1
|
Zhang Y, Xiao Y, Zhu Y, Yan L, Cheng N, Wei Y, Zhang Y, Tian Y, Cao W, Yang J. GPR83 protects cochlear hair cells against ibrutinib-induced hearing loss through AKT signaling pathways. Front Med (Lausanne) 2025; 12:1579285. [PMID: 40248074 PMCID: PMC12003303 DOI: 10.3389/fmed.2025.1579285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Introduction Ibrutinib, widely used in leukemia treatment, has been implicated in sensorineural hearing loss; however, its underlying mechanisms remain unclear. Methods This study investigated the impact of ibrutinib on hearing using HEI-OC1 cells, cochlear explants and C57BL/6 J mice. We used RNA-sequences analysis to investigate the potential mechanisms of ibrutinib-induced ototoxicity. Mice received ibrutinib and auditory thresholds were assessed via auditory brainstem response testing; to assess the potential protective effects, we co-administered the caspase inhibitor Z-Val-Ala-Asp (OMe)-fluoromethylketone (Z-VAD-FMK) and monitored hearing. Results Z-VAD-FMK mitigated ibrutinib-induced hearing loss by inhibiting apoptosis in auditory cells. Ibrutinib exposure resulted in cochlear hair cell (HC) damage and subsequent hearing loss by inhibiting the protein kinase B and G protein-coupled receptor 83 (GPR83) pathways. RNA sequencing suggested that GPR83 protects HCs by modulating autophagy. Z-VAD-FMK application and GPR83 overexpression attenuated ibrutinib-induced cochlear HC apoptosis and auditory decline. Conclusion These findings confirm ibrutinib's ototoxicity and highlight the protective role of GPR83 in ibrutinib-induced hearing loss, supporting future clinical investigations into Z-VAD-FMK and GPR83 as interventions for ibrutinib or other chemotherapeutic drug-induced ototoxicity.
Collapse
Affiliation(s)
- Yuhua Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yun Xiao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongjun Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lin Yan
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Nan Cheng
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongjie Wei
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanling Zhang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Cao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianming Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Tian G, Chen Z, Wang B, Chen G, Xie L. Small-molecule BTK inhibitors: From discovery to clinical application. Bioorg Chem 2025; 157:108242. [PMID: 39922043 DOI: 10.1016/j.bioorg.2025.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Bruton's tyrosine kinase (BTK) inhibitors constitute a promising category of small molecules for the therapy of diverse B-cell malignancies and autoimmune disorders. This review examines the journey of BTK inhibitors from their discovery to clinical development, highlighting key milestones in their design, mechanism of action, and progression through preclinical and clinical stages. Initially identified through high-throughput screening of compound libraries, early BTK inhibitors were optimized for selectivity and potency. The discovery of ibrutinib, the first Food and Drug Administration (FDA)-approved BTK inhibitor, marked a significant breakthrough, providing a new therapeutic option for patients with chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). Following this success, numerous second-generation inhibitors have been identified to address resistance mechanisms, improve pharmacokinetics, and target specific patient populations. The challenges faced during the transition from preclinical validation to clinical trials have been discussed. Additionally, ongoing trials and emerging data on novel BTK inhibitors provide insights into their evolving role in oncology and immunology. This review emphasizes the importance of rational drug design and clinical strategy in shaping the future of BTK inhibitors.
Collapse
Affiliation(s)
- Gengren Tian
- Department of Neurosurgery China-Japan Union Hospital of Jilin University Changchun China
| | - Zhuo Chen
- Department of Neurosurgery China-Japan Union Hospital of Jilin University Changchun China
| | - Baizhi Wang
- Department of Emergency Weifang People's Hospital WeiFang China
| | - Guangyong Chen
- Department of Neurosurgery China-Japan Union Hospital of Jilin University Changchun China.
| | - Lijuan Xie
- Department of Vascularsurgery China-Japan Union Hospital of Jilin University Changchun China.
| |
Collapse
|
3
|
Huang C, Li Y, Zhang F, Zhang C, Ding Z. Advancements in elucidating the mechanisms of Sorafenib resistance in hepatocellular carcinoma. Int J Surg 2025; 111:2990-3005. [PMID: 39992113 DOI: 10.1097/js9.0000000000002294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025]
Abstract
Primary liver cancer is a major global health challenge, of which hepatocellular carcinoma is the most common. For patients with advanced liver cancer, Sorafenib is a first-line targeted drug that occupies a dominant position in clinical applications. Sorafenib is a multi-kinase inhibitor commonly used in clinical practice, which can effectively inhibit tumor cell proliferation, promote cell apoptosis, and inhibit angiogenesis. However, the emergence of drug resistance has hindered the development of treatment programs, which is an urgent problem to be solved. Recent studies have revealed many mechanisms and influencing factors of Sorafenib resistance (such as epigenetic regulation, programmed cell death, metabolic reprogramming, and tumor microenvironment changes). This review not only summarizes the above mechanisms, but also summarizes the combined application of Sorafenib with other drugs (such as molecular targeted drugs, other anti-angiogenesis drugs, cytotoxic drugs, immunotherapy drugs, etc .). Finally, potential strategies and research directions to overcome drug resistance (such as targeting epigenetic pathways or metabolic reprogramming) are discussed to provide suggestions for future in-depth research and clinical applications.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangqian Li
- Frontiers Science Center for Disease-related Molecular Network, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengmei Zhang
- Frontiers Science Center for Disease-related Molecular Network, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenyu Ding
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Jan J, Bashir SM, Sheikh WM, Bhat OM, Rafeeqi TA, Shah SA, Dar AH, Zargar MA, Wani NA. Chlorpyrifos and dimethoate exposure impairs female fertility by deregulating WNT signaling pathway & uterine receptivity. Reprod Toxicol 2024; 130:108735. [PMID: 39419344 DOI: 10.1016/j.reprotox.2024.108735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
The study assessed histological, biochemical, oxidative stress, and molecular parameters to evaluate the consequences of Chlorpyrifos and Dimethoate exposure on uterine health in female rats. Despite showing no obvious signs of toxicity apart from minor clinical symptoms in DM-exposed rats, both pesticides caused degenerative changes in uterine tissue. This study demonstrates that pesticides induce inflammatory responses and oxidative stress in rats, by NF-κB activation and altering antioxidant enzyme levels. Besides, CPF and DM exposure disrupted gene expression of HOXA10, HOXA11, and WNT and reduced activation of β-catenin in the uterus, which is crucial for implantation and reproductive function. These findings suggest that pesticide exposure may impair reproductive health and fertility in females, highlighting potential implications for human health.
Collapse
Affiliation(s)
- Jasmeena Jan
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu & Kashmir 190006, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu & Kashmir 190006, India
| | - Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Towseef Amin Rafeeqi
- Biochemistry, Regional Research Institute of Unani Medicine, Srinagar, Jammu & Kashmir, India
| | - Showkat Ahmad Shah
- Division of Veterinary Pathology, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu & Kashmir, India
| | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Mohammad Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India.
| |
Collapse
|
5
|
Shokri N, Ghasempour G, Soleimani AA, Elahimanesh M, Najafi M. NF-kB affects migration of vascular smooth muscle cells after treatment with heparin and ibrutinib. Biochem Biophys Rep 2024; 38:101685. [PMID: 38524279 PMCID: PMC10957380 DOI: 10.1016/j.bbrep.2024.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/10/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024] Open
Abstract
The migration of vascular smooth muscle cells (VSMCs) is one of the most important events in the remodeling of atherosclerosis plaque. The aim of study was to investigate the role of Heparin in the VSMC migration and its association with the NF-kB, collagen 1 and collagen 3 expression levels. Moreover, the incorporation of Heparin was studied in the VSMC cultures including Betulinic acid and Ibrutinib. Twelve cell groups were cultured and treated with the Heparin, Betulinic acid and Ibrutinib based on the viability and toxicity in 24-h and 48-h periods. The gene and protein expression levels were measured by RT-qPCR and western blotting techniques. The VSMC migration was determined by scratch test. In contrast with Ibrutinib (2 μM), Heparin (30 IU) increased significantly (P < 0.05) the NF-kB gene and protein expression levels and the VSMC migration during the exposure periods. Heparin (15 IU and 30 IU) also increased the collagen 1 gene expression level in the 48-h period while Heparin (5 IU and 15 IU) increased the collagen 3 gene expression levels in both periods. Incorporating Heparin into the cultures including Betulinic acid and Ibrutinib affected the collagen 1 and collagen 3 expression levels. The data suggested that the cell migration relates to NF-kB in the VSMCs treated with Heparin and Ibrutinib. Furthermore, the Heparin doses (5 IU and 15 IU) were safe for VSMCs based on the NF-kB, and collagen 3 expression levels.
Collapse
Affiliation(s)
- Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghasempour
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illnosis, USA
| | - Ali Akbar Soleimani
- Clinical Biochemistry Department, Faculty of Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Zhang Z, Wu H, Zhang Y, Shen C, Zhou F. Dietary antioxidant quercetin overcomes the acquired resistance of Sorafenib in Sorafenib-resistant hepatocellular carcinoma cells through epidermal growth factor receptor signaling inactivation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:559-574. [PMID: 37490119 DOI: 10.1007/s00210-023-02605-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/25/2023] [Indexed: 07/26/2023]
Abstract
Sorafenib (SOR) is a molecular targeting agent commonly utilized as a primary treatment for advanced and inoperable hepatocellular carcinoma (HCC). Regrettably, the effectiveness of SOR is frequently hindered by the resistance of multiple HCC cases. The current investigation endeavors to examine the potential of the natural product quercetin (QUE) in reversing the acquired resistance of SOR-resistant cells, known as Huh7R, to SOR. Moreover, this study aims to elucidate the underlying molecular mechanism that contributes to this phenomenon. The results demonstrated that QUE significantly impeded proliferation and stimulated apoptosis in Huh7R cells, while also suppressing the growth of transplanted tumors. The impact of QUE enhanced the efficacy of SOR treatment for Huh7R. Additionally, bioinformatic and western blot analyses indicated that the underlying mechanisms may be associated with EGFR tyrosine kinase inhibitor resistance, the PI3K-AKT signaling pathway, and HCC. Furthermore, molecular docking and dynamics simulation assays revealed that QUE exhibited strong affinity and stability towards its hub targets, EGFR and AKT1. It is noteworthy that the activation of EGFR by its ligand, EGF, mitigated the effects of co-treatment with QUE and SOR. These findings suggest that QUE might potentially serve as a therapeutic agent in treating as well as facilitating SOR against Huh7R cells, which has substantial clinical and research implications for the treatment of acquired resistance to SOR in HCC.
Collapse
Affiliation(s)
- Zhengguang Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| | - Haitao Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
| | - Yajie Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| | - Fuqiong Zhou
- Central Laboratory, Nanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| |
Collapse
|
7
|
Gu L, Jin X, Liang H, Yang C, Zhang Y. Upregulation of CSNK1A1 induced by ITGB5 confers to hepatocellular carcinoma resistance to sorafenib in vivo by disrupting the EPS15/EGFR complex. Pharmacol Res 2023; 192:106789. [PMID: 37149115 DOI: 10.1016/j.phrs.2023.106789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Oral multitarget tyrosine kinase inhibitors (TKIs), such as sorafenib, which suppress tumor cell proliferation and tumor angiogenesis, have been approved to treat patients with hepatocellular carcinoma (HCC). Of note, only approximately 30% of patients can benefit from TKIs, and this population usually acquires drug resistance within 6 months. In this study, we intended to explore the mechanism associated with regulating the sensitivity of HCC to TKIs. We revealed that integrin subunit β 5 (ITGB5) is abnormally expressed in HCC and contributes to decreased the sensitivity of HCC to sorafenib. Mechanistically, unbiased mass spectrometry analysis using ITGB5 antibodies revealed that ITGB5 interacts with EPS15 to prevent the degradation of EGFR in HCC cells, which activates AKT-mTOR signaling and the MAPK pathway to reduce the sensitivity of HCC cells to sorafenib. In addition, mass spectrometry analysis showed that CSNK1A1 binds to ITGB5 in HCC cells. Further study indicated that ITGB5 increased the protein level of CSNK1A1 through the EGFR-AKT-mTOR pathway in HCC. Upregulated CSNK1A1 phosphorylates ITGB5 to enhance the interaction between ITGB5 and EPS15 and activate EGFR in HCC cells. Thus, we identified a positive feedback loop between ITGB5-EPS15-EGFR-CSNK1A1 in HCC cells. This finding provides a theoretical basis for the future development of therapeutic strategies to improve the anti-HCC efficacy of sorafenib.
Collapse
Affiliation(s)
- Li Gu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Uro-Oncology Institute of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Huaiyuan Liang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Uro-Oncology Institute of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chong Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731 Sichuan, China.
| | - Yu Zhang
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China.
| |
Collapse
|
8
|
Rozkiewicz D, Hermanowicz JM, Kwiatkowska I, Krupa A, Pawlak D. Bruton's Tyrosine Kinase Inhibitors (BTKIs): Review of Preclinical Studies and Evaluation of Clinical Trials. Molecules 2023; 28:2400. [PMID: 36903645 PMCID: PMC10005125 DOI: 10.3390/molecules28052400] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
In the last few decades, there has been a growing interest in Bruton's tyrosine kinase (BTK) and the compounds that target it. BTK is a downstream mediator of the B-cell receptor (BCR) signaling pathway and affects B-cell proliferation and differentiation. Evidence demonstrating the expression of BTK on the majority of hematological cells has led to the hypothesis that BTK inhibitors (BTKIs) such as ibrutinib can be an effective treatment for leukemias and lymphomas. However, a growing body of experimental and clinical data has demonstrated the significance of BTK, not just in B-cell malignancies, but also in solid tumors, such as breast, ovarian, colorectal, and prostate cancers. In addition, enhanced BTK activity is correlated with autoimmune disease. This gave rise to the hypothesis that BTK inhibitors can be beneficial in the therapy of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), Sjögren's syndrome (SS), allergies, and asthma. In this review article, we summarize the most recent findings regarding this kinase as well as the most advanced BTK inhibitors that have been developed to date and their clinical applications mainly in cancer and chronic inflammatory disease patients.
Collapse
Affiliation(s)
- Dariusz Rozkiewicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Anna Krupa
- Department of Internal Medicine and Metabolic, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| |
Collapse
|
9
|
Federico P, Giunta EF, Tufo A, Tovoli F, Petrillo A, Daniele B. Resistance to Antiangiogenic Therapy in Hepatocellular Carcinoma: From Molecular Mechanisms to Clinical Impact. Cancers (Basel) 2022; 14:6245. [PMID: 36551730 PMCID: PMC9776845 DOI: 10.3390/cancers14246245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Antiangiogenic drugs were the only mainstay of advanced hepatocellular carcinoma (HCC) treatment from 2007 to 2017. However, primary or secondary resistance hampered their efficacy. Primary resistance could be due to different molecular and/or genetic characteristics of HCC and their knowledge would clarify the optimal treatment approach in each patient. Several molecular mechanisms responsible for secondary resistance have been discovered over the last few years; they represent potential targets for new specific drugs. In this light, the advent of checkpoint inhibitors (ICIs) has been a new opportunity; however, their use has highlighted other issues: the vascular normalization compared to a vessel pruning to promote the delivery of an active cancer immunotherapy and the development of resistance to immunotherapy which leads to a better selection of patients as candidates for ICIs. Nevertheless, the combination of antiangiogenic therapy plus ICIs represents an intriguing approach with high potential to improve the survival of these patients. Waiting for results from ongoing clinical trials, this review depicts the current knowledge about the resistance to antiangiogenic drugs in HCC. It could also provide updated information to clinicians focusing on the most effective combinations or sequential approaches in this regard, based on molecular mechanisms.
Collapse
Affiliation(s)
- Piera Federico
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy
| | - Emilio Francesco Giunta
- Department of Precision Medicine, School of Medicine, University of Study of Campania “L. Vanvitelli”, 80131 Naples, Italy
| | - Andrea Tufo
- Surgical Unit, Ospedale del Mare, 80147 Napoli, Italy
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy
| |
Collapse
|
10
|
Rao H, Song X, Lei J, Lu P, Zhao G, Kang X, Zhang D, Zhang T, Ren Y, Peng C, Li Y, Pei J, Cao Z. Ibrutinib Prevents Acute Lung Injury via Multi-Targeting BTK, FLT3 and EGFR in Mice. Int J Mol Sci 2022; 23:13478. [PMID: 36362264 PMCID: PMC9657648 DOI: 10.3390/ijms232113478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 09/12/2023] Open
Abstract
Ibrutinib has potential therapeutic or protective effects against viral- and bacterial-induced acute lung injury (ALI), likely by modulating the Bruton tyrosine kinase (BTK) signaling pathway. However, ibrutinib has multi-target effects. Moreover, immunity and inflammation targets in ALI treatment are poorly defined. We investigated whether the BTK-, FLT3-, and EGFR-related signaling pathways mediated the protective effects of ibrutinib on ALI. The intratracheal administration of poly I:C or LPS after ibrutinib administration in mice was performed by gavage. The pathological conditions of the lungs were assessed by micro-CT and HE staining. The levels of neutrophils, lymphocytes, and related inflammatory factors in the lungs were evaluated by ELISA, flow cytometry, immunohistochemistry, and immunofluorescence. Finally, the expression of proteins associated with the BTK-, FLT3-, and EGFR-related signaling pathways were evaluated by Western blotting. Ibrutinib (10 mg/kg) protected against poly I:C-induced (5 mg/kg) and LPS-induced (5 mg/kg) lung inflammation. The wet/dry weight ratio (W/D) and total proteins in the bronchoalveolar lavage fluid (BALF) were markedly reduced after ibrutinib (10 mg/kg) treatment, relative to the poly I:C- and LPS-treated groups. The levels of ALI indicators (NFκB, IL-1β, IL-6, TNF-α, IFN-γ, neutrophils, and lymphocytes) were significantly reduced after treatment. Accordingly, ibrutinib inhibited the poly I:C- and LPS-induced BTK-, FLT3-, and EGFR-related pathway activations. Ibrutinib inhibited poly I:C- and LPS-induced acute lung injury, and this may be due to its ability to suppress the BTK-, FLT3-, and EGFR-related signaling pathways. Therefore, ibrutinib is a potential protective agent for regulating immunity and inflammation in poly I:C- and LPS-induced ALI.
Collapse
Affiliation(s)
- Huanan Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaominting Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jieting Lei
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guiying Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Duanna Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yali Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
11
|
Tian Y, Lei Y, Fu Y, Sun H, Wang J, Xia F. Molecular Mechanisms of Resistance to Tyrosine Kinase Inhibitors Associated with Hepatocellular Carcinoma. Curr Cancer Drug Targets 2022; 22:454-462. [PMID: 35362393 DOI: 10.2174/1568009622666220330151725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death, which can be attributed to the high incidence and first diagnosis at an advanced stage. Tyrosine kinase inhibitors (TKIs), a class of small-molecule targeting drugs, are primarily used for the clinical treatment of HCC after chemotherapy because they show significant clinical efficacy and low incidence of clinical adverse reactions. However, resistance to sorafenib and other TKIs, which can be used to treat advanced HCC, poses a significant challenge. Recent mechanistic studies have shown that epithelial-mesenchymal transition or transformation (EMT), ATP binding cassette (ABC) transporters, hypoxia, autophagy, and angiogenesis are involved in apoptosis, angiogenesis, HCC cell proliferation, and TKI resistance in patients with HCC. Exploring and overcoming such resistance mechanisms is essential to extend the therapeutic benefits of TKIs to patients with TKI-resistant HCC. This review aims to summarize the potential resistance mechanism proposed in recent years and methods to reverse TKI resistance in the context of HCC.
Collapse
Affiliation(s)
- Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, 400038, China
| | - Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, 400038, China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Feng Xia
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, 400038, China
| |
Collapse
|
12
|
Lin CH, Kuo JCT, Li D, Koenig AB, Pan A, Yan P, Bai XF, Lee RJ, Ghoshal K. AZD5153, a Bivalent BRD4 Inhibitor, Suppresses Hepatocarcinogenesis by Altering BRD4 Chromosomal Landscape and Modulating the Transcriptome of HCC Cells. Front Cell Dev Biol 2022; 10:853652. [PMID: 35399501 PMCID: PMC8987780 DOI: 10.3389/fcell.2022.853652] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
BRD4, a chromatin modifier frequently upregulated in a variety of neoplasms including hepatocellular cancer (HCC), promotes cancer cell growth by activating oncogenes through its interaction with acetylated histone tails of nucleosomes. Here, we determined the anti-HCC efficacy of AZD5153, a potent bivalent BRD4 inhibitor, and elucidated its underlying molecular mechanism of action. AZD5153 treatment inhibited HCC cell proliferation, clonogenic survival and induced apoptosis in HCC cells. In vivo, AZD5153-formulated lipid nanoemulsions inhibited both orthotopic and subcutaneous HCCLM3 xenograft growth in NSG mice. Mapping of BRD4- chromosomal targets by ChIP-seq analysis identified the occupancy of BRD4 with the promoters, gene bodies, and super-enhancers of both mRNA and noncoding RNA genes, which were disrupted upon AZD5153 treatment. RNA-seq analysis of polyadenylated RNAs showed several BRD4 target genes involved in DNA replication, cell proliferation, and anti-apoptosis were repressed in AZD5153-treated HCC cells. In addition to known tumor-promoting genes, e.g., c-MYC, YAP1, RAD51B, TRIB3, SLC17A9, JADE1, we found that NAPRT, encoding a key enzyme for NAD+ biosynthesis from nicotinic acid, was also suppressed in HCC cells by the BRD4 inhibitor. Interestingly, AZD5153 treatment upregulated NAMPT, whose product is the rate-limiting enzyme for NAD+ synthesis from nicotinamide. This may explain why AZD5153 acted in concert with FK866, a potent NAMPT inhibitor, in reducing HCC cell proliferation and clonogenic survival. In conclusion, our results identified novel targets of BRD4 in the HCCLM3 cell genome and demonstrated anti-HCC efficacy of AZD5153, which was potentiated in combination with an NAMPT inhibitor.
Collapse
Affiliation(s)
- Cho-Hao Lin
- Department of Pathology, College of Medicine, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Jimmy Chun-Tien Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Columbus, OH, United States
| | - Ding Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Columbus, OH, United States
| | - Aaron B. Koenig
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Alexander Pan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Pearlly Yan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Robert J. Lee
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Columbus, OH, United States
- *Correspondence: Robert J. Lee, ; Kalpana Ghoshal,
| | - Kalpana Ghoshal
- Department of Pathology, College of Medicine, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- *Correspondence: Robert J. Lee, ; Kalpana Ghoshal,
| |
Collapse
|
13
|
Chu X, Bu Y, Yang X. Recent Research Progress of Chiral Small Molecular Antitumor-Targeted Drugs Approved by the FDA From 2011 to 2019. Front Oncol 2021; 11:785855. [PMID: 34976824 PMCID: PMC8718447 DOI: 10.3389/fonc.2021.785855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Chiral drugs usually contain chiral centers, which are present as single enantiomers or racemates. Compared with achiral drugs, they have significant advantages in safety and efficacy with high stereoselectivity. Of these drugs, chirality not only exerts influence on the solubility and pharmacokinetic characteristics but also has specific mechanistic characteristics on their targets. We noted that small molecules with unique chiral properties have emerged as novel components of antitumor drugs approved by the FDA in decade. Since approved, these drugs have been continuously explored for new indications, new mechanisms, and novel combinations. In this mini review, recent research progress of twenty-two FDA-approved chiral small molecular-targeted antitumor drugs from 2011 to 2019 is summarized with highlighting the potential and advantages of their applications. We believe that these updated achievements may provide theoretical foundation and stimulate research interests for optimizing drug efficacy, expanding clinical application, overcoming drug resistance, and advancing safety in future clinical administrations of these chiral targeted drugs.
Collapse
Affiliation(s)
| | | | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
14
|
Zhu S, Jung J, Victor E, Arceo J, Gokhale S, Xie P. Clinical Trials of the BTK Inhibitors Ibrutinib and Acalabrutinib in Human Diseases Beyond B Cell Malignancies. Front Oncol 2021; 11:737943. [PMID: 34778053 PMCID: PMC8585514 DOI: 10.3389/fonc.2021.737943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
The BTK inhibitors ibrutinib and acalabrutinib are FDA-approved drugs for the treatment of B cell malignances. Both drugs have demonstrated clinical efficacy and safety profiles superior to chemoimmunotherapy regimens in patients with chronic lymphocytic leukemia. Mounting preclinical and clinical evidence indicates that both ibrutinib and acalabrutinib are versatile and have direct effects on many immune cell subsets as well as other cell types beyond B cells. The versatility and immunomodulatory effects of both drugs have been exploited to expand their therapeutic potential in a wide variety of human diseases. Over 470 clinical trials are currently registered at ClinicalTrials.gov to test the efficacy of ibrutinib or acalabrutinib not only in almost every type of B cell malignancies, but also in hematological malignancies of myeloid cells and T cells, solid tumors, chronic graft versus host disease (cGHVD), autoimmune diseases, allergy and COVID-19 (http:www.clinicaltrials.gov). In this review, we present brief discussions of the clinical trials and relevant key preclinical evidence of ibrutinib and acalabrutinib as monotherapies or as part of combination therapies for the treatment of human diseases beyond B cell malignancies. Adding to the proven efficacy of ibrutinib for cGVHD, preliminary results of clinical trials have shown promising efficacy of ibrutinib or acalabrutinib for certain T cell malignancies, allergies and severe COVID-19. However, both BTK inhibitors have no or limited efficacy for refractory or recurrent solid tumors. These clinical data together with additional pending results from ongoing trials will provide valuable information to guide the design and improvement of future trials, including optimization of combination regimens and dosing sequences as well as better patient stratification and more efficient delivery strategies. Such information will further advance the precise implementation of BTK inhibitors into the clinical toolbox for the treatment of different human diseases.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Eton Victor
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Johann Arceo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
15
|
Combined Treatment with Acalabrutinib and Rapamycin Inhibits Glioma Stem Cells and Promotes Vascular Normalization by Downregulating BTK/mTOR/VEGF Signaling. Pharmaceuticals (Basel) 2021; 14:ph14090876. [PMID: 34577576 PMCID: PMC8464793 DOI: 10.3390/ph14090876] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with a median duration of survival of approximately 14 months after diagnosis. High resistance to chemotherapy remains a major problem. Previously, BTK has been shown to be involved in the intracellular signal transduction including Akt/mTOR signaling and be critical for tumorigenesis. Thus, we aim to evaluate the effect of BTK and mTOR inhibition in GBM. We evaluated the viability of GBM cell lines after treatment with acalabrutinib and/or rapamycin through a SRB staining assay. We then evaluated the effect of both drugs on GBM stem cell-like phenotypes through various in vitro assay. Furthermore, we incubated HUVEC cells with tumorsphere conditioned media and observed their angiogenesis potential, with or without treatment. Finally, we conducted an in vivo study to confirm our in vitro findings and analyzed the effect of this combination on xenograft mice models. Drug combination assay demonstrated a synergistic relationship between acalabrutinib and rapamycin. CSCs phenotypes, including tumorsphere and colony formation with the associated expression of markers of pluripotency are inhibited by either acalabrutinib or rapamycin singly and these effects are enhanced upon combining acalabrutinib and rapamycin. We showed that the angiogenesis capabilities of HUVEC cells are significantly reduced after treatment with acalabrutinib and/or rapamycin. Xenograft tumors treated with both drugs showed significant volume reduction with minimal toxicity. Samples taken from the combined treatment group demonstrated an increased Desmin/CD31 and col IV/vessel ratio, suggesting an increased rate of vascular normalization. Our results demonstrate that BTK-mTOR inhibition disrupts the population of GBM-CSCs and contributes to normalizing GBM vascularization and thus, may serve as a basis for developing therapeutic strategies for chemoresistant/radioresistant GBM.
Collapse
|
16
|
Lee SR, Lee JG, Heo JH, Jo SL, Ryu J, Kim G, Yon JM, Lee MS, Lee GS, An BS, Shin HJ, Woo DC, Baek IJ, Hong EJ. Loss of PGRMC1 Delays the Progression of Hepatocellular Carcinoma via Suppression of Pro-Inflammatory Immune Responses. Cancers (Basel) 2021; 13:cancers13102438. [PMID: 34069911 PMCID: PMC8157610 DOI: 10.3390/cancers13102438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Progesterone receptor membrane component 1 (PGRMC1) and epidermal growth factor receptor (EGFR) are highly expressed in various cancers. Here, we first analyzed two sets of clinical data and found that the levels of PGRMC1 and EGFR in hepatocellular carcinomas (HCCs) were both inversely correlated with the survival of HCC patients. Accordingly, by using a carcinogen-induced mouse model of HCC, we found that Pgrmc1 knockout suppressed HCC development and extended the lifespan of HCC-bearing mice. In the acute setting of high-dose carcinogen administration, Pgrmc1 knockout was associated with increases in hepatic necrosis and decreases in the production of the pro-inflammatory cytokine IL-6. Indeed, silencing of Pgrmc1 in murine macrophages suppressed IL-6 production and NF-κB activity, and this process was significantly mediated by EGFR. Our study shows that Pgrmc1 affects the development of HCCs by regulating the EGFR-mediated inflammatory responses. Pgrmc1 may serve as a biomarker and a therapeutic target of HCC. Abstract Pgrmc1 is a non-canonical progesterone receptor related to the lethality of various types of cancer. PGRMC1 has been reported to exist in co-precipitated protein complexes with epidermal growth factor receptor (EGFR), which is considered a useful therapeutic target in hepatocellular carcinoma (HCC). Here, we investigated whether Pgrmc1 is involved in HCC progression. In clinical datasets, PGRMC1 transcription level was positively correlated with EGFR levels; importantly, PGRMC1 level was inversely correlated with the survival duration of HCC patients. In a diethylnitrosamine (DEN)-induced murine model of HCC, the global ablation of Pgrmc1 suppressed the development of HCC and prolonged the survival of HCC-bearing mice. We further found that increases in hepatocyte death and suppression of compensatory proliferation in the livers of DEN-injured Pgrmc1-null mice were concomitant with decreases in nuclear factor κB (NF-κB)-dependent production of interleukin-6 (IL-6). Indeed, silencing of Pgrmc1 in murine macrophages led to reductions in NF-κB activity and IL-6 production. We found that the anti-proinflammatory effect of Pgrmc1 loss was mediated by reductions in EGFR level and its effect was not observed after exposure of the EGFR inhibitor erlotinib. This study reveals a novel cooperative role of Pgrmc1 in supporting the EGFR-mediated development of hepatocellular carcinoma, implying that pharmacological suppression of Pgrmc1 may be a useful strategy in HCC treatment.
Collapse
Affiliation(s)
- Sang R. Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
| | - Jong Geol Lee
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.G.L.); (G.K.); (J.-M.Y.); (D.-C.W.)
| | - Jun H. Heo
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
| | - Seong Lae Jo
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
| | - Jihoon Ryu
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
| | - Globinna Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.G.L.); (G.K.); (J.-M.Y.); (D.-C.W.)
| | - Jung-Min Yon
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.G.L.); (G.K.); (J.-M.Y.); (D.-C.W.)
| | - Myeong Sup Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Geun-Shik Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Beum-Soo An
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Gyeongsangnam 50463, Korea;
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
| | - Dong-Cheol Woo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.G.L.); (G.K.); (J.-M.Y.); (D.-C.W.)
| | - In-Jeoung Baek
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.G.L.); (G.K.); (J.-M.Y.); (D.-C.W.)
- Correspondence: (I.-J.B.); (E.-J.H.); Tel.: +82-2-3010-2798 (I.-J.B.); +82-42-821-6781 (E.-J.H.); Fax: +82-2-3010-4197 (I.-J.B.); +82-42-821-8903 (E.-J.H.)
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
- Correspondence: (I.-J.B.); (E.-J.H.); Tel.: +82-2-3010-2798 (I.-J.B.); +82-42-821-6781 (E.-J.H.); Fax: +82-2-3010-4197 (I.-J.B.); +82-42-821-8903 (E.-J.H.)
| |
Collapse
|
17
|
Chang Z, Jian P, Zhang Q, Liang W, Zhou K, Hu Q, Liu Y, Liu R, Zhang L. Tannins in Terminalia bellirica inhibit hepatocellular carcinoma growth by regulating EGFR-signaling and tumor immunity. Food Funct 2021; 12:3720-3739. [PMID: 33900343 DOI: 10.1039/d1fo00203a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The fruits of Terminalia bellirica (Gaertn.) Roxb. (TB) are used as a multi-use therapeutic herbal product in the Tibetan medicinal system and are prescribed as a general health tonic in the traditional Ayurvedic medicinal system. It has been demonstrated that these fruits have a variety of pharmacological activities, including anti-tumor, anti-oxidative, anti-inflammatory, hepatoprotective and immunoregulatory effects, etc. However, the therapeutic effects of tannins in TB on HCC and the underlying mechanisms remain uncharacterized. In the current study, we aimed to identify the anti-tumor effect of tannins in TB by employing a H22 xenograft mouse model and by performing cell-based in vitro studies with the assistance of the network pharmacology analysis. The crude extract of TB was purified to yield total tannin fraction (TB-TF), and our results found that TB-TF significantly inhibited the tumor growth of H22 xenografts in mice by inducing apoptosis and reducing angiogenesis. A total of 90 compounds were then identified in TB-TF by UPLC-MS/MS, and 27 were found in serum after oral administration of TB-TF in mice. The network pharmacology analysis based on these absorbed components was performed and, along with experimental evidence, it revealed that the ERBB, PI3K-Akt, and MAPK signaling pathways may be involved in the anti-tumor effect of TB-TF on HCC. Furthermore, we suggested that TB-TF effectively modulated the immunosuppressive tumor microenvironment in H22 xenograft mice. In summary, our study demonstrated that TB-TF could be developed as a functional food, which is not only a promising anti-cancer reagent but also a potential candidate with bright prospects for the emerging trends of immunotherapy for HCC.
Collapse
Affiliation(s)
- Zihao Chang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Ping Jian
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Qiunan Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Wenyi Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Kun Zhou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Qian Hu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Yuqi Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Runping Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| | - Lanzhen Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.
| |
Collapse
|
18
|
Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol Sin 2021; 42:301-310. [PMID: 32699265 DOI: 10.1038/s41401-020-0478-3] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
Sorafenib is the first-line medication for advanced hepatocellular carcinoma (HCC), but it can only extend limited survival. It is imperative to find a combination strategy to increase sorafenib efficacy. Artesunate is such a preferred candidate, because artesunate is clinically well-tolerated and more importantly both drugs can induce ferroptosis through different mechanisms. In this study we investigated the combined effect of sorafenib and artesunate in inducing ferroptosis of HCC and elucidated the involved molecular mechanisms. We showed that artesunate greatly enhanced the anticancer effects of low dose of sorafenib against Huh7, SNU-449, and SNU-182 HCC cell lines in vitro and against Huh7 cell xenograft model in Balb/c nude mice. The combination index method confirmed that the combined effect of sorafenib and artesunate was synergistic. Compared with the treatment with artesunate or sorafenib alone, combined treatment induced significantly exacerbated lipid peroxidation and ferroptosis, which was blocked by N-acetyl cysteine and ferroptosis inhibitors liproxstatin-1 and deferoxamine mesylate, but not by inhibitors of other types of cell death (z-VAD, necrostatin-1 and belnacasan). In Huh7 cells, we demonstrated that the combined treatment induced oxidative stress and lysosome-mediated ferritinophagy, two essential aspects of ferroptosis. Sorafenib at low dose mainly caused oxidative stress through mitochondrial impairments and SLC7A11-invovled glutathione depletion. Artesunate-induced lysosome activation synergized with sorafenib-mediated pro-oxidative effects by promoting sequential reactions including lysosomal cathepsin B/L activation, ferritin degradation, lipid peroxidation, and consequent ferroptosis. Taken together, artesunate could be repurposed to sensitize sorafenib in HCC treatment. The combined treatment can be easily translated into clinical applications.
Collapse
|
19
|
Ceballos MP, Angel A, Delprato CB, Livore VI, Ferretti AC, Lucci A, Comanzo CG, Alvarez MDL, Quiroga AD, Mottino AD, Carrillo MC. Sirtuin 1 and 2 inhibitors enhance the inhibitory effect of sorafenib in hepatocellular carcinoma cells. Eur J Pharmacol 2020; 892:173736. [PMID: 33220273 DOI: 10.1016/j.ejphar.2020.173736] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) counteracts the efficiency of sorafenib, an important first-line therapy for hepatocellular carcinoma (HCC). Sirtuins (SIRTs) 1 and 2 are associated with tumor progression and MDR. We treated 2D and 3D cultures (which mimic the features of in vivo tumors) from HCC cells with sorafenib alone or in the presence of SIRTs 1 and 2 inhibitors (cambinol or EX-527; combined treatments). Cultures subjected to combined treatments showed a greater fall in cellular viability, proliferation (PCNA, cyclin D1 and Ki-67 expression and cell cycle analysis), migration and invasion when compared with cultures treated only with sorafenib. Similarly, combined treatments produced more apoptosis (annexin V/PI, caspase-3/7 activity) than sorafenib alone. Since cell cycle dysregulation and apoptotic blockage are reported mechanisms of MDR, the modulation found in PCNA, cyclin D1, Ki-67 and caspase-3/7 proteins by cambinol and EX-527 are probably playing a role in enhancing the sensitivity of HCC cell lines to sorafenib. EX-527 reduced MRP3 and BCRP expression in sorafenib-treated HCC cells. Since ABC transporters contribute to MDR, MRP3 and BCRP could be also influencing in the response of HCC cells to sorafenib. Overall, 2D and 3D cultures behave similarly except that 3D cultures were less sensitive to treatments, reinforcing the clinical relevance of the current study. Findings presented in this manuscript support a potential application for SIRTs 1 and 2 inhibitors since we demonstrated that these compounds enhance the inhibitory effect of sorafenib upon treatment of hepatocellular carcinoma cells lines.
Collapse
Affiliation(s)
- María Paula Ceballos
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Antonella Angel
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Carla Beatriz Delprato
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Verónica Inés Livore
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Anabela Cecilia Ferretti
- Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Alvaro Lucci
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Carla Gabriela Comanzo
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - María de Luján Alvarez
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Ariel Darío Quiroga
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - Aldo Domingo Mottino
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina.
| | - María Cristina Carrillo
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570, 2000, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570, 2000, Rosario, Argentina.
| |
Collapse
|
20
|
Cheng Z, Wei-Qi J, Jin D. New insights on sorafenib resistance in liver cancer with correlation of individualized therapy. Biochim Biophys Acta Rev Cancer 2020; 1874:188382. [PMID: 32522600 DOI: 10.1016/j.bbcan.2020.188382] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Liver cancer is highly malignant and insensitive to cytotoxic chemotherapy and is associated with very poor patient prognosis. In 2007, the small-molecule targeted drug sorafenib was approved for the treatment of advanced liver cancer. In the subsequent ten years, sorafenib has been the only first-line therapeutic targeted drug for advanced hepatocellular carcinoma (HCC). However, a number of clinical studies show that a considerable percentage of patients with liver cancer are insensitive to sorafenib. The number of patients who actually benefit significantly from sorafenib treatment is very limited, and the overall efficacy of sorafenib is far from satisfactory, which has attracted the attention of researchers. Based on previous studies and reports, this article reviews the potential mechanisms of sorafenib resistance (SR) and summarizes the biomarkers and clinicopathological indicators that might be used for predicting sorafenib response and developing personalized therapy.
Collapse
Affiliation(s)
- Zhang Cheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China
| | - Jiang Wei-Qi
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China
| | - Ding Jin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China.
| |
Collapse
|
21
|
George B, Mullick Chowdhury S, Hart A, Sircar A, Singh SK, Nath UK, Mamgain M, Singhal NK, Sehgal L, Jain N. Ibrutinib Resistance Mechanisms and Treatment Strategies for B-Cell lymphomas. Cancers (Basel) 2020; 12:E1328. [PMID: 32455989 PMCID: PMC7281539 DOI: 10.3390/cancers12051328] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/03/2023] Open
Abstract
Chronic activation of B-cell receptor (BCR) signaling via Bruton tyrosine kinase (BTK) is largely considered to be one of the primary mechanisms driving disease progression in B-Cell lymphomas. Although the BTK-targeting agent ibrutinib has shown promising clinical responses, the presence of primary or acquired resistance is common and often leads to dismal clinical outcomes. Resistance to ibrutinib therapy can be mediated through genetic mutations, up-regulation of alternative survival pathways, or other unknown factors that are not targeted by ibrutinib therapy. Understanding the key determinants, including tumor heterogeneity and rewiring of the molecular networks during disease progression and therapy, will assist exploration of alternative therapeutic strategies. Towards the goal of overcoming ibrutinib resistance, multiple alternative therapeutic agents, including second- and third-generation BTK inhibitors and immunomodulatory drugs, have been discovered and tested in both pre-clinical and clinical settings. Although these agents have shown high response rates alone or in combination with ibrutinib in ibrutinib-treated relapsed/refractory(R/R) lymphoma patients, overall clinical outcomes have not been satisfactory due to drug-associated toxicities and incomplete remission. In this review, we discuss the mechanisms of ibrutinib resistance development in B-cell lymphoma including complexities associated with genomic alterations, non-genetic acquired resistance, cancer stem cells, and the tumor microenvironment. Furthermore, we focus our discussion on more comprehensive views of recent developments in therapeutic strategies to overcome ibrutinib resistance, including novel BTK inhibitors, clinical therapeutic agents, proteolysis-targeting chimeras and immunotherapy regimens.
Collapse
Affiliation(s)
- Bhawana George
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sayan Mullick Chowdhury
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Amber Hart
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Anuvrat Sircar
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Satish Kumar Singh
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Uttam Kumar Nath
- Department of Medical Oncology & Hematology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Mukesh Mamgain
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (M.M.); (N.K.S.)
| | - Naveen Kumar Singhal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (M.M.); (N.K.S.)
| | - Lalit Sehgal
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Neeraj Jain
- Department of Medical Oncology & Hematology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| |
Collapse
|
22
|
Booth L, Poklepovic A, Dent P. Not the comfy chair! Cancer drugs that act against multiple active sites. Expert Opin Ther Targets 2019; 23:893-901. [PMID: 31709855 DOI: 10.1080/14728222.2019.1691526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Discoveries of novel signal transduction pathways in the 1990s stimulated drug companies to develop small molecule tyrosine kinase and serine / threonine kinase inhibitors which were based on catalytic site inhibition. All kinases bind ATP and catalyze phosphate transfer and, therefore, inhibitors that block ATP binding and its metabolism would be predicted to have a known on-target specificity but were also likely to have many unknown or unrecognized targets due to similarities in all ATP binding pockets. This on-target off-target biology of kinase inhibitors, which exhibit a "signal" in the clinic, means that therapeutically valuable agents are acting through unknown biological processes to mediate their anti-tumor effects.Areas covered: This perspective discusses drug therapies whose actions cannot be explained by their actions on the original targeted kinase; it concludes with a methodology to screen for changes in cell signaling via in-cell western immunoblotting.Expert opinion: Most malignancies do not depend on survival signaling from one specific mutated proto-oncogene, especially for previously treated malignancies where multiple clonal variants of the primary tumor have evolved. Hence, the concept of a highly "personalized medicine" approach fails because it is unlikely that a specific therapy will kill all clonal variants of the tumor.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|