1
|
Stojanovic L, Abbotts R, Tripathi K, Coon CM, Rajendran S, Farid EA, Hostetter G, Guarnieri JW, Wallace DC, Liu S, Wan J, Calendo G, Marker R, Gohari Z, Inayatullah MMA, Tiwari VK, Kader T, Santagata S, Drapkin R, Kommoss S, Pfisterer J, Konecny GE, Coopergard R, Issa JPJ, Winterhoff BJN, Topper MJ, Sandusky GE, Miller KD, Baylin SB, Nephew KP, Rassool FV. ZNFX1 Functions as a Master Regulator of Epigenetically Induced Pathogen Mimicry and Inflammasome Signaling in Cancer. Cancer Res 2025; 85:1183-1198. [PMID: 39804147 PMCID: PMC11968244 DOI: 10.1158/0008-5472.can-24-1286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/18/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
DNA methyltransferase (DNMT) and PARP inhibitors induce a stimulator of IFN gene-dependent pathogen mimicry response (PMR) in ovarian and other cancers. In this study, we showed that combining DNMT and PARP inhibitors upregulates expression of the nucleic acid sensor NFX1-type zinc finger-containing 1 (ZNFX1) protein. ZNFX1 mediated the induction of PMR in mitochondria, serving as a gateway for stimulator of IFN gene-dependent IFN/inflammasome signaling. Loss of ZNFX1 in ovarian cancer cells promoted proliferation and spheroid formation in vitro and tumor growth in vivo. In patient ovarian cancer databases, expression of ZNFX1 was elevated in advanced stage disease, and ZNFX1 expression alone significantly correlated with an increase in overall survival in a phase III trial for patients with therapy-resistant ovarian cancer receiving bevacizumab in combination with chemotherapy. RNA sequencing revealed an association between inflammasome signaling through ZNFX1 and abnormal vasculogenesis. Together, this study identified that ZNFX1 is a tumor suppressor that controls PMR signaling through mitochondria and may serve as a biomarker to facilitate personalized therapy in patients with ovarian cancer. Significance: DNMT and PARP inhibitors induce a nucleic acid sensor, ZNFX1, that serves as a mitochondrial gateway to STING-dependent inflammasome signaling with tumor suppressor properties in ovarian cancer.
Collapse
Affiliation(s)
- Lora Stojanovic
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rachel Abbotts
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kaushlendra Tripathi
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Collin M. Coon
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA
| | - Saranya Rajendran
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA
| | - Elnaz Abbasi Farid
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA
| | | | - Joseph W. Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine Indianapolis, IN 46202, USA
| | | | - Rebecca Marker
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zahra Gohari
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | - Tanjina Kader
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Stefan Kommoss
- Diakonie-Klinikum Schwäbisch Hall, Germany, Institute for Health Informatics
- Kliniken Essen-Mitte, Gynäkologie und Gynäkologische Onkologie, Germany
| | | | | | - Ryan Coopergard
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Boris J. N. Winterhoff
- Department of Obstetrics, Gynecology and Women’s Health (OBGYN), Division of Gynecologic Oncology, University of Minesota, MN 55812-3011, USA
| | - Michael J. Topper
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - George E. Sandusky
- Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Kathy D. Miller
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephen B. Baylin
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Feyruz V. Rassool
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Wang Y, Frederick J, Medina KI, Bartom ET, Almassalha LM, Zhang Y, Wodarcyk G, Huang H, Ye IC, Gong R, Dunton CL, Duval A, Gonzalez PC, Pritchard J, Carinato J, Topchu I, Li J, Ji Z, Adli M, Backman V, Matei D. Chromatin Organization Governs Transcriptional Response and Plasticity of Cancer Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2407426. [PMID: 40051293 DOI: 10.1002/advs.202407426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/16/2024] [Indexed: 03/09/2025]
Abstract
Chromatin organization regulates transcription to influence cellular plasticity and cell fate. We explored whether chromatin nanoscale packing domains are involved in stemness and response to chemotherapy. Using an optical spectroscopic nanosensing technology we show that ovarian cancer-derived cancer stem cells (CSCs) display upregulation of nanoscale chromatin packing domains compared to non-CSCs. Cleavage under targets and tagmentation (CUT&Tag) sequencing with antibodies for repressive H3K27me3 and active H3K4me3 and H3K27ac marks mapped chromatin regions associated with differentially expressed genes. More poised genes marked by both H3K4me3 and H3K27me3 were identified in CSCs vs. non-CSCs, supporting increased transcriptional plasticity of CSCs. Pathways related to Wnt signaling and cytokine-cytokine receptor interaction were repressed in non-CSCs, while retinol metabolism and antioxidant response were activated in CSCs. Comparative transcriptomic analyses showed higher intercellular transcriptional heterogeneity at baseline in CSCs. In response to cisplatin, genes with low baseline expression levels underwent the highest upregulation in CSCs, demonstrating transcriptional plasticity under stress. Epigenome targeting drugs downregulated chromatin packing domains and promoted cellular differentiation. A disruptor of telomeric silencing 1-like (Dot1L) inhibitor blocked transcriptional plasticity, reversing stemness. These findings support that CSCs harbor upregulated chromatin packing domains, contributing to transcriptional and cell plasticity that epigenome modifiers can target.
Collapse
Affiliation(s)
- Yinu Wang
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA
| | - Jane Frederick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Karla Isabel Medina
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Elizabeth Thomas Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, 60611, USA
- Department of Preventive Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
| | - Luay Matthew Almassalha
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Gastroenterology and Hepatology, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yaqi Zhang
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA
| | - Greta Wodarcyk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Hao Huang
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA
| | - I Chae Ye
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Ruyi Gong
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Cody Levi Dunton
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Alex Duval
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
| | - Paola Carrillo Gonzalez
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Joshua Pritchard
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - John Carinato
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Iuliia Topchu
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA
| | - Junzui Li
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA
| | - Zhe Ji
- Department of Pharmacology, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Pharmacology, Department of Biomedical Engineering, McCormick School of Engineering, Northwestern, University, Evanston, IL, 60208, USA
| | - Mazhar Adli
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
- Jesse Brown Veterans' Affairs Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
3
|
Williams I, O’Malley M, DeHart H, Walker B, Ulhaskumar V, Jothirajah P, Ray H, Landrum LM, Delaney JR, Nephew KP, Carpenter RL. MYC and HSF1 Cooperate to Drive Sensitivity to Polo-like Kinase 1 Inhibitor Volasertib in High-grade Serous Ovarian Cancer. CANCER RESEARCH COMMUNICATIONS 2025; 5:253-266. [PMID: 39831777 PMCID: PMC11799878 DOI: 10.1158/2767-9764.crc-24-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
SIGNIFICANCE We show that HSF1 and MYC genes are co-amplified in more than 30% of HGSOC and demonstrate that HSF1 and MYC functionally cooperate to drive the growth of HGSOC cells. This work provides the foundation for HSF1 and MYC co-amplification as a biomarker for treatment efficacy of the polo-like kinase 1 inhibitor volasertib in HGSOC.
Collapse
Affiliation(s)
- Imade Williams
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Matthew O’Malley
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Haddie DeHart
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Bobby Walker
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Vrushabh Ulhaskumar
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Pranav Jothirajah
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Haimanti Ray
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Lisa M. Landrum
- Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
- Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joe R. Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
- Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard L. Carpenter
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
4
|
Nazari M, Babakhanzadeh E, Mollazadeh A, Ahmadzade M, Mohammadi Soleimani E, Hajimaqsoudi E. HOTAIR in cancer: diagnostic, prognostic, and therapeutic perspectives. Cancer Cell Int 2024; 24:415. [PMID: 39702144 DOI: 10.1186/s12935-024-03612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The long non-coding RNA HOTAIR is overexpressed in many cancers and is associated with several cancer-promoting effects, including increased cell proliferation, migration and treatment resistance. HOTAIR levels correlate with tumor stage, lymph node metastasis and overall survival in patients with various types of cancer. This highlights the potential uses of HOTAIR, including early cancer detection, predicting patient outcome, identifying high-risk individuals and assisting in therapy selection and monitoring. The aim of this review is to provide a comprehensive summary of the research progress, molecular mechanisms and clinical significance of HOTAIR in various human cancers. In addition, the clinical applications of HOTAIR, such as targeted therapy, radiotherapy, chemotherapy and immunotherapy, are discussed, and relevant information on the potential future advances of HOTAIR in cancer research is provided.
Collapse
Affiliation(s)
- Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, P.O. Box 64155-65117, Tehran, Yazd, Iran.
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arghavan Mollazadeh
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Mohadese Ahmadzade
- Department of Urology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elnaz Hajimaqsoudi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
5
|
Wang W, Zhou Y, Wang J, Zhang S, Ozes A, Gao H, Fang F, Wang Y, Chu X, Liu Y, Wan J, Mitra AK, O’Hagan HM, Nephew KP. Targeting Ovarian Cancer Stem Cells by Dual Inhibition of the Long Noncoding RNA HOTAIR and Lysine Methyltransferase EZH2. Mol Cancer Ther 2024; 23:1666-1679. [PMID: 39039946 PMCID: PMC11534535 DOI: 10.1158/1535-7163.mct-23-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/28/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
The persistence of cancer stem cells (CSC) is believed to contribute to resistance to platinum-based chemotherapy and disease relapse in ovarian cancer, the fifth leading cause of cancer-related death among US women. HOXC transcript antisense RNA (HOTAIR) is a long, noncoding RNA (lncRNA) overexpressed in high-grade serous ovarian cancer and linked to chemoresistance. However, HOTAIR impacts chromatin dynamics in ovarian CSCs. Oncogenic lncRNA's contributions to drug-resistant disease are incompletely understood. Here, we generated HOTAIR knockout (KO) high-grade serous ovarian cancer cell lines using paired CRISPR guide RNA design to investigate the function of HOTAIR. We show the loss of HOTAIR function resensitized ovarian cancer cells to platinum treatment and decreased the population of ovarian CSCs. Furthermore, HOTAIR KO inhibited the development of stemness-related phenotypes, including spheroid formation ability and expression of key stemness-associated genes ALDH1A1, NOTCH3, SOX9, and PROM1. HOTAIR KO altered the cellular transcriptome and chromatin accessibility landscape of multiple oncogenic-associated genes and pathways, including the NF-kB pathway. HOTAIR functions as an oncogene by recruiting enhancer of zeste homolog 2 (EZH2) to catalyze H3K27 trimethylation to suppress downstream tumor suppressor genes, and it was of interest to inhibit both HOTAIR and EZH2. In vivo, combining a HOTAIR inhibitor with an EZH2 inhibitor and platinum chemotherapy decreased tumor formation and increased survival. These results suggest a key role for HOTAIR in ovarian CSCs and malignant potential. Targeting HOTAIR in combination with epigenetic therapies may represent a therapeutic strategy to ameliorate ovarian cancer progression and resistance to platinum-based chemotherapy.
Collapse
Affiliation(s)
- Weini Wang
- Indiana University School of Medicine, Bloomington, IN, USA
| | - Yanchi Zhou
- Indiana University School of Medicine, Bloomington, IN, USA
| | - Ji Wang
- Indiana University School of Medicine, Bloomington, IN, USA
| | - Shu Zhang
- Indiana University School of Medicine, Bloomington, IN, USA
| | - Ali Ozes
- Altay Therapeutics, San Francisco, CA USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indianapolis, IN, USA
| | - Fang Fang
- Department of Medical and Molecular Genetics, Indianapolis, IN, USA
| | - Yue Wang
- Department of Medical and Molecular Genetics, Indianapolis, IN, USA
| | - Xiaona Chu
- Genomics Core, Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Yunlong Liu
- Genomics Core, Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Jun Wan
- Cancer Bioinformatics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Anirban K. Mitra
- Indiana University School of Medicine, Bloomington, IN, USA
- Department of Medical and Molecular Genetics, Indianapolis, IN, USA
- Tumor Microenvironment and Metastasis Program, Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Heather M. O’Hagan
- Indiana University School of Medicine, Bloomington, IN, USA
- Department of Medical and Molecular Genetics, Indianapolis, IN, USA
- Tumor Microenvironment and Metastasis Program, Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Kenneth P. Nephew
- Indiana University School of Medicine, Bloomington, IN, USA
- Tumor Microenvironment and Metastasis Program, Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indianapolis, IN, USA
- Department of Obstetrics and Gynecology, Indianapolis, IN, USA
| |
Collapse
|
6
|
Stojanovic L, Abbotts R, Tripathi K, Coon CM, Rajendran S, Farid EA, Hostetter G, Guarnieri JW, Wallace DC, Liu S, Wan J, Calendo G, Marker R, Gohari Z, Inayatullah MMA, Tiwari VK, Kader T, Santagata S, Drapkin R, Kommoss S, Pfisterer J, Konecny GE, Coopergard R, Issa JP, Winterhoff BJN, Topper MJ, Sandusky GE, Miller KD, Baylin SB, Nephew KP, Rassool FV. ZNFX1 is a Novel Master Regulator in Epigenetically-induced Pathogen Mimicry and Inflammasome Signaling in Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.618659. [PMID: 39484607 PMCID: PMC11526927 DOI: 10.1101/2024.10.18.618659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
DNA methyltransferase and poly(ADP-ribose) polymerase inhibitors (DNMTis, PARPis) induce a stimulator of interferon (IFN) genes (STING)-dependent pathogen mimicry response (PMR) in ovarian (OC) and other cancers. We now show that combining DNMTis and PARPis upregulates expression of a little-studied nucleic-acid sensor, NFX1-type zinc finger-containing 1 protein (ZNFX1). We demonstrate that ZNFX1 is a novel master regulator for PMR induction in mitochondria, serving as a gateway for STING-dependent PMR. In patient OC databases, high ZNFX1 expression levels correlate with advanced stage disease. ZNFX1 expression alone significantly correlates with an increase in overall survival in a phase 3 trial for therapy-resistant OC patients receiving bevacizumab in combination with chemotherapy. In correlative RNA-seq data, inflammasome signaling through ZNFX1 correlates with abnormal vasculogenesis. ZNFX1 controls PMR signaling through the mitochondria and may serve as a biomarker to facilitate offering personalized therapy in OC patients, highlighting the strong translational significance of our findings.
Collapse
Affiliation(s)
- Lora Stojanovic
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rachel Abbotts
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kaushlendra Tripathi
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Collin M. Coon
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA
| | - Saranya Rajendran
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA
| | - Elnaz Abbasi Farid
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA
| | | | - Joseph W. Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine Indianapolis, IN 46202, USA
| | | | - Rebecca Marker
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zahra Gohari
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | - Tanjina Kader
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Stefan Kommoss
- Diakonie-Klinikum Schwäbisch Hall, Germany, Institute for Health Informatics
- Kliniken Essen-Mitte, Gynäkologie und Gynäkologische Onkologie, Germany
| | | | | | - Ryan Coopergard
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Boris J. N. Winterhoff
- Department of Obstetrics, Gynecology and Women’s Health (OBGYN), Division of Gynecologic Oncology, University of Minnesota, MN 55812-3011, USA
| | - Michael J. Topper
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - George E. Sandusky
- Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Kathy D. Miller
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephen B. Baylin
- Diakonie-Klinikum Schwäbisch Hall, Germany, Institute for Health Informatics
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Feyruz V. Rassool
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Zhang Q, Guo F, Liu H, Hong L. Enhancing wound healing and overcoming cisplatin resistance in ovarian cancer. Int Wound J 2024; 21:e14569. [PMID: 38158767 PMCID: PMC10961880 DOI: 10.1111/iwj.14569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Ovarian cancer (OC) poses significant oncological challenges, notably impaired wound healing in the context of cisplatin (DDP) resistance. This study investigates the role of miR-200b in OC, emphasizing its impact on wound healing processes through DNMT3A/TGF-β1 pathway. The primary aim was to explore how miR-200b regulates autophagy and its consequential effects on wound healing in OC, alongside its influence on cisplatin resistance. Utilizing DDP-sensitive (A2780) and resistant (A2780/DDP) OC cell lines, along with human fibroblast cultures, the study employed an array of in vitro techniques. These included cell transfection with miR-200b mimic or inhibitor, chromatin immunoprecipitation (ChIP), dual-luciferase reporter (DLR) assays, quantitative PCR, Western blotting, MTT and particularly, wound healing assays. The research highlighted the role of miR-200b in wound healing within OC. Inhibition of miR-200b in A2780 cells and its mimic in A2780/DDP cells affected cell viability, indicating the link with DDP resistance. Crucially, miR-200b mimic significantly delayed fibroblast-mediated wound closure in assays, underscoring its impact on wound healing. Bioinformatics analysis and subsequent DLR assays confirmed miR-200b's interaction with DNMT3A, affecting TGF-β1 expression, the key factor in wound repair. Further, ChIP, quantitative PCR and Western blot analyses validated the interaction and expression changes in DNMT3A and TGF-β1. The study demonstrated that miR-200b played a pivotal role in OC by modulating autophagy, which in turn significantly affected wound healing through the DNMT3A/TGF-β1 pathway.
Collapse
Affiliation(s)
- Qifan Zhang
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Fengqin Guo
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hua Liu
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Li Hong
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
8
|
Wang Y, Bu N, Luan XF, Song QQ, Ma BF, Hao W, Yan JJ, Wang L, Zheng XL, Maimaitiyiming Y. Harnessing the potential of long non-coding RNAs in breast cancer: from etiology to treatment resistance and clinical applications. Front Oncol 2024; 14:1337579. [PMID: 38505593 PMCID: PMC10949897 DOI: 10.3389/fonc.2024.1337579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Breast cancer (BC) is the most common malignancy among women and a leading cause of cancer-related deaths of females worldwide. It is a complex and molecularly heterogeneous disease, with various subtypes that require different treatment strategies. Despite advances in high-resolution single-cell and multinomial technologies, distant metastasis and therapeutic resistance remain major challenges for BC treatment. Long non-coding RNAs (lncRNAs) are non-coding RNAs with more than 200 nucleotides in length. They act as competing endogenous RNAs (ceRNAs) to regulate post-transcriptional gene stability and modulate protein-protein, protein-DNA, and protein-RNA interactions to regulate various biological processes. Emerging evidence suggests that lncRNAs play essential roles in human cancers, including BC. In this review, we focus on the roles and mechanisms of lncRNAs in BC progression, metastasis, and treatment resistance, and discuss their potential value as therapeutic targets. Specifically, we summarize how lncRNAs are involved in the initiation and progression of BC, as well as their roles in metastasis and the development of therapeutic resistance. We also recapitulate the potential of lncRNAs as diagnostic biomarkers and discuss their potential use in personalized medicine. Finally, we provide lncRNA-based strategies to promote the prognosis of breast cancer patients in clinical settings, including the development of novel lncRNA-targeted therapies.
Collapse
Affiliation(s)
- Yun Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Bu
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-fei Luan
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian-qian Song
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ba-Fang Ma
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Wenhui Hao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing-jing Yan
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-ling Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yasen Maimaitiyiming
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
9
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
10
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
11
|
Bouberhan S, Bar-Peled L, Matoba Y, Mazina V, Philp L, Rueda BR. The evolving role of DNA damage response in overcoming therapeutic resistance in ovarian cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:345-357. [PMID: 37457127 PMCID: PMC10344720 DOI: 10.20517/cdr.2022.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/16/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
Epithelial ovarian cancer (EOC) is treated in the first-line setting with combined platinum and taxane chemotherapy, often followed by a maintenance poly (ADP-ribose) polymerase inhibitor (PARPi). Responses to first-line treatment are frequent. For many patients, however, responses are suboptimal or short-lived. Over the last several years, multiple new classes of agents targeting DNA damage response (DDR) mechanisms have advanced through clinical development. In this review, we explore the preclinical rationale for the use of ATR inhibitors, CHK1 inhibitors, and WEE1 inhibitors, emphasizing their application to chemotherapy-resistant and PARPi-resistant ovarian cancer. We also present an overview of the clinical development of the leading drugs in each of these classes, emphasizing the rationale for monotherapy and combination therapy approaches.
Collapse
Affiliation(s)
- Sara Bouberhan
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Liron Bar-Peled
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yusuke Matoba
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Varvara Mazina
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115 USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lauren Philp
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115 USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bo R. Rueda
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115 USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
12
|
Walker RR, Rentia Z, Chiappinelli KB. Epigenetically programmed resistance to chemo- and immuno-therapies. Adv Cancer Res 2023; 158:41-71. [PMID: 36990538 PMCID: PMC10184181 DOI: 10.1016/bs.acr.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Resistance to cancer treatments remains a major barrier in developing cancer cures. While promising combination chemotherapy treatments and novel immunotherapies have improved patient outcomes, resistance to these treatments remains poorly understood. New insights into the dysregulation of the epigenome show how it promotes tumor growth and resistance to therapy. By altering control of gene expression, tumor cells can evade immune cell recognition, ignore apoptotic cues, and reverse DNA damage induced by chemotherapies. In this chapter, we summarize the data on epigenetic remodeling during cancer progression and treatment that enable cancer cell survival and describe how these epigenetic changes are being targeted clinically to overcome resistance.
Collapse
Affiliation(s)
- Reddick R Walker
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Zainab Rentia
- The George Washington University Cancer Center (GWCC), Washington, DC, United States
| | - Katherine B Chiappinelli
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
13
|
Yang Z, Xu F, Teschendorff AE, Zhao Y, Yao L, Li J, He Y. Insights into the role of long non-coding RNAs in DNA methylation mediated transcriptional regulation. Front Mol Biosci 2022; 9:1067406. [PMID: 36533073 PMCID: PMC9755597 DOI: 10.3389/fmolb.2022.1067406] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/12/2023] Open
Abstract
DNA methylation is one of the most important epigenetic mechanisms that governing regulation of gene expression, aberrant DNA methylation patterns are strongly associated with human malignancies. Long non-coding RNAs (lncRNAs) have being discovered as a significant regulator on gene expression at the epigenetic level. Emerging evidences have indicated the intricate regulatory effects between lncRNAs and DNA methylation. On one hand, transcription of lncRNAs are controlled by the promoter methylation, which is similar to protein coding genes, on the other hand, lncRNA could interact with enzymes involved in DNA methylation to affect the methylation pattern of downstream genes, thus regulating their expression. In addition, circular RNAs (circRNAs) being an important class of noncoding RNA are also found to participate in this complex regulatory network. In this review, we summarize recent research progress on this crosstalk between lncRNA, circRNA, and DNA methylation as well as their potential functions in complex diseases including cancer. This work reveals a hidden layer for gene transcriptional regulation and enhances our understanding for epigenetics regarding detailed mechanisms on lncRNA regulatory function in human cancers.
Collapse
Affiliation(s)
- Zhen Yang
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feng Xu
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Andrew E. Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Lei Yao
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Li
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yungang He
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Hu X, Bian C, Zhao X, Yi T. Efficacy evaluation of multi-immunotherapy in ovarian cancer: From bench to bed. Front Immunol 2022; 13:1034903. [PMID: 36275669 PMCID: PMC9582991 DOI: 10.3389/fimmu.2022.1034903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer, one of the most common gynecological malignancies, is characterized by high mortality and poor prognosis. Cytoreductive surgery and chemotherapy remain the mainstay of ovarian cancer treatment, and most women experience recurrence after standard care therapies. There is compelling evidence that ovarian cancer is an immunogenic tumor. For example, the accumulation of tumor-infiltrating lymphocytes is associated with increased survival, while increases in immunosuppressive regulatory T cells are correlated with poor clinical outcomes. Therefore, immunotherapies targeting components of the tumor microenvironment have been gradually integrated into the existing treatment options, including immune checkpoint blockade, adoptive cell therapy, and cancer vaccines. Immunotherapies have changed guidelines for maintenance treatment and established a new paradigm in ovarian cancer treatment. Despite single immunotherapies targeting DNA repair mechanisms, immune checkpoints, and angiogenesis bringing inspiring efficacy, only a subset of patients can benefit much from it. Thus, the multi-immunotherapy investigation remains an active area for ovarian cancer treatment. The current review provides an overview of various clinically oriented forms of multi-immunotherapy and explores potentially effective combinational therapies for ovarian cancer.
Collapse
|
15
|
An X, Liu Y. HOTAIR in solid tumors: Emerging mechanisms and clinical strategies. Biomed Pharmacother 2022; 154:113594. [DOI: 10.1016/j.biopha.2022.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022] Open
|
16
|
Functions and underlying mechanisms of lncRNA HOTAIR in cancer chemotherapy resistance. Cell Death Dis 2022; 8:383. [PMID: 36100611 PMCID: PMC9470550 DOI: 10.1038/s41420-022-01174-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Chemotherapy has been one of the most important treatments for advanced cancer in recent decades. Although the sensitivity rate of initial chemotherapy is high, patients with chemotherapy resistant tumors, experience tumor recurrence. In recent years, many studies have shown that homeobox transcript antisense intergenic RNA (HOTAIR) is involved in many pathological processes including carcinogenesis. The abnormal regulation of a variety of cell functions by HOTAIR, such as apoptosis, the cell cycle, epithelial-mesenchymal transition, autophagy, self-renewal, and metabolism, is associated with chemotherapy resistance. Therefore, there is an urgent need to understand the biology and mechanism underlying the role of HOTAIR in tumor behavior and its potential as a biomarker for predicting the effect of chemotherapy. In this manuscript, we review the mechanisms underlying HOTAIR-related drug resistance and discuss the limitations of current knowledge and propose potential future directions.
Collapse
|
17
|
Lyu C, Wang L, Stadlbauer B, Noessner E, Buchner A, Pohla H. Identification of EZH2 as Cancer Stem Cell Marker in Clear Cell Renal Cell Carcinoma and the Anti-Tumor Effect of Epigallocatechin-3-Gallate (EGCG). Cancers (Basel) 2022; 14:4200. [PMID: 36077742 PMCID: PMC9454898 DOI: 10.3390/cancers14174200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of the study was to develop a new therapeutic strategy to target cancer stem cells (CSCs) in clear cell renal cell carcinoma (ccRCC) and to identify typical CSC markers to improve therapy effectiveness. It was found that the corrected-mRNA expression-based stemness index was upregulated in kidney renal clear cell carcinoma (KIRC) tissues compared to non-tumor tissue and increased with higher tumor stage and grade. EZH2 was identified as a CSC marker and prognosis factor for KIRC patients. The expression of EZH2 was associated with several activated tumor-infiltrating immune cells. High expression of EZH2 was enriched in immune-related pathways, low expression was related to several metabolic pathways. Epigallocatechin-3-gallate (EGCG) was identified as the most potent suppressor of EZH2, was able to inhibit viability, migration, and invasion, and to increase the apoptosis rate of ccRCC CSCs. KIF11, VEGF, and MMP2 were identified as predictive EGCG target genes, suggesting a potential mechanism of how EZH2 might regulate invasiveness and migration. The percentages of FoxP3+ Treg cells in the peripheral blood mononuclear cells of ccRCC patients decreased significantly when cultured with spheres pretreated with EGCG plus sunitinib compared to spheres without treatment. Our findings provide new insights into the treatment options of ccRCC based on targeting CSCs.
Collapse
Affiliation(s)
- Chen Lyu
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
| | - Lili Wang
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Birgit Stadlbauer
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Urology, LMU Klinikum, University Munich, D-81377 Munich, Germany
| | - Elfriede Noessner
- Immunoanalytics Research Group Tissue Control of Immunocytes, Helmholtz Zentrum München, D-81377 Munich, Germany
| | - Alexander Buchner
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Urology, LMU Klinikum, University Munich, D-81377 Munich, Germany
| | - Heike Pohla
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Urology, LMU Klinikum, University Munich, D-81377 Munich, Germany
| |
Collapse
|
18
|
Xu L, Zhang J, Sun J, Hou K, Yang C, Guo Y, Liu X, Kalvakolanu DV, Zhang L, Guo B. Epigenetic regulation of cancer stem cells: Shedding light on the refractory/relapsed cancers. Biochem Pharmacol 2022; 202:115110. [PMID: 35640714 DOI: 10.1016/j.bcp.2022.115110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023]
Abstract
The resistance to drugs, ability to enter quiescence and generate heterogeneous cancer cells, and enhancement of aggressiveness, make cancer stem cells (CSCs) integral part of tumor progression, metastasis and recurrence after treatment. The epigenetic modification machinery is crucial for the viability of CSCs and evolution of aggressive forms of a tumor. These mechanisms can also be targeted by specific drugs, providing a promising approach for blocking CSCs. In this review, we summarize the epigenetic regulatory mechanisms in CSCs which contribute to drug resistance, quiescence and tumor heterogeneity. We also discuss the drugs that can potentially target these processes and data from experimental and clinical studies.
Collapse
Affiliation(s)
- Libo Xu
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China; Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Jinghua Zhang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Jicheng Sun
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Kunlin Hou
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Chenxin Yang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Ying Guo
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Xiaorui Liu
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Ling Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China; Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China.
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China.
| |
Collapse
|
19
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
20
|
Xin X, Li Q, Fang J, Zhao T. LncRNA HOTAIR: A Potential Prognostic Factor and Therapeutic Target in Human Cancers. Front Oncol 2021; 11:679244. [PMID: 34367966 PMCID: PMC8340021 DOI: 10.3389/fonc.2021.679244] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of gene expression and physiological processes. LncRNAs are a class of ncRNAs of 200 nucleotides in length. HOX transcript antisense RNA (HOTAIR), a trans-acting lncRNA with regulatory function on transcription, can repress gene expression by recruiting chromatin modifiers. HOTAIR is an oncogenic lncRNA, and numerous studies have determined that HOTAIR is highly upregulated in a wide variety of human cancers. In this review, we briefly summarize the impact of lncRNA HOTAIR expression and functions on different human solid tumors, and emphasize the potential of HOTAIR on tumor prognosis and therapy. Here, we review the recent studies that highlight the prognostic potential of HOTAIR in drug resistance and survival, and the progress of therapies developed to target HOTAIR to date. Furthermore, targeting HOTAIR results in the suppression of HOTAIR expression or function. Thus, HOTAIR knockdown exhibits great therapeutic potential in various cancers, indicating that targeting lncRNA HOTAIR may serve as a promising strategy for cancer therapy. We also propose that preclinical studies involving HOTAIR are required to provide a better understanding of the exact molecular mechanisms underlying the dysregulation of its expression and function in different human cancers and to explore effective methods of targeting HOTAIR and engineering efficient and targeted drug delivery methods in vivo.
Collapse
Affiliation(s)
- Xiaoru Xin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Qianan Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jinyong Fang
- Department of Science and Education, Jinhua Guangfu Oncology Hospital, Jinhua, China
| | - Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|