1
|
Liu Z, Yuan Y, Wang N, Yu P, Teng Y. Drug combinations of camptothecin derivatives promote the antitumor properties. Eur J Med Chem 2024; 279:116872. [PMID: 39298971 DOI: 10.1016/j.ejmech.2024.116872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Camptothecin (CPT) derivatives are widely used as small molecule chemotherapeutic agents and have demonstrated efficacy in the treatment of diverse solid tumors. A variety of derivatives have been developed to resolve the drawbacks of poor water solubility, high toxicity and rapid hydrolysis in vivo. However, the obstacles, such as acquired resistance and toxicity, still exist. The utilization of rational drug combinations has the potential to enhance the efficacy and mitigate the toxicity of CPT derivatives. This paper provides an overview of CPT derivatives in combination with other drugs, with a particular focus on cell cycle inhibitors, DNA synthesis inhibitors, anti-metastatic drugs and immunotherapy agents. Concurrently, the mechanisms of antitumor activity of combinations of different classes of drugs and CPT derivatives are elucidated. While the various combination strategies have yielded more favorable therapeutic outcomes, the efficacy and toxicity of the drug combinations are influenced by the inherent properties of the drugs involved. Moreover, a summary of the drug conjugates of CPT derivatives was provided, accompanied by an analysis of the structural activity relationship (SAR). This paves the way for the subsequent developments in drug combinations and delivery modes.
Collapse
Affiliation(s)
- Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Yajie Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
2
|
Yu F, Jiang H, Gu Y. Causal relationship between immune cells and acute myeloid leukemia: a two-sample Mendelian randomization study. Discov Oncol 2024; 15:675. [PMID: 39560825 DOI: 10.1007/s12672-024-01565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Immune cells are crucial in the etiology of acute myeloid leukemia (AML). Given the genetic, epigenetic, and clonal complexities of AML, pinpointing factors linked to immunotherapy presents a formidable challenge. Moreover, investigations into the connection between immune cells and AML are still in their infancy, necessitating further studies to decode the intricate connections involved. MATERIALS AND METHODS Based on Mendelian independent distribution law, Mendelian randomisation (MR) is an analytical method mainly used in epidemiological aetiology inference. This bidirectional two-sample MR study aims to investigate the causal link between immune cell phenotypes and AML. Pooled phenotypic data from 3,757 individuals in a Sardinian cohort, encompassing 731 immune cell phenotypes, were utilized. Aggregate data on AML were sourced from the FinnGen project of the Finnish Biobank. We analyzed the sensitivity of the results and evaluated heterogeneity, employing Cochran's Q test in conjunction with MR-Egger and MR-Presso to assess pleiotropy levels. RESULTS 26 distinct immune cell types were identified that potentially linked causally with AML. Furthermore, our analysis indicated a bidirectional causal link between Resting Treg % CD4 Treg, BAFF-R on memory B cells and AML. CONCLUSION This investigation delineates the causal link between immune cell phenotypes and the pathogenesis of AML, thereby unveiling potential therapeutic avenues to modulate immune cell functions in AML patients. It aims to discover innovative therapeutic strategies that target immune evasion tactics to reinstate immune responses against leukemia.
Collapse
Affiliation(s)
- Fanhua Yu
- Shaoxing Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Hao Jiang
- Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yena Gu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
| |
Collapse
|
3
|
Qi QR, Tian H, Yue BS, Zhai BT, Zhao F. Research Progress of SN38 Drug Delivery System in Cancer Treatment. Int J Nanomedicine 2024; 19:945-964. [PMID: 38293612 PMCID: PMC10826519 DOI: 10.2147/ijn.s435407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
The active metabolite of irinotecan (CPT-11), 7-ethyl-10-hydroxycamptothecin (SN38), is 100-1000 times more active than CPT-11 and has shown inhibitory effects on a range of cancer cells, including those from the rectal, small cell lung, breast, esophageal, uterine, and ovarian malignancies. Despite SN38's potent anticancer properties, its hydrophobicity and pH instability have caused substantial side effects and anticancer activity loss, which make it difficult to use in clinical settings. To solve the above problems, the construction of SN38-based drug delivery systems is one of the most feasible methods to improve drug solubility, enhance drug stability, increase drug targeting ability, improve drug bioavailability, enhance therapeutic efficacy and reduce adverse drug reactions. Therefore, based on the targeting mechanism of drug delivery systems, this paper reviews SN38 drug delivery systems, including polymeric micelles, liposomal nanoparticles, polymeric nanoparticles, protein nanoparticles, conjugated drug delivery systems targeted by aptamers and ligands, antibody-drug couplings, magnetic targeting, photosensitive targeting, redox-sensitive and multi-stimulus-responsive drug delivery systems, and co-loaded drug delivery systems. The focus of this review is on nanocarrier-based SN38 drug delivery systems. We hope to provide a reference for the clinical translation and application of novel SN38 medications.
Collapse
Affiliation(s)
- Qing-rui Qi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Huan Tian
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, 710021, People’s Republic of China
| | - Bao-sen Yue
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, 710021, People’s Republic of China
| | - Bing-tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Feng Zhao
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, 710021, People’s Republic of China
| |
Collapse
|
4
|
Yang J, Jia L, He Z, Wang Y. Recent advances in SN-38 drug delivery system. Int J Pharm 2023; 637:122886. [PMID: 36966982 DOI: 10.1016/j.ijpharm.2023.122886] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
DNA topoisomerase I plays a key role in lubricatingthe wheels of DNA replication or RNA transcription through breaking and reconnecting DNA single-strand. It is widely known that camptothecin and its derivatives (CPTs) have inhibitory effects on topoisomerases I, and have obtained some clinical benefits in cancer treatment. The potent cytotoxicity makes 7-ethyl-10-hydroxycamptothecin (SN-38) become a brilliant star among these derivatives. However, some undesirable physical and chemical properties of this compound, including poor solubility and stability, seriously hinder its effective delivery to tumor sites. In recent years, strategies to alleviate these defects have aroused extensive research interest. By focusing on the loading mechanism, basic nanodrug delivery systems with SN-38 loaded, like nanoparticles, liposomes and micelles, are demonstrated here. Additionally, functionalized nanodrug delivery systems of SN-38 including prodrug and active targeted nanodrug delivery systems and delivery systems designed to overcome drug resistance are also reviewed. At last, challenges for future research in formulation development and clinical translation of SN-38 drug delivery system are discussed.
Collapse
|
5
|
Payload diversification: a key step in the development of antibody-drug conjugates. J Hematol Oncol 2023; 16:3. [PMID: 36650546 PMCID: PMC9847035 DOI: 10.1186/s13045-022-01397-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Antibody-drug conjugates (ADCs) is a fast moving class of targeted biotherapeutics that currently combines the selectivity of monoclonal antibodies with the potency of a payload consisting of cytotoxic agents. For many years microtubule targeting and DNA-intercalating agents were at the forefront of ADC development. The recent approval and clinical success of trastuzumab deruxtecan (Enhertu®) and sacituzumab govitecan (Trodelvy®), two topoisomerase 1 inhibitor-based ADCs, has shown the potential of conjugating unconventional payloads with differentiated mechanisms of action. Among future developments in the ADC field, payload diversification is expected to play a key role as illustrated by a growing number of preclinical and clinical stage unconventional payload-conjugated ADCs. This review presents a comprehensive overview of validated, forgotten and newly developed payloads with different mechanisms of action.
Collapse
|
6
|
Malindi Z, Barth S, Abrahamse H. The Potential of Antibody Technology and Silver Nanoparticles for Enhancing Photodynamic Therapy for Melanoma. Biomedicines 2022; 10:2158. [PMID: 36140259 PMCID: PMC9495799 DOI: 10.3390/biomedicines10092158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Melanoma is highly aggressive and is known to be efficient at resisting drug-induced apoptotic signals. Resection is currently the gold standard for melanoma management, but it only offers local control of the early stage of the disease. Metastatic melanoma is prone to recurrence, and has a poor prognosis and treatment response. Thus, the need for advanced theranostic alternatives is evident. Photodynamic therapy has been increasingly studied for melanoma treatment; however, it relies on passive drug accumulation, leading to off-target effects. Nanoparticles enhance drug biodistribution, uptake and intra-tumoural concentration and can be functionalised with monoclonal antibodies that offer selective biorecognition. Antibody-drug conjugates reduce passive drug accumulation and off-target effects. Nonetheless, one limitation of monoclonal antibodies and antibody-drug conjugates is their lack of versatility, given cancer's heterogeneity. Monoclonal antibodies suffer several additional limitations that make recombinant antibody fragments more desirable. SNAP-tag is a modified version of the human DNA-repair enzyme, O6-alkylguanine-DNA alkyltransferase. It reacts in an autocatalytic and covalent manner with benzylguanine-modified substrates, providing a simple protein labelling system. SNAP-tag can be genetically fused with antibody fragments, creating fusion proteins that can be easily labelled with benzylguanine-modified payloads for site-directed delivery. This review aims to highlight the benefits and limitations of the abovementioned approaches and to outline how their combination could enhance photodynamic therapy for melanoma.
Collapse
Affiliation(s)
- Zaria Malindi
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 55 Beit Street, Doornfontein, Johannesburg 2028, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road Observatory, Cape Town 7925, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 55 Beit Street, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
7
|
Han S, Lim KS, Blackburn BJ, Yun J, Putnam CW, Bull DA, Won YW. The Potential of Topoisomerase Inhibitor-Based Antibody–Drug Conjugates. Pharmaceutics 2022; 14:pharmaceutics14081707. [PMID: 36015333 PMCID: PMC9413092 DOI: 10.3390/pharmaceutics14081707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/17/2022] Open
Abstract
DNA topoisomerases are essential enzymes that stabilize DNA supercoiling and resolve entanglements. Topoisomerase inhibitors have been widely used as anti-cancer drugs for the past 20 years. Due to their selectivity as topoisomerase I (TOP1) inhibitors that trap TOP1 cleavage complexes, camptothecin and its derivatives are promising anti-cancer drugs. To increase accumulation of TOP1 inhibitors in cancer cells through the targeting of tumors, TOP1 inhibitor antibody–drug conjugates (TOP1-ADC) have been developed and marketed. Some TOP1-ADCs have shown enhanced therapeutic efficacy compared to prototypical anti-cancer ADCs, such as T-DM1. Here, we review various types of camptothecin-based TOP1 inhibitors and recent developments in TOP1-ADCs. We then propose key points for the design and construction of TOP1-ADCs. Finally, we discuss promising combinatorial strategies, including newly developed approaches to maximizing the therapeutic potential of TOP1-ADCs.
Collapse
Affiliation(s)
- Seungmin Han
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - Kwang Suk Lim
- Department of Biotechnology and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Korea
| | - Brody J. Blackburn
- Department of Medical Pharmacology, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - Jina Yun
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea
| | - Charles W. Putnam
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - David A. Bull
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - Young-Wook Won
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
- Correspondence:
| |
Collapse
|
8
|
Fracasso PM, Goodner SA, Wildi JD, Naughton MJ, Linette GP, Govindan R, Tan BR, Blum KA, Jones GJ, Pearce TE, Levitt DJ, Clamon GH. A Phase I Study of Apolizumab, an Anti-HLA-DR ß-chain Monoclonal Antibody, in Patients With Solid Tumor Malignancies. Am J Clin Oncol 2022; 45:294-297. [PMID: 35700081 PMCID: PMC9219582 DOI: 10.1097/coc.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Human leukocyte antigen (HLA)-DR, a member of the major histocompatibility complex class II antigen family, is a target for antibody-based therapeutics. Apolizumab (Hu1D10, Remitogen), a humanized IgG1 monoclonal anti-HLA-DR ß-chain antibody targets the antigen, 1D10, expressed on a wide variety of hematologic and solid tumor malignancies. In this Phase 1 trial, the maximum tolerated dose and dose-limiting toxicity of weekly apolizumab in patients with advanced solid tumor malignancies were determined. PATIENTS AND METHODS Eligible patients with refractory solid tumors were initially screened for ID10 Ag on their tumor. Patients whose tumors expressed 1D10 were administered apolizumab 0.5, 1.0, 1.5, or 3.0 mg/kg intravenously over 90 minutes weekly for 4 consecutive weeks, followed by a 4-week break, and assessment of response. Patients whose disease had not progressed were offered additional treatment. RESULTS Tumors from 75 patients were screened for 1D10 Ag of which 17 patients were positive and underwent treatment. The first 3 dose levels were well-tolerated. Dose-limiting toxicities of grade 3 infusion-related hypersensitivity reactions and grade 3 headache and hypertension occurred in 2 patients, respectively, at apolizumab 3.0 mg/kg. Four patients, 1 each with breast carcinoma, melanoma, renal cell carcinoma, and sarcoma had stable disease for a median of 15 weeks (range: 12 to 19 wk). CONCLUSION Apolizumab can be administered safely at a maximum tolerated dose of 1.5 mg/kg for 4 consecutive weeks. Adverse events and limited clinical data in both hematologic and solid tumor malignancies resulted in discontinuation of clinical development of apolizumab. HLA-DR remains an interesting immunotherapeutic target.
Collapse
Affiliation(s)
- Paula M. Fracasso
- Department of Medicine, Washington University School of Medicine and the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110
| | - Sherry A. Goodner
- Department of Medicine, Washington University School of Medicine and the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110
| | - Jonathan D. Wildi
- Department of Medicine, Washington University School of Medicine and the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J. Naughton
- Department of Medicine, Washington University School of Medicine and the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110
| | - Gerald P. Linette
- Department of Medicine, Washington University School of Medicine and the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110
| | - Ramaswamy Govindan
- Department of Medicine, Washington University School of Medicine and the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin R. Tan
- Department of Medicine, Washington University School of Medicine and the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110
| | - Kristie A. Blum
- Department of Medicine, Washington University School of Medicine and the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110
| | - Gary J. Jones
- PDL BioPharma, Inc., 34801 Campus Drive, Freemont, CA 94555
| | | | | | - Gerald H. Clamon
- Department of Internal Medicine, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| |
Collapse
|
9
|
Liu L, Xie F, Xiao D, Xu X, Su Z, Wang Y, Fan S, Zhou X, Li S. Synthesis and evaluation of highly releasable and structurally stable antibody-SN-38-conjugates. Drug Deliv 2021; 28:2603-2617. [PMID: 34894942 PMCID: PMC8676668 DOI: 10.1080/10717544.2021.2008053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Camptothecins, traditional chemotherapy drugs, have been clinically used in antibody-drug conjugates (ADCs), which refreshes the recognition that ADCs preferably incorporate highly potent payloads. However, SN-38, active metabolite of irinotecan from camptothecins, tended to be incorporated into ADCs with an unstable acid sensitive bond, not with the widely used Cathepsin B (CTSB) sensitive bond, which may pose the risk of off-target. Herein, we reported a novel strategy to construct highly releasable and structurally stable SN-38-conjugates, in which CTSB linkers directly connected to the 10-OH group through ether bond, not to the common 20-OH group of lactones of SN-38. In this paper, rapid release of SN-38 was skillfully demonstrated by utilizing the fluorescence properties of SN-38. The SN-38-ether-ADC displayed highly stable serum stability with the half-life over 10 days. Moreover, the drug-antibody-ratio (DAR) of ADC could be elevated to 7.1 through the introduction of polyethylene glycol (PEG) moieties without aggregation. The optimized ADC exhibited potent in vitro activities up to 5.5 nM, comparable to SN-38. Moreover, this ADC group significantly delayed tumor growth in vivo. In conclusion, the novel strategy has the potential to promote the development of SN38-ADCs and enrich the conjugation approaches for hydroxyl-bearing payloads.
Collapse
Affiliation(s)
- Lianqi Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fei Xie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Xu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zheng Su
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanming Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Song Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
10
|
Chu Y, Zhou X, Wang X. Antibody-drug conjugates for the treatment of lymphoma: clinical advances and latest progress. J Hematol Oncol 2021; 14:88. [PMID: 34090506 PMCID: PMC8180036 DOI: 10.1186/s13045-021-01097-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a promising class of immunotherapies with the potential to specifically target tumor cells and ameliorate the therapeutic index of cytotoxic drugs. ADCs comprise monoclonal antibodies, cytotoxic payloads with inherent antitumor activity, and specialized linkers connecting the two. In recent years, three ADCs, brentuximab vedotin, polatuzumab vedotin, and loncastuximab tesirine, have been approved and are already establishing their place in lymphoma treatment. As the efficacy and safety of ADCs have moved in synchrony with advances in their design, a plethora of novel ADCs have garnered growing interest as treatments. In this review, we provide an overview of the essential elements of ADC strategies in lymphoma and elucidate the up-to-date progress, current challenges, and novel targets of ADCs in this rapidly evolving field.
Collapse
Affiliation(s)
- Yurou Chu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
11
|
Boni V, Sharma MR, Patnaik A. The Resurgence of Antibody Drug Conjugates in Cancer Therapeutics: Novel Targets and Payloads. Am Soc Clin Oncol Educ Book 2020; 40:1-17. [PMID: 32315240 DOI: 10.1200/edbk_281107] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibody drug conjugates (ADCs) are an emerging class of therapeutics that consist of a cytotoxic agent linked covalently to an antibody, which is directed toward a specific cell surface target expressed by tumor cells and/or the microenvironment. ADCs leverage the specificity of the antibody such that it functions as a carrier to deliver the cytotoxic payload into the tumor. Four parameters are considered critical for this class of complex engineered therapeutics: target selection, antibody, cytotoxic payload, as well as conjugation and linker technology. The development of this class of drugs has proven more complex than expected. Several challenges have arisen, including a lack of true tumor antigen specificity, early release of the cytotoxic payload into the bloodstream due to linker instability, and low potency of the payload, resulting in either greater toxicity or lack of improved efficacy compared with unconjugated cytotoxics. The approval of trastuzumab emtansine in 2013 for HER2-positive breast cancer served as a proof of concept that ADCs have therapeutic application in solid tumors. Two novel ADCs have recently been approved: trastuzumab deruxtecan for HER2-positive breast cancer and enfortumab vedotin for locally advanced or metastatic urothelial cancer. Trastuzumab deruxtecan is distinguished by a unique biochemical structure with a novel cytotoxic payload, deruxtecan-a highly potent, topoisomerase I inhibitor. Enfortumab vedotin is directed toward nectin-4 and represents an example of successful and strategic target selection. This review focuses on the concepts underlying the choice of suitable targets and novel payloads, discusses specific examples of ADCs in preclinical and clinical development, and provides future directions related to this unique class of therapeutics.
Collapse
Affiliation(s)
- Valentina Boni
- START (South Texas Accelerated Research Therapeutics), Madrid, Spain.,Centro Integral Oncológico Clara Campal, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Manish R Sharma
- START (South Texas Accelerated Research Therapeutics), Grand Rapids, MI
| | - Amita Patnaik
- START (South Texas Accelerated Research Therapeutics), San Antonio, TX
| |
Collapse
|
12
|
Biteghe FAN, Mungra N, Chalomie NET, Ndong JDLC, Engohang-Ndong J, Vignaux G, Padayachee E, Naran K, Barth S. Advances in epidermal growth factor receptor specific immunotherapy: lessons to be learned from armed antibodies. Oncotarget 2020; 11:3531-3557. [PMID: 33014289 PMCID: PMC7517958 DOI: 10.18632/oncotarget.27730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has been recognized as an important therapeutic target in oncology. It is commonly overexpressed in a variety of solid tumors and is critically involved in cell survival, proliferation, metastasis, and angiogenesis. This multi-dimensional role of EGFR in the progression and aggressiveness of cancer, has evolved from conventional to more targeted therapeutic approaches. With the advent of hybridoma technology and phage display techniques, the first anti-EGFR monoclonal antibodies (mAbs) (Cetuximab and Panitumumab) were developed. Due to major limitations including host immune reactions and poor tumor penetration, these antibodies were modified and used as guiding mechanisms for the specific delivery of readily available chemotherapeutic agents or plants/bacterial toxins, giving rise to antibody-drug conjugates (ADCs) and immunotoxins (ITs), respectively. Continued refinement of ITs led to deimmunization strategies based on depletion of B and T-cell epitopes or substitution of non-human toxins leading to a growing repertoire of human enzymes capable of inducing cell death. Similarly, the modification of classical ADCs has resulted in the first, fully recombinant versions. In this review, we discuss significant advancements in EGFR-targeting immunoconjugates, including ITs and recombinant photoactivable ADCs, which serve as a blueprint for further developments in the evolving domain of cancer immunotherapy.
Collapse
Affiliation(s)
- Fleury Augustin Nsole Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, Los Angeles, CA, USA
- These authors contributed equally to this work
| | - Neelakshi Mungra
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| | | | - Jean De La Croix Ndong
- Department of Orthopedic Surgery, New York University School of Medicine, New York, NY, USA
| | - Jean Engohang-Ndong
- Department of Biological Sciences, Kent State University at Tuscarawas, New Philadelphia, OH, USA
| | | | - Eden Padayachee
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Krupa Naran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| | - Stefan Barth
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| |
Collapse
|
13
|
Balhorn R, Balhorn MC. Therapeutic applications of the selective high affinity ligand drug SH7139 extend beyond non-Hodgkin's lymphoma to many other types of solid cancers. Oncotarget 2020; 11:3315-3349. [PMID: 32934776 PMCID: PMC7476732 DOI: 10.18632/oncotarget.27709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/27/2020] [Indexed: 01/04/2023] Open
Abstract
SH7139, the first of a series of selective high affinity ligand (SHAL) oncology drug candidates designed to target and bind to the HLA-DR proteins overexpressed by B-cell lymphomas, has demonstrated exceptional efficacy in the treatment of Burkitt lymphoma xenografts in mice and a safety profile that may prove to be unprecedented for an oncology drug. The aim of this study was to determine how frequently the HLA-DRs targeted by SH7139 are expressed by different subtypes of non-Hodgkin’s lymphoma and by other solid cancers that have been reported to express HLA-DR. Binding studies conducted with SH7129, a biotinylated analog of SH7139, reveal that more than half of the biopsy sections obtained from patients with different types of non-Hodgkin’s lymphoma express the HLA-DRs targeted by SH7139. Similar analyses of tumor biopsy tissue obtained from patients diagnosed with eighteen other solid cancers show the majority of these tumors also express the HLA-DRs targeted by SH7139. Cervical, ovarian, colorectal and prostate cancers expressed the most HLA-DR. Only a few esophageal and head and neck tumors bound the diagnostic. Within an individual’s tumor, cell to cell differences in HLA-DR target expression varied by only 2 to 3-fold while the expression levels in tumors obtained from different patients varied as much as 10 to 100-fold. The high frequency with which SH7129 was observed to bind to these cancers suggests that many patients diagnosed with B-cell lymphomas, myelomas, and other non-hematological cancers should be considered potential candidates for new therapies such as SH7139 that target HLA-DR-expressing tumors.
Collapse
Affiliation(s)
- Rod Balhorn
- SHAL Technologies Inc., Livermore, CA 94550, USA
| | | |
Collapse
|
14
|
Balhorn R, Balhorn MC, Balakrishnan K, Rebhun RB. The small molecule antibody mimic SH7139 targets a family of HLA-DRs expressed by B-cell lymphomas and other solid cancers. J Drug Target 2020; 28:1124-1136. [PMID: 32588667 DOI: 10.1080/1061186x.2020.1787418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Selective high-affinity ligands (SHALs) belong to a novel class of small-molecule cancer therapeutics that function as targeted prodrugs. SH7139, the most advanced of the SHAL drugs designed to bind to a unique β-subunit structural epitope located on HLA-DR10, has exhibited exceptional preclinical efficacy and safety profiles. A comparison of SH7139 and SH7129, a biotin derivative of the drug developed for use as a diagnostic, showed the incorporation of a biotin tag did not alter the SHALs ability to target or kill HLA-DR10 expressing Raji cells. The use of SH7129 in an immuno-histochemical type assay to stain peripheral blood mononuclear cells (PBMCs) obtained from individuals expressing specific HLA-DRB1 alleles has also revealed that in addition to HLA-DR10, seven other more commonly expressed HLA-DRs are targeted by the drug. Computational dockings of the SHAL's recognition ligands to a number of HLA-DR structures explain, in part, why the targeting domains of SH7129 and SH7139 bind to some HLA-DRs but not others. The results also substantiate the selectivity of SH7129 and suggest it may prove useful as a companion diagnostic for pre-screening biopsy samples to identify those patients whose tumours should respond to SH7139 therapy.
Collapse
Affiliation(s)
| | | | - Karuppiah Balakrishnan
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Robert B Rebhun
- The Comparative Cancer Center, University of California, Davis, Davis, CA, USA
| |
Collapse
|
15
|
Goldenberg DM, Sharkey RM. Sacituzumab govitecan, a novel, third-generation, antibody-drug conjugate (ADC) for cancer therapy. Expert Opin Biol Ther 2020; 20:871-885. [PMID: 32301634 DOI: 10.1080/14712598.2020.1757067] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION We describe a new, third-generation of antibody-drug conjugates (ADCs) having a high drug payload against topoisomerase I, important for DNA function, and targeting selective tumor antigens, predominantly TROP-2. AREAS COVERED The historical development of ADCs is reviewed before presenting the current line of improved, third-generation ADCs targeting topoisomerase I, thus affecting DNA and causing double-stranded DNA breaks. Emphasis is given to explaining why sacituzumab govitecan represents a paradigm change in ADCs by achieving a high therapeutic index due to its novel target, TROP-2, an internalizing antigen/antibody, proprietary linker chemistry, and high drug payload, resulting in a high tumor concentration of the drug given in repeated doses with acceptable tolerability, particularly evidencing a lower percentage of 'late' diarrhea than its prodrug, irinotecan. PubMed was used for the primary search conducted. EXPERT OPINION The properties and clinical results of third-generation ADCs, based on sacituzumab govitecan, are discussed, including prospects for future applications, particularly combination therapies with PARP inhibitors and immune checkpoint inhibitors. Since one topoisomerase I ADC has just received regulatory approval for HER2+ breast cancer, and sacituzumab govitecan is under FDA review for accelerated approval in the therapy of triple-negative breast cancer, the prospects for these novel ADCs are discussed.
Collapse
Affiliation(s)
| | - Robert M Sharkey
- Center for Molecular Medicine and Immunology , Mendham, New Jersey, USA
| |
Collapse
|
16
|
Kobayashi H, Griffiths GL, Choyke PL. Near-Infrared Photoimmunotherapy: Photoactivatable Antibody-Drug Conjugates (ADCs). Bioconjug Chem 2020; 31:28-36. [PMID: 31479610 PMCID: PMC7414968 DOI: 10.1021/acs.bioconjchem.9b00546] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cancer treatment has been founded traditionally on the three approaches of surgery, radiation, and chemotherapy with the latter recognized as the obvious systemic treatment approach applicable to disease that has spread. Although significant progress has been made over nearly 100 years of developing systemic treatments, it remains clear that use of the toxic agents involved is a two-edged sword with normal organ toxicities always needing to be balanced with and against administration of relevant therapeutic doses. With the advent of monoclonal antibodies targeted against tumor-associated antigens that could be used as carriers of potently toxic chemotherapy drugs, it was thought that such antibody-drug conjugates (ADCs) could engender the answer to the toxicity/therapeutic equation by shifting the equation more toward beneficial therapeutic efficacy. However, over 40 or so years, antibody-drug conjugates have not significantly affected the toxicity/therapy balance paradigm in most cancer indications, especially in solid tumors. Ideally, a further step may be required in that a non-tumor-targeted antibody-drug conjugate should be essentially nontoxic in its native administered form, with toxic effects unleashed only at the site of targeted tumors. A new approach that employs this principle is the use of an antibody-drug conjugate that is essentially nontoxic to normal tissues by virtue of requiring an extra step of light activation to become potent. We describe the preclinical data and first clinical results gained over the past few years by use of antibody-drug conjugates wherein the drug comprises a near-infrared photoactivatable dye delivered to tumors by a monoclonal antibody and is subsequently activated to a toxic entity solely at sites of tumors.
Collapse
Affiliation(s)
- Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute MSC 1002, 10 Center Drive, Bethesda, MD 20892-1002
| | - Gary L. Griffiths
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Sponsored by the National Cancer Institute, P.O. Box B, Frederick, MD 21702-1201
| | - Peter L. Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute MSC 1002, 10 Center Drive, Bethesda, MD 20892-1002
| |
Collapse
|
17
|
Amani N, Dorkoosh FA, Mobedi H. ADCs, as Novel Revolutionary Weapons for Providing a Step Forward in Targeted Therapy of Malignancies. Curr Drug Deliv 2020; 17:23-51. [DOI: 10.2174/1567201816666191121145109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/01/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022]
Abstract
:Antibody drug conjugates (ADCs), as potent pharmaceutical trojan horses for cancer treatment, provide superior efficacy and specific targeting along with low risk of adverse reactions compared to traditional chemotherapeutics. In fact, the development of these agents combines the selective targeting capability of monoclonal antibody (mAb) with high cytotoxicity of chemotherapeutics for controlling the neoplastic mass growth. Different ADCs (more than 60 ADCs) in preclinical and clinical trials were introduced in this novel pharmaceutical field. Various design-based factors must be taken into account for improving the functionality of ADC technology, including selection of appropriate target antigen and high binding affinity of fragment (miniaturized ADCs) or full mAbs (preferentially use of humanized or fully human antibodies compared to murine and chimeric ones), use of bispecific antibodies for dual targeting effect, linker engineering and conjugation method efficacy to obtain more controlled drug to antibody ratio (DAR). Challenging issues affecting therapeutic efficacy and safety of ADCs, including bystander effect, on- and off-target toxicities, multi drug resistance (MDR) are also addressed. 4 FDA-approved ADCs in the market, including ADCETRIS ®, MYLOTARG®, BESPONSA ®, KADCYLA®. The goal of the current review is to evaluate the key parameters affecting ADCs development.
Collapse
Affiliation(s)
- Nooshafarin Amani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mobedi
- Novel Drug Delivery Systems (NDDS) Department, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
18
|
In vitro and in vivo activity of sacituzumab govitecan, an antibody-drug conjugate targeting trophoblast cell-surface antigen 2 (Trop-2) in uterine serous carcinoma. Gynecol Oncol 2019; 156:430-438. [PMID: 31839338 DOI: 10.1016/j.ygyno.2019.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/02/2019] [Accepted: 11/10/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Uterine serous carcinoma (USC) is an aggressive variant of endometrial cancer with poor prognosis. Sacituzumab govitecan (SG) is a novel antibody-drug-conjugate (ADC) targeting trophoblast cell-surface antigen 2 (Trop-2), a transmembrane-calcium-signal-transducer, to deliver SN-38, the active metabolite of irinotecan. The objective of this study was to evaluate the expression of Trop-2 in USC and the preclinical activity of SG against primary USC cell-lines and xenografts. METHODS We used immunohistochemistry (IHC) and flow-cytometry-based assays to evaluate Trop-2 expression and cell-viability in USC tissue and primary tumor-cell-lines after exposure to SG, non-targeting control ADC, and naked antibody hRS7-IgG. Antibody-dependent-cell-cytotoxicity (ADCC) against Trop-2+ and Trop-2- USC cell-lines was evaluated in vitro using 4-hr-Chromium-release-assays. In vivo activity of SG was tested against Trop-2+ USC xenografts by intravenous administration of SG, control ADC, and hRS7. RESULTS Trop-2 expression by IHC was detected in 95.1% of USC samples (99/104). Primary tumor cell-lines overexpressing Trop-2 were significantly more sensitive to SG when compared to control ADC (p <0.05). Both SG and hRS7 mediated ADCC in Trop2+ USC cell-lines while no cytotoxicity was detected against Trop-2- cells. SG induced significant bystander killing of Trop-2- tumors when admixed with Trop-2+ tumors. SG caused growth-inhibition and increased survival in SG treated mice harboring Trop-2+ xenografts when compared to controls (p <0.05). CONCLUSIONS SG is remarkably active against USC overexpressing Trop-2 in vitro and in vivo. Our results combined with SG clinical responses recently reported against multiple chemotherapy resistant human tumors further support clinical development of SG in USC patients with advanced/recurrent disease.
Collapse
|
19
|
Chabrol E, Stojko J, Nicolas A, Botzanowski T, Fould B, Antoine M, Cianférani S, Ferry G, Boutin JA. VHH characterization.Recombinant VHHs: Production, characterization and affinity. Anal Biochem 2019; 589:113491. [PMID: 31676284 DOI: 10.1016/j.ab.2019.113491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/19/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Among the biological approaches to therapeutics, are the cells, such as CAR-T cells engineered or not, the antibodies armed or not, and the smaller protein scaffolds that can be modified to render them specific of other proteins, à la façon of antibodies. For several years, we explored ways to substitute antibodies by nanobodies (also known as VHHs), the smallest recognizing part of camelids' heavy-chain antibodies: production of those small proteins in host microorganisms, minute analyses, characterization, and qualification of their affinity towards designed targets. Here, we present three standard VHHs described in the literature: anti-albumin, anti-EGF receptor and anti-HER2, a typical cancer cell surface -associated protein. Because they differ slightly in global structure, they are good models to assess our body of analytical methodologies. The VHHs were expressed in several bacteria strains in order to identify and overcome the bottlenecks to obtain homogeneous preparations of this protein. A large panel of biophysical tools, ranging from spectroscopy to mass spectrometry, was here combined to assess VHH structural features and the impact of the disulfide bond. The routes are now ready to move to more complex VHHs raised against specific targets in numerous areas including oncology.
Collapse
Affiliation(s)
- Eric Chabrol
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Johann Stojko
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Alexandre Nicolas
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, 67000, Strasbourg, France
| | - Benjamin Fould
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Mathias Antoine
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, 67000, Strasbourg, France
| | - Gilles Ferry
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France.
| | - Jean A Boutin
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France; Institut de Recherches Internationales Servier, 50 rue Carnot, 92284, Suresnes Cedex, France.
| |
Collapse
|
20
|
Lisowska M, Milczarek M, Ciekot J, Kutkowska J, Hildebrand W, Rapak A, Miazek A. An Antibody Specific for the Dog Leukocyte Antigen DR (DLA-DR) and Its Novel Methotrexate Conjugate Inhibit the Growth of Canine B Cell Lymphoma. Cancers (Basel) 2019; 11:cancers11101438. [PMID: 31561563 PMCID: PMC6827003 DOI: 10.3390/cancers11101438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 01/18/2023] Open
Abstract
Canine B-cell lymphoma (CBL) is an incurable, spontaneous lymphoid malignancy constituting an accurate animal model for testing novel therapeutic strategies in human medicine. Resources of available species-specific therapeutic monoclonal antibodies (mAbs) targeting CBL are scarce. The aim of the present study was to evaluate the therapeutic potential of mAb B5, specific for the dog leukocyte antigen DR (DLA-DR) and its antibody-drug conjugate with methotrexate (B5-MTX). B5 induced caspase-dependent apoptosis of DLA-DR-expressing canine B cell lymphoma/CLBL1 and CLB70 leukemia lines, but not the GL-1 line not expressing DLA-DR. The cytotoxicity of B5-MTX to sensitive cells was further potentiated by a payload of MTX, but without any substantial off-target effects. The infusion of B5 and B5-MTX in a murine model of disseminated, advanced canine lymphoma, mediated >80% and >90% improvement in survival, respectively, and was well tolerated by the animals. Interestingly, the concentrations of soluble DLA-DR (sDLA-DR) antigens present in the blood serum of tumor-bearing mice were found proportional to the tumor burden. On this basis, sDLA-DR levels were evaluated as a potential biomarker using samples from canine lymphoma patients. In summary, the action of B5 and B5-MTX holds promise for further development as an alternative/complementary option for the diagnosis and treatment of canine lymphoma.
Collapse
Affiliation(s)
- Marta Lisowska
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Jarosław Ciekot
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Justyna Kutkowska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | | | - Andrzej Rapak
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Arkadiusz Miazek
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
- Centre of Genetic Engineering, Wroclaw University of Environmental and Life Sciences, 50-366 Wroclaw, Poland.
| |
Collapse
|
21
|
Au KM, Balhorn R, Balhorn MC, Park SI, Wang AZ. High-Performance Concurrent Chemo-Immuno-Radiotherapy for the Treatment of Hematologic Cancer through Selective High-Affinity Ligand Antibody Mimic-Functionalized Doxorubicin-Encapsulated Nanoparticles. ACS CENTRAL SCIENCE 2019; 5:122-144. [PMID: 30693332 PMCID: PMC6346391 DOI: 10.1021/acscentsci.8b00746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 05/03/2023]
Abstract
Non-Hodgkin lymphoma is one of the most common types of cancer. Relapsed and refractory diseases are still common and remain significant challenges as the majority of these patients eventually succumb to the disease. Herein, we report a translatable concurrent chemo-immuno-radiotherapy (CIRT) strategy that utilizes fully synthetic antibody mimic Selective High-Affinity Ligand (SHAL)-functionalized doxorubicin-encapsulated nanoparticles (Dox NPs) for the treatment of human leukocyte antigen-D related (HLA-DR) antigen-overexpressed tumors. We demonstrated that our tailor-made antibody mimic-functionalized NPs bound selectively to different HLA-DR-overexpressed human lymphoma cells, cross-linked the cell surface HLA-DR, and triggered the internalization of NPs. In addition to the direct cytotoxic effect by Dox, the internalized NPs then released the encapsulated Dox and upregulated the HLA-DR expression of the surviving cells, which further augmented immunogenic cell death (ICD). The released Dox not only promotes ICD but also sensitizes the cancer cells to irradiation by inducing cell cycle arrest and preventing the repair of DNA damage. In vivo biodistribution and toxicity studies confirm that the targeted NPs enhanced tumor uptake and reduced systemic toxicities of Dox. Our comprehensive in vivo anticancer efficacy studies using lymphoma xenograft tumor models show that the antibody-mimic functional NPs effectively inhibit tumor growth and sensitize the cancer cells for concurrent CIRT treatment without incurring significant side effects. With an appropriate treatment schedule, the SHAL-functionalized Dox NPs enhanced the cell killing efficiency of radiotherapy by more than 100% and eradicated more than 80% of the lymphoma tumors.
Collapse
Affiliation(s)
- Kin Man Au
- Laboratory of Nano- and Translational Medicine, Carolina
Center for
Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, and Department of
Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rod Balhorn
- SHAL
Technologies, Inc., 15986
Mines Road, Livermore, California 94550, United States
| | - Monique C. Balhorn
- SHAL
Technologies, Inc., 15986
Mines Road, Livermore, California 94550, United States
| | - Steven I. Park
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Levine
Cancer Institute, Atrium Health, Division
of Hematology and Oncology, 100 Medical Park Drive, Suite 110, Concord, North Carolina 28025, United States
| | - Andrew Z. Wang
- Laboratory of Nano- and Translational Medicine, Carolina
Center for
Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, and Department of
Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|