1
|
Zhang C, Wang H, Li X, Jiang Y, Sun G, Yu H. Enhancing antitumor immunity: the role of immune checkpoint inhibitors, anti-angiogenic therapy, and macrophage reprogramming. Front Oncol 2025; 15:1526407. [PMID: 40260303 PMCID: PMC12009726 DOI: 10.3389/fonc.2025.1526407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Cancer treatment has long been hindered by the complexity of the tumor microenvironment (TME) and the mechanisms that tumors employ to evade immune detection. Recently, the combination of immune checkpoint inhibitors (ICIs) and anti-angiogenic therapies has emerged as a promising approach to improve cancer treatment outcomes. This review delves into the role of immunostimulatory molecules and ICIs in enhancing anti-tumor immunity, while also discussing the therapeutic potential of anti-angiogenic strategies in cancer. In particular, we highlight the critical role of endoplasmic reticulum (ER) stress in angiogenesis. Moreover, we explore the potential of macrophage reprogramming to bolster anti-tumor immunity, with a focus on restoring macrophage phagocytic function, modulating hypoxic tumor environments, and targeting cytokines and chemokines that shape immune responses. By examining the underlying mechanisms of combining ICIs with anti-angiogenic therapies, we also review recent clinical trials and discuss the potential of biomarkers to guide and predict treatment efficacy.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xinying Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuxin Jiang
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hanqing Yu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Deshpande SM, Choudhary S, Patankar S, Khetan P, Sadaphule G, Sachdev SS. Comparative analysis of Ki-67, α-SMA, and MMP-9 expression in oral submucous fibrosis and oral leukoplakia with/without dysplasia: Insights into malignant transformation mechanisms. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2025; 58:100804. [PMID: 40101344 DOI: 10.1016/j.patol.2025.100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 03/20/2025]
Abstract
BACKGROUND The present study aimed to comparatively analyze the immunoexpression of Ki-67, Alpha Smooth Muscle Actin (α-SMA), and Matrix Metalloproteinase-9 (MMP-9) between Oral Leukoplakia (OL) and Oral Submucous Fibrosis (OSMF), both with and without dysplasia. The objective was to determine the potential role of these biomarkers in the diagnosis and prognostication of oral potentially malignant disorders (OPMDs) and their potential as targets for interventions. MATERIALS AND METHODS Immunohistochemical staining for Ki-67, α-SMA, and MMP-9 was performed on seventy formalin-fixed paraffin-embedded tissue blocks, comprising normal buccal mucosa (n=10), OSMF (n=30), and OL (n=30) with 15 cases each of dysplasia and non-dysplasia. The expression of these markers was comparatively evaluated in OSMF and OL, with and without dysplasia. RESULTS The immunoexpression of Ki-67, MMP-9, and α-SMA was found to be significantly higher (p<0.001) in OSMF compared to OL for the respective dysplastic counterparts. Additionally, OSMF with dysplasia exhibited a significantly higher expression (p<0.001) of these markers compared to OSMF without dysplasia. CONCLUSIONS The present study reports differences in cell proliferation rates, myofibroblast and MMP-9 expression between OSMF and OL. The higher expression of these markers in OSMF with dysplasia suggests accelerated disease progression and enhanced potential for transformation into oral squamous cell carcinoma (OSCC). These findings highlight variations in the tissue microenvironment of OPMDs, influencing their biological behaviour and prognosis.
Collapse
Affiliation(s)
- Sneha Masne Deshpande
- Department of Oral Pathology and Microbiology, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, India
| | - Sheetal Choudhary
- Department of Oral Pathology and Microbiology, YMT Dental College and Hospital, Kharghar, Navi Mumbai, India
| | - Sangeeta Patankar
- Department of Oral Pathology and Microbiology, YMT Dental College and Hospital, Kharghar, Navi Mumbai, India
| | - Palak Khetan
- Department of Oral Pathology and Microbiology, YMT Dental College and Hospital, Kharghar, Navi Mumbai, India
| | - Girish Sadaphule
- Department of Oral Pathology and Microbiology, YMT Dental College and Hospital, Kharghar, Navi Mumbai, India
| | - Sanpreet Singh Sachdev
- Department of Oral Pathology and Microbiology, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, India.
| |
Collapse
|
3
|
Zhang Z, Tang Y, Luo D, Qiu J, Chen L. Advances in nanotechnology for targeting cancer-associated fibroblasts: A review of multi-strategy drug delivery and preclinical insights. APL Bioeng 2025; 9:011502. [PMID: 40094065 PMCID: PMC11910205 DOI: 10.1063/5.0244706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment by promoting tumor growth, immune evasion, and metastasis. Recently, drug delivery systems targeting CAFs have emerged as a promising long-term and effective approach to cancer treatment. Advances in nanotechnology, in particular, have led to the development of nanomedicine delivery systems designed specifically to target CAFs, offering new possibilities for precise and personalized cancer therapies. This article reviews recent progress in drug delivery using nanocarriers that target CAFs. Additionally, we explore the potential of combining multiple therapies, such as chemotherapy and immunotherapy, with nanocarriers to enhance efficacy and overcome drug resistance. Although many preclinical studies show promise, the clinical application of nanomedicine still faces considerable challenges, especially in terms of drug penetration and large-scale production. Therefore, this review aims to provide a fresh perspective on CAF-targeted drug delivery systems and highlight potential future research directions and clinical applications.
Collapse
|
4
|
Tufail M, Jiang CH, Li N. Tumor dormancy and relapse: understanding the molecular mechanisms of cancer recurrence. Mil Med Res 2025; 12:7. [PMID: 39934876 PMCID: PMC11812268 DOI: 10.1186/s40779-025-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Cancer recurrence, driven by the phenomenon of tumor dormancy, presents a formidable challenge in oncology. Dormant cancer cells have the ability to evade detection and treatment, leading to relapse. This review emphasizes the urgent need to comprehend tumor dormancy and its implications for cancer recurrence. Despite notable advancements, significant gaps remain in our understanding of the mechanisms underlying dormancy and the lack of reliable biomarkers for predicting relapse. This review provides a comprehensive analysis of the cellular, angiogenic, and immunological aspects of dormancy. It highlights the current therapeutic strategies targeting dormant cells, particularly combination therapies and immunotherapies, which hold promise in preventing relapse. By elucidating these mechanisms and proposing innovative research methodologies, this review aims to deepen our understanding of tumor dormancy, ultimately facilitating the development of more effective strategies for preventing cancer recurrence and improving patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Yu B, Shao S, Ma W. Frontiers in pancreatic cancer on biomarkers, microenvironment, and immunotherapy. Cancer Lett 2025; 610:217350. [PMID: 39581219 DOI: 10.1016/j.canlet.2024.217350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Pancreatic cancer remains one of the most challenging malignancies to treat due to its late-stage diagnosis, aggressive progression, and high resistance to existing therapies. This review examines the latest advancements in early detection, and therapeutic strategies, with a focus on emerging biomarkers, tumor microenvironment (TME) modulation, and the integration of artificial intelligence (AI) in data analysis. We highlight promising biomarkers, including microRNAs (miRNAs) and circulating tumor DNA (ctDNA), that offer enhanced sensitivity and specificity for early-stage diagnosis when combined with multi-omics panels. A detailed analysis of the TME reveals how components such as cancer-associated fibroblasts (CAFs), immune cells, and the extracellular matrix (ECM) contribute to therapy resistance by creating immunosuppressive barriers. We also discuss therapeutic interventions that target these TME components, aiming to improve drug delivery and overcome immune evasion. Furthermore, AI-driven analyses are explored for their potential to interpret complex multi-omics data, enabling personalized treatment strategies and real-time monitoring of treatment response. We conclude by identifying key areas for future research, including the clinical validation of biomarkers, regulatory frameworks for AI applications, and equitable access to innovative therapies. This comprehensive approach underscores the need for integrated, personalized strategies to improve outcomes in pancreatic cancer.
Collapse
Affiliation(s)
- Baofa Yu
- Taimei Baofa Cancer Hospital, Dongping, Shandong, 271500, China; Jinan Baofa Cancer Hospital, Jinan, Shandong, 250000, China; Beijing Baofa Cancer Hospital, Beijing, 100010, China; Immune Oncology Systems, Inc, San Diego, CA, 92102, USA.
| | - Shengwen Shao
- Institute of Microbiology and Immunology, Huzhou University School of Medicine, Huzhou, Zhejiang, 313000, China.
| | - Wenxue Ma
- Department of Medicine, Sanford Stem Cell Institute, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Fang KH, Lo SW, Kudva A, De Vito A, Tsai YH, Hsu CM, Chang GH, Huang EI, Tsai MS, Lai CH, Tsai MH, Liao CT, Kang CJ, Tsai YT. Prognostic Utility of the Modified Systemic Inflammation Score for Patients Undergoing Oral Cavity Cancer Surgery. Diagnostics (Basel) 2024; 14:2856. [PMID: 39767217 PMCID: PMC11674824 DOI: 10.3390/diagnostics14242856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Chronic inflammation significantly contributes to human malignancies. We investigated the prognostic significance of the preoperative modified systemic inflammation score (mSIS) in patients with primary oral cavity squamous cell carcinoma (OCSCC). METHODS We retrospectively reviewed data from 320 OCSCC patients who underwent curative surgery between 2007 and 2017. Based on preoperative lymphocyte-to-monocyte ratio (LMR) and serum albumin levels, patients were classified into three groups: mSIS = 2 (LMR < 3.4 and albumin < 4.0 g/dL), mSIS = 1 (LMR < 3.4 or albumin < 4.0 g/dL), and mSIS = 0 (LMR ≥ 3.4 and albumin ≥ 4.0 g/dL). We explored the associations between the preoperative mSIS and overall survival (OS) and disease-free survival (DFS). We developed a nomogram based on mSIS for OS prediction. RESULTS The distribution was mSIS = 0 (n = 197, 61.6%), mSIS = 1 (n = 99, 30.9%), and mSIS = 2 (n = 24, 7.5%). Kaplan-Meier estimated OS and DFS for the mSIS = 0, mSIS = 1, and mSIS = 2 groups demonstrated a sequential decrease (both p < 0.001). The prognostic significance of mSIS was consistent across subgroup analyses. Multivariable analysis revealed that mSIS = 1 and mSIS = 2 were independent negative prognostic indicators. The mSIS-based nomogram effectively predicted OS (concordance index: 0.755). CONCLUSIONS The mSIS reliably predicts OS and DFS in OCSCC patients undergoing surgery, with the nomogram providing individualized OS estimates, enhancing mSIS's clinical utility.
Collapse
Affiliation(s)
- Ku-Hao Fang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (K.-H.F.); (C.-T.L.); (C.-J.K.)
- College of Medicine, Chang Gung University, Taoyuan 330036, Taiwan; (Y.-H.T.); (C.-M.H.); (G.-H.C.); (E.I.H.); (M.-S.T.); (C.-H.L.); (M.-H.T.)
| | - Sheng-Wei Lo
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Adarsh Kudva
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Andrea De Vito
- Ear Nose Throat (ENT) Unit, Department of Surgery, Forlì Hospital Health Local Agency of Romagna, 47121 Forlì, Italy;
| | - Yuan-Hsiung Tsai
- College of Medicine, Chang Gung University, Taoyuan 330036, Taiwan; (Y.-H.T.); (C.-M.H.); (G.-H.C.); (E.I.H.); (M.-S.T.); (C.-H.L.); (M.-H.T.)
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Cheng-Ming Hsu
- College of Medicine, Chang Gung University, Taoyuan 330036, Taiwan; (Y.-H.T.); (C.-M.H.); (G.-H.C.); (E.I.H.); (M.-S.T.); (C.-H.L.); (M.-H.T.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Geng-He Chang
- College of Medicine, Chang Gung University, Taoyuan 330036, Taiwan; (Y.-H.T.); (C.-M.H.); (G.-H.C.); (E.I.H.); (M.-S.T.); (C.-H.L.); (M.-H.T.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Ethan I. Huang
- College of Medicine, Chang Gung University, Taoyuan 330036, Taiwan; (Y.-H.T.); (C.-M.H.); (G.-H.C.); (E.I.H.); (M.-S.T.); (C.-H.L.); (M.-H.T.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Ming-Shao Tsai
- College of Medicine, Chang Gung University, Taoyuan 330036, Taiwan; (Y.-H.T.); (C.-M.H.); (G.-H.C.); (E.I.H.); (M.-S.T.); (C.-H.L.); (M.-H.T.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Chia-Hsuan Lai
- College of Medicine, Chang Gung University, Taoyuan 330036, Taiwan; (Y.-H.T.); (C.-M.H.); (G.-H.C.); (E.I.H.); (M.-S.T.); (C.-H.L.); (M.-H.T.)
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Ming-Hsien Tsai
- College of Medicine, Chang Gung University, Taoyuan 330036, Taiwan; (Y.-H.T.); (C.-M.H.); (G.-H.C.); (E.I.H.); (M.-S.T.); (C.-H.L.); (M.-H.T.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Kaohsiung 833253, Taiwan
| | - Chun-Ta Liao
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (K.-H.F.); (C.-T.L.); (C.-J.K.)
- College of Medicine, Chang Gung University, Taoyuan 330036, Taiwan; (Y.-H.T.); (C.-M.H.); (G.-H.C.); (E.I.H.); (M.-S.T.); (C.-H.L.); (M.-H.T.)
| | - Chung-Jan Kang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan; (K.-H.F.); (C.-T.L.); (C.-J.K.)
- College of Medicine, Chang Gung University, Taoyuan 330036, Taiwan; (Y.-H.T.); (C.-M.H.); (G.-H.C.); (E.I.H.); (M.-S.T.); (C.-H.L.); (M.-H.T.)
| | - Yao-Te Tsai
- College of Medicine, Chang Gung University, Taoyuan 330036, Taiwan; (Y.-H.T.); (C.-M.H.); (G.-H.C.); (E.I.H.); (M.-S.T.); (C.-H.L.); (M.-H.T.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| |
Collapse
|
7
|
Bamberg EE, Maslanka M, Vinod-Paul K, Sams S, Pollack E, Conklin M, Kabos P, Hansen KC. Obesity-driven changes in breast tissue exhibit a pro-angiogenic extracellular matrix signature. Matrix Biol Plus 2024; 24:100162. [PMID: 39380725 PMCID: PMC11460480 DOI: 10.1016/j.mbplus.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Obesity has reached epidemic proportions in the United States, emerging as a risk factor for the onset of breast cancer and a harbinger of unfavorable outcomes [1], [2], [3]. Despite limited understanding of the precise mechanisms, both obesity and breast cancer are associated with extracellular matrix (ECM) rewiring [4], [5], [6]. Utilizing total breast tissue proteomics, we analyzed normal-weight (18.5 to < 25 kg/m2), overweight (25 to < 30 kg/m2), and obese (≥30 kg/m2) individuals to identify potential ECM modifying proteins for cancer development and acceleration. Obese individuals exhibited substantial ECM alterations, marked by increased basement membrane deposition, angiogenic signatures, and ECM-modifying proteins. Notably, the collagen IV crosslinking enzyme peroxidasin (PXDN) emerged as a potential mediator of the ECM changes in individuals with an elevated body mass index (BMI), strongly correlating with angiogenic and basement membrane signatures. Furthermore, glycan-binding proteins galectin-1 (LGALS1) and galectin-3 (LGALS3), which play crucial roles in matrix interactions and angiogenesis, also strongly correlate with ECM modifications. In breast cancer, elevated PXDN, LGALS1, and LGALS3 correlate with reduced relapse-free and distant-metastatic-free survival. These proteins were significantly associated with mesenchymal stromal cell markers, indicating adipocytes and fibroblasts may be the primary contributors of the obesity-related ECM changes. Our findings unveil a pro-angiogenic ECM signature in obese breast tissue, offering potential targets to inhibit breast cancer development and progression.
Collapse
Affiliation(s)
- Ellen E Bamberg
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark Maslanka
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kiran Vinod-Paul
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sharon Sams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erica Pollack
- Department of Radiology and Medical Imaging, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew Conklin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, Carbone Cancer Center (Tumor Microenvironment Program), University of Wisconsin, Madison, WI, USA
- Laboratory for Optical and Computations Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
Luo X, Wen W. MicroRNA in prostate cancer: from biogenesis to applicative potential. BMC Urol 2024; 24:244. [PMID: 39506720 PMCID: PMC11539483 DOI: 10.1186/s12894-024-01634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Prostate cancer is the most common solid malignant tumor in men, characterized by high morbidity and mortality. While current screening tools, such as prostate-specific antigen (PSA) testing and digital rectal examination, are available for early detection of prostate cancer, their sensitivity and specificity are limited. Tissue puncture biopsy, although capable of offering a definitive diagnosis, has poor positive predictive rates and burdens the patient more. Therefore, more reliable molecular diagnostic tools for prostate cancer urgently need to be developed. In recent years, microRNAs (miRNAs) have attracted much attention in prostate cancer research. miRNAs are extensively engaged in biological processes such as cell proliferation, differentiation, apoptosis, migration, and invasion by modulating gene expression post-transcriptionally. Dysregulation of miRNA expression in cancer is considered a critical factor in tumorigenesis and progression. This review first briefly introduces the biogenesis of miRNAs and their functions in cancer, then focuses on tumor-promoting miRNAs and tumor-suppressor miRNAs in prostate cancer. Finally, the potential application of miRNAs as multifunctional tools for cancer diagnosis, prognostic assessment, and therapy is discussed in detail. The concluding section summarizes the major points of the review and the challenges ahead.
Collapse
Affiliation(s)
- Xu Luo
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Wen
- Department of Urology, West China Tianfu Hospital, Sichuan University, Chengdu, 610213, P.R. China.
| |
Collapse
|
9
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
10
|
Niharika, Garg M. Understanding the autophagic functions in cancer stem cell maintenance and therapy resistance. Expert Rev Mol Med 2024; 26:e23. [PMID: 39375840 PMCID: PMC11488345 DOI: 10.1017/erm.2024.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 06/25/2024] [Indexed: 10/09/2024]
Abstract
Complex tumour ecosystem comprising tumour cells and its associated tumour microenvironment (TME) constantly influence the tumoural behaviour and ultimately impact therapy failure, disease progression, recurrence and poor overall survival of patients. Crosstalk between tumour cells and TME amplifies the complexity by creating metabolic changes such as hypoxic environment and nutrient fluctuations. These changes in TME initiate stem cell-like programmes in cancer cells, contribute to tumoural heterogeneity and increase tumour robustness. Recent studies demonstrate the multifaceted role of autophagy in promoting fibroblast production, stemness, cancer cell survival during longer periods of dormancy, eventual growth of metastatic disease and disease resistance. Recent ongoing studies examine autophagy/mitophagy as a powerful survival strategy in response to environmental stress including nutrient deprivation, hypoxia and environmental stress in TME. It prevents irreversible senescence, promotes dormant stem-like state, induces epithelial-mesenchymal transition and increases migratory and invasive potential of tumour cells. The present review discusses various theories and mechanisms behind the autophagy-dependent induction of cancer stem cell (CSC) phenotype. Given the role of autophagic functions in CSC aggressiveness and therapeutic resistance, various mechanisms and studies based on suppressing cellular plasticity by blocking autophagy as a powerful therapeutic strategy to kill tumour cells are discussed.
Collapse
Affiliation(s)
- Niharika
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
11
|
Klabukov I, Smirnova A, Yakimova A, Kabakov AE, Atiakshin D, Petrenko D, Shestakova VA, Sulina Y, Yatsenko E, Stepanenko VN, Ignatyuk M, Evstratova E, Krasheninnikov M, Sosin D, Baranovskii D, Ivanov S, Shegay P, Kaprin AD. Oncomatrix: Molecular Composition and Biomechanical Properties of the Extracellular Matrix in Human Tumors. JOURNAL OF MOLECULAR PATHOLOGY 2024; 5:437-453. [DOI: 10.3390/jmp5040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The extracellular matrix is an organized three-dimensional network of protein-based molecules and other macromolecules that provide structural and biochemical support to tissues. Depending on its biochemical and structural properties, the extracellular matrix influences cell adhesion and signal transduction and, in general, can influence cell differentiation and proliferation through specific mechanisms of chemical and mechanical sensing. The development of body tissues during ontogenesis is accompanied by changes not only in cells but also in the composition and properties of the extracellular matrix. Similarly, tumor development in carcinogenesis is accompanied by a continuous change in the properties of the extracellular matrix of tumor cells, called ‘oncomatrix’, as the tumor matures, from the development of the primary focus to the stage of metastasis. In this paper, the characteristics of the composition and properties of the extracellular matrix of tumor tissues are considered, as well as changes to the composition and properties of the matrix during the evolution of the tumor and metastasis. The extracellular matrix patterns of tumor tissues can be used as biomarkers of oncological diseases as well as potential targets for promising anti-tumor therapies.
Collapse
Affiliation(s)
- Ilya Klabukov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anna Smirnova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Anna Yakimova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Alexander E. Kabakov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Dmitri Atiakshin
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Daria Petrenko
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Victoria A. Shestakova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
| | - Yana Sulina
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Elena Yatsenko
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Vasiliy N. Stepanenko
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Michael Ignatyuk
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ekaterina Evstratova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Michael Krasheninnikov
- Scientific and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Dmitry Sosin
- Center for Strategic Planning and Management of Medical and Biological Health Risks of the FMBA of Russia, 119121 Moscow, Russia
| | - Denis Baranovskii
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Sergey Ivanov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Peter Shegay
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
12
|
Yin H, Sun L, Yuan Y, Zhu Y. PPIC-labeled CAFs: Key players in neoadjuvant chemotherapy resistance for gastric cancer. Transl Oncol 2024; 48:102080. [PMID: 39116799 PMCID: PMC11362775 DOI: 10.1016/j.tranon.2024.102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fourth leading cause of cancer deaths, with advanced cases having a median survival of less than one year. Neoadjuvant chemotherapy (NCT) is vital but faces drug resistance issues, partly due to cancer-associated fibroblasts (CAFs). Yet, specific CAF subpopulations contributing to resistance are poorly understood. METHODS Differentially expressed genes (DEGs) between chemosensitive and resistant GC patients were identified using GEO2R. Single-cell sequencing (scRNA-seq) identified CAF-related genes. Immunohistochemistry verified key genes in NCT-treated GC samples, analyzing their correlation with tumor regression grade (TRG) and clinicopathological characteristics. RESULTS PPIC as a gene highly expressed in CAFs was closely associated with NCT resistance in gastric cancer. Immunohistochemistry results revealed positivity for the expression of cyclophilin C (CypC), encoded by PPIC, in the 5-fluorouracil and cisplatin NCT resistant and -sensitive groups of gastric cancer patients at rates of 69.7 % (76/109) and 43.6 % (24/55), respectively (p < 0.001). The high expression of CypC in CAFs was positively correlated to tumor size (p = 0.025), T stage (p = 0.004), TNM stage (p = 0.004), and vascular invasion (p = 0.027). In cancer cells the expression of CypC was associated with OS (p = 0.026). However, in CAFs, CypC expression was not related to OS (p = 0.671). CONCLUSIONS PPIC-labeled CAF subgroups are related to NCT resistance and poor prognosis in GC and they may cause drug resistance through signaling pathways such as glucose metabolism and extracellular matrix remodeling. However, the exact mechanism behind the involvement of PPIC-labeled CAF in drug resistance of GC requires further study.
Collapse
Affiliation(s)
- Honghao Yin
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Lili Sun
- Departments of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| | - Yanmei Zhu
- Departments of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China.
| |
Collapse
|
13
|
Li Z, Li J, Bai X, Huang X, Wang Q. Tumor microenvironment as a complex milieu driving cancer progression: a mini review. Clin Transl Oncol 2024:10.1007/s12094-024-03697-w. [PMID: 39342061 DOI: 10.1007/s12094-024-03697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024]
Abstract
It has been spotlighted that the Tumor Microenvironment (TME) is crucial for comprehending cancer progression and therapeutic resistance. Therefore, this comprehensive review elucidates the intricate architecture of the TME, which encompasses tumor cells, immune components, support cells, and a myriad of bioactive molecules. These constituents collectively foster dynamic interactions that underpin tumor growth, metastasis, and nuanced responses to anticancer therapies. Notably, the TME's role extends beyond mere physical support, serving as a critical mediator in cancer-cell evolution, immune modulation, and treatment outcomes. Innovations targeting the TME, including strategies focused on the vasculature, immune checkpoints, and T-cell therapies, have forged new pathways for clinical intervention. However, the heterogeneity and complexity of the TME present significant challenges, necessitating deeper exploration of its components and their interplay to enhance therapeutic efficacy. This review underscores the imperative for integrated research strategies that amalgamate insights from tumor biology, immunology, and systems biology. Such an approach aims to refine cancer treatments and improve patient prognoses by exploiting the TME's complexity.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, China.
- Shanghai Research Institute of Stomatology, Shanghai, China.
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Jing Li
- Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Xiaolei Bai
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary.
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
14
|
Siddhartha R, Goel A, Singhai A, Garg M. Matrix Metalloproteinases -2 and -9, Vascular Endothelial Growth Factor, Basic Fibroblast Growth Factor and CD105- Micro-Vessel Density are Predictive Markers of Non-Muscle Invasive Bladder Cancer and Muscle Invasive Bladder Cancer Subtypes. Biochem Genet 2024. [DOI: 10.1007/s10528-024-10921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/15/2024] [Indexed: 01/12/2025]
|
15
|
Shrivastava R, Gandhi P, Sorte SK, Shrivastava A. Characterizing the Linkage of Systemic Hypoxia and Angiogenesis in High-Grade Glioma to Define the Changes in Tumor Microenvironment for Predicting Prognosis. J Mol Neurosci 2024; 74:63. [PMID: 38967861 DOI: 10.1007/s12031-024-02240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
High-grade gliomas (HGG) comprising WHO grades 3 and 4 have a poor overall survival (OS) that has not improved in the past decade. Herein, markers representing four components of the tumor microenvironment (TME) were identified to define their linked expression in TME and predict the prognosis in HGG, namely, interleukin6 (IL6, inflammation), inducible nitric oxide synthase(iNOS), heat shock protein-70 (HSP70, hypoxia), vascular endothelial growth receptor (VEGF), and endothelin1 (ET1) (angiogenesis) and matrix metalloprotease-14 (MMP14) and intercellular adhesion molecule1 (ICAM1, extracellular matrix). To establish a non-invasive panel of biomarkers for precise prognostication in HGG. Eighty-six therapy-naive HGG patients with 45 controls were analyzed for the defined panel. Systemic expression of extracellular/secretory biomarkers was screened dot-immune assay (DIA), quantified by ELISA, and validated by immunocytochemistry (ICC). Expression of iNOS, HSP70, IL-6, VEGF, ET1, MMP14, and ICAM1 was found to be positively associated with grade. Quantification of circulating levels of the markers by ELISA and ICC presented a similar result. The biomarkers were observed to negatively correlate with OS (p < 0.0001). Cox-regression analysis yielded all biomarkers as good prognostic indicators and independent of confounders. On applying combination statistics, the biomarker panel achieved higher sensitivity than single markers to define survival. The intra-association of all seven biomarkers was significant, hinting of a cross-talk between the TME components and a hypoxia driven systemic inflammation upregulating the expression of other components. This is a first ever experimental study of a marker panel that can distinguish between histopathological grades and also delineate differential survival using liquid biopsy, suggesting that markers of hypoxia can be a cornerstone for personalized therapy. The panel of biomarkers of iNOS, HSP70, IL-6, VEGF, ET1, MMP14, and ICAM1 holds promise for prognostication in HGG.
Collapse
Affiliation(s)
- Richa Shrivastava
- Department of Research and Training, ICMR-Bhopal Memorial Hospital and Research Centre, Bhopal, 462038, M.P, India
| | - Puneet Gandhi
- Department of Research and Training, ICMR-Bhopal Memorial Hospital and Research Centre, Bhopal, 462038, M.P, India.
| | - Sandeep K Sorte
- Department of Neurosurgery, ICMR-Bhopal Memorial Hospital and Research Centre, Raisen Bypass Road, Bhopal, 462038, M.P, India
| | - Adesh Shrivastava
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhopal, 462024, M.P, India
| |
Collapse
|
16
|
Zhao J, Tang Y, Hu X, Yin X, Chen Y, Chen J, Liu H, Liu H, Liang J, Zhang X, Zhao J, Zhu S, Ni Y, Wang Z, Dai J, Wang Z, Zhang Y, Yao J, Chen N, Shen P, Liu ZH, Zeng H, Sun GX. Patients with ASPSCR1-TFE3 fusion achieve better response to ICI based combination therapy among TFE3-rearranged renal cell carcinoma. Mol Cancer 2024; 23:132. [PMID: 38926757 PMCID: PMC11200839 DOI: 10.1186/s12943-024-02044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND TFE3-rearranged renal cell carcinoma (TFE3-rRCC) is a rare but highly heterogeneous renal cell carcinoma (RCC) entity, of which the clinical treatment landscape is largely undefined. This study aims to evaluate and compare the efficacy of different systemic treatments and further explore the molecular correlates. METHODS Thirty-eight patients with metastatic TFE3-rRCC were enrolled. Main outcomes included progression-free survival (PFS), overall survival, objective response rate (ORR) and disease control rate. RNA sequencing was performed on 32 tumors. RESULTS Patients receiving first-line immune checkpoint inhibitor (ICI) based combination therapy achieved longer PFS than those treated without ICI (median PFS: 11.5 vs. 5.1 months, P = 0.098). After stratification of fusion partners, the superior efficacy of first-line ICI based combination therapy was predominantly observed in ASPSCR1-TFE3 rRCC (median PFS: not reached vs. 6.5 months, P = 0.01; ORR: 67.5% vs. 10.0%, P = 0.019), but almost not in non-ASPSCR1-TFE3 rRCC. Transcriptomic data revealed enrichment of ECM and collagen-related signaling in ASPSCR1-TFE3 rRCC, which might interfere with the potential efficacy of anti-angiogenic monotherapy. Whereas angiogenesis and immune activities were exclusively enriched in ASPSCR1-TFE3 rRCC and promised the better clinical outcomes with ICI plus tyrosine kinase inhibitor combination therapy. CONCLUSIONS The current study represents the largest cohort comparing treatment outcomes and investigating molecular correlates of metastatic TFE3-rRCC based on fusion partner stratification. ICI based combination therapy could serve as an effective first-line treatment option for metastatic ASPSCR1-TFE3 rRCC patients. Regarding with other fusion subtypes, further investigations should be performed to explore the molecular mechanisms to propose pointed therapeutic strategy accordingly.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Yanfeng Tang
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Xu Hu
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Xiaoxue Yin
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuntian Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Junru Chen
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Haoyang Liu
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Haolin Liu
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Xingming Zhang
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Sha Zhu
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Yuchao Ni
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Zhipeng Wang
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Jindong Dai
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Zilin Wang
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Yaowen Zhang
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Jin Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Shen
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Zhenhua H Liu
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China.
| | - Hao Zeng
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China.
| | - Guangxi X Sun
- Department of Urology, Institute of Urology, Sichuan Clinical Research Center for kidney and urologic diseases, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China.
| |
Collapse
|
17
|
Awasthi D, Sarode A. Neutrophils at the Crossroads: Unraveling the Multifaceted Role in the Tumor Microenvironment. Int J Mol Sci 2024; 25:2929. [PMID: 38474175 DOI: 10.3390/ijms25052929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Over the past decade, research has prominently established neutrophils as key contributors to the intricate landscape of tumor immune biology. As polymorphonuclear granulocytes within the innate immune system, neutrophils play a pivotal and abundant role, constituting approximately ∼70% of all peripheral leukocytes in humans and ∼10-20% in mice. This substantial presence positions them as the frontline defense against potential threats. Equipped with a diverse array of mechanisms, including reactive oxygen species (ROS) generation, degranulation, phagocytosis, and the formation of neutrophil extracellular traps (NETs), neutrophils undeniably serve as indispensable components of the innate immune system. While these innate functions enable neutrophils to interact with adaptive immune cells such as T, B, and NK cells, influencing their functions, they also engage in dynamic interactions with rapidly dividing tumor cells. Consequently, neutrophils are emerging as crucial regulators in both pro- and anti-tumor immunity. This comprehensive review delves into recent research to illuminate the multifaceted roles of neutrophils. It explores their diverse functions within the tumor microenvironment, shedding light on their heterogeneity and their impact on tumor recruitment, progression, and modulation. Additionally, the review underscores their potential anti-tumoral capabilities. Finally, it provides valuable insights into clinical therapies targeting neutrophils, presenting a promising approach to leveraging innate immunity for enhanced cancer treatment.
Collapse
Affiliation(s)
- Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Aditya Sarode
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
18
|
Lusardi M, Wehrle-Haller B, Sidibe A, Ponassi M, Iervasi E, Rosano C, Brullo C, Spallarossa A. Novel 5-aminopyrazoles endowed with anti-angiogenetic properties: Design, synthesis and biological evaluation. Eur J Med Chem 2023; 260:115727. [PMID: 37597434 DOI: 10.1016/j.ejmech.2023.115727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
The promising anti-angiogenetic properties of previously synthesized pyrazolyl ureas provided the rationale for the synthesis of novel 5-aminopyrazoles 2-5, differently decorated on the pyrazole nucleus. All the derivatives were tested by MTT assays and proved to be non-cytotoxic against eight different tumor cell lines and normal fibroblasts. An EdU proliferation assay was carried out on human foreskin fibroblasts and VEGF stimulated human umbilical vein endothelial cells which confirmed the absence of cytotoxicity of the compounds on human cells up to 20 μM concentration. To evaluate the influence of the newly synthesized pyrazoles on MAPK and PI3K signaling pathways, the phosphorylation of ERK1/2 and Akt was analyzed by Western blots from HFF and HUVEC cell lysates stimulated with growth factors in the presence or absence of the compounds. Pyrazoles 3b and 3c showed a significant inhibition of Akt phosphorylation in both tested cell lines with lower phosphorylation levels than the reference compound GeGe-3 in HUVEC. Furthermore, derivatives 2 and 3 appeared to strongly affect the migration of HFF cells in a wound healing assay, confirming their potential ability to interfere with the angiogenesis process. The new pyrazole library extends the structure-activity relationships of the previously isolated compounds and highlights the attractiveness of this chemical class for pathological cell migration and angiogenesis.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy, Section of Medicinal Chemistry, Università degli Studi di Genova, Viale Benedetto XV 3, I-16132, Genova, Italy
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Adama Sidibe
- Department of Cell Physiology and Metabolism, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132, Genova, Italy
| | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132, Genova, Italy
| | - Camillo Rosano
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132, Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, Università degli Studi di Genova, Viale Benedetto XV 3, I-16132, Genova, Italy
| | - Andrea Spallarossa
- Department of Pharmacy, Section of Medicinal Chemistry, Università degli Studi di Genova, Viale Benedetto XV 3, I-16132, Genova, Italy.
| |
Collapse
|
19
|
Malektaj H, Nour S, Imani R, Siadati MH. Angiogenesis induction as a key step in cardiac tissue Regeneration: From angiogenic agents to biomaterials. Int J Pharm 2023; 643:123233. [PMID: 37460050 DOI: 10.1016/j.ijpharm.2023.123233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. After myocardial infarction, the vascular supply of the heart is damaged or blocked, leading to the formation of scar tissue, followed by several cardiac dysfunctions or even death. In this regard, induction of angiogenesis is considered as a vital process for supplying nutrients and oxygen to the cells in cardiac tissue engineering. The current review aims to summarize different approaches of angiogenesis induction for effective cardiac tissue repair. Accordingly, a comprehensive classification of induction of pro-angiogenic signaling pathways through using engineered biomaterials, drugs, angiogenic factors, as well as combinatorial approaches is introduced as a potential platform for cardiac regeneration application. The angiogenic induction for cardiac repair can enhance patient treatment outcomes and generate economic prospects for the biomedical industry. The development and commercialization of angiogenesis methods often involves collaboration between academic institutions, research organizations, and biomedical companies.
Collapse
Affiliation(s)
- Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg 9220, Denmark
| | - Shirin Nour
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, VIC 3010, Australia; Department of Chemical Engineering, The University of Melbourne, VIC 3010, Australia
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Mohammad H Siadati
- Materials Science and Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|