1
|
Grams RJ, Wolfe WJ, Seal RJ, Veccia J, Hsu KL. Discovery and Optimization of a Covalent AKR1C3 Inhibitor. J Med Chem 2025; 68:9465-9478. [PMID: 40277220 DOI: 10.1021/acs.jmedchem.5c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Aldo-keto reductase family 1 member C3 (AKR1C3) is a member of the AKR superfamily of enzymes that metabolize androgen, estrogen, and prostaglandin substrates that drive proliferation in hormone-dependent cancers. Interest in developing selective inhibitors has produced tool compounds for the inactivation or degradation of AKR1C3 with varying degrees of selectivity among the 14 known AKR proteins. Selectivity of AKR1C3 inhibitors across the AKR family is critical since a clinical candidate failed due to hepatotoxicity from off-target inhibition of AKR1D1. Here, we report development of a sulfonyl-triazole (SuTEx) covalent AKR1C3 inhibitor (RJG-2051) that selectively engages a noncatalytic tyrosine residue (Y24) on AKR1C3. Importantly, RJG-2051 exhibited negligible cross-reactivity with AKRs or other proteins across 1800+ tyrosine and lysine sites quantified by chemical proteomics. Our disclosure of a covalent inhibitor for potent AKR1C3 inactivation with proteome-wide selectivity in cells will expedite cell biological studies for testing the therapeutic potential of this metabolic target.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Wesley J Wolfe
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Robert J Seal
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - James Veccia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Shams SGE, Dawud D, Michalak K, Makhlouf MM, Moustafa A, Jazwinski SM, Kang L, Zerfaoui M, El Sayed KA, Abd Elmageed ZY. Blockade of neutral sphingomyelinase 2 exerts antitumor effect on metastatic castration resistant prostate cancer cells and promotes tumor regression when combined with Enzalutamide. Am J Cancer Res 2024; 14:5697-5716. [PMID: 39803655 PMCID: PMC11711525 DOI: 10.62347/xxxa3182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related deaths among American men. The development of metastatic castration resistant PCa (mCRPC) is the current clinical challenge. Antiandrogens such as Enzalutamide (ENZ) are commonly used for CRPC treatment. However, patients with androgen receptor (AR)-negative tumors do not respond to ENZ, while AR-positive tumors frequently develop resistance, limiting the long-term efficacy of this therapy. This study investigates the efficacy of neutral sphingomyelinase 2 (n-SMase2) inhibition by DPTIP, both alone and in combination with ENZ, as a therapeutic strategy for mCRPC. In vitro assays were conducted to determine the half-maximal inhibitory concentration (IC50) of DPTIP and ENZ in mCRPC cells. The effect of these treatments on cell proliferation, migration, and colony formation was assessed. The antitumor effect of DPTIP was also evaluated in a preclinical PCa mouse model. Elevated n-SMase2 expression was observed in PCa patients compared to normal subjects at both mRNA and protein levels. In CWR-R1ca and PC-3 cells, DPTIP had IC50 values of 10.31 and 14.57 µM, while ENZ had IC50 values of 33.7 and 81 µM, respectively. Combined treatment significantly suppressed cell proliferation, colony formation, and migration of mCRPC cells. Mechanistically, the ERK1/2 activity and the expression of nSMase2 and NF-kB p65 were inhibited by DPTIP. The in vivo combination of DPTIP and ENZ reduced tumor size and weight more effectively than either drug alone, without significant changes in body weight. This study highlights the therapeutic potential of targeting n-SMase2 for mCRPC. Inhibition of n-SMase2 using DPTIP, both as a standalone treatment and in combination with ENZ, effectively suppressed the growth and migration of mCRPC cells. These findings suggest a promising novel approach to treating mCRPC and warrant further investigation in clinical settings.
Collapse
Affiliation(s)
- Shams GE Shams
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Dalal Dawud
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Kasia Michalak
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Maysoon M Makhlouf
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Ahmed Moustafa
- Tulane Center for Aging, School of Medicine, Tulane UniversityNew Orleans, LA 70112, USA
| | - S Michal Jazwinski
- Tulane Center for Aging, School of Medicine, Tulane UniversityNew Orleans, LA 70112, USA
| | - Lin Kang
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at MonroeMonroe, LA 71201, USA
- Center for One Health Research, VA-MD College of Veterinary MedicineBlacksburg, VA 24060, USA
| | - Mourad Zerfaoui
- Department of Pediatrics, Center for ViroScience and Cure (CVC), School of Medicine, Emory UniversityAtlanta, GA 30322, USA
| | - Khalid A El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at MonroeMonroe, LA 71201, USA
| | - Zakaria Y Abd Elmageed
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at MonroeMonroe, LA 71201, USA
| |
Collapse
|
3
|
Jonnalagadda SK, Duan L, Dow LF, Boligala GP, Kosmacek E, McCoy K, Oberley-Deegan R, Chhonker YS, Murry DJ, Reynolds CP, Maurer BJ, Penning TM, Trippier PC. Coumarin-Based Aldo-Keto Reductase Family 1C (AKR1C) 2 and 3 Inhibitors. ChemMedChem 2024; 19:e202400081. [PMID: 38976686 PMCID: PMC11537819 DOI: 10.1002/cmdc.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
A series of 7-substituted coumarin derivatives have been characterized as pan-aldo-keto reductase family 1C (AKR1C) inhibitors. The AKR1C family of enzymes are overexpressed in numerous cancers where they are involved in drug resistance development. 7-hydroxy coumarin ethyl esters and their corresponding amides have high potency for AKR1C3 and AKR1C2 inhibition. Coumarin amide 3 a possessed IC50 values of 50 nM and 90 nM for AKR1C3 and AKR1C2, respectively, and exhibits 'drug-like' metabolic stability and half-life in human and mouse liver microsomes and plasma. Compound 3 a was employed as a chemical tool to determine pan-AKR1C2/3 inhibition effects both as a radiation sensitizer and as a potentiator of chemotherapy cytotoxicity. In contrast to previously reported pan-AKR1C inhibitors, 3 a demonstrated no radiation sensitization effect in a radiation-resistant prostate cancer cell line model. Pan-AKR1C inhibition also did not potentiate the in vitro cytotoxicity of ABT-737, daunorubicin or dexamethasone, in two patient-derived T-cell ALL and pre-B-cell ALL cell lines. In contrast, a highly selective AKR1C3 inhibitor, compound K90, enhanced the cytotoxicity of both ABT-737 and daunorubicin in the T-cell ALL cell line model. Thus, the inhibitory profile required to enhance chemotherapeutic cytotoxicity in leukemia may be AKR1C isoform and drug specific.
Collapse
Affiliation(s)
- Sravan K. Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Ling Duan
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Louise F. Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Geetha P Boligala
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Elizabeth Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Kristyn McCoy
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Rebecca Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Yashpal Singh Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Darryl J. Murry
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
- UNMC Center for Drug Design and Innovation, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - C. Patrick Reynolds
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Barry J. Maurer
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Trevor M. Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- UNMC Center for Drug Design and Innovation, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| |
Collapse
|
4
|
Zheng S, Hong Z, Tan Y, Wang Y, Li J, Zhang Z, Feng T, Hong Z, Lin G, Ye D. MYO6 contributes to tumor progression and enzalutamide resistance in castration-resistant prostate cancer by activating the focal adhesion signaling pathway. Cell Commun Signal 2024; 22:517. [PMID: 39449086 PMCID: PMC11515482 DOI: 10.1186/s12964-024-01897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Enzalutamide (Enz) resistance is a poor prognostic factor for patients with castration-resistant prostate cancer (CRPC), which often involves aberrant expression of the androgen receptor (AR). Myosin VI (MYO6), one member of the myosin family, plays an important role in regulating cell survival and is highly expressed in prostate cancer (PCa). However, whether MYO6 is involved in Enz resistance in CRPC and its mechanism remain unclear. METHODS Multiple open-access databases were utilized to examine the relationship between MYO6 expression and PCa progression, and to screen differentially expressed genes (DEGs) and potential signaling pathways associated with the MYO6-regulated Enz resistance. Both in vitro and in vivo tumorigenesis assays were employed to examine the impact of MYO6 on the growth and Enz resistance of PCa cells. Human PCa tissues and related clinical biochemical data were utilized to identify the role of MYO6 in promoting PCa progression and Enz resistance. The molecular mechanisms underlying the regulation of gene expression, PCa progression, and Enz resistance in CRPC by MYO6 were investigated. RESULTS MYO6 expression increases in patients with PCa and is positively correlated with AR expression in PCa cell lines and tissues. Overexpression of AR increases MYO6 expression to promote PCa cell proliferation, migration and invasion, and to inhibit PCa cell apoptosis; whereas knockdown of MYO6 expression reverses these outcomes and enhances Enz function in suppressing the proliferation of the Enz- sensitive and resistant PCa cells both in vitro and in vivo. Mechanistically, AR binds directly to the promoter region (residues - 503 to - 283 base pairs) of MYO6 gene and promotes its transcription. Furthermore, MYO6 activates focal adhesion kinase (FAK) phosphorylation at tyrosine-397 through integrin beta 8 (ITGB8) modulation to promote PCa progression and Enz resistance. Notably, inhibition of FAK activity by Y15, an inhibitor of FAK, can resensitize CRPC cells to Enz treatment in cell lines and mouse xenograft models. CONCLUSIONS MYO6 has pro-tumor and Enz-resistant effects in CRPC, suggesting that targeting MYO6 may be beneficial for ENZ-resistant CRPC therapy through the AR/MYO6/FAK signaling pathway.
Collapse
MESH Headings
- Humans
- Male
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Benzamides/pharmacology
- Phenylthiohydantoin/pharmacology
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Signal Transduction/drug effects
- Animals
- Nitriles/pharmacology
- Cell Line, Tumor
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Disease Progression
- Focal Adhesions/drug effects
- Focal Adhesions/metabolism
- Mice
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Proliferation/drug effects
- Mice, Nude
- Cell Movement/drug effects
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
Collapse
Affiliation(s)
- Shengfeng Zheng
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, China
| | - Zhe Hong
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| | - Yao Tan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Nursing Administration, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Junhong Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Zihao Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Tao Feng
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Zongyuan Hong
- Department of Pharmacology and Laboratory of Quantitative Pharmacology, Wannan Medical College, Wuhu, Anhui, 241000, China.
| | - Guowen Lin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
5
|
Carmona AV, Jonnalagadda S, Case AM, Maddeboina K, Jonnalagadda SK, Dow LF, Duan L, Penning TM, Trippier PC. Discovery of an Aldo-Keto reductase 1C3 (AKR1C3) degrader. Commun Chem 2024; 7:95. [PMID: 38684887 PMCID: PMC11059152 DOI: 10.1038/s42004-024-01177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Aldo-keto reductase 1C3 (AKR1C3) is a protein upregulated in prostate cancer, hematological malignancies, and other cancers where it contributes to proliferation and chemotherapeutic resistance. Androgen receptor splice variant 7 (ARv7) is the most common mutation of the AR receptor that confers resistance to clinical androgen receptor signalling inhibitors in castration-resistant prostate cancer. AKR1C3 interacts with ARv7 promoting stabilization. Herein we report the discovery of the first-in-class AKR1C3 Proteolysis-Targeting Chimera (PROTAC) degrader. This first-generation degrader potently reduced AKR1C3 expression in 22Rv1 prostate cancer cells with a half-maximal degradation concentration (DC50) of 52 nM. Gratifyingly, concomitant degradation of ARv7 was observed with a DC50 = 70 nM, along with degradation of the AKR1C3 isoforms AKR1C1 and AKR1C2 to a lesser extent. This compound represents a highly useful chemical tool and a promising strategy for prostate cancer intervention.
Collapse
Affiliation(s)
- Angelica V Carmona
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Shirisha Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Krishnaiah Maddeboina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Sravan K Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Ling Duan
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68106, USA.
- UNMC Center for Drug Design and Innovation, University of Nebraska Medical Center, Omaha, NE, 68106, USA.
| |
Collapse
|
6
|
Pippione AC, Kovachka S, Vigato C, Bertarini L, Mannella I, Sainas S, Rolando B, Denasio E, Piercy-Mycock H, Romalho L, Salladini E, Adinolfi S, Zonari D, Peraldo-Neia C, Chiorino G, Passoni A, Mirza OA, Frydenvang K, Pors K, Lolli ML, Spyrakis F, Oliaro-Bosso S, Boschi D. Structure-guided optimization of 3-hydroxybenzoisoxazole derivatives as inhibitors of Aldo-keto reductase 1C3 (AKR1C3) to target prostate cancer. Eur J Med Chem 2024; 268:116193. [PMID: 38364714 DOI: 10.1016/j.ejmech.2024.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
AKR1C3 is an enzyme that is overexpressed in several types of radiotherapy- and chemotherapy-resistant cancers. Despite AKR1C3 is a validated target for drug development, no inhibitor has been approved for clinical use. In this manuscript, we describe our study of a new series of potent AKR1C3-targeting 3-hydroxybenzoisoxazole based inhibitors that display high selectivity over the AKR1C2 isoform and low micromolar activity in inhibiting 22Rv1 prostate cancer cell proliferation. In silico studies suggested proper substituents to increase compound potency and provided with a mechanistic explanation that could clarify their different activity, later confirmed by X-ray crystallography. Both the in-silico studies and the crystallographic data highlight the importance of 90° rotation around the single bond of the biphenyl group, in ensuring that the inhibitor can adopt the optimal binding mode within the active pocket. The p-biphenyls that bear the meta-methoxy, and the ortho- and meta-trifluoromethyl substituents (in compounds 6a, 6e and 6f respectively) proved to be the best contributors to cellular potency as they provided the best IC50 values in series (2.3, 2.0 and 2.4 μM respectively) and showed no toxicity towards human MRC-5 cells. Co-treatment with scalar dilutions of either compound 6 or 6e and the clinically used drug abiraterone led to a significant reduction in cell proliferation, and thus confirmed that treatment with both CYP171A1-and AKR1C3-targeting compounds possess the potential to intervene in key steps in the steroidogenic pathway. Taken together, the novel compounds display desirable biochemical potency and cellular target inhibition as well as good in-vitro ADME properties, which highlight their potential for further preclinical studies.
Collapse
Affiliation(s)
- Agnese Chiara Pippione
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Sandra Kovachka
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Chiara Vigato
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Laura Bertarini
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Iole Mannella
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Stefano Sainas
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Barbara Rolando
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Enrica Denasio
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Helen Piercy-Mycock
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Linda Romalho
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Edoardo Salladini
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Salvatore Adinolfi
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Daniele Zonari
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Caterina Peraldo-Neia
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy
| | - Alice Passoni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Osman Asghar Mirza
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Karla Frydenvang
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Klaus Pors
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Marco Lucio Lolli
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Francesca Spyrakis
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Simonetta Oliaro-Bosso
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy.
| | - Donatella Boschi
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy.
| |
Collapse
|
7
|
Li M, Zhang L, Yu J, Wang X, Cheng L, Ma Z, Chen X, Wang L, Goh BC. AKR1C3 in carcinomas: from multifaceted roles to therapeutic strategies. Front Pharmacol 2024; 15:1378292. [PMID: 38523637 PMCID: PMC10957692 DOI: 10.3389/fphar.2024.1378292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Aldo-Keto Reductase Family 1 Member C3 (AKR1C3), also known as type 5 17β-hydroxysteroid dehydrogenase (17β-HSD5) or prostaglandin F (PGF) synthase, functions as a pivotal enzyme in androgen biosynthesis. It catalyzes the conversion of weak androgens, estrone (a weak estrogen), and PGD2 into potent androgens (testosterone and 5α-dihydrotestosterone), 17β-estradiol (a potent estrogen), and 11β-PGF2α, respectively. Elevated levels of AKR1C3 activate androgen receptor (AR) signaling pathway, contributing to tumor recurrence and imparting resistance to cancer therapies. The overexpression of AKR1C3 serves as an oncogenic factor, promoting carcinoma cell proliferation, invasion, and metastasis, and is correlated with unfavorable prognosis and overall survival in carcinoma patients. Inhibiting AKR1C3 has demonstrated potent efficacy in suppressing tumor progression and overcoming treatment resistance. As a result, the development and design of AKR1C3 inhibitors have garnered increasing interest among researchers, with significant progress witnessed in recent years. Novel AKR1C3 inhibitors, including natural products and analogues of existing drugs designed based on their structures and frameworks, continue to be discovered and developed in laboratories worldwide. The AKR1C3 enzyme has emerged as a key player in carcinoma progression and therapeutic resistance, posing challenges in cancer treatment. This review aims to provide a comprehensive analysis of AKR1C3's role in carcinoma development, its implications in therapeutic resistance, and recent advancements in the development of AKR1C3 inhibitors for tumor therapies.
Collapse
Affiliation(s)
- Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, China
- The Third Clinical Medical College of Yangtze University, Jingzhou, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Lingzhi Wang
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Gupta N, Curcic M, Srivastava SK. Proguanil Suppresses Breast Tumor Growth In Vitro and In Vivo by Inducing Apoptosis via Mitochondrial Dysfunction. Cancers (Basel) 2024; 16:872. [PMID: 38473234 DOI: 10.3390/cancers16050872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer, ranking as the second leading cause of female cancer-related deaths in the U.S., demands the exploration of innovative treatments. Repurposing FDA-approved drugs emerges as an expedited and cost-effective strategy. Our study centered on proguanil, an antimalarial drug, reveals notable anti-proliferative effects on diverse breast cancer cell lines, including those derived from patients. Proguanil-induced apoptosis was associated with a substantial increase in reactive oxygen species (ROS) production, leading to reduced mitochondrial membrane potential, respiration, and ATP production. Proguanil treatment upregulated apoptotic markers (Bax, p-H2AX, cleaved-caspase 3, 9, cleaved PARP) and downregulated anti-apoptotic proteins (bcl-2, survivin) in breast cancer cell lines. In female Balb/c mice implanted with 4T1 breast tumors, daily oral administration of 20 mg/kg proguanil suppressed tumor enlargement by 55%. Western blot analyses of proguanil-treated tumors supported the in vitro findings, demonstrating increased levels of p-H2AX, Bax, c-PARP, and c-caspase3 as compared to controls. Our results collectively highlight proguanil's anticancer efficacy in vitro and in vivo in breast cancer, prompting further consideration for clinical investigations.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Marina Curcic
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX 79601, USA
| |
Collapse
|
9
|
Maddeboina K, Jonnalagadda SK, Morsy A, Duan L, Chhonker YS, Murry DJ, Penning TM, Trippier PC. Aldo-Keto Reductase 1C3 Inhibitor Prodrug Improves Pharmacokinetic Profile and Demonstrates In Vivo Efficacy in a Prostate Cancer Xenograft Model. J Med Chem 2023; 66:9894-9915. [PMID: 37428858 PMCID: PMC11963376 DOI: 10.1021/acs.jmedchem.3c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Aldo-keto reductase 1C3 (AKR1C3) is overexpressed in castration-resistant prostate cancer where it acts to drive proliferation and aggressiveness by producing androgens. The reductive action of the enzyme leads to chemoresistance development against various clinical antineoplastics across a range of cancers. Herein, we report the continued optimization of selective AKR1C3 inhibitors and the identification of 5r, a potent AKR1C3 inhibitor (IC50 = 51 nM) with >1216-fold selectivity for AKR1C3 over closely related isoforms. Due to the cognizance of the poor pharmacokinetics associated with free carboxylic acids, a methyl ester prodrug strategy was pursued. The prodrug 4r was converted to free acid 5r in vitro in mouse plasma and in vivo. The in vivo pharmacokinetic evaluation revealed an increase in systemic exposure and increased the maximum 5r concentration compared to direct administration of the free acid. The prodrug 4r demonstrated a dose-dependent effect to reduce the tumor volume of 22Rv1 prostate cancer xenografts without observed toxicity.
Collapse
Affiliation(s)
- Krishnaiah Maddeboina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Sravan K Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Ahmed Morsy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Ling Duan
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| |
Collapse
|
10
|
Zhu S, Ni Y, Wang Z, Zhang X, Zhang Y, Zhao F, Dai J, Wang Z, Zhu X, Chen J, Zhao J, Zeng Y, Chen N, Zeng P, Shen P, Sun G, Zeng H. Plasma Exosomal AKR1C3 mRNA Expression Is a Predictive and Prognostic Biomarker in Patients with Metastatic Castration-Resistant Prostate Cancer. Oncologist 2022; 27:e870-e877. [PMID: 36067250 PMCID: PMC9632314 DOI: 10.1093/oncolo/oyac177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/13/2022] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Aldo-keto reductase family 1 member C3 (AKR1C3) is important in prostate cancer progression, being a potential biomarker in metastatic castration-resistant prostate cancer (mCRPC). Previous explorations of AKR1C3 are mainly based on tissue samples. This study investigates using plasma-based liquid biopsy to validate the prognostic and predictive value of AKR1C3 in patients with mCRPC . MATERIALS AND METHODS We prospectively recruited 62 patients with mCRPC. All patients received repeated prostate biopsies at the time of mCRPC diagnosis, and immunohistochemistry (IHC) staining was used to detect protein expression of AKR1C3 in the tissues. We took their blood simultaneously and performed digital droplet polymerase chain reaction (ddPCR) to measure expression levels of AKR1C3 in the exosomes. The detected plasma and tissue AKR1C3 expression levels were analyzed for patients' overall survival (OS) and progression-free survival under first-line abiraterone use (ABI-PFS). RESULTS All other baseline characteristics were balanced between the 2 groups. 15/62 (24.2%) and 25/62 (40.3%) patients showed AKR1C3-EXO positive (≥20 copies/20 μL) and AKR1C3-IHC positive, respectively. Positive AKR1C3-EXO expression was associated with decreased patients' survival [ABI-PFS: 3.9 vs 10.1 months, P < .001; OS: 16.2 vs 32.5 months, P < .001]. AKR1C3-IHC positivity was also correlated with ABI-PFS and OS (P = .010, P = .016). In patients with worse baseline blood tests (including higher alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) level and lower hemoglobin (HB) level), and lower ISUP/WHO group (<4), their OS was significantly worse when showing AKR1C3-EXO positive. CONCLUSION AKR1C3-EXO is associated with patient prognosis regarding OS and ABI-PFS and can be used as a biomarker in mCRPC.
Collapse
Affiliation(s)
| | | | | | - Xingming Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yaowen Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Fengnian Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Jindong Dai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhipeng Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xudong Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yuhao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ni Chen
- Department of Pathology, Institute of Urology, West People’s Republic of China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Peng Zeng
- 3D Medicines Inc., Shanghai, People’s Republic of China
| | - Pengfei Shen
- Pengfei Shen, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China.
| | - Guangxi Sun
- Guangxi Sun, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China.
| | - Hao Zeng
- Corresponding author: Hao Zeng, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China.
| |
Collapse
|
11
|
He S, Liu Y, Chu X, Li Q, Lyu W, Liu Y, Xing S, Feng F, Liu W, Guo Q, Zhao L, Sun H. Discovery of Novel Aldo-Keto Reductase 1C3 Inhibitors as Chemotherapeutic Potentiators for Cancer Drug Resistance. ACS Med Chem Lett 2022; 13:1286-1294. [PMID: 35978698 PMCID: PMC9377021 DOI: 10.1021/acsmedchemlett.2c00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
As a crucial target which is overexpressed in a variety of cancers, aldo-keto reductase 1C3 (AKR1C3) confers chemotherapeutic resistance to many clinical agents. However, a limited number of AKR1C3-selective inhibitors are applied clinically, which indicates the importance of identifying active compounds. Herein, we report the discovery, synthesis, and evaluation of novel and potent AKR1C3 inhibitors with structural diversity. Molecular dynamics simulations of these active compounds provide reasonable clarification of the interpreted biological data. Moreover, we demonstrate that AKR1C3 inhibitors have the potential to be superior therapeutic agents for re-sensitizing drug-resistant cell lines to chemotherapy, especially the pan-AKR1C inhibitor S07-2010. Our study identifies new structural classes of AKR1C3 inhibitors and enriches the structural diversity, which facilitates the future rational design of inhibitors and structural optimization. Moreover, these compounds may serve as promising therapeutic adjuvants toward new therapeutics for countering drug resistance.
Collapse
Affiliation(s)
- Siyu He
- School
of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis
and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Yang Liu
- School
of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Xianglin Chu
- School
of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Qi Li
- Department
of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, People’s Republic
of China
| | - Weiping Lyu
- Department
of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control
and Pharmacovigilance, China Pharmaceutical
University, Nanjing 211198, People’s Republic of China
| | - Yijun Liu
- School
of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Shuaishuai Xing
- School
of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Feng Feng
- Department
of Natural Medicinal Chemistry, China Pharmaceutical
University, Nanjing 211198, People’s Republic of China
- Jiangsu
Drug Development Engineering Research Center for Central Degenerative
Disease, Jiangsu Food and Pharmaceuticals
Science College, Nanjing 223005, People’s Republic
of China
| | - Wenyuan Liu
- School
of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
- Department
of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control
and Pharmacovigilance, China Pharmaceutical
University, Nanjing 211198, People’s Republic of China
| | - Qinglong Guo
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis
and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Li Zhao
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis
and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Haopeng Sun
- School
of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| |
Collapse
|
12
|
Chlorinated benzothiadiazines inhibit angiogenesis through suppression of VEGFR2 phosphorylation. Bioorg Med Chem 2022; 67:116805. [PMID: 35635929 PMCID: PMC9888588 DOI: 10.1016/j.bmc.2022.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/02/2023]
Abstract
Angiogenesis inhibitors are a critical pharmacological tool for the treatment of solid tumors. Suppressing vascular permeability leads to inhibition of tumor growth, invasion, and metastatic potential by blocking the supply of oxygen and nutrients. Disruption of the vascular endothelial growth factor (VEGF) signaling pathway is a validated target for the design of antiangiogenic agents. Several VEGFR2 inhibitors have been clinically approved over the past years. Structural analysis of these clinical VEGFR2 inhibitors highlighted key functional group overlap with the benzothiadiazine core contained in a library of in-house compounds. Herein we ascribe anti-angiogenic activity to a series of chlorinated benzothiadiazines. Selected compounds show significant activity to completely ameliorate VEGF-induced endothelial cell proliferation by suppression of VEGFR2 phosphorylation. The scaffold is devoid of activity to inhibit carbonic anhydrases and generally lacks cytotoxicity across a range of cancer and non-malignant cell lines. Assay of activity at 468 kinases shows remarkable selectivity with only four kinases inhibited > 65% at 10 µM concentration, and with significant activity to inhibit TNK2/ACK1 and PKRD2 by > 90%. All four identified kinase targets are known modulators of angiogenesis, thus highlighting compound 17b as a novel angiogenesis inhibitor for further development.
Collapse
|
13
|
Liu T, Wen X, Zhao QJ, Bai Y, Tian QG. The Effect of Nano Albumin Combined with Paclitaxel on Drug Resistance of Breast Cancer Through Regulating ATP Binding Cassette Subfamily B Member 1 (ABCB1). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The paclitaxel is a common-used chemotherapy drug and its combination with nano albumin reduces drug side effect. However, whether nab-paclitaxel affects drug resistance of breast cancer remains unclear. This study intends to discuss the mechanism of drug resistance induced by nab-paclitaxel.
The drug resistance of MCF-7/nab-paclitaxel in MCF-7 cell and cell proliferation was detected by MTT along with analysis of ABCB1 expression, cell cycle, and apoptosis. There was stronger drug resistance of nab-paclitaxel in the MCF-7/nab-paclitaxel cell group through be adopted with different
concentration of nab-paclitaxel at the 0th hour, 24th hour and 48th hour. There was remarkable abnormal expression of the ABCB1 in the MCF-7/nab-paclitaxel cell group. The si-ABCB1 could release the quantity of the MCF-7/nab-paclitaxel cell blocked at S period. And the si-ABCB1 could reduce
the expression of cyclin D1 and CDK2 in the MCF-7/nab-paclitaxel cell notably. But the expression level of p21 was increased when there was high concentration of si-ABCB1. The si-ABCB1 could increase the quantity of the MCF-7/nab-paclitaxel cell at the later period of cell apoptosis notably.
The rat’s tumor growth was delayed obviously at the MCF-7/nabpaclitaxel cell group treated by si-ABCB1. But the inhibiting effect of the MCF-7/nab-paclitaxel cell on tumor growth was less. There was stronger drug resistance of cell for the nano albumin combined with paclitaxel. The function
of cell proliferation in breast cancer was restrained by the nano albumin combined with paclitaxel mainly through inducing the expression of ABCB1, adjusting the growth of cell cycle and the expression of P21/BCL-2 protein.
Collapse
Affiliation(s)
- Tao Liu
- Department of Oncology, Baotou Fourth Hospital, Baotou, Inner Mongolia Autonomous Region, 014000, China
| | - Xiang Wen
- Department of Minimally Invasive Intervention, Baotou Tumor Hospital, Baotou, Inner Mongolia Autonomous Region, 014000, China
| | - Qi-Jun Zhao
- Department of Oncology, Baotou Fourth Hospital, Baotou, Inner Mongolia Autonomous Region, 014000, China
| | - Ying Bai
- Department of Oncology, Baotou Fourth Hospital, Baotou, Inner Mongolia Autonomous Region, 014000, China
| | - Qing-Gang Tian
- Department of Oncology, Baotou Fourth Hospital, Baotou, Inner Mongolia Autonomous Region, 014000, China
| |
Collapse
|
14
|
Pippione AC, Kilic-Kurt Z, Kovachka S, Sainas S, Rolando B, Denasio E, Pors K, Adinolfi S, Zonari D, Bagnati R, Lolli ML, Spyrakis F, Oliaro-Bosso S, Boschi D. New aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the hydroxytriazole scaffold. Eur J Med Chem 2022; 237:114366. [DOI: 10.1016/j.ejmech.2022.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/04/2022]
|
15
|
Jonnalagadda SK, Huwaimel BI, Jonnalagadda S, Garrison JC, Trippier PC. Access to Highly Strained Tricyclic Ketals Derived from Coumarins. J Org Chem 2022; 87:4476-4482. [PMID: 35258961 PMCID: PMC8996706 DOI: 10.1021/acs.joc.2c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthesis of highly strained fused substituted dihydrobenzopyran cyclopropyl lactones derived from coumarin carboxylates are reported. The substrate scope tolerates a variety of 6- and 8-substituents on the coumarin ring. Substitution at the 5- or 7-position is resistant to tricyclic lactone formation except with 7-methyl substitution. Benzamide-containing coumarins afford the tricyclic ketal. A plausible mechanism is proposed for the formation of the fused lactone: intramolecular rearrangement of trans cyclopropyl methyl ketones with phenolic acetate via the formation of a hemiacetal.
Collapse
Affiliation(s)
- Sravan K Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Bader I Huwaimel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States.,Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Kingdom of Saudi Arabia
| | - Shirisha Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Jered C Garrison
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| |
Collapse
|
16
|
Khalilullah H. Identification of Anti‐Cancer Agents Targeting Aldo‐Keto Reductase (AKR) 1C3 Protein by Pharmacophore Modeling, Virtual Screening and Molecular Docking. ChemistrySelect 2021. [DOI: 10.1002/slct.202103151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Habibullah Khalilullah
- Department of Pharmaceutical Chemistry & Pharmacognosy Unaizah College of Pharmacy, Qassim University Unaizah 51911 Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Ladurner M, Wieser M, Eigentler A, Seewald M, Dobler G, Neuwirt H, Kafka M, Heidegger I, Horninger W, Bektic J, Klocker H, Obrist P, Eder IE. Validation of Cell-Free RNA and Circulating Tumor Cells for Molecular Marker Analysis in Metastatic Prostate Cancer. Biomedicines 2021; 9:biomedicines9081004. [PMID: 34440208 PMCID: PMC8391593 DOI: 10.3390/biomedicines9081004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Since tissue material is often lacking in metastatic prostate cancer (mPCa), there is increasing interest in using liquid biopsies for treatment decision and monitoring therapy responses. The purpose of this study was to validate the usefulness of circulating tumor cells (CTCs) and plasma-derived cell-free (cf) RNA as starting material for gene expression analysis through qPCR. CTCs were identified upon prostate-specific membrane antigen and/or cytokeratin positivity after enrichment with ScreenCell (Westford, Massachusetts, USA) filters or the microfluidic ParsortixTM (Guildford, Surrey, United Kingdom) system. Overall, 50% (28/56) of the patients had ≥5 CTCs/7.5 mL of blood. However, CTC count did not correlate with Gleason score, serum PSA, or gene expression. Notably, we observed high expression of CD45 in CTC samples after enrichment, which could be successfully eliminated through picking of single cells. Gene expression in picked CTCs was, however, rather low. In cfRNA from plasma, on the other hand, gene expression levels were higher compared to those found in CTCs. Moreover, we found that PSA was significantly increased in plasma-derived cfRNA of mPCa patients compared to healthy controls. High PSA expression was also associated with poor overall survival, indicating that using cfRNA from plasma could be used as a valuable tool for molecular expression analysis.
Collapse
Affiliation(s)
- Michael Ladurner
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Manuel Wieser
- Tyrolpath Obrist Brunhuber GmbH, 6511 Zams, Austria; (M.W.); (M.S.); (P.O.)
| | - Andrea Eigentler
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Martin Seewald
- Tyrolpath Obrist Brunhuber GmbH, 6511 Zams, Austria; (M.W.); (M.S.); (P.O.)
| | - Gabriele Dobler
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Hannes Neuwirt
- Department of Internal Medicine IV-Nephrology and Hypertension, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Mona Kafka
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Wolfgang Horninger
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Jasmin Bektic
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Helmut Klocker
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Peter Obrist
- Tyrolpath Obrist Brunhuber GmbH, 6511 Zams, Austria; (M.W.); (M.S.); (P.O.)
| | - Iris E. Eder
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
- Correspondence: ; Tel.: +43-512-504-24819; Fax: +43-512-504-24817
| |
Collapse
|
18
|
Lopes N, Pacheco MB, Soares-Fernandes D, Correia MP, Camilo V, Henrique R, Jerónimo C. Hydralazine and Enzalutamide: Synergistic Partners against Prostate Cancer. Biomedicines 2021; 9:biomedicines9080976. [PMID: 34440180 PMCID: PMC8391120 DOI: 10.3390/biomedicines9080976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Advanced prostate cancers frequently develop resistance to androgen-deprivation therapy with serious implications for patient survival. Considering their importance in this type of neoplasia, epigenetic modifications have drawn attention as alternative treatment strategies. The aim of this study was to assess the antitumoral effects of the combination of hydralazine, a DNA methylation inhibitor, with enzalutamide, an antagonist of the androgen receptor, in prostate cancer cell lines. Several biological parameters, such as cell viability, proliferation, DNA damage, and apoptosis, as well as clonogenic and invasive potential, were evaluated. The individual treatments with hydralazine and enzalutamide exerted growth-inhibitory effects in prostate cancer cells and their combined treatment displayed synergistic effects. The combination of these two drugs was very effective in decreasing malignant features of prostate cancer and may become an alternative therapeutic option for prostate cancer patient management.
Collapse
Affiliation(s)
- Nair Lopes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Mariana Brütt Pacheco
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Diana Soares-Fernandes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vânia Camilo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Correspondence: ; Tel.: +351-225-084-000; Fax: +351-225-084-047
| |
Collapse
|
19
|
Penning TM, Jonnalagadda S, Trippier PC, Rižner TL. Aldo-Keto Reductases and Cancer Drug Resistance. Pharmacol Rev 2021; 73:1150-1171. [PMID: 34312303 PMCID: PMC8318518 DOI: 10.1124/pharmrev.120.000122] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human aldo-keto reductases (AKRs) catalyze the NADPH-dependent reduction of carbonyl groups to alcohols for conjugation reactions to proceed. They are implicated in resistance to cancer chemotherapeutic agents either because they are directly involved in their metabolism or help eradicate the cellular stress created by these agents (e.g., reactive oxygen species and lipid peroxides). Furthermore, this cellular stress activates the Nuclear factor-erythroid 2 p45-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 pathway. As many human AKR genes are upregulated by the NRF2 transcription factor, this leads to a feed-forward mechanism to enhance drug resistance. Resistance to major classes of chemotherapeutic agents (anthracyclines, mitomycin, cis-platin, antitubulin agents, vinca alkaloids, and cyclophosphamide) occurs by this mechanism. Human AKRs also catalyze the synthesis of androgens and estrogens and the elimination of progestogens and are involved in hormonal-dependent malignancies. They are upregulated by antihormonal therapy providing a second mechanism for cancer drug resistance. Inhibitors of the NRF2 system or pan-AKR1C inhibitors offer promise to surmount cancer drug resistance and/or synergize the effects of existing drugs. SIGNIFICANCE STATEMENT: Aldo-keto reductases (AKRs) are overexpressed in a large number of human tumors and mediate resistance to cancer chemotherapeutics and antihormonal therapies. Existing drugs and new agents in development may surmount this resistance by acting as specific AKR isoforms or AKR pan-inhibitors to improve clinical outcome.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| | - Sravan Jonnalagadda
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| | - Paul C Trippier
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| | - Tea Lanišnik Rižner
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| |
Collapse
|
20
|
Liu F, Li R, Ye J, Ren Y, Tang Z, Li R, Zhang C, Li Q. Study of Aldo-keto Reductase 1C3 Inhibitor with Novel Framework for Treating Leukaemia Based on Virtual Screening and In vitro Biological Activity Testing. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Gupta N, Srivastava SK. Atovaquone Suppresses the Growth of Metastatic Triple-Negative Breast Tumors in Lungs and Brain by Inhibiting Integrin/FAK Signaling Axis. Pharmaceuticals (Basel) 2021; 14:521. [PMID: 34071408 PMCID: PMC8229709 DOI: 10.3390/ph14060521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is considered to be the most aggressive and malignant neoplasm and is highly metastatic in nature. In the current study, we investigated the anti-metastatic potential of atovaquone, a protozoal drug prescribed for Pneumocystis pneumonia. We showed that atovaquone induced apoptosis and reduced the survival of several aggressive metastatic TNBC cell lines including metastatic patient-derived cells by reducing the expression of integrin α6, integrin β4, FAK, Src, and Vimentin. In order to study the efficacy of atovaquone in suppressing metastasized breast tumor cells in brain and lungs, we performed three in vivo experiments. We demonstrated that oral administration of 50 mg/kg of atovaquone suppressed MDA-MB-231 breast tumor growth by 90% in lungs in an intravenous metastatic tumor model. Anti-metastatic effect of atovaquone was further determined by intracardiac injection of 4T1-luc breast tumor cells into the left ventricle of mouse heart. Our results showed that atovaquone treatment suppressed the growth of metastatic tumors in lungs, liver and brain by 70%, 50% and 30% respectively. In an intracranial model, the growth of HCC1806-luc brain tumors in atovaquone treated mice was about 55% less than that of control. Taken together, our results indicate the anti-metastatic effects of atovaquone in vitro and in vivo in various breast tumor metastasis models.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K. Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| |
Collapse
|
22
|
Gupta N, Gaikwad S, Kaushik I, Wright SE, Markiewski MM, Srivastava SK. Atovaquone Suppresses Triple-Negative Breast Tumor Growth by Reducing Immune-Suppressive Cells. Int J Mol Sci 2021; 22:5150. [PMID: 34068008 PMCID: PMC8152242 DOI: 10.3390/ijms22105150] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
A major contributing factor in triple-negative breast cancer progression is its ability to evade immune surveillance. One mechanism for this immunosuppression is through ribosomal protein S19 (RPS19), which facilitates myeloid-derived suppressor cells (MDSCs) recruitment in tumors, which generate cytokines TGF-β and IL-10 and induce regulatory T cells (Tregs), all of which are immunosuppressive and enhance tumor progression. Hence, enhancing the immune system in breast tumors could be a strategy for anticancer therapeutics. The present study evaluated the immune response of atovaquone, an antiprotozoal drug, in three independent breast-tumor models. Our results demonstrated that oral administration of atovaquone reduced HCC1806, CI66 and 4T1 paclitaxel-resistant (4T1-PR) breast-tumor growth by 45%, 70% and 42%, respectively. MDSCs, TGF-β, IL-10 and Tregs of blood and tumors were analyzed from all of these in vivo models. Our results demonstrated that atovaquone treatment in mice bearing HCC1806 tumors reduced MDSCs from tumor and blood by 70% and 30%, respectively. We also observed a 25% reduction in tumor MDSCs in atovaquone-treated mice bearing CI66 and 4T1-PR tumors. In addition, a decrease in TGF-β and IL-10 in tumor lysates was observed in atovaquone-treated mice with a reduction in tumor Tregs. Moreover, a significant reduction in the expression of RPS19 was found in tumors treated with atovaquone.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (N.G.); (S.E.W.)
- Department of Immunotherapeutics and Biotechnology, Center for Tumor Immunology, and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (S.G.); (I.K.); (M.M.M.)
| | - Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, Center for Tumor Immunology, and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (S.G.); (I.K.); (M.M.M.)
| | - Itishree Kaushik
- Department of Immunotherapeutics and Biotechnology, Center for Tumor Immunology, and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (S.G.); (I.K.); (M.M.M.)
| | - Stephen E. Wright
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (N.G.); (S.E.W.)
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Maciej M. Markiewski
- Department of Immunotherapeutics and Biotechnology, Center for Tumor Immunology, and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (S.G.); (I.K.); (M.M.M.)
| | - Sanjay K. Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (N.G.); (S.E.W.)
- Department of Immunotherapeutics and Biotechnology, Center for Tumor Immunology, and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA; (S.G.); (I.K.); (M.M.M.)
| |
Collapse
|
23
|
Huwaimel BI, Bhakta M, Kulkarni CA, Milliken AS, Wang F, Peng A, Brookes PS, Trippier PC. Discovery of Halogenated Benzothiadiazine Derivatives with Anticancer Activity*. ChemMedChem 2021; 16:1143-1162. [PMID: 33331124 DOI: 10.1002/cmdc.202000729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/16/2020] [Indexed: 12/24/2022]
Abstract
Mitochondrial respiratory complex II (CII), also known as succinate dehydrogenase, plays a critical role in mitochondrial metabolism. Known but low potency CII inhibitors are selectively cytotoxic to cancer cells including the benzothiadiazine-based anti-hypoglycemic diazoxide. Herein, we study the structure-activity relationship of benzothiadiazine derivatives for CII inhibition and their effect on cancer cells for the first time. A 15-fold increase in CII inhibition was achieved over diazoxide, albeit with micromolar IC50 values. Cytotoxicity evaluation of the novel derivatives resulted in the identification of compounds with much greater antineoplastic effect than diazoxide, the most potent of which possesses an IC50 of 2.93±0.07 μM in a cellular model of triple-negative breast cancer, with high selectivity over nonmalignant cells and more than double the potency of the clinical agent 5-fluorouracil. No correlation between cytotoxicity and CII inhibition was found, thus indicating an as-yet-undefined mechanism of action of this scaffold. The derivatives described herein represent valuable hit compounds for therapeutic discovery in triple-negative breast cancer.
Collapse
Affiliation(s)
- Bader I Huwaimel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Myla Bhakta
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Chaitanya A Kulkarni
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Alexander S Milliken
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Feifei Wang
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Aimin Peng
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Paul S Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68106, USA.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68106, USA
| |
Collapse
|
24
|
Peraldo-Neia C, Ostano P, Mello-Grand M, Guana F, Gregnanin I, Boschi D, Oliaro-Bosso S, Pippione AC, Carenzo A, De Cecco L, Cavalieri S, Micali A, Perrone F, Averono G, Bagnasacco P, Dosdegani R, Masini L, Krengli M, Aluffi-Valletti P, Valente G, Chiorino G. AKR1C3 is a biomarker and druggable target for oropharyngeal tumors. Cell Oncol (Dordr) 2020; 44:357-372. [PMID: 33211282 DOI: 10.1007/s13402-020-00571-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 10/22/2022] Open
Abstract
PURPOSE Oropharynx squamous cell carcinoma (OPSCC) is a subtype of head and neck squamous cell carcinoma (HNSCC) arising from the base of the tongue, lingual tonsils, tonsils, oropharynx or pharynx. The majority of HPV-positive OPSCCs has a good prognosis, but a fraction of them has a poor prognosis, similar to HPV-negative OPSCCs. An in-depth understanding of the molecular mechanisms underlying OPSCC is mandatory for the identification of novel prognostic biomarkers and/or novel therapeutic targets. METHODS 14 HPV-positive and 15 HPV-negative OPSCCs with 5-year follow-up information were subjected to gene expression profiling and, subsequently, compared to three extensive published OPSCC cohorts to define robust biomarkers for HPV-negative lesions. Validation of Aldo-keto-reductases 1C3 (AKR1C3) by qRT-PCR was carried out on an independent cohort (n = 111) of OPSCC cases. In addition, OPSCC cell lines Fadu and Cal-27 were treated with Cisplatin and/or specific AKR1C3 inhibitors to assess their (combined) therapeutic effects. RESULTS Gene set enrichment analysis (GSEA) on the four datasets revealed that the genes down-regulated in HPV-negative samples were mainly involved in immune system, whereas those up-regulated mainly in glutathione derivative biosynthetic and xenobiotic metabolic processes. A panel of 30 robust HPV-associated transcripts was identified, with AKR1C3 as top-overexpressed transcript in HPV-negative samples. AKR1C3 expression in 111 independent OPSCC cases positively correlated with a worse survival, both in the entire cohort and in HPV-positive samples. Pretreatment with a selective AKR1C3 inhibitor potentiated the effect of Cisplatin in OPSCC cells exhibiting higher basal AKR1C3 expression levels. CONCLUSIONS We identified AKR1C3 as a potential prognostic biomarker in OPSCC and as a potential drug target whose inhibition can potentiate the effect of Cisplatin.
Collapse
Affiliation(s)
- Caterina Peraldo-Neia
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy
| | - Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy
| | - Maurizia Mello-Grand
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy
| | - Francesca Guana
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy
| | - Ilaria Gregnanin
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy
| | - Donatella Boschi
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Simonetta Oliaro-Bosso
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Agnese Chiara Pippione
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125, Turin, Italy
| | - Andrea Carenzo
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Loris De Cecco
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Arianna Micali
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Federica Perrone
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Gianluca Averono
- Otorhinolaryngology Unit, Ospedale degli Infermi, via dei Ponderanesi 1, Ponderano, Biella, Italy
| | - Paolo Bagnasacco
- Otorhinolaryngology Unit, Ospedale degli Infermi, via dei Ponderanesi 1, Ponderano, Biella, Italy
| | | | - Laura Masini
- Department of Translational Medicine, UPO School of Medicine, Radiotherapy Unit, Novara, Italy
| | - Marco Krengli
- Department of Translational Medicine, UPO School of Medicine, Radiotherapy Unit, Novara, Italy
| | - Paolo Aluffi-Valletti
- Department of Health Sciences, UPO School of Medicine, Otorhinolaryngology Unit, Novara, Italy
| | - Guido Valente
- Department of Translational Medicine, UPO School of Medicine, Radiotherapy Unit, Novara, Italy
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900, Biella, Italy.
| |
Collapse
|
25
|
Penning TM, Asangani IA, Sprenger C, Plymate S. Intracrine androgen biosynthesis and drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:912-929. [PMID: 35582223 PMCID: PMC8992556 DOI: 10.20517/cdr.2020.60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 10/10/2020] [Indexed: 06/15/2023]
Abstract
Castration-resistant prostate cancer is the lethal form of prostate cancer and most commonly remains dependent on androgen receptor (AR) signaling. Current therapies use AR signaling inhibitors (ARSI) exemplified by abiraterone acetate, a P450c17 inhibitor, and enzalutamide, a potent AR antagonist. However, drug resistance to these agents occurs within 12-18 months and they only prolong overall survival by 3-4 months. Multiple mechanisms can contribute to ARSI drug resistance. These mechanisms can include but are not limited to germline mutations in the AR, post-transcriptional alterations in AR structure, and adaptive expression of genes involved in the intracrine biosynthesis and metabolism of androgens within the tumor. This review focuses on intracrine androgen biosynthesis, how this can contribute to ARSI drug resistance, and therapeutic strategies that can be used to surmount these resistance mechanisms.
Collapse
Affiliation(s)
- Trevor M. Penning
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irfan A. Asangani
- Department Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cynthia Sprenger
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Stephen Plymate
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98109, USA
- Geriatric Research Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|
26
|
Hertzog JR, Zhang Z, Bignan G, Connolly PJ, Heindl JE, Janetopoulos CJ, Rupnow BA, McDevitt TM. AKR1C3 mediates pan-AR antagonist resistance in castration-resistant prostate cancer. Prostate 2020; 80:1223-1232. [PMID: 33258507 DOI: 10.1002/pros.24049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Antiandrogens are effective therapies that block androgen receptor (AR) transactivation and signaling in over 50% of castration-resistant prostate cancer (CRPC) patients. However, an estimated 30% of responders will develop resistance to these therapies within 2 years. JNJ-pan-AR is a broad-spectrum AR antagonist that inhibits wild-type AR as well as several mutated versions of AR that have emerged in patients on chronic antiandrogen treatment. In this work, we aimed to identify the potential underlying mechanisms of resistance that may result from chronic JNJ-pan-AR treatment. METHODS The LNCaP JNJR prostate cancer subline was developed by chronically exposing LNCaP parental cells to JNJ-pan-AR. Transcriptomic and proteomic profiling was performed to identify potential drivers and/or biomarkers of the resistant phenotype. RESULTS Several enzymes critical to intratumoral androgen biosynthesis, Aldo-keto reductase family 1 member C3 (AKR1C3), UGT2B15, and UGT2B17 were identified as potential upstream regulators of the JNJ-pan-AR resistant cells. While we confirmed the overexpression of all three enzymes in the resistant cells only AKR1C3 expression played a functional role in driving JNJ-pan-AR resistance. We also discovered that AKR1C3 regulates UGT2B15 and UGT2B17 expression in JNJ-pan-AR resistant cells. CONCLUSIONS This study supports the rationale to further investigate the benefits of AKR1C3 inhibition in combination with antiandrogens to prevent CRPC disease progression.
Collapse
Affiliation(s)
- Jennifer R Hertzog
- Discovery Oncology, Janssen R&D US, Spring House, Pennsylvania
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania
| | - Zhuming Zhang
- Discovery Chemistry, Janssen R&D US, Spring House, Pennsylvania
| | - Gilles Bignan
- Discovery Chemistry, Janssen R&D US, Spring House, Pennsylvania
| | | | - Jason E Heindl
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania
| | - Christopher J Janetopoulos
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania
| | - Brent A Rupnow
- Discovery Oncology, Janssen R&D US, Spring House, Pennsylvania
| | | |
Collapse
|
27
|
Endo S, Oguri H, Segawa J, Kawai M, Hu D, Xia S, Okada T, Irie K, Fujii S, Gouda H, Iguchi K, Matsukawa T, Fujimoto N, Nakayama T, Toyooka N, Matsunaga T, Ikari A. Development of Novel AKR1C3 Inhibitors as New Potential Treatment for Castration-Resistant Prostate Cancer. J Med Chem 2020; 63:10396-10411. [PMID: 32847363 DOI: 10.1021/acs.jmedchem.0c00939] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aldo-keto reductase (AKR) 1C3 catalyzes the synthesis of active androgens that promote the progression of prostate cancer. AKR1C3 also contributes to androgen-independent cell proliferation and survival through the metabolism of prostaglandins and reactive aldehydes. Because of its elevation in castration-resistant prostate cancer (CRPC) tissues, AKR1C3 is a promising therapeutic target for CRPC. In this study, we found a novel potent AKR1C3 inhibitor, N-(4-fluorophenyl)-8-hydroxy-2-imino-2H-chromene-3-carboxamide (2d), and synthesized its derivatives with IC50 values of 25-56 nM and >220-fold selectivity over other AKRs (1C1, 1C2, and 1C4). The structural factors for the inhibitory potency were elucidated by crystallographic study of AKR1C3 complexes with 2j and 2l. The inhibitors suppressed proliferation of prostate cancer 22Rv1 and PC3 cells through both androgen-dependent and androgen-independent mechanisms. Additionally, 2j and 2l prevented prostate tumor growth in a xenograft mouse model. Furthermore, the inhibitors significantly augmented apoptotic cell death induced by anti-CRPC drugs (abiraterone or enzalutamide).
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Hiroaki Oguri
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Jin Segawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Dawei Hu
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Shuang Xia
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Takuya Okada
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Katsumasa Irie
- Cellular and Structural Physiology Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Shinya Fujii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Hiroaki Gouda
- School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Department of Pharmacy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Takuo Matsukawa
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
28
|
Kafka M, Mayr F, Temml V, Möller G, Adamski J, Höfer J, Schwaiger S, Heidegger I, Matuszczak B, Schuster D, Klocker H, Bektic J, Stuppner H, Eder IE. Dual Inhibitory Action of a Novel AKR1C3 Inhibitor on Both Full-Length AR and the Variant AR-V7 in Enzalutamide Resistant Metastatic Castration Resistant Prostate Cancer. Cancers (Basel) 2020; 12:E2092. [PMID: 32731472 PMCID: PMC7465893 DOI: 10.3390/cancers12082092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/23/2022] Open
Abstract
The expanded use of second-generation antiandrogens revolutionized the treatment landscape of progressed prostate cancer. However, resistances to these novel drugs are already the next obstacle to be solved. Various previous studies depicted an involvement of the enzyme AKR1C3 in the process of castration resistance as well as in the resistance to 2nd generation antiandrogens like enzalutamide. In our study, we examined the potential of natural AKR1C3 inhibitors in various prostate cancer cell lines and a three-dimensional co-culture spheroid model consisting of cancer cells and cancer-associated fibroblasts (CAFs) mimicking enzalutamide resistant prostate cancer. One of our compounds, named MF-15, expressed strong antineoplastic effects especially in cell culture models with significant enzalutamide resistance. Furthermore, MF-15 exhibited a strong effect on androgen receptor (AR) signaling, including significant inhibition of AR activity, downregulation of androgen-regulated genes, lower prostate specific antigen (PSA) production, and decreased AR and AKR1C3 expression, indicating a bi-functional effect. Even more important, we demonstrated a persisting inhibition of AR activity in the presence of AR-V7 and further showed that MF-15 non-competitively binds within the DNA binding domain of the AR. The data suggest MF-15 as useful drug to overcome enzalutamide resistance.
Collapse
Affiliation(s)
- Mona Kafka
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.K.); (J.H.); (I.H.); (H.K.); (J.B.)
| | - Fabian Mayr
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (F.M.); (V.T.); (S.S.); (H.S.)
| | - Veronika Temml
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (F.M.); (V.T.); (S.S.); (H.S.)
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (G.M.); (J.A.)
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (G.M.); (J.A.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 637551, Singapore
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Julia Höfer
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.K.); (J.H.); (I.H.); (H.K.); (J.B.)
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (F.M.); (V.T.); (S.S.); (H.S.)
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.K.); (J.H.); (I.H.); (H.K.); (J.B.)
| | - Barbara Matuszczak
- Institute of Pharmacy/Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (B.M.); (D.S.)
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (B.M.); (D.S.)
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Helmut Klocker
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.K.); (J.H.); (I.H.); (H.K.); (J.B.)
| | - Jasmin Bektic
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.K.); (J.H.); (I.H.); (H.K.); (J.B.)
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (F.M.); (V.T.); (S.S.); (H.S.)
| | - Iris E. Eder
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.K.); (J.H.); (I.H.); (H.K.); (J.B.)
| |
Collapse
|
29
|
Liu Y, He S, Chen Y, Liu Y, Feng F, Liu W, Guo Q, Zhao L, Sun H. Overview of AKR1C3: Inhibitor Achievements and Disease Insights. J Med Chem 2020; 63:11305-11329. [PMID: 32463235 DOI: 10.1021/acs.jmedchem.9b02138] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human aldo-keto reductase family 1 member C3 (AKR1C3) is known as a hormone activity regulator and prostaglandin F (PGF) synthase that regulates the occupancy of hormone receptors and cell proliferation. Because of the overexpression in metabolic diseases and various hormone-dependent and -independent carcinomas, as well as the emergence of clinical drug resistance, an increasing number of studies have investigated AKR1C3 inhibitors. Here, we briefly review the physiological and pathological function of AKR1C3 and then summarize the recent development of selective AKR1C3 inhibitors. We propose our viewpoints on the current problems associated with AKR1C3 inhibitors with the aim of providing a reference for future drug discovery and potential therapeutic perspectives on novel, potent, selective AKR1C3 inhibitors.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Siyu He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yijun Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Huaian 223005, People's Republic of China.,Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
30
|
Zhou M, Wang X, Xia J, Cheng Y, Xiao L, Bei Y, Tang J, Huang Y, Xiang Q, Huang S. A Mansonone Derivative Coupled with Monoclonal Antibody 4D5-Modified Chitosan Inhibit AKR1C3 to Treat Castration-Resistant Prostate Cancer. Int J Nanomedicine 2020; 15:3087-3098. [PMID: 32431503 PMCID: PMC7200237 DOI: 10.2147/ijn.s241324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Aldo-ketoreductase (AKR) 1C3 is crucial for testosterone synthesis. Abnormally high expression/activity of AKR1C3 can promote castration-resistant prostate cancer (CRPC). A mansonone derivative and AKR1C3 inhibitor, 6e, was combined with 4D5 (extracellular fragment of the monoclonal antibody of human epidermal growth factor receptor-2)-modified chitosan to achieve a nanodrug-delivery system (CS-4D5/6e) to treat CRPC. Materials and Methods Morphologies/properties of CS-4D5/6e were characterized by atomic force microscopy, zeta-potential analysis, and Fourier transform-infrared spectroscopy. CS-4D5/6e uptake was measured by immunofluorescence under confocal laser scanning microscopy. Testosterone in LNCaP cells overexpressing human AKR1C3 (LNCaP-AKR1C3) and cell lysates was measured to reflect AKR1C3 activity. Androgen receptor (AR) and prostate-specific antigen (PSA) expression was measured by Western blotting. CS-4D5/6e-based inhibition of AKR1C3 was evaluated in tumor-xenografted mice. Results CS-4D5/6e was oblate, with a particle size of 200-300 nm and thickness of 1-5 nm. Zeta potential was 1.39±0.248 mV. 6e content in CS-4D5/6e was 7.3±1.4% and was 18±3.6% for 4D5. 6e and CS-4D5/6e inhibited testosterone production significantly in a concentration-dependent manner in LNCaP-AKR1C3 cells, and a decrease in expression of AKR1C3, PSA, and AR was noted. Half-maximal inhibitory concentration of CS-4D5/6e on LNCaP-AKR1C3 cells was significantly lower than that in LNCaP cells (P<0.05). CS-4D5/6e significantly reduced growth of 22Rv1 tumor xenografts by 57.00% compared with that in the vehicle group (P<0.01). Conclusion We demonstrated the antineoplastic activity of a potent AKR1C3 inhibitor (6e) and its nanodrug-delivery system (CS-4D5/6e). First, CS-4D5/6e targeted HER2-positive CRPC cells. Second, it transferred 6e (an AKR1C3 inhibitor) to achieve a reduction in intratumoral testosterone production. Compared with 6e, CS-4D5/6e showed lower systemic toxicity. CS-4D5/6e inhibited tumor growth effectively in mice implanted with tumor xenografts by downregulating testosterone production mediated by intratumoral AKR1C3. These results showed a promising strategy for treatment of the CRPC that develops invariably in prostate-cancer patients.
Collapse
Affiliation(s)
- Meng Zhou
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiaoyu Wang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jie Xia
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Yating Cheng
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lichun Xiao
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yu Bei
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Jianzhong Tang
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, People's Republic of China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou 510630, People's Republic of China
| | - Shiliang Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
31
|
Morsy A, Trippier PC. Reversal of Apalutamide and Darolutamide Aldo-Keto Reductase 1C3-Mediated Resistance by a Small Molecule Inhibitor. ACS Chem Biol 2020; 15:646-650. [PMID: 32125151 DOI: 10.1021/acschembio.0c00069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The antiandrogen therapeutics apalutamide and darolutamide entered the clinic in 2018 and 2019, respectively, for the treatment of castration-resistant prostate cancer (CRPC). Increased expression of the enzyme aldo-keto reductase 1C3 (AKR1C3) is phenotypic of CRPC. The enzyme acts to circumvent castration by producing potent androgens that drive proliferation. Furthermore, AKR1C3 mediates chemotherapeutic resistance to the standard of care, enzalutamide, a structural analogue of apalutamide. Resistance develops in almost all CRPC patients within three months of beginning treatment. Herein, we report that both apalutamide and the structurally distinct darolutamide induce AKR1C3 expression in in vitro models of prostate cancer and are susceptible to AKR1C3-mediated resistance. This effect is countered by pretreatment with a potent and highly selective AKR1C3 inhibitor, sensitizing high AKR1C3 expressing prostate cancer cell lines to the action of both chemotherapeutics with a concomitant reduction in expression of AKR1C3 and the biomarker prostate-specific antigen.
Collapse
Affiliation(s)
- Ahmed Morsy
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
32
|
Narayanan R. Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer. Asian J Urol 2020; 7:271-283. [PMID: 32742927 PMCID: PMC7385518 DOI: 10.1016/j.ajur.2020.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/24/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) accounted for over 300 000 deaths world-wide in 2018. Most of the PCa deaths occurred due to the aggressive castration-resistant PCa (CRPC). Since the androgen receptor (AR) and its ligands contribute to the continued growth of androgen-dependent PCa (ADPCa) and CRPC, AR has become a well-characterized and pivotal therapeutic-target. Although AR signaling was identified as therapeutic-target in PCa over five-decades ago, there remains several practical issues such as lack of antagonist-bound AR crystal structure, stabilization of the AR in the presence of agonists due to N-terminus and C-terminus interaction, unfavorable large-molecule accommodation of the ligand-binding domain (LBD), and generation of AR splice variants that lack the LBD that impede the discovery of highly potent fail-safe drugs. This review summarizes the AR-signaling pathway targeted therapeutics currently used in PCa and the approaches that could be used in future AR-targeted drug development of potent next-generation molecules. The review also outlines the discovery of molecules that bind to domains other than the LBD and those that inhibit both the full length and splice variant of ARs.
Collapse
|
33
|
Barnard M, Mostaghel EA, Auchus RJ, Storbeck KH. The role of adrenal derived androgens in castration resistant prostate cancer. J Steroid Biochem Mol Biol 2020; 197:105506. [PMID: 31672619 PMCID: PMC7883395 DOI: 10.1016/j.jsbmb.2019.105506] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023]
Abstract
Castration resistant prostate cancer (CRPC) remains androgen dependant despite castrate levels of circulating testosterone following androgen deprivation therapy, the first line of treatment for advanced metstatic prostate cancer. CRPC is characterized by alterations in the expression levels of steroidgenic enzymes that enable the tumour to derive potent androgens from circulating adrenal androgen precursors. Intratumoral androgen biosynthesis leads to the localized production of both canonical androgens such as 5α-dihydrotestosterone (DHT) as well as less well characterized 11-oxygenated androgens, which until recently have been overlooked in the context of CRPC. In this review we discuss the contribution of both canonical and 11-oxygenated androgen precursors to the intratumoral androgen pool in CRPC. We present evidence that CRPC remains androgen dependent and discuss the alterations in steroidogenic enzyme expression and how these affect the various pathways to intratumoral androgen biosynthesis. Finally we summarize the current treatment strategies for targeting adrenal derived androgen biosynthesis.
Collapse
Affiliation(s)
- Monique Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
34
|
Gupta N, Srivastava SK. Atovaquone: An Antiprotozoal Drug Suppresses Primary and Resistant Breast Tumor Growth by Inhibiting HER2/β-Catenin Signaling. Mol Cancer Ther 2019; 18:1708-1720. [PMID: 31270151 PMCID: PMC6905100 DOI: 10.1158/1535-7163.mct-18-1286] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/06/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022]
Abstract
Breast cancer is the second leading cause of cancer-related mortality in women. In the current study, we evaluated the anticancer effects of an antiprotozoal drug, atovaquone, against several breast cancer cell lines. Our results showed that atovaquone treatment induced apoptosis and inhibited the growth of all the breast cancer cell lines tested, including several patient-derived cells. In addition, atovaquone treatment significantly reduced the expression of HER2, β-catenin, and its downstream molecules such as pGSK-3β, TCF-4, cyclin D1, and c-Myc in vitro Efficacy of atovaquone was further evaluated in an in vivo tumor model by orthotropic implantation of two highly aggressive 4T1 and CI66 breast cancer cells in the mammary fat pad of female mice. Our results demonstrated that oral administration of atovaquone suppressed the growth of CI66 and 4T1 tumors by 70% and 60%, respectively. Paclitaxel is the first-line chemotherapeutic agent for metastatic breast cancer. We demonstrate that atovaquone administration suppressed the growth of 4T1 paclitaxel-resistant tumors by 40%. Tumors from atovaquone-treated mice exhibited reduced HER2, β-catenin, and c-Myc levels alongside an increase in apoptosis in all the three tumor models when analyzed by Western blotting, IHC, and TUNEL assay. Taken together, our results indicate that atovaquone effectively reduces the growth of primary and paclitaxel-resistant breast tumors. Atovaquone is already in the clinics with high safety and tolerability profile. Therefore, the findings from our studies will potentially prompt further clinical investigation into repurposing atovaquone for the treatment of patients with advanced breast cancer.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas.
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas
| |
Collapse
|
35
|
Karunasinghe N, Symes E, Gamage A, Wang A, Murray P, Zhu S, Goudie M, Masters J, Ferguson LR. Interaction between leukocyte aldo-keto reductase 1C3 activity, genotypes, biological, lifestyle and clinical features in a prostate cancer cohort from New Zealand. PLoS One 2019; 14:e0217373. [PMID: 31125365 PMCID: PMC6534310 DOI: 10.1371/journal.pone.0217373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/02/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction Aldo-keto reductase 1C3 (AKR1C3) is known for multiple functions including its catalytic activity towards producing extra-testicular androgen. The present study is towards understanding interaction between biological, lifestyle and genetic impacts of AKR1C3 and their influence on clinical factors in a prostate cancer (PC) cohort from New Zealand (NZ). Method Characteristics of 516 PC patients were collected from the Auckland Regional Urology Facility, NZ. These men were genotyped for the AKR1C3 rs12529 single nucleotide polymorphism (SNP). The leukocyte AKR1C3 activity was measured in a sub-cohort. Variability of leukocyte AKR1C3 activity between biological, lifestyle and clinical features as well as correlation between biological and clinical features were assessed with and without genetic stratification. Results The leukocyte AKR1C3 activity was associated with age at diagnosis (0.51 vs 0.34 μM coumberol units for >69y vs ≤69y, P = 0.03); and with anatomic stage/prognostic grouping among the AKR1C3 rs12529 CC genotype carriers (0.50 vs 28 μM coumberol units among low- and high-risk groups respectively, P = 0.02). Significant correlation between leukocyte AKR1C3 activity and age at PC diagnosis was also observed (correlation coefficient 0.20 and P = 0.02). Ever- smoking impacted both age and PSA at PC diagnosis among AKR1C3 rs12529 GG and CG genotype carriers respectively. Age at diagnosis significantly correlated with PSA at diagnosis in the main (correlation coefficient 0.29, and P<0.001) and sub-cohorts (correlation coefficient 0.24, and P = 0.01); and those carrying the AKR1C3 rs12529 CG and GG genotypes in both the main (correlation coefficient 0.30, and P<0.001 and correlation coefficient 0.35, and P<0.001 respectively) and sub-cohorts (correlation coefficient 0.43, and P<0.001 and correlation coefficient 0.39, and P = 0.06 respectively); but not with those carrying the CC genotype. Conclusions Age dependent PSA thresholds in PC screening could have been valid only in men carrying the AKR1C3 rs12529 CG and GG genotypes in this NZ cohort.
Collapse
Affiliation(s)
- Nishi Karunasinghe
- Auckland Cancer Society Research Centre (ACSRC), Faculty of Medical and Health Sciences (FM&HS), The University of Auckland, Auckland, New Zealand
- * E-mail:
| | - Eva Symes
- Auckland Cancer Society Research Centre (ACSRC), Faculty of Medical and Health Sciences (FM&HS), The University of Auckland, Auckland, New Zealand
| | - Amy Gamage
- Auckland Cancer Society Research Centre (ACSRC), Faculty of Medical and Health Sciences (FM&HS), The University of Auckland, Auckland, New Zealand
| | - Alice Wang
- Auckland Cancer Society Research Centre (ACSRC), Faculty of Medical and Health Sciences (FM&HS), The University of Auckland, Auckland, New Zealand
| | - Pam Murray
- Auckland Cancer Society Research Centre (ACSRC), Faculty of Medical and Health Sciences (FM&HS), The University of Auckland, Auckland, New Zealand
| | - Shuotun Zhu
- Auckland Cancer Society Research Centre (ACSRC), Faculty of Medical and Health Sciences (FM&HS), The University of Auckland, Auckland, New Zealand
| | - Megan Goudie
- Urology Department, Auckland City Hospital, Auckland, New Zealand
| | - Jonathan Masters
- Urology Department, Auckland City Hospital, Auckland, New Zealand
| | | |
Collapse
|
36
|
Miyazaki Y, Teramoto Y, Shibuya S, Goto T, Okasho K, Mizuno K, Uegaki M, Yoshikawa T, Akamatsu S, Kobayashi T, Ogawa O, Inoue T. Consecutive Prostate Cancer Specimens Revealed Increased Aldo⁻Keto Reductase Family 1 Member C3 Expression with Progression to Castration-Resistant Prostate Cancer. J Clin Med 2019; 8:E601. [PMID: 31052459 PMCID: PMC6571723 DOI: 10.3390/jcm8050601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2023] Open
Abstract
Aldo-keto reductase family 1 member C3 (AKR1C3) is an enzyme in the steroidogenesis pathway, especially in formation of testosterone and dihydrotestosterone, and is believed to have a key role in promoting prostate cancer (PCa) progression, particularly in castration-resistant prostate cancer (CRPC). This study aims to compare the expression level of AKR1C3 between benign prostatic epithelium and cancer cells, and among hormone-naïve prostate cancer (HNPC) and CRPC from the same patients, to understand the role of AKR1C3 in PCa progression. Correlation of AKR1C3 immunohistochemical expression between benign and cancerous epithelia in 134 patient specimens was analyzed. Additionally, correlation between AKR1C3 expression and prostate-specific antigen (PSA) progression-free survival (PFS) after radical prostatectomy was analyzed. Furthermore, we evaluated the consecutive prostate samples derived from 11 patients both in the hormone-naïve and castration-resistant states. AKR1C3 immunostaining of cancer epithelium was significantly stronger than that of the benign epithelia in patients with localized HNPC (p < 0.0001). High AKR1C3 expression was an independent factor of poor PSA PFS (p = 0.032). Moreover, AKR1C3 immunostaining was significantly stronger in CRPC tissues than in HNPC tissues in the same patients (p = 0.0234). Our findings demonstrate that AKR1C3 is crucial in PCa progression.
Collapse
Affiliation(s)
- Yu Miyazaki
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Yuki Teramoto
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto 606-8507, Japan.
| | - Shinsuke Shibuya
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto 606-8507, Japan.
| | - Takayuki Goto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Kosuke Okasho
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Kei Mizuno
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Masayuki Uegaki
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Takeshi Yoshikawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Takahiro Inoue
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| |
Collapse
|
37
|
Verma K, Zang T, Penning TM, Trippier PC. Potent and Highly Selective Aldo-Keto Reductase 1C3 (AKR1C3) Inhibitors Act as Chemotherapeutic Potentiators in Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia. J Med Chem 2019; 62:3590-3616. [PMID: 30836001 DOI: 10.1021/acs.jmedchem.9b00090] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aldo-keto reductase 1C3 (AKR1C3) catalyzes the synthesis of 9α,11β-prostaglandin (PG) F2α and PGF2α prostanoids that sustain the growth of myeloid precursors in the bone marrow. The enzyme is overexpressed in acute myeloid leukemia (AML) and T-cell acute lymphoblastic leukemia (T-ALL). Moreover, AKR1C3 confers chemotherapeutic resistance to the anthracyclines: first-line agents for the treatment of leukemias. The highly homologous isoforms AKR1C1 and AKR1C2 inactivate 5α-dihydrotestosterone, and their inhibition would be undesirable. We report herein the identification of AKR1C3 inhibitors that demonstrate exquisite isoform selectivity for AKR1C3 over the other closely related isoforms to the order of >2800-fold. Biological evaluation of our isoform-selective inhibitors revealed a high degree of synergistic drug action in combination with the clinical leukemia therapeutics daunorubicin and cytarabine in in vitro cellular models of AML and primary patient-derived T-ALL cells. Our developed compounds exhibited >100-fold dose reduction index that results in complete resensitization of a daunorubicin-resistant AML cell line to the chemotherapeutic and >100-fold dose reduction of cytarabine in both AML cell lines and primary T-ALL cells.
Collapse
Affiliation(s)
- Kshitij Verma
- Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center, School of Pharmacy , Amarillo , Texas 79106 , United States
| | - Tianzhu Zang
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center, School of Pharmacy , Amarillo , Texas 79106 , United States.,Center for Chemical Biology, Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| |
Collapse
|
38
|
Gupta N, Gupta P, Srivastava SK. Penfluridol overcomes paclitaxel resistance in metastatic breast cancer. Sci Rep 2019; 9:5066. [PMID: 30911062 PMCID: PMC6434141 DOI: 10.1038/s41598-019-41632-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/01/2019] [Indexed: 12/27/2022] Open
Abstract
Paclitaxel is a first line chemotherapeutic agent for the patients with metastatic breast cancer. But inherited or acquired resistance to paclitaxel leads to poor response rates in a majority of these patients. To identify mechanisms of paclitaxel resistance, we developed paclitaxel resistant breast cancer cell lines, MCF-7 and 4T1 by continuous exposure to paclitaxel for several months. Western blot analysis showed increased expression of HER2 and β-catenin pathway in resistant cell lines as compared to parent cells. Hence, we hypothesized that HER2/β-catenin mediates paclitaxel resistance in breast cancer and suppression of HER2/β-catenin signaling could overcome paclitaxel resistance. Our data showed that penfluridol (PFL) treatment significantly reduced the survival of paclitaxel-resistant cells. Western blot analysis revealed that PFL treatment suppressed HER2, as well as, β-catenin pathway. In vivo data confirmed that PFL significantly potentiated tumor growth suppressive effects of paclitaxel in an orthotropic breast cancer model. In addition, tumors from paclitaxel and PFL-treated mice showed reduced HER2 and β-catenin expression, along with increased apoptosis. Taken together our results demonstrate a novel role of HER2/β-catenin in paclitaxel resistance and open up new avenues for application of PFL as a therapeutic option for overcoming paclitaxel resistance.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas, 79601, USA
| | - Parul Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas, 79601, USA.
| |
Collapse
|
39
|
Liu J, He P, Lin L, Zhao Y, Deng W, Ding H, Li Q, Wang Z. Characterization of a highly specific monoclonal antibody against human aldo-keto reductase AKR1C3. Steroids 2019; 143:73-79. [PMID: 30639543 DOI: 10.1016/j.steroids.2019.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Human aldo-keto reductase AKR1C3 (type 2 3α-hydroxysteroid dehydrogenase/type 5 17β-hydroxysteroid dehydrogenase) is involved in testosterone and estrogen metabolism. AKR1C3 expression is relatively low in most tissues and high in prostate and mammary glands in regulating androgen and estrogen levels. However, in many cancers, overexpression of AKR1C3 was observed, thus prompting the development of therapeutics targeting AKR1C3. To facilitate the development of AKR1C3 targeting therapeutics, evaluating the expression of AKR1C3 is vital. As AKR1C3 is highly homologous with its family proteins, AKR1C1, AKR1C2, AKR1C4 and other AKR1 proteins, reagents that can unambiguously discriminate these enzymes are needed. In this report, a highly specific monoclonal antibody for AKR1C3, 10B10, was developed and characterized. Compared to other AKR1C3 antibodies, 10B10 is highly specific and sensitive to AKR1C3 in multiple assay formats. Thus, 10B10 will be a valuable tool for the clinical development of AKR1C3 targeting therapeutics and the study of AKR1C3 biology.
Collapse
Affiliation(s)
- Jiayu Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Ping He
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Limin Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Yining Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Wentong Deng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Hejiazi Ding
- Departments of Biochemistry, The University of Iowa, Iowa City, IA 52242, United States.
| | - Qing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
40
|
Storbeck KH, Mostaghel EA. Canonical and Noncanonical Androgen Metabolism and Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:239-277. [PMID: 31900912 DOI: 10.1007/978-3-030-32656-2_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Androgens are critical drivers of prostate cancer. In this chapter we first discuss the canonical pathways of androgen metabolism and their alterations in prostate cancer progression, including the classical, backdoor and 5α-dione pathways, the role of pre-receptor DHT metabolism, and recent findings on oncogenic splicing of steroidogenic enzymes. Next, we discuss the activity and metabolism of non-canonical 11-oxygenated androgens that can activate wild-type AR and are less susceptible to glucuronidation and inactivation than the canonical androgens, thereby serving as an under-recognized reservoir of active ligands. We then discuss an emerging literature on the potential non-canonical role of androgen metabolizing enzymes in driving prostate cancer. We conclude by discussing the potential implications of these findings for prostate cancer progression, particularly in context of new agents such as abiraterone and enzalutamide, which target the AR-axis for prostate cancer therapy, including mechanisms of response and resistance and implications of these findings for future therapy.
Collapse
Affiliation(s)
- Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Department of Medicine, University of Washington, Seattle, WA, USA. .,Geriatric Research, Education and Clinical Center S-182, VA Puget Sound Health Care System, Seattle, WA, USA.
| |
Collapse
|