Res 2024; 161:191-221. [PMID: 39032950 DOI: 10.1016/bs.acr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer, one of the most frequently diagnosed cancers in men, leads to significant mortality worldwide. Its study is important due to the complexity and diversity in its progression, highlighting the urgent need for improved therapeutic strategies. This chapter probes into the genetic and epigenetic factors influencing prostate cancer progression, underscoring the importance of understanding the disease's molecular fundamentals for the development of targeted therapies. It specifically reviews the role of key genetic mutations in genes such as Androgen Receptor, TP53, SPOP, FOXA1 and PTEN which are crucial for the disease onset and a progression. Furthermore, it examines the impact of epigenetic modifications, including DNA methylation and histone modification, which contribute to the cancer's progression by affecting gene expression and cellular behavior. Further, in this chapter we delve into the underlying signaling mechanism, the advancements in targeting genetic and epigenetic alterations in prostate cancer. These findings have revealed promising targets for therapeutic advancements, aiming to understand and identify promising avenues for future therapies. This chapter improves our current understanding of prostate cancer genetic and epigenetic landscape, emphasizing the necessity of advancing our knowledge to refine and expand treatment options for prostate cancer patients.
Collapse
Affiliation(s)
- Sheeraz Un Nazir
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Negin Ziamiavaghi
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Sanika Bodas
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Benjamin A Teply
- Internal Medicine, Division of Oncology & Hematology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
5
|
Cho CC, Lin CJ, Huang HH, Yang WZ, Fei CY, Lin HY, Lee MS, Yuan HS. Mechanistic Insights into Harmine-Mediated Inhibition of Human DNA Methyltransferases and Prostate Cancer Cell Growth. ACS Chem Biol 2023; 18:1335-1350. [PMID: 37188336 PMCID: PMC10278071 DOI: 10.1021/acschembio.3c00065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Mammalian DNA methyltransferases (DNMTs), including DNMT1, DNMT3A, and DNMT3B, are key DNA methylation enzymes and play important roles in gene expression regulation. Dysregulation of DNMTs is linked to various diseases and carcinogenesis, and therefore except for the two approved anticancer azanucleoside drugs, various non-nucleoside DNMT inhibitors have been identified and reported. However, the underlying mechanisms for the inhibitory activity of these non-nucleoside inhibitors still remain largely unknown. Here, we systematically tested and compared the inhibition activities of five non-nucleoside inhibitors toward the three human DNMTs. We found that harmine and nanaomycin A blocked the methyltransferase activity of DNMT3A and DNMT3B more efficiently than resveratrol, EGCG, and RG108. We further determined the crystal structure of harmine in complex with the catalytic domain of the DNMT3B-DNMT3L tetramer revealing that harmine binds at the adenine cavity of the SAM-binding pocket in DNMT3B. Our kinetics assays confirm that harmine competes with SAM to competitively inhibit DNMT3B-3L activity with a Ki of 6.6 μM. Cell-based studies further show that harmine treatment inhibits castration-resistant prostate cancer cell (CRPC) proliferation with an IC50 of ∼14 μM. The CPRC cells treated with harmine resulted in reactivating silenced hypermethylated genes compared to the untreated cells, and harmine cooperated with an androgen antagonist, bicalutamide, to effectively inhibit the proliferation of CRPC cells. Our study thus reveals, for the first time, the inhibitory mechanism of harmine on DNMTs and highlights new strategies for developing novel DNMT inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Chao-Cheng Cho
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
| | - Chun-Jung Lin
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Hsun-Ho Huang
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Wei-Zen Yang
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
| | - Cheng-Yin Fei
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
| | - Hsin-Ying Lin
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Ming-Shyue Lee
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Hanna S. Yuan
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| |
Collapse
|
6
|
Congregado Ruiz B, Rivero Belenchón I, Lendínez Cano G, Medina López RA. Strategies to Re-Sensitize Castration-Resistant Prostate Cancer to Antiandrogen Therapy. Biomedicines 2023; 11:biomedicines11041105. [PMID: 37189723 DOI: 10.3390/biomedicines11041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Since prostate cancer (PCa) was described as androgen-dependent, the androgen receptor (AR) has become the mainstay of its systemic treatment: androgen deprivation therapy (ADT). Although, through recent years, more potent drugs have been incorporated, this chronic AR signaling inhibition inevitably led the tumor to an incurable phase of castration resistance. However, in the castration-resistant status, PCa cells remain highly dependent on the AR signaling axis, and proof of it is that many men with castration-resistant prostate cancer (CRPC) still respond to newer-generation AR signaling inhibitors (ARSis). Nevertheless, this response is limited in time, and soon, the tumor develops adaptive mechanisms that make it again nonresponsive to these treatments. For this reason, researchers are focused on searching for new alternatives to control these nonresponsive tumors, such as: (1) drugs with a different mechanism of action, (2) combination therapies to boost synergies, and (3) agents or strategies to resensitize tumors to previously addressed targets. Taking advantage of the wide variety of mechanisms that promote persistent or reactivated AR signaling in CRPC, many drugs explore this last interesting behavior. In this article, we will review those strategies and drugs that are able to resensitize cancer cells to previously used treatments through the use of "hinge" treatments with the objective of obtaining an oncological benefit. Some examples are: bipolar androgen therapy (BAT) and drugs such as indomethacin, niclosamide, lapatinib, panobinostat, clomipramine, metformin, and antisense oligonucleotides. All of them have shown, in addition to an inhibitory effect on PCa, the rewarding ability to overcome acquired resistance to antiandrogenic agents in CRPC, resensitizing the tumor cells to previously used ARSis.
Collapse
Affiliation(s)
- Belén Congregado Ruiz
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Inés Rivero Belenchón
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Guillermo Lendínez Cano
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Rafael Antonio Medina López
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| |
Collapse
|
7
|
Chandrasekaran B, Tapadar S, Wu B, Saran U, Tyagi A, Johnston A, Gaul DA, Oyelere AK, Damodaran C. Antiandrogen-Equipped Histone Deacetylase Inhibitors Selectively Inhibit Androgen Receptor (AR) and AR-Splice Variant (AR-SV) in Castration-Resistant Prostate Cancer (CRPC). Cancers (Basel) 2023; 15:1769. [PMID: 36980655 PMCID: PMC10046692 DOI: 10.3390/cancers15061769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Epigenetic modification influences androgen receptor (AR) activation, often resulting in prostate cancer (PCa) development and progression. Silencing histone-modifying enzymes (histone deacetylases-HDACs) either genetically or pharmacologically suppresses PCa proliferation in preclinical models of PCa; however, results from clinical studies were not encouraging. Similarly, PCa patients eventually become resistant to androgen ablation therapy (ADT). Our goal is to develop dual-acting small molecules comprising antiandrogen and HDAC-inhibiting moieties that may overcome the resistance of ADT and effectively suppress the growth of castration-resistant prostate cancer (CRPC). METHODS Several rationally designed antiandrogen-equipped HDAC inhibitors (HDACi) were synthesized, and their efficacy on CRPC growth was examined both in vitro and in vivo. RESULTS While screening our newly developed small molecules, we observed that SBI-46 significantly inhibited the proliferation of AR+ CRPC cells but not AR- CRPC and normal immortalized prostate epithelial cells (RWPE1) or normal kidney cells (HEK-293 and VERO). Molecular analysis confirmed that SBI-46 downregulated the expressions of both AR+ and AR-splice variants (AR-SVs) in CRPC cells. Further studies revealed the downregulation of AR downstream (PSA) events in CRPC cells. The oral administration of SBI-46 abrogated the growth of C4-2B and 22Rv1 CRPC xenograft tumors that express AR or both AR and AR-SV in xenotransplanted nude mice models. Further, immunohistochemical analysis confirmed that SBI-46 inhibits AR signaling in xenografted tumor tissues. CONCLUSION These results demonstrate that SBI-46 is a potent agent that inhibits preclinical models of CRPC by downregulating the expressions of both AR and AR-SV. Furthermore, these results suggest that SBI-46 may be a potent compound for treating CRPC.
Collapse
Affiliation(s)
| | - Subhasish Tapadar
- Parker H. Petit Institute for Bioengineering & Biosciences, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Bocheng Wu
- Parker H. Petit Institute for Bioengineering & Biosciences, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Uttara Saran
- Rangel School of Pharmacy, Texas A&M University, College Station, TX 77845, USA
| | - Ashish Tyagi
- Rangel School of Pharmacy, Texas A&M University, College Station, TX 77845, USA
| | - Alexis Johnston
- Parker H. Petit Institute for Bioengineering & Biosciences, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - David A. Gaul
- Parker H. Petit Institute for Bioengineering & Biosciences, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Adegboyega K. Oyelere
- Parker H. Petit Institute for Bioengineering & Biosciences, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Chendil Damodaran
- Rangel School of Pharmacy, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
8
|
Xu P, Yang JC, Ning S, Chen B, Nip C, Wei Q, Liu L, Johnson OT, Gao AC, Gestwicki JE, Evans CP, Liu C. Allosteric inhibition of HSP70 in collaboration with STUB1 augments enzalutamide efficacy in antiandrogen resistant prostate tumor and patient-derived models. Pharmacol Res 2023; 189:106692. [PMID: 36773708 PMCID: PMC10162009 DOI: 10.1016/j.phrs.2023.106692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Ubiquitin proteasome activity is suppressed in enzalutamide resistant prostate cancer cells, and the heat shock protein 70/STIP1 homology and U-box-containing protein 1 (HSP70/STUB1) machinery are involved in androgen receptor (AR) and AR variant protein stabilization. Targeting HSP70 could be a viable strategy to overcome resistance to androgen receptor signaling inhibitor (ARSI) in advanced prostate cancer. Here, we showed that a novel HSP70 allosteric inhibitor, JG98, significantly suppressed drug-resistant C4-2B MDVR and CWR22Rv1 cell growth, and enhanced enzalutamide treatment. JG98 also suppressed cell growth in conditional reprogramed cell cultures (CRCs) and organoids derived from advanced prostate cancer patient samples. Mechanistically, JG98 degraded AR/AR-V7 expression in resistant cells and promoted STUB1 nuclear translocation to bind AR-V7. Knockdown of the E3 ligase STUB1 significantly diminished the anticancer effects and partially restored AR-V7 inhibitory effects of JG98. JG231, a more potent analog developed from JG98, effectively suppressed the growth of the drug-resistant prostate cancer cells, CRCs, and organoids. Notably, the combination of JG231 and enzalutamide synergistically inhibited AR/AR-V7 expression and suppressed CWR22Rv1 xenograft tumor growth. Inhibition of HSP70 using novel small-molecule inhibitors coordinates with STUB1 to regulate AR/AR-V7 protein stabilization and ARSI resistance.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Joy C Yang
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Shu Ning
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Bo Chen
- Department of Urologic Surgery, University of California, Davis, CA, USA; Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Christopher Nip
- Department of Urologic Surgery, University of California, Davis, CA, USA
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Liangren Liu
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Oleta T Johnson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, CA, USA; University of California, Davis Comprehensive Cancer Center, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Christopher P Evans
- Department of Urologic Surgery, University of California, Davis, CA, USA; University of California, Davis Comprehensive Cancer Center, CA, USA
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, CA, USA; University of California, Davis Comprehensive Cancer Center, CA, USA.
| |
Collapse
|
9
|
Yang JC, Xu P, Ning S, Wasielewski LJ, Adomat H, Hwang SH, Morisseau C, Gleave M, Corey E, Gao AC, Lara PN, Evans CP, Hammock BD, Liu C. Novel inhibition of AKR1C3 and androgen receptor axis by PTUPB synergizes enzalutamide treatment in advanced prostate cancer. Oncogene 2023; 42:693-707. [PMID: 36596844 PMCID: PMC9975039 DOI: 10.1038/s41388-022-02566-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023]
Abstract
Castration-resistant prostate cancer (CRPC) is the main driving force of mortality in prostate cancer patients. Among the parameters contributing to the progression of CRPC and treatment failure, elevation of the steroidogenic enzyme AKR1C3 and androgen receptor variant 7 (AR-V7) are frequently reported. The AKR1C3/AR-V7 complex has been recognized as a major driver for drug resistance in advanced prostate cancer. Herein we report that the level of AKR1C3 is reciprocally regulated by the full-length androgen receptor (AR-FL) through binding to the distal enhancer region of the AKR1C3 gene. A novel function of PTUPB in AKR1C3 inhibition was discovered and PTUPB showed more effectiveness than indomethacin and celecoxib in suppressing AKR1C3 activity and CRPC cell growth. PTUPB synergizes with enzalutamide treatment in tumor suppression and gene signature regulation. Combination treatments with PTUPB and enzalutamide provide benefits by blocking AR/AR-V7 signaling, which inhibits the growth of castration relapsed VCaP xenograft tumors and patient-derived xenograft organoids. Targeting of the ARK1C3/AR/AR-V7 axis with PTUPB and enzalutamide may overcome drug resistance to AR signaling inhibitors in advanced prostate cancer.
Collapse
Affiliation(s)
- Joy C Yang
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Pengfei Xu
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Shu Ning
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Logan J Wasielewski
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Hans Adomat
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sung Hee Hwang
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - Martin Gleave
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Eva Corey
- Department of Urology, University of Washington, Washington, WA, USA
| | - Allen C Gao
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Primo N Lara
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Christopher P Evans
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Chengfei Liu
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA.
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
10
|
Lin Y, Tan H, Yu G, Zhan M, Xu B. Molecular Mechanisms of Noncoding RNA in the Occurrence of Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24021305. [PMID: 36674820 PMCID: PMC9860629 DOI: 10.3390/ijms24021305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Although several therapeutic options have been shown to improve survival of most patients with prostate cancer, progression to castration-refractory state continues to present challenges in clinics and scientific research. As a highly heterogeneous disease entity, the mechanisms of castration-resistant prostate cancer (CRPC) are complicated and arise from multiple factors. Among them, noncoding RNAs (ncRNAs), the untranslated part of the human transcriptome, are closely related to almost all biological regulation, including tumor metabolisms, epigenetic modifications and immune escape, which has encouraged scientists to investigate their role in CRPC. In clinical practice, ncRNAs, especially miRNAs and lncRNAs, may function as potential biomarkers for diagnosis and prognosis of CRPC. Therefore, understanding the molecular biology of CRPC will help boost a shift in the treatment of CRPC patients. In this review, we summarize the recent findings of miRNAs and lncRNAs, discuss their potential functional mechanisms and highlight their clinical application prospects in CRPC.
Collapse
Affiliation(s)
- Yu Lin
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| |
Collapse
|
11
|
Li Y, Wang H, Pan Y, Wang S, Zhang Z, Zhou H, Xu M, Liu X. Identification of bicalutamide resistance-related genes and prognosis prediction in patients with prostate cancer. Front Endocrinol (Lausanne) 2023; 14:1125299. [PMID: 37143720 PMCID: PMC10151815 DOI: 10.3389/fendo.2023.1125299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/30/2023] [Indexed: 05/06/2023] Open
Abstract
Background Prostate cancer (PCa) is the second most common type of cancer and the fifth leading cause of cancer-related death in men. Androgen deprivation therapy (ADT) has become the first-line therapy for inhibiting PCa progression; however, nearly all patients receiving ADT eventually progress to castrate-resistant prostate cancer. Therefore, this study aimed to identify hub genes related to bicalutamide resistance in PCa and provide new insights into endocrine therapy resistance. Methods The data were obtained from public databases. Weighted correlation network analysis was used to identify the gene modules related to bicalutamide resistance, and the relationship between the samples and disease-free survival was analyzed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed, and hub genes were identified. The LASSO algorithm was used to develop a bicalutamide resistance prognostic model in patients with PCa, which was then verified. Finally, we analyzed the tumor mutational heterogeneity and immune microenvironment in both groups. Results Two drug resistance gene modules were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that both modules are involved in RNA splicing. The protein-protein interaction network identified 10 hub genes in the brown module LUC7L3, SNRNP70, PRPF3, LUC7L, CLASRP, CLK1, CLK2, U2AF1L4, NXF1, and THOC1) and 13 in the yellow module (PNN, PPWD1, SRRM2, DHX35, DMTF1, SALL4, MTA1, HDAC7, PHC1, ACIN1, HNRNPH1, DDX17, and HDAC6). The prognostic model composed of RNF207, REC8, DFNB59, HOXA2, EPOR, PILRB, LSMEM1, TCIRG1, ABTB1, ZNF276, ZNF540, and DPY19L2 could effectively predict patient prognosis. Genomic analysis revealed that the high- and low-risk groups had different mutation maps. Immune infiltration analysis showed a statistically significant difference in immune infiltration between the high- and low-risk groups, and that the high-risk group may benefit from immunotherapy. Conclusion In this study, bicalutamide resistance genes and hub genes were identified in PCa, a risk model for predicting the prognosis of patients with PCa was constructed, and the tumor mutation heterogeneity and immune infiltration in high- and low-risk groups were analyzed. These findings offer new insights into ADT resistance targets and prognostic prediction in patients with PCa.
Collapse
|
12
|
Wang Z, Ren J, Du J, Wang H, Liu J, Wang G. Niclosamide as a Promising Therapeutic Player in Human Cancer and Other Diseases. Int J Mol Sci 2022; 23:16116. [PMID: 36555754 PMCID: PMC9782559 DOI: 10.3390/ijms232416116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Niclosamide is an FDA-approved anthelmintic drug for the treatment of parasitic infections. However, over the past few years, increasing evidence has shown that niclosamide could treat diseases beyond parasitic diseases, which include metabolic diseases, immune system diseases, bacterial and viral infections, asthma, arterial constriction, myopia, and cancer. Therefore, we systematically reviewed the pharmacological activities and therapeutic prospects of niclosamide in human disease and cancer and summarized the related molecular mechanisms and signaling pathways, indicating that niclosamide is a promising therapeutic player in various human diseases, including cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
13
|
Ren J, Wang B, Wu Q, Wang G. Combination of niclosamide and current therapies to overcome resistance for cancer: New frontiers for an old drug. Biomed Pharmacother 2022; 155:113789. [DOI: 10.1016/j.biopha.2022.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022] Open
|
14
|
The Crucial Role of AR-V7 in Enzalutamide-Resistance of Castration-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14194877. [PMID: 36230800 PMCID: PMC9563243 DOI: 10.3390/cancers14194877] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Androgen receptor splice variant 7 (AR-V7) has always been considered a key driver for triggering enzalutamide resistance of castration-resistant prostate cancer (CRPC). In recent years, both the homeostasis of AR-V7 protein and AR-V7’s relationship with LncRNAs have gained great attention with in-depth studies. Starting from protein stability and LncRNA, the paper discusses and summarizes the mechanisms and drugs that affect the CRPC patients’ sensitivity to enzalutamide by regulating the protein or transcriptional stability of AR-V7, hoping to provide therapeutic ideas for subsequent research to break through the CRPC therapeutic bottleneck. Abstract Prostate cancer (PCa) has the second highest incidence of malignancies occurring in men worldwide. The first-line therapy of PCa is androgen deprivation therapy (ADT). Nonetheless, most patients progress to castration-resistant prostate cancer (CRPC) after being treated by ADT. As a second-generation androgen receptor (AR) antagonist, enzalutamide (ENZ) is the current mainstay of new endocrine therapies for CRPC in clinical use. However, almost all patients develop resistance during AR antagonist therapy due to various mechanisms. At present, ENZ resistance (ENZR) has become challenging in the clinical treatment of CRPC. AR splice variant 7 (AR-V7) refers to a ligand-independent and constitutively active variant of the AR and is considered a key driver of ENZR in CRPC. In this review, we summarize the mechanisms and biological behaviors of AR-V7 in ENZR of CRPC to contribute novel insights for CRPC therapy.
Collapse
|
15
|
Bochner E, Gold S, Raj GV. Emerging hormonal agents for the treatment of prostate cancer. Expert Opin Emerg Drugs 2022; 27:301-309. [PMID: 36062456 DOI: 10.1080/14728214.2022.2121390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Prostate cancer is the most common solid organ malignancy in men in the United States. Until recently, treatment options for men with metastatic disease were limited and patients faced poor outcomes with minimal alternatives. The landscape of prostate cancer treatment has transformed and taken shape over the last 20 years with novel hormonal and non-hormonal therapeutics that have demonstrated significant improvement in survival. However, patients with advanced disease still face imminent progression on hormone blockade therapy. AREAS COVERED There is a significant market opportunity to devise novel, more potent agents for patients with hormone-resistant disease. Here we review the existing treatment options in men with advanced prostate cancer, the market opportunity within this field, goals of current research, and the novel agents under investigation, including androgen receptor degraders, testosterone synthesis pathway inhibitors, DNA-binding domain and N-terminal domain antagonists, and the combination of hormonal and non-hormonal agents. EXPERT OPINION Combination therapy regimens and novel agents targeting alternative binding domains of the androgen receptor are of great interest, as they may overcome resistance mechanisms and hold promise as the future of advanced prostate cancer treatment.
Collapse
Affiliation(s)
- Emily Bochner
- The Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Sam Gold
- The Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Ganesh V Raj
- The Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
16
|
Singh S, Weiss A, Goodman J, Fisk M, Kulkarni S, Lu I, Gray J, Smith R, Sommer M, Cheriyan J. Niclosamide-A promising treatment for COVID-19. Br J Pharmacol 2022; 179:3250-3267. [PMID: 35348204 PMCID: PMC9111792 DOI: 10.1111/bph.15843] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccines have reduced the transmission and severity of COVID-19, but there remains a paucity of efficacious treatment for drug-resistant strains and more susceptible individuals, particularly those who mount a suboptimal vaccine response, either due to underlying health conditions or concomitant therapies. Repurposing existing drugs is a timely, safe and scientifically robust method for treating pandemics, such as COVID-19. Here, we review the pharmacology and scientific rationale for repurposing niclosamide, an anti-helminth already in human use as a treatment for COVID-19. In addition, its potent antiviral activity, niclosamide has shown pleiotropic anti-inflammatory, antibacterial, bronchodilatory and anticancer effects in numerous preclinical and early clinical studies. The advantages and rationale for nebulized and intranasal formulations of niclosamide, which target the site of the primary infection in COVID-19, are reviewed. Finally, we give an overview of ongoing clinical trials investigating niclosamide as a promising candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Shivani Singh
- Division of Pulmonary and Critical Care MedicineNYU School of MedicineNew YorkNew YorkUSA
| | - Anne Weiss
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
- UNION Therapeutics Research ServicesHellerupDenmark
| | - James Goodman
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Marie Fisk
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Spoorthy Kulkarni
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Ing Lu
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Joanna Gray
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Rona Smith
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Cambridge Clinical Trials UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Morten Sommer
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
- UNION TherapeuticsHellerupDenmark
| | - Joseph Cheriyan
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Cambridge Clinical Trials UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| |
Collapse
|
17
|
Valdez L, Cheng B, Gonzalez D, Rodriguez R, Campano P, Tsin A, Fang X. Combined treatment with niclosamide and camptothecin enhances anticancer effect in U87 MG human glioblastoma cells. Oncotarget 2022; 13:642-658. [PMID: 35548329 PMCID: PMC9084225 DOI: 10.18632/oncotarget.28227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Laura Valdez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- These authors contributed equally to this work
| | - Benxu Cheng
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- These authors contributed equally to this work
| | - Daniela Gonzalez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Reanna Rodriguez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Paola Campano
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Andrew Tsin
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Xiaoqian Fang
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
18
|
Huang J, Lin B, Li B. Anti-Androgen Receptor Therapies in Prostate Cancer: A Brief Update and Perspective. Front Oncol 2022; 12:865350. [PMID: 35372068 PMCID: PMC8965587 DOI: 10.3389/fonc.2022.865350] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer is a major health issue in western countries and is the second leading cause of cancer death in American men. Prostate cancer depends on the androgen receptor (AR), a transcriptional factor critical for prostate cancer growth and progression. Castration by surgery or medical treatment reduces androgen levels, resulting in prostatic atrophy and prostate cancer regression. Thus, metastatic prostate cancers are initially managed with androgen deprivation therapy. Unfortunately, prostate cancers rapidly relapse after castration therapy and progress to a disease stage called castration-resistant prostate cancer (CRPC). Currently, clinical treatment for CRPCs is focused on suppressing AR activity with antagonists like Enzalutamide or by reducing androgen production with Abiraterone. In clinical practice, these treatments fail to yield a curative benefit in CRPC patients in part due to AR gene mutations or splicing variations, resulting in AR reactivation. It is conceivable that eliminating the AR protein in prostate cancer cells is a promising solution to provide a potential curative outcome. Multiple strategies have emerged, and several potent agents that reduce AR protein levels were reported to eliminate xenograft tumor growth in preclinical models via distinct mechanisms, including proteasome-mediated degradation, heat-shock protein inhibition, AR splicing suppression, blockage of AR nuclear localization, AR N-terminal suppression. A few small chemical compounds are undergoing clinical trials combined with existing AR antagonists. AR protein elimination by enhanced protein or mRNA degradation is a realistic solution for avoiding AR reactivation during androgen deprivation therapy in prostate cancers.
Collapse
Affiliation(s)
- Jian Huang
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Biyun Lin
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
19
|
A Simultaneous Liquid Chromatographic Analysis of Niclosamide and Bicalutamide in Rat Plasma by Protein Precipitation Extraction. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:678-686. [PMID: 34968480 DOI: 10.1016/j.pharma.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022]
|
20
|
Lithocholic acid-tryptophan conjugate (UniPR126) based mixed micelle as a nano carrier for specific delivery of niclosamide to prostate cancer via EphA2 receptor. Int J Pharm 2021; 605:120819. [PMID: 34166727 DOI: 10.1016/j.ijpharm.2021.120819] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Targeted delivery of chemotherapeutic agents is considered a prominent strategy for the treatment of cancer due to its site-specific delivery, augmented penetration, bioavailability, and improved therapeutic efficiency. In the present study, we employed UniPR126 as a carrier in a mixed nanomicellar delivery system to target and deliver anticancer drug NIC specifically to cancer cells via EphA2 receptors as these receptors are overexpressed in cancer cells but not in normal cells. The specificity of the carrier was confirmed from the significant enhancement in the uptake of coumarin-6 loaded mixed nanomicelle by EphA2 highly expressed PC-3 cells compared to EphA2 low expressed H4 cells. Further, niclosamide-loaded lithocholic acid tryptophan conjugate-based mixed nanomicelle has shown significant synergistic cytotoxicity in PC-3 but not in H4 cells. In vivo anticancer efficacy data in PC-3 xenograft revealed a significant reduction in the tumor volume (66.87%) with niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle, where pure niclosamide showed just half of the activity. Molecular signaling data by western blotting also indicated that niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle interfered with the EphA2 receptor signaling and inhibition of the Wnt/beta-catenin pathway and resulted in the synergistic anticancer activity compared to niclosamide pure drug.
Collapse
|
21
|
Pacułt J, Rams-Baron M, Chmiel K, Jurkiewicz K, Antosik A, Szafraniec J, Kurek M, Jachowicz R, Paluch M. How can we improve the physical stability of co-amorphous system containing flutamide and bicalutamide? The case of ternary amorphous solid dispersions. Eur J Pharm Sci 2021; 159:105697. [PMID: 33568330 DOI: 10.1016/j.ejps.2020.105697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The article describes the preparation and characterization of binary mixtures of two antiandrogens used in prostate cancer treatment, i.e. flutamide (FL) and bicalutamide (BIC), as well as their ternary mixtures with either poly(methyl methacrylate-co-ethyl acrylate) (MMA/EA) or polyvinylpyrrolidone (PVP). The samples were converted into amorphous form to improve their water solubility and dissolution rate. Broadband dielectric spectroscopy and differential scanning calorimetry revealed that FL-BIC (65%) (w/w) does not tend to crystallize from the supercooled liquid state. We made the assumption that the drug-to-drug weight ratio should be maintained as in the case of monotherapy so we decided to investigate the system containing FL and BIC in 15:1 (w/w) ratio with 30% additive of polymers as stabilizers. Our research has shown that only in the case of the FL-BIC-PVP mixture the crystallization has been completely inhibited, both in glassy and supercooled liquid state, which was confirmed by X-ray diffraction studies. In addition, we performed solubility and dissolution rate tests, which showed a significant improvement in solubility of ternary system as compared to its crystalline counterpart. Enhanced physical stability and water solubility of the amorphous ternary system makes it promising for further studies.
Collapse
Affiliation(s)
- Justyna Pacułt
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marzena Rams-Baron
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Krzysztof Chmiel
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Agata Antosik
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Joanna Szafraniec
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Mateusz Kurek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Renata Jachowicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
22
|
Phase Ib trial of reformulated niclosamide with abiraterone/prednisone in men with castration-resistant prostate cancer. Sci Rep 2021; 11:6377. [PMID: 33737681 PMCID: PMC7973745 DOI: 10.1038/s41598-021-85969-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Niclosamide has preclinical activity against a wide range of cancers. In prostate cancer, it inhibits androgen receptor variant 7 and synergizes with abiraterone. The approved niclosamide formulation has poor oral bioavailability. The primary objective of this phase Ib trial was to identify a maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of a novel reformulated orally-bioavailable niclosamide/PDMX1001 in combination with abiraterone and prednisone in men with castration-resistant prostate cancer (CRPC). Eligible patients had progressing CRPC, adequate end-organ function, and no prior treatment with abiraterone or ketoconazole. Patients were treated with escalating doses of niclosamide/PDMX1001 and standard doses of abiraterone and prednisone. Peak and trough niclosamide plasma levels were measured. Common Terminology Criteria for Adverse Events (CTCAE) v4.0 and Prostate Cancer Working Group 2 criteria were used to evaluate toxicities and responses. Nine patients with metastatic CRPC were accrued, with no dose-limiting toxicities observed at all dose levels. The recommended Phase II dose of niclosamide/PDMX1001 was 1200 mg orally (PO) three times daily plus abiraterone 1000 mg PO once daily and prednisone 5 mg PO twice daily. Trough and peak niclosamide concentrations exceeded the therapeutic threshold of > 0.2 µM. The combination was well tolerated with most frequent adverse effects of diarrhea. Five out of eight evaluable patients achieved a PSA response; two achieved undetectable PSA and radiographic response. A novel niclosamide/PDMX1001 reformulation achieved targeted plasma levels when combined with abiraterone and prednisone, and was well tolerated. Further study of niclosamide/PDMX1001 with this combination is warranted.
Collapse
|
23
|
Miller DR, Ingersoll MA, Teply BA, Lin MF. Targeting treatment options for castration-resistant prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:101-120. [PMID: 33816699 PMCID: PMC8012826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed solid tumor and the second leading cause of cancer-related deaths in U.S. men in 2020. Androgen-deprivation therapy (ADT) is the standard of care for metastatic PCa. Unfortunately, PCa relapse often occurs one to two years after initiation of ADT, resulting in the development of castration-resistant PCa (CRPCa), a lethal disease. While several anticancer agents such as docetaxel, abiraterone acetate, and enzalutamide are currently utilized to extend a patient's life after development of CRPCa, patients will eventually succumb to the disease. Hence, while targeting androgen signaling and utilization of docetaxel remain the most crucial agents for many of these combinations, many studies are attempting to exploit other vulnerabilities of PCa cells, such as inhibition of key survival proteins, anti-angiogenesis agents, and immunotherapies. This review will focus on discussing recent advances on targeting therapy. Several novel small molecules will also be discussed.
Collapse
Affiliation(s)
- Dannah R Miller
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical CenterOmaha, Nebraska, United States of America
- Department of Pharmacology, University of Colorado Anschutz Medical CampusAurora, CO, United States of America
| | - Matthew A Ingersoll
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical CenterOmaha, Nebraska, United States of America
- Department of Pharmacology, Creighton UniversityOmaha, Nebraska, United States of America
| | - Benjamin A Teply
- Division of Hematology/Oncology, Department of Internal Medicine, University of Nebraska Medical CenterOmaha, Nebraska, United States of America
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical CenterOmaha, Nebraska, United States of America
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical CenterOmaha, Nebraska, United States of America
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical CenterOmaha, Nebraska, United States of America
- Section of Urology, Department of Surgery, University of Nebraska Medical CenterOmaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmaha, Nebraska, United States of America
- College of Pharmacy, Kaohsiung Medical UniversityKaohsiung, Taiwan
| |
Collapse
|
24
|
Discovery of degradable niclosamide derivatives able to specially inhibit small cell lung cancer (SCLC). Bioorg Chem 2020; 107:104574. [PMID: 33383327 DOI: 10.1016/j.bioorg.2020.104574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Small cell lung cancer (SCLC) is exceedingly tough to treat and easy to develop resistance upon long use of the first-line drug carboplatin or radiotherapy. Novel medicines effective and specific against SCLC are greatly needed. Herein, we focused on the discovery of such a medicine by exploring a drug niclosamide with repurposing strategy. Initial screening efforts revealed that niclosamide, an anthelmintic drug, possessed the in vitro anticancer activity and an obvious sensitivity towards SCLC. This observation inspired the evaluation for two different kinds of niclosamide derivatives. 2 with a degradable ester as a linker exhibited the comparable activity but slightly inferior selectivity to SCLC, by contrast, the cytotoxicities of 4 and 5 with non-degradable ether linkages completely disappeared, clearly validating the importance of 2-free hydroxyl group or 2-hydroxyl group released in the antitumor activity. Mechanism study unfolded that, similar to niclosamide, 2 inhibited growth of cancer cells via p 53 activation and subsequent underwent cytochrome c dependent apoptosis. Further structural modification to afford phosphate sodium 8 with significantly enhanced aqueous solubility (22.1 mg/mL) and a good selectivity towards SCLC demonstrated more promising druggability profiles. Accordingly, niclosamide as an attractive lead hold a huge potential for developing targeted anti-SCLC drugs.
Collapse
|
25
|
The Androgen Receptor in Prostate Cancer: Effect of Structure, Ligands and Spliced Variants on Therapy. Biomedicines 2020; 8:biomedicines8100422. [PMID: 33076388 PMCID: PMC7602609 DOI: 10.3390/biomedicines8100422] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) plays a predominant role in prostate cancer (PCa) pathology. It consists of an N-terminal domain (NTD), a DNA-binding domain (DBD), a hinge region (HR), and a ligand-binding domain (LBD) that binds androgens, including testosterone (T) and dihydrotestosterone (DHT). Ligand binding at the LBD promotes AR dimerization and translocation to the nucleus where the DBD binds target DNA. In PCa, AR signaling is perturbed by excessive androgen synthesis, AR amplification, mutation, or the formation of AR alternatively spliced variants (AR-V) that lack the LBD. Current therapies for advanced PCa include androgen synthesis inhibitors that suppress T and/or DHT synthesis, and AR inhibitors that prevent ligand binding at the LBD. However, AR mutations and AR-Vs render LBD-specific therapeutics ineffective. The DBD and NTD are novel targets for inhibition as both perform necessary roles in AR transcriptional activity and are less susceptible to AR alternative splicing compared to the LBD. DBD and NTD inhibition can potentially extend patient survival, improve quality of life, and overcome predominant mechanisms of resistance to current therapies. This review discusses various small molecule and other inhibitors developed against the DBD and NTD—and the current state of the available compounds in clinical development.
Collapse
|
26
|
Obinata D, Lawrence MG, Takayama K, Choo N, Risbridger GP, Takahashi S, Inoue S. Recent Discoveries in the Androgen Receptor Pathway in Castration-Resistant Prostate Cancer. Front Oncol 2020; 10:581515. [PMID: 33134178 PMCID: PMC7578370 DOI: 10.3389/fonc.2020.581515] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
The androgen receptor (AR) is the main therapeutic target in advanced prostate cancer, because it regulates the growth and progression of prostate cancer cells. Patients may undergo multiple lines of AR-directed treatments, including androgen-deprivation therapy, AR signaling inhibitors (abiraterone acetate, enzalutamide, apalutamide, or darolutamide), or combinations of these therapies. Yet, tumors inevitably develop resistance to the successive lines of treatment. The diverse mechanisms of resistance include reactivation of the AR and dysregulation of AR cofactors and collaborative transcription factors (TFs). Further elucidating the nexus between the AR and collaborative TFs may reveal new strategies targeting the AR directly or indirectly, such as targeting BET proteins or OCT1. However, appropriate preclinical models will be required to test the efficacy of these approaches. Fortunately, an increasing variety of patient-derived models, such as xenografts and organoids, are being developed for discovery-based research and preclinical drug screening. Here we review the mechanisms of drug resistance in the AR signaling pathway, the intersection with collaborative TFs, and the use of patient-derived models for novel drug discovery.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Mitchell G. Lawrence
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Nicholas Choo
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Gail P. Risbridger
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
27
|
Zhao J, Ning S, Lou W, Yang JC, Armstrong CM, Lombard AP, D'Abronzo LS, Evans CP, Gao AC, Liu C. Cross-Resistance Among Next-Generation Antiandrogen Drugs Through the AKR1C3/AR-V7 Axis in Advanced Prostate Cancer. Mol Cancer Ther 2020; 19:1708-1718. [PMID: 32430485 DOI: 10.1158/1535-7163.mct-20-0015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/08/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022]
Abstract
The next-generation antiandrogen drugs, XTANDI (enzalutamide), ZYTIGA (abiraterone acetate), ERLEADA (apalutamide) and NUBEQA (darolutamide) extend survival times and improve quality of life in patients with advanced prostate cancer. Despite these advances, resistance occurs frequently and there is currently no definitive cure for castration-resistant prostate cancer. Our previous studies identified that similar mechanisms of resistance to enzalutamide or abiraterone occur following treatment and cross-resistance exists between these therapies in advanced prostate cancer. Here, we show that enzalutamide- and abiraterone-resistant prostate cancer cells are further cross-resistant to apalutamide and darolutamide. Mechanistically, we have determined that the AKR1C3/AR-V7 axis confers this cross-resistance. Knockdown of AR-V7 in enzalutamide-resistant cells resensitize cells to apalutamide and darolutamide treatment. Furthermore, targeting AKR1C3 resensitizes resistant cells to apalutamide and darolutamide treatment through AR-V7 inhibition. Chronic apalutamide treatment in C4-2B cells activates the steroid hormone biosynthesis pathway and increases AKR1C3 expression, which confers resistance to enzalutamide, abiraterone, and darolutamide. In conclusion, our results suggest that apalutamide and darolutamide share similar resistant mechanisms with enzalutamide and abiraterone. The AKR1C3/AR-V7 complex confers cross-resistance to second-generation androgen receptor-targeted therapies in advanced prostate cancer.
Collapse
Affiliation(s)
- Jinge Zhao
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Shu Ning
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Wei Lou
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Joy C Yang
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Cameron M Armstrong
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Alan P Lombard
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Leandro S D'Abronzo
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Christopher P Evans
- Department of Urologic Surgery, University of California, Davis, Sacramento, California.,UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, Sacramento, California. .,UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California.,VA Northern California Health Care System, Sacramento, California
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, Sacramento, California. .,UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California
| |
Collapse
|
28
|
Sekino Y, Han X, Babasaki T, Goto K, Inoue S, Hayashi T, Teishima J, Shiota M, Takeshima Y, Yasui W, Matsubara A. Microtubule-associated protein tau (MAPT) promotes bicalutamide resistance and is associated with survival in prostate cancer. Urol Oncol 2020; 38:795.e1-795.e8. [PMID: 32430253 DOI: 10.1016/j.urolonc.2020.04.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Microtubule-associated protein tau (MAPT), facilitates tubulin assembly and microtubule stabilization. Several studies have shown that overexpression of MAPT is linked to poor prognosis and is involved in taxane resistance in cancer. This study aimed to assess the expression and function of MAPT in prostate cancer (CaP). METHODS The expression of MAPT was determined using immunohistochemistry in CaP. We analyzed the interaction between MAPT, Phosphatase and Tensin Homolog (PTEN), and androgen receptor and investigated the role of MAPT in bicalutamide resistance. RESULTS Immunohistochemistry in 155 CaP cases showed that 15% of them were positive for MAPT. High MAPT expression was significantly orrelated with high Gleason score and high T stage. Kaplan-Meier analysis showed that the high MAPT expression was significantly associated with poor prostate-specific antigen recurrence survival after radical prostatectomy. There was an inverse correlation between MAPT and PTEN. In the CaP cell lines, knockout of PTEN increased the expression of MAPT, whereas knockdown of MAPT suppressed the expression of androgen receptor and increased the sensitivity to bicalutamide. Furthermore, immunohistochemical staining of MAPT showed that high MAPT expression was significantly associated with poor overall survival in 74 CaP patients who were treated with androgen deprivation therapy. CONCLUSION These results suggest that MAPT may be a promising predictive biomarker for survival and play an essential role in bicalutamide resistance in CaP.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Xiangrui Han
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Babasaki
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shogo Inoue
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
29
|
Hatamipour M, Jaafari MR, Momtazi-Borojeni AA, Ramezani M, Sahebkar A. Nanoliposomal Encapsulation Enhances In Vivo Anti-Tumor Activity of Niclosamide against Melanoma. Anticancer Agents Med Chem 2020; 19:1618-1626. [PMID: 31284876 DOI: 10.2174/1871520619666190705120011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/10/2019] [Accepted: 05/21/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Niclosamide is an FDA-approved and old anti-helminthic drug used to treat parasitic infections. Recent studies have shown that niclosamide has broad anti-tumor effects relevant to the treatment of cancer. However, this drug has a low aqueous solubility hindering its systemic use. Herein, we report the preparation and characterization of niclosamide nanoliposomes and their in vivo anti-tumor effects. METHODS Nanoliposomes were prepared using thin-film method and the drug was encapsulated with a remote loading method. The nanoliposomes were investigated by the observation of morphology, analysis of particle size and zeta potential. Additionally, qualitative and quantitative analyses were performed using HPLC. We assessed the in vitro cytotoxicity of the nanoliposomal niclosamide on B16F10 melanoma cells. Inhibition of tumor growth was investigated in C57BL/6 mice bearing B16F0 melanoma cancer. RESULTS Analytical results indicated that the nanoliposomal system is a homogeneous and stable colloidal dispersion of niclosamide particles. Atomic force microscopy images and particle size analysis revealed that all niclosamide particles had a spherical shape with a diameter of approximately 108nm. According to in vitro and in vivo studies, nanoliposomal niclosamide exhibited a better anti-tumor activity against B16F10 melanoma tumor compared with free niclosamide. CONCLUSION Nanoliposomal encapsulation enhanced the aqueous solubility of niclosamide and improved its anti-tumor properties.
Collapse
Affiliation(s)
- Mahdi Hatamipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud R Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir A Momtazi-Borojeni
- Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
The pan-cancer landscape of netrin family reveals potential oncogenic biomarkers. Sci Rep 2020; 10:5224. [PMID: 32251318 PMCID: PMC7090012 DOI: 10.1038/s41598-020-62117-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 03/09/2020] [Indexed: 02/02/2023] Open
Abstract
Recent cancer studies have found that the netrin family of proteins plays vital roles in the development of some cancers. However, the functions of the many variants of these proteins in cancer remain incompletely understood. In this work, we used the most comprehensive database available, including more than 10000 samples across more than 30 tumor types, to analyze the six members of the netrin family. We performed comprehensive analysis of genetic change and expression of the netrin genes and analyzed epigenetic and pathway relationships, as well as the correlation of expression of these proteins with drug sensitivity. Although the mutation rate of the netrin family is low in pan-cancer, among the tumor patients with netrin mutations, the highest number are Uterine Corpus Endometrial Carcinoma patients, accounting for 13.6% of cases (54 of 397). Interestingly, the highest mutation rate of a netrin family member is 38% for NTNG1 (152 of 397). Netrin proteins may participate in the development of endocrine-related tumors and sex hormone-targeting organ tumors. Additionally, the participation of NTNG1 and NTNG2 in various cancers shows their potential for use as new tumor markers and therapeutic targets. This analysis provides a broad molecular perspective of this protein family and suggests some new directions for the treatment of cancer.
Collapse
|
31
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|
32
|
Chaturvedi AP, Dehm SM. Androgen Receptor Dependence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1210:333-350. [PMID: 31900916 DOI: 10.1007/978-3-030-32656-2_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Androgens and the androgen receptor (AR) play crucial roles in the biology of normal and diseased prostate tissue, including prostate cancer (PCa). This dependence is evidenced by the use of androgen depletion therapy (ADT) as the primary treatment for locally advanced, metastatic, or relapsed PCa. This dependence is further evidenced by the various mechanisms employed by PCa cells to re-activate the AR to circumvent the growth-inhibitory effects of ADT. Re-activation of the AR during ADT is central to the disease evolving into the lethal castration resistant PCa (CRPC) phenotype, which is responsible for nearly all PCa mortality. Thus, understanding the regulation of AR and AR signaling is important for understanding the development and progression of PCa. This understanding provides the foundation for development of newer approaches for targeting CRPC therapeutically.
Collapse
Affiliation(s)
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
33
|
Lee MC, Chen YK, Hsu YJ, Lin BR. Niclosamide inhibits the cell proliferation and enhances the responsiveness of esophageal cancer cells to chemotherapeutic agents. Oncol Rep 2019; 43:549-561. [PMID: 31894334 PMCID: PMC6967135 DOI: 10.3892/or.2019.7449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Niclosamide is an FDA-approved anthelmintic drug, and may elicit antineoplastic effects through direct STAT3 inhibition, which has been revealed in numerous human cancer cells. Chemotherapy is the standard treatment for advanced esophageal cancers, but also causes severe systemic side effects. The present study represents the first study evaluating the anticancer efficacy of niclosamide in esophageal cancers. Through western blot assay, it was demonstrated that niclosamide suppressed the STAT3 signaling pathway in esophageal adenocarcinoma cells (BE3) and esophageal squamous cell carcinoma cells (CE48T and CE81T). In addition, niclosamide inhibited cell proliferation as determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and soft agar colony forming assay, and induced cell apoptosis as determined by Annexin V and PI staining. The induction of p21 and G1 arrest of the cell cycle also was revealed in niclosamide-treated CE81T cells by qPCR and flow cytometric assays, respectively. Furthermore, in the combination analysis of niclosamide and chemotherapeutic agents by MTS assay, low IC50 values were detected in cells co-treated with niclosamide, with the exception of cisplatin-treated CE81T cells. To confirm the results using an apoptosis assay, the apoptotic enhancement of niclosamide was only demonstrated in CE48T cells co-treated with 5-FU, cisplatin, or paclitaxel, and in BE3 cells co-treated with paclitaxel, but not in CE81T cells. These findings indicate a future clinical application of niclosamide in esophageal cancers.
Collapse
Affiliation(s)
- Ming-Cheng Lee
- Department of Research and Development, DrSignal BioTechnology Ltd., New Taipei City 23143, Taiwan, R.O.C
| | - Yin-Kai Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan, R.O.C
| | - Yih-Jen Hsu
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei 10051, Taiwan, R.O.C
| | - Bor-Ru Lin
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei 10051, Taiwan, R.O.C
| |
Collapse
|
34
|
Galeterone and The Next Generation Galeterone Analogs, VNPP414 and VNPP433-3β Exert Potent Therapeutic Effects in Castration-/Drug-Resistant Prostate Cancer Preclinical Models In Vitro and In Vivo. Cancers (Basel) 2019; 11:cancers11111637. [PMID: 31653008 PMCID: PMC6895912 DOI: 10.3390/cancers11111637] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
These studies compared the efficacies of our clinical agent galeterone (Gal) and the FDA-approved prostate cancer drug, enzalutamide (ENZ) with two lead next generation galeterone analogs (NGGAs), VNPP414 and VNPP433-3β, using prostate cancer (PC) in vitro and in vivo models. Antitumor activities of orally administered agents were also assessed in CWR22Rv1 tumor-bearing mice. We demonstrated that Gal and NGGAs degraded AR/AR-V7 and Mnk1/2; blocked cell cycle progression and proliferation of human PC cells; induced apoptosis; inhibited cell migration, invasion, and putative stem cell markers; and reversed the expression of epithelial-to-mesenchymal transition (EMT). In addition, Gal/NGGAs (alone or in combination) also inhibited the growth of ENZ-, docetaxel-, and mitoxantrone-resistant human PC cell lines. The NGGAs exhibited improved pharmacokinetic profiles over Gal in mice. Importantly, in vivo testing showed that VNPP433-3β (at 7.53-fold lower equimolar dose than Gal) markedly suppressed (84% vs. Gal, 47%; p < 0.01) the growth of castration-resistant PC (CRPC) CWR22Rv1 xenograft tumors, with no apparent host toxicity. ENZ was ineffective in this CRPC xenograft model. In summary, our findings show that targeting AR/AR-V7 and Mnk1/2 for degradation represents an effective therapeutic strategy for PC/CRPC treatment and supports further development of VNPP433-3β towards clinical investigation.
Collapse
|
35
|
Senapati D, Kumari S, Heemers HV. Androgen receptor co-regulation in prostate cancer. Asian J Urol 2019; 7:219-232. [PMID: 32742924 PMCID: PMC7385509 DOI: 10.1016/j.ajur.2019.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) progression relies on androgen receptor (AR) action. Preventing AR's ligand-activation is the frontline treatment for metastatic PCa. Androgen deprivation therapy (ADT) that inhibits AR ligand-binding initially induces remission but eventually fails, mainly because of adaptive PCa responses that restore AR action. The vast majority of castration-resistant PCa (CRPC) continues to rely on AR activity. Novel therapeutic strategies are being explored that involve targeting other critical AR domains such as those that mediate its constitutively active transactivation function, its DNA binding ability, or its interaction with co-operating transcriptional regulators. Considerable molecular and clinical variability has been found in AR's interaction with its ligands, DNA binding motifs, and its associated coregulators and transcription factors. Here, we review evidence that each of these levels of AR regulation can individually and differentially impact transcription by AR. In addition, we examine emerging insights suggesting that each can also impact the other, and that all three may collaborate to induce gene-specific AR target gene expression, likely via AR allosteric effects. For the purpose of this review, we refer to the modulating influence of these differential and/or interdependent contributions of ligands, cognate DNA-binding motifs and critical regulatory protein interactions on AR's transcriptional output, which may influence the efficiency of the novel PCa therapeutic approaches under consideration, as co-regulation of AR activity.
Collapse
Affiliation(s)
| | - Sangeeta Kumari
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | - Hannelore V Heemers
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA.,Department of Urology, Cleveland Clinic, Cleveland, OH, USA.,Department of Hematology/Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
36
|
Liu C, Yang JC, Armstrong CM, Lou W, Liu L, Qiu X, Zou B, Lombard AP, D'Abronzo LS, Evans CP, Gao AC. AKR1C3 Promotes AR-V7 Protein Stabilization and Confers Resistance to AR-Targeted Therapies in Advanced Prostate Cancer. Mol Cancer Ther 2019; 18:1875-1886. [PMID: 31308078 PMCID: PMC6995728 DOI: 10.1158/1535-7163.mct-18-1322] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 01/12/2023]
Abstract
The mechanisms resulting in resistance to next-generation antiandrogens in castration-resistant prostate cancer are incompletely understood. Numerous studies have determined that constitutively active androgen receptor (AR) signaling or full-length AR bypass mechanisms may contribute to the resistance. Previous studies established that AKR1C3 and AR-V7 play important roles in enzalutamide and abiraterone resistance. In the present study, we found that AKR1C3 increases AR-V7 expression in resistant prostate cancer cells through enhancing protein stability via activation of the ubiquitin-mediated proteasome pathway. AKR1C3 reprograms AR signaling in enzalutamide-resistant prostate cancer cells. In addition, bioinformatical analysis of indomethacin-treated resistant cells revealed that indomethacin significantly activates the unfolded protein response, p53, and apoptosis pathways, and suppresses cell-cycle, Myc, and AR/ARV7 pathways. Targeting AKR1C3 with indomethacin significantly decreases AR/AR-V7 protein expression in vitro and in vivo through activation of the ubiquitin-mediated proteasome pathway. Our results suggest that the AKR1C3/AR-V7 complex collaboratively confers resistance to AR-targeted therapies in advanced prostate cancer.
Collapse
Affiliation(s)
- Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Joy C Yang
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Cameron M Armstrong
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Wei Lou
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Liangren Liu
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Xiaomin Qiu
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Binhao Zou
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Alan P Lombard
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Leandro S D'Abronzo
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Christopher P Evans
- Department of Urologic Surgery, University of California, Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, Davis, California.
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
- VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
37
|
Zhang T, Karsh LI, Nissenblatt MJ, Canfield SE. Androgen Receptor Splice Variant, AR-V7, as a Biomarker of Resistance to Androgen Axis-Targeted Therapies in Advanced Prostate Cancer. Clin Genitourin Cancer 2019; 18:1-10. [PMID: 31653572 DOI: 10.1016/j.clgc.2019.09.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
Many therapeutic options are now available for men with metastatic castration-resistant prostate cancer (mCRPC), including next-generation androgen receptor axis-targeted therapies (AATTs), immunotherapy, chemotherapy, and radioisotope therapies. No clear consensus has been reached for the optimal sequencing of treatments for patients with mCRPC, and few well-validated molecular markers exist to guide the treatment decisions for individual patients. The androgen receptor splice variant 7 (AR-V7), a splice variant of the androgen receptor mRNA resulting in the truncation of the ligand-binding domain, has emerged as a biomarker for resistance to AATT. AR-V7 expression in circulating tumor cells has been associated with poor outcomes in patients treated with second- and third-line AATTs. Clinically validated assays are now commercially available for the AR-V7 biomarker. In the present review of the current literature, we have summarized the biology of resistance to AATT, with a focus on the AR-V7; and the clinical studies that have validated AR-V7 expression as a strong independent predictor of a lack of clinical benefit from AATTs. Existing evidence has indicated that patients with AR-V7-positive mCRPC will have better outcomes if treated with taxane chemotherapy regimens rather than additional AATTs.
Collapse
Affiliation(s)
- Tian Zhang
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University School of Medicine, Durham, NC.
| | | | - Michael J Nissenblatt
- Department of Medicine, Regional Cancer Care Associates and Robert Wood Johnson University Medical School, East Brunswick, NJ
| | - Steven E Canfield
- Department of Surgery, University of Texas McGovern Medical School, Houston, TX
| |
Collapse
|
38
|
Hatamipour M, Jaafari MR, Momtazi-Borojeni AA, Ramezani M, Sahebkar A. Evaluation of the Anti-Tumor Activity of Niclosamide Nanoliposomes Against Colon Carcinoma. Curr Mol Pharmacol 2019; 13:245-250. [PMID: 31433764 DOI: 10.2174/1874467212666190821142721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Niclosamide is an established anti-helminthic drug, which has recently been shown to inhibit the growth of various cancer cells. To exploit the potential anti-tumor activity of this drug for systemic use, the problem of low aqueous solubility should be addressed. The present study tested the in vivo anti-tumor effects of a recently developed nanoliposomal preparation of niclosamide in an experimental model of colon carcinoma. METHODS The cytotoxicity of nanoliposomal niclosamide on CT26 colon carcinoma cells was evaluated using the MTT test. Inhibition of tumor growth was investigated in BALB/c mice bearing CT26 colon carcinoma cells. The animals were randomly divided into 4 groups including: 1) untreated control, 2) liposomal doxorubicin (15 mg/kg; single intravenous dose), 3) liposomal niclosamide (1 mg/kg/twice a week; intravenously for 4 weeks), and 4) free niclosamide (1 mg/kg/twice a week; intravenously for 4 weeks). To study therapeutic efficacy, tumor size and survival were monitored in 2-day intervals for 40 days. RESULTS In vitro results indicated that nanoliposomal and free niclosamide could exert cytotoxic effects with IC50 values of 4.5 and 2.5 μM, respectively. According to in vivo studies, nanoliposomal niclosamide showed a higher growth inhibitory activity against CT26 colon carcinoma cells compared with free niclosamide as revealed by delayed tumor growth and prolongation of survival. CONCLUSION Nnaoliposomal encapsulation enhanced anti-tumor properties of niclosamide in an experimental model of colon carcinoma.
Collapse
Affiliation(s)
- Mahdi Hatamipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences,
Mashhad, Iran
| | - Mahmoud R Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences,
Mashhad, Iran,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical
Sciences, Mashhad, Iran
| | | | - Mahin Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences,
Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical
Sciences, Mashhad, Iran,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Shao C, Yu B, Liu Y. Androgen receptor splicing variant 7: Beyond being a constitutively active variant. Life Sci 2019; 234:116768. [PMID: 31445027 DOI: 10.1016/j.lfs.2019.116768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023]
Abstract
In prostate cancer development, the androgen receptor (AR) signaling plays a crucial role during both formation of early prostate lesions and progression to the lethal, incurable castration resistant stage. Accordingly, numerous approaches have been developed to inhibit AR activity including androgen deprivation therapy, application of the AR antagonists as well as the use of taxanes. However, these treatments, although effective initially, resistance inevitably occur for most of the patients within several years and limiting the therapeutic efficacy. Of note, alterations and reactivation of the AR signaling pathway have been demonstrated as the major reasons for the observed resistance. Accumulating evidences have suggested that synthesis of AR splicing variants, in particular, the constitutively active AR-V7, is one of the most important mechanisms that contribute to the abnormal AR signaling. In addition, clinical data also highlight the potential of using AR-V7 as a predictive biomarker and a therapeutic target in metastatic castration resistant prostate cancer (mCRPC). In this review, we summarize the recent findings concerning the specific role of AR-V7 in CRPC progression, drug resistance and its potential value in clinical assessment.
Collapse
Affiliation(s)
- Chen Shao
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Bingbing Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
40
|
Pacult J, Rams-Baron M, Chmiel K, Jurkiewicz K, Antosik A, Szafraniec J, Kurek M, Jachowicz R, Paluch M. How can we improve the physical stability of co-amorphous system containing flutamide and bicalutamide? The case of ternary amorphous solid dispersions. Eur J Pharm Sci 2019; 136:104947. [PMID: 31170526 DOI: 10.1016/j.ejps.2019.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/24/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
Abstract
The article describes the preparation and characterization of binary mixtures of two antiandrogens used in prostate cancer treatment, i.e. flutamide (FL) and bicalutamide (BIC), as well as their ternary mixtures with either poly(methyl methacrylate-co-ethyl acrylate) (MMA/EA) or polyvinylpyrrolidone (PVP). The samples were converted into amorphous form to improve their water solubility and dissolution rate. Broadband dielectric spectroscopy and differential scanning calorimetry revealed that FL-BIC (65%) (w/w) does not tend to crystallize from the supercooled liquid state. We made the assumption that the drug-to-drug weight ratio should be maintained as in the case of monotherapy so we decided to investigate the system containing FL and BIC in 15:1 (w/w) ratio with 30% additive of polymers as stabilizers. Our research has shown that only in the case of the FL-BIC-PVP mixture the crystallization has been completely inhibited, both in glassy and supercooled liquid state, which was confirmed by X-ray diffraction studies. In addition, we performed solubility and dissolution rate tests, which showed a significant improvement in solubility of ternary system as compared to its crystalline counterpart. Enhanced physical stability and water solubility of the amorphous ternary system makes it promising for further studies.
Collapse
Affiliation(s)
- Justyna Pacult
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marzena Rams-Baron
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Krzysztof Chmiel
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Agata Antosik
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Joanna Szafraniec
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Mateusz Kurek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Renata Jachowicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Medyczna 9, 30-688 Kraków, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
41
|
Beretta GL, Zaffaroni N. Androgen Receptor-Directed Molecular Conjugates for Targeting Prostate Cancer. Front Chem 2019; 7:369. [PMID: 31192191 PMCID: PMC6546842 DOI: 10.3389/fchem.2019.00369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Due to its central role in the cellular biology of prostate cancer (PC), androgen receptor (AR) still remains an important therapeutic target for fighting this tumor. Several drugs targeting AR have been reported so far, and many new molecules are expected for the future. In spite of their antitumor efficacy, these drugs are not selective for malignant cells and are subjected to AR-mediated activation of drug resistance mechanisms that are responsible for several drawbacks, including systemic toxicity and disease recurrence and metastasis. Among the several strategies considered to overcome these drawbacks, very appealing appears the design of hybrid small-molecule conjugates targeting AR to drive drug action on receptor-positive PC cells. These compounds are designed around on an AR binder, which selectively engages AR with high potency, coupled with a moiety endowed with different pharmacological properties. In this review we focus on two classes of compounds: a) small-molecules and AR-ligand based conjugates that reduce AR expression, which allow down-regulation of AR levels by activating its proteasome-mediated degradation, and b) AR-ligand-based conjugates for targeting small-molecules, in which the AR binder tethers small-molecules, including conventional antitumor drugs (e.g., cisplatin, doxorubicin, histone deacetylase inhibitors, as well as photo-sensitizers) and selectively directs drug action toward receptor-positive PC cells.
Collapse
Affiliation(s)
- Giovanni L Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
42
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
43
|
Tretyakova EV, Salimova EV, Parfenova LV, Yunusbaeva MM, Dzhemileva LU, D'yakonov VA, Dzhemilev UM. Synthesis of New Dihydroquinopimaric Acid Analogs with Nitrile Groups as Apoptosis-Inducing Anticancer Agents. Anticancer Agents Med Chem 2019; 19:1172-1183. [PMID: 30947679 DOI: 10.2174/1871520619666190404100846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cyan-containing compounds are of great interest as potential anticancer agents. Terpenoids can severe as a natural matrix for the development of promising derivatives with antitumor activity. METHODS The 2-cyanoethoxy methyl dihydroquinopimarate derivatives (5-9) were synthesized by the reaction of the intermediates (1-4) with acrylonitrile in the presence of alkali (30% KOH solution) using triethylbenzylammonium chloride. The cytotoxicity evaluation was carried out according to the National Cancer Institute (NCI) Protocol, while apoptosis was studied by flow cytometric analysis of Annexin V and 7-aminoactinomycin D staining and cell cycle was analyzed using the method of propidium iodide staining. RESULTS Synthesis of new dihydroquinopimaric acid derivatives with nitrile groups was carried out. The obtained cyanoethyl derivatives were converted into tetrazole, amine, oxadiazole and amidoxime analogs. The primary screening for antitumor activity showed the highest cytotoxic potency of the cyanoethyl-substituted compounds. The introduction of cyanoethyl groups at C-1, C-4 and C-1, C-4, C-20 positions of dihydroquinopimaric acid methyl ester provided antiproliferative effect towards the Jurkat, K562, U937, and HeLa tumor cell cultures (CC50=0.045-0.154µM). These nitrile derivatives are effective inducers of tumor cell apoptosis affecting the S and G2 phases of the cell cycle in a dose-dependent manner. CONCLUSION The cyanoethyl analogs of dihydroquinopimaric acid reported herein are apoptosis inducers and cytotoxic agents. These findings will be useful for the further design of more potent cytotoxic agents based on natural terpenes.
Collapse
Affiliation(s)
- Elena V Tretyakova
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Elena V Salimova
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Lyudmila V Parfenova
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Milyausha M Yunusbaeva
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Lilya U Dzhemileva
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Vladimir A D'yakonov
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Usein M Dzhemilev
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| |
Collapse
|
44
|
He S, Mei L, Wu C, Tao M, Zhai Z, Xu K, Zhong W. In situ hydrogelation of bicalutamide-peptide conjugates at prostate tissue for smart drug release based on pH and enzymatic activity. NANOSCALE 2019; 11:5030-5037. [PMID: 30839985 DOI: 10.1039/c8nr10528f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tissue-specific self-assemblies of supramolecular hydrogels have attracted great interest in material design and biomedical applications, for in situ-formed hydrogels serve as an excellent local depot with tunable release of drug therapeutics. Here we report the design and syntheses of a novel class of histidine-containing hexapeptide derivatives (Nap-1 and ID-1) for in situ hydrogelation at the zinc ion-rich prostate tissue. Thanks to the efficient co-ordination between zinc and histidine, both Nap-1 and ID-1 displayed excellent self-assembly capability with a high sensitivity to zinc ions at ∼0.1 equivalency. To foster a prostate-specific drug delivery system (DDS), ID-1 was chosen for further conjugation with bicalutamide (BLT), a clinically used drug for prostate cancer. The as-synthesized ID-1-BLT retained the self-assembly capability with zinc ions, and conferred supramoelcular hydrogels at the prostate site. Interestingly, ID-1-BLT hydrogels demonstrated tunable drug release profiles in a typical tumor microenvironment, with acidic pH and esterase activity regulating the drug release in a dose dependent manner. Consequently, the hydrogel-based DDS demonstrated enhanced potency and selective cytotoxicity against prostate cancer cell DU145 over normal fibroblast cell NIH3T3, plausibly due to differential cellular uptake of drugs as well as the elevated esterase activities in cancer cells. Finally, the biocompatible hydrogel system demonstrated sustained delivery of drugs at the prostate gland of rats, with a superior in situ drug distribution profile compared to that of aqueous solution of BLT alone.
Collapse
Affiliation(s)
- Suyun He
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Sekino Y, Oue N, Mukai S, Shigematsu Y, Goto K, Sakamoto N, Sentani K, Hayashi T, Teishima J, Matsubara A, Yasui W. Protocadherin B9 promotes resistance to bicalutamide and is associated with the survival of prostate cancer patients. Prostate 2019; 79:234-242. [PMID: 30324761 DOI: 10.1002/pros.23728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
Background Prostate cancer (PCa) is a common malignancy worldwide and is the second leading cause of cancer death in men. The standard therapy for advanced PCa is androgen deprivation therapy (ADT). Although ADT, including bicalutamide treatment, is initially effective, resistance to bicalutamide frequently occurs and leads to the development of castration-resistant PCa. Thus, clarifying the mechanisms of bicalutamide resistance is urgently needed. We designed this study to assess the expression and function of PCDHB9, which encodes the protocadherin B9 protein. Methods The expression of PCDHB9 was determined using immunohistochemistry and a qRT-PCR. The effects of the overexpression or knockdown of PCDHB9 on cell growth, migration, adhesion were evaluated. To evaluate the PCDHB9-mediated effects in PCa, we performed a gene expression analysis using DU145 transfected with PCDHB9. We examined the effects of PCDHB9 inhibition on bicalutamide resistance. Results The qRT-PCR revealed that the expression of PCDHB9 was much higher in PCa than that in non-neoplastic prostate tissues. In 152 clinically localized PCa cases immunohistochemistry showed that 59% of PCa cases were positive for protocadherin B9. A Kaplan-Meier analysis showed that the high expression of protocadherin B9 was associated with PSA recurrence after radical prostatectomy. A functional analysis showed that PCDHB9 modulated cell migration and adhesion. We also found that PCDHB9 induced the expression of ITGB6 based on a gene expression analysis. The effect of PCDHB9 inhibition on bicalutamide sensitivity was examined using MTT assays. The IC50 value of PCDHB9 siRNA-transfected PCa cells was significantly lower than that of negative control siRNA-transfected cells. Furthermore, immunohistochemical staining of protocadherin B9 in 74 PCa patients who were treated with androgen depletion therapy, including bicalutamide treatment, demonstrated that the high expression of protocadherin B9 was significantly associated with poor overall survival. Conclusions PCDHB9 plays an important role in the progression of PCa and bicalutamide resistance. Collectively, our results suggest that PCDHB9 targeted therapy may be more effective than bicalutamide alone.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Shoichiro Mukai
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Graduate School of Biomedical and Health Sciences, Minami-ku, Hiroshima, Japan
| | - Yoshinori Shigematsu
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Naoya Sakamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
46
|
Wadosky KM, Shourideh M, Goodrich DW, Koochekpour S. Riluzole induces AR degradation via endoplasmic reticulum stress pathway in androgen-dependent and castration-resistant prostate cancer cells. Prostate 2019; 79:140-150. [PMID: 30280407 DOI: 10.1002/pros.23719] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is diagnosed at the highest rate of all non-cutaneous male cancers in the United States. The androgen-dependent (AD) transcription factor, androgen receptor (AR), drives PCa-but inhibiting AR or androgen biosynthesis induces remission for only a short time. At which point, patients acquire more aggressive castration-resistant (CR) disease with re-activated AR-dependent signaling. To combat treatment resistance, down-regulating AR protein expression has been considered as a potential treatment strategy for CR-PCa. METHODS AD- and CR-PCa cell lines were treated with the well-tolerated FDA-approved oral medicine, riluzole. Expression of full-length or wild-type AR (AR-FL) and constitutively active AR-splice variant 7 (AR-V7) was assessed by immunoblotting. AR-FL/AR-V7 activity was measured using qRT-PCR of AR-target genes. Cytoplasmic [Ca2+ ] levels were measured using a fluorescent Ca2+ indicator microplate assay. Markers of the endoplasmic reticulum stress (ERS) pathway and autophagy were assessed by immunoblotting. Direct interaction between AR and selective autophagy receptor p62 was demonstrated by co-immunoprecipitation. RESULTS We demonstrate that riluzole downregulates AR-FL, mutant ARs, and AR-V7 proteins expression by protein degradation through ERS pathway and selective autophagy. Riluzole also significantly inhibited AR transcription activity by decreasing its target genes expression (PSA, TMPRSS2, and KLK2). CONCLUSIONS We provide key mechanistic insights by which riluzole exerts its anti-tumorigenic effects and induces AR protein degradation via ERS pathways. Our findings support the potential utility of riluzole for treatment of PCa.
Collapse
Affiliation(s)
- Kristine M Wadosky
- Departments of Cancer Genetics and Genomics, Center for Genomics and Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mojgan Shourideh
- Departments of Cancer Genetics and Genomics, Center for Genomics and Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Center for Genomics and Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Shahriar Koochekpour
- Departments of Cancer Genetics and Genomics, Center for Genomics and Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
47
|
Namekawa T, Ikeda K, Horie-Inoue K, Inoue S. Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells. Cells 2019; 8:cells8010074. [PMID: 30669516 PMCID: PMC6357050 DOI: 10.3390/cells8010074] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions, as exemplified by DU-145, PC-3, and LNCaP cells, are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Cell line-based experiments, however, have limitations for preclinical studies because those cells are basically adapted to 2-dimensional monolayer culture conditions, in which the majority of primary PCa cells cannot survive. Recent tissue engineering enables generation of PCa patient-derived xenografts (PDXs) from both primary and metastatic lesions. Compared with fresh PCa tissue transplantation in athymic mice, co-injection of PCa tissues with extracellular matrix in highly immunodeficient mice has remarkably improved the success rate of PDX generation. PDX models have advantages to appropriately recapitulate the molecular diversity, cellular heterogeneity, and histology of original patient tumors. In contrast to PDX models, patient-derived organoid and spheroid PCa models in 3-dimensional culture are more feasible tools for in vitro studies for retaining the characteristics of patient tumors. In this article, we review PCa preclinical model cell lines and their sublines, PDXs, and patient-derived organoid and spheroid models. These PCa models will be applied to the development of new strategies for cancer precision medicine.
Collapse
Affiliation(s)
- Takeshi Namekawa
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan.
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-8677, Japan.
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan.
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan.
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan.
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
48
|
Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced prostate cancer. Nat Commun 2018; 9:4700. [PMID: 30446660 PMCID: PMC6240084 DOI: 10.1038/s41467-018-07178-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Protein homeostasis (proteostasis) is a potential mechanism that contributes to cancer cell survival and drug resistance. Constitutively active androgen receptor (AR) variants confer anti-androgen resistance in advanced prostate cancer. However, the role of proteostasis involved in next generation anti-androgen resistance and the mechanisms of AR variant regulation are poorly defined. Here we show that the ubiquitin-proteasome-system (UPS) is suppressed in enzalutamide/abiraterone resistant prostate cancer. AR/AR-V7 proteostasis requires the interaction of E3 ubiquitin ligase STUB1 and HSP70 complex. STUB1 disassociates AR/AR-V7 from HSP70, leading to AR/AR-V7 ubiquitination and degradation. Inhibition of HSP70 significantly inhibits prostate tumor growth and improves enzalutamide/abiraterone treatments through AR/AR-V7 suppression. Clinically, HSP70 expression is upregulated and correlated with AR/AR-V7 levels in high Gleason score prostate tumors. Our results reveal a novel mechanism of anti-androgen resistance via UPS alteration which could be targeted through inhibition of HSP70 to reduce AR-V7 expression and overcome resistance to AR-targeted therapies.
Collapse
|
49
|
Isaacsson Velho P, Carducci MA. Investigational therapies targeting the androgen signaling axis and the androgen receptor and in prostate cancer – recent developments and future directions. Expert Opin Investig Drugs 2018; 27:811-822. [DOI: 10.1080/13543784.2018.1513490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Michael A. Carducci
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
- Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
50
|
Kadri H, Lambourne OA, Mehellou Y. Niclosamide, a Drug with Many (Re)purposes. ChemMedChem 2018; 13:1088-1091. [PMID: 29603892 PMCID: PMC7162286 DOI: 10.1002/cmdc.201800100] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/29/2018] [Indexed: 12/13/2022]
Abstract
Niclosamide is an anthelmintic drug that has been used for over 50 years mainly to treat tapeworm infections. However, with the increase in drug repurposing initiatives, niclosamide has emerged as a true hit in many screens against various diseases. Indeed, from being an anthelmintic drug, it has now shown potential in treating Parkinson's disease, diabetes, viral and microbial infections, as well as various cancers. Such diverse pharmacological activities are a result of niclosamide's ability to uncouple mitochondrial phosphorylation and modulate a selection of signaling pathways, such as Wnt/β-catenin, mTOR and JAK/STAT3, which are implicated in many diseases. In this highlight, we discuss the plethora of diseases that niclosamide has shown promise in treating.
Collapse
Affiliation(s)
- Hachemi Kadri
- Cardiff School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Olivia A Lambourne
- Cardiff School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Youcef Mehellou
- Cardiff School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| |
Collapse
|