1
|
Diawara M, Martin LJ. The transcription factors NR5A1 and JUNB cooperate to activate the Axl promoter in mouse Sertoli cell lines. Mol Biol Rep 2024; 51:982. [PMID: 39271559 DOI: 10.1007/s11033-024-09934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND The Axl gene is a receptor tyrosine kinase essential for male fertility. With other Tyro3 family members, it regulates cell apoptosis and preserves the organization of seminiferous tubules. However, the regulation of the expression of Axl in testicular Sertoli cells is not entirely understood. The transcription factors NR5A1 and JUNB are involved in several male fertility mechanisms such as sex development and steroidogenesis. We hypothesize that Axl promoter activity is regulated by cooperation between JUNB and NR5A1 in Sertoli cells. METHODS AND RESULTS Following transfections of TM4 Sertoli cells with DsiRNA interference against Axl, our results show that cell morphology may be regulated by AXL. Using transfections of expression plasmids and reporter plasmids containing the Axl promoter, we report that Axl expression is highly activated by cooperation between NR5A1 and JUNB in TM4 and 15P-1 Sertoli cells. Chromatin immunoprecipitation and luciferase reporter assays with 5' promoter deletions demonstrate that JUNB and NR5A1 are being recruited to DNA regulatory elements in the proximal region of the Axl promoter. The fourth intronic region of Axl also participates in the recruitment of JUNB. CONCLUSION Thus, Axl expression is regulated by a cooperation between the transcription factors JUNB and NR5A1 and influences the morphology of TM4 Sertoli cells.
Collapse
Affiliation(s)
- Mariama Diawara
- Biology Department, Université de Moncton, 18, Avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, 18, Avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
2
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Okamoto K, Ando T, Izumi H, Kobayashi SS, Shintani T, Gutkind JS, Yanamoto S, Miyauchi M, Kajiya M. AXL activates YAP through the EGFR-LATS1/2 axis and confers resistance to EGFR-targeted drugs in head and neck squamous cell carcinoma. Oncogene 2023; 42:2869-2877. [PMID: 37591955 DOI: 10.1038/s41388-023-02810-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
The Hippo signaling pathway and its downstream effector YAP play a central role in cell proliferation. Dysregulation of the Hippo pathway triggers YAP hyperactivation, thereby inducing head and neck squamous cell carcinoma (HNSCC). Recently, we reported that EGFR promotes tyrosine phosphorylation of MOB1 and subsequent LATS1/2 inactivation, which are core components of the Hippo pathway, resulting in YAP activation. However, EGFR-targeted monotherapy has shown a low response rate in HNSCC patients. Given that YAP is activated in patient samples refractory to EGFR-targeted therapy, EGFR inhibitors may temporarily inactivate YAP, but intrinsic hyperactivation or acquired reactivation of YAP may confer resistance to EGFR inhibitors in HNSCC cells. The mechanism by which YAP is activated in HNSCC resistant to EGFR inhibitors remains unclear. Comprehensive transcriptional analysis revealed that AXL activates YAP through a novel mechanism: AXL heterodimerizes with EGFR, thereby activating YAP via the EGFR-LATS1/2 axis. The combination of AXL and EGFR inhibitors synergistically inactivates YAP and suppresses the viability of HNSCC and lung adenocarcinoma cells. In turn, LATS1/2 knockout and YAP hyperactivation confer resistance to the synergistic effects of these inhibitors. Our findings suggest that co-targeting both AXL and EGFR represent a promising therapeutic approach in patients with EGFR-altered cancers.
Collapse
Affiliation(s)
- Kento Okamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshinori Ando
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan.
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Susumu S Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mikihito Kajiya
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
4
|
Iyer AS, Shaik MR, Raufman JP, Xie G. The Roles of Zinc Finger Proteins in Colorectal Cancer. Int J Mol Sci 2023; 24:10249. [PMID: 37373394 DOI: 10.3390/ijms241210249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Despite colorectal cancer remaining a leading worldwide cause of cancer-related death, there remains a paucity of effective treatments for advanced disease. The molecular mechanisms underlying the development of colorectal cancer include altered cell signaling and cell cycle regulation that may result from epigenetic modifications of gene expression and function. Acting as important transcriptional regulators of normal biological processes, zinc finger proteins also play key roles in regulating the cellular mechanisms underlying colorectal neoplasia. These actions impact cell differentiation and proliferation, epithelial-mesenchymal transition, apoptosis, homeostasis, senescence, and maintenance of stemness. With the goal of highlighting promising points of therapeutic intervention, we review the oncogenic and tumor suppressor roles of zinc finger proteins with respect to colorectal cancer tumorigenesis and progression.
Collapse
Affiliation(s)
- Aishwarya S Iyer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mohammed Rifat Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Guofeng Xie
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Mohammadzadeh P, Amberg GC. AXL/Gas6 signaling mechanisms in the hypothalamic-pituitary-gonadal axis. Front Endocrinol (Lausanne) 2023; 14:1212104. [PMID: 37396176 PMCID: PMC10310921 DOI: 10.3389/fendo.2023.1212104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
AXL is a receptor tyrosine kinase commonly associated with a variety of human cancers. Along with its ligand Gas6 (growth arrest-specific protein 6), AXL is emerging as an important regulator of neuroendocrine development and function. AXL signaling in response to Gas6 binding impacts neuroendocrine structure and function at the level of the brain, pituitary, and gonads. During development, AXL has been identified as an upstream inhibitor of gonadotropin receptor hormone (GnRH) production and also plays a key role in the migration of GnRH neurons from the olfactory placode to the forebrain. AXL is implicated in reproductive diseases including some forms of idiopathic hypogonadotropic hypogonadism and evidence suggests that AXL is required for normal spermatogenesis. Here, we highlight research describing AXL/Gas6 signaling mechanisms with a focus on the molecular pathways related to neuroendocrine function in health and disease. In doing so, we aim to present a concise account of known AXL/Gas6 signaling mechanisms to identify current knowledge gaps and inspire future research.
Collapse
|
6
|
Bhadresha K, Mirza S, Penny C, Mughal MJ. Targeting AXL in Mesothelioma: from functional characterization to clinical implication. Crit Rev Oncol Hematol 2023:104043. [PMID: 37268175 DOI: 10.1016/j.critrevonc.2023.104043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Malignant pleural mesothelioma (MM) is a highly aggressive and lethal cancer with a poor survival rate. Current treatment approaches primarily rely on chemotherapy and radiation, but their effectiveness is limited. Consequently, there is an urgent need for alternative treatment strategies, a comprehensive understanding of the molecular mechanisms underlying MM, and the identification of potential therapeutic targets. Extensive studies over the past decade have emphasized the role of Axl in driving tumor development and metastasis, while high levels of Axl expression have been associated with immune evasion, drug resistance, and reduced patient survival in various cancer types. Ongoing clinical trials are investigating the efficacy of Axl inhibitors for different cancers. However, the precise role of Axl in MM progression, development, and metastasis, as well as its regulatory mechanisms within MM, remain inadequately understood. This review aims to comprehensively investigate the involvement of Axl in MM. We discuss Axl role in MM progression, development, and metastasis, along with its specific regulatory mechanisms. Additionally, we examined the Axl associated signaling pathways, the relationship between Axl and immune evasion, and the clinical implications of Axl for MM treatment. Furthermore, we discussed the potential utility of liquid biopsy as a non-invasive diagnostic technique for early detection of Axl in MM. Lastly, we evaluated the potential of a microRNA signature that targets Axl. By consolidating existing knowledge and identifying research gaps, this review contributes to a better understanding of Axl's role in MM and sets the stage for future investigations and the development of effective therapeutic interventions.
Collapse
Affiliation(s)
- Kinjal Bhadresha
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheefa Mirza
- Department of Internal Medicine, Common Epithelial Cancer Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Common Epithelial Cancer Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington DC, United States of America.
| |
Collapse
|
7
|
Liu S, Liu X, Lin X, Chen H. Zinc Finger Proteins in the War on Gastric Cancer: Molecular Mechanism and Clinical Potential. Cells 2023; 12:cells12091314. [PMID: 37174714 PMCID: PMC10177130 DOI: 10.3390/cells12091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
According to the 2020 global cancer data released by the World Cancer Research Fund (WCRF) International, gastric cancer (GC) is the fifth most common cancer worldwide, with yearly increasing incidence and the second-highest fatality rate in malignancies. Despite the contemporary ambiguous molecular mechanisms in GC pathogenesis, numerous in-depth studies have demonstrated that zinc finger proteins (ZFPs) are essential for the development and progression of GC. ZFPs are a class of transcription factors with finger-like domains that bind to Zn2+ extensively and participate in gene replication, cell differentiation and tumor development. In this review, we briefly outline the roles, molecular mechanisms and the latest advances in ZFPs in GC, including eight principal aspects, such as cell proliferation, epithelial-mesenchymal transition (EMT), invasion and metastasis, inflammation and immune infiltration, apoptosis, cell cycle, DNA methylation, cancer stem cells (CSCs) and drug resistance. Intriguingly, the myeloid zinc finger 1 (MZF1) possesses reversely dual roles in GC by promoting tumor proliferation or impeding cancer progression via apoptosis. Therefore, a thorough understanding of the molecular mechanism of ZFPs on GC progression will pave the solid way for screening the potentially effective diagnostic indicators, prognostic biomarkers and therapeutic targets of GC.
Collapse
Affiliation(s)
- Shujie Liu
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xingzhu Liu
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xin Lin
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
8
|
Lei T, Xu T, Zhang N, Zou X, Kong Z, Wei C, Wang Z. Anlotinib combined with osimertinib reverses acquired osimertinib resistance in NSCLC by targeting the c-MET/MYC/AXL axis. Pharmacol Res 2023; 188:106668. [PMID: 36681369 DOI: 10.1016/j.phrs.2023.106668] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Favorable clinical evidence suggests that the next trend in new treatments for advanced non-small cell lung cancer (NSCLC) will be combination therapies. However, inevitable epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance greatly limits the clinical efficacy of patients carrying EGFR-activating mutants. In this study, we found a patient with clinical osimertinib resistance who regained a positive response after osimertinib plus anlotinib treatment. Two osimertinib-resistant cell lines were constructed, and AXL conferred resistance to osimertinib in NSCLC cell lines. The combined effects of anlotinib and osimertinib restored sensitivity to osimertinib in two osimertinib-resistant NSCLC cell lines and in xenografts. Moreover, anlotinib inhibits the phosphorylation of AXL in both resistant cell lines. Mechanistically, we confirmed that MYC binds to the promoter of AXL to promote its transcription in NSCLC cells, and we demonstrated that anlotinib combined with osimertinib treatment enhances the anti-tumor effect by inactivating the c-MET/MYC/AXL axis to reverse osimertinib resistance in NSCLC. In conclusion, our results provide strong support that this combination therapy may be effective in enhancing the efficacy of treatments in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Tianyao Lei
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| | - Tianwei Xu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, PR China.
| | - Niu Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| | - Xiaoteng Zou
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| | - Ziyue Kong
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| | - Chenchen Wei
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| |
Collapse
|
9
|
Abdollahi S, Hasanpour Ardekanizadeh N, Poorhosseini SM, Gholamalizadeh M, Roumi Z, Goodarzi MO, Doaei S. Unraveling the Complex Interactions between the Fat Mass and Obesity-Associated (FTO) Gene, Lifestyle, and Cancer. Adv Nutr 2022; 13:2406-2419. [PMID: 36104156 PMCID: PMC9776650 DOI: 10.1093/advances/nmac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023] Open
Abstract
Carcinogenesis is a complicated process and originates from genetic, epigenetic, and environmental factors. Recent studies have reported a potential critical role for the fat mass and obesity-associated (FTO) gene in carcinogenesis through different signaling pathways such as mRNA N6-methyladenosine (m6A) demethylation. The most common internal modification in mammalian mRNA is the m6A RNA methylation that has significant biological functioning through regulation of cancer-related cellular processes. Some environmental factors, like physical activity and dietary intake, may influence signaling pathways engaged in carcinogenesis, through regulating FTO gene expression. In addition, people with FTO gene polymorphisms may be differently influenced by cancer risk factors, for example, FTO risk allele carriers may need a higher intake of nutrients to prevent cancer than others. In order to obtain a deeper viewpoint of the FTO, lifestyle, and cancer-related pathway interactions, this review aims to discuss upstream and downstream pathways associated with the FTO gene and cancer. The present study discusses the possible mechanisms of interaction of the FTO gene with various cancers and provides a comprehensive picture of the lifestyle factors affecting the FTO gene as well as the possible downstream pathways that lead to the effect of the FTO gene on cancer.
Collapse
Affiliation(s)
- Sepideh Abdollahi
- Department of Medical Genetics, School of Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Naeemeh Hasanpour Ardekanizadeh
- Department of Clinical Nutrition, School of Nutrition and Food Sciences,
Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical
Sciences, Tehran, Iran
| | - Zahra Roumi
- Department of Nutrition, Science and Research Branch, Islamic Azad
University, Tehran, Iran
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Saeid Doaei
- Department of Community Nutrition, School of Nutrition and Food Sciences,
Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Majumder A, Hosseinian S, Stroud M, Adhikari E, Saller JJ, Smith MA, Zhang G, Agarwal S, Creixell M, Meyer BS, Kinose F, Bowers K, Fang B, Stewart PA, Welsh EA, Boyle TA, Meyer AS, Koomen JM, Haura EB. Integrated Proteomics-Based Physical and Functional Mapping of AXL Kinase Signaling Pathways and Inhibitors Define Its Role in Cell Migration. Mol Cancer Res 2022; 20:542-555. [PMID: 35022314 PMCID: PMC8983558 DOI: 10.1158/1541-7786.mcr-21-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/14/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
To better understand the signaling complexity of AXL, a member of the tumor-associated macrophage (TAM) receptor tyrosine kinase family, we created a physical and functional map of AXL signaling interactions, phosphorylation events, and target-engagement of three AXL tyrosine kinase inhibitors (TKI). We assessed AXL protein complexes using proximity-dependent biotinylation (BioID), effects of AXL TKI on global phosphoproteins using mass spectrometry, and target engagement of AXL TKI using activity-based protein profiling. BioID identifies AXL-interacting proteins that are mostly involved in cell adhesion/migration. Global phosphoproteomics show that AXL inhibition decreases phosphorylation of peptides involved in phosphatidylinositol-mediated signaling and cell adhesion/migration. Comparison of three AXL inhibitors reveals that TKI RXDX-106 inhibits pAXL, pAKT, and migration/invasion of these cells without reducing their viability, while bemcentinib exerts AXL-independent phenotypic effects on viability. Proteomic characterization of these TKIs demonstrates that they inhibit diverse targets in addition to AXL, with bemcentinib having the most off-targets. AXL and EGFR TKI cotreatment did not reverse resistance in cell line models of erlotinib resistance. However, a unique vulnerability was identified in one resistant clone, wherein combination of bemcentinib and erlotinib inhibited cell viability and signaling. We also show that AXL is overexpressed in approximately 30% to 40% of nonsmall but rarely in small cell lung cancer. Cell lines have a wide range of AXL expression, with basal activation detected rarely. IMPLICATIONS Our study defines mechanisms of action of AXL in lung cancers which can be used to establish assays to measure drug targetable active AXL complexes in patient tissues and inform the strategy for targeting it's signaling as an anticancer therapy.
Collapse
Affiliation(s)
- Anurima Majumder
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Sina Hosseinian
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Mia Stroud
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Emma Adhikari
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - James J. Saller
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Matthew A. Smith
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Shruti Agarwal
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | | | - Benjamin S. Meyer
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Kiah Bowers
- Department of Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Bin Fang
- Department of Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Paul A. Stewart
- Department of Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Eric A. Welsh
- Department of Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Theresa A. Boyle
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | | | - John M. Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| |
Collapse
|
11
|
Lotsberg ML, Davidsen KT, D’Mello Peters S, Haaland GS, Rayford A, Lorens JB, Engelsen AST. The Role of AXL Receptor Tyrosine Kinase in Cancer Cell Plasticity and Therapy Resistance. BIOMARKERS OF THE TUMOR MICROENVIRONMENT 2022:307-327. [DOI: 10.1007/978-3-030-98950-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Zhang J, Chai W, Xiang Z, Zhou X, Zhang P. MZF1 alleviates oxidative stress and apoptosis induced by rotenone in SH-SY5Y cells by promoting RBM3 transcription. J Toxicol Sci 2021; 46:477-486. [PMID: 34602532 DOI: 10.2131/jts.46.477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To investigate the protective effect of MZF1/RBM3 on rotenone-induced neuronal injury. METHODS Rotenone (1 μM) was used to treat SH-SY5Y cells for 24 hr to simulate the cellular model of Parkinson's disease (PD), followed by detection of SH-SY5Y cell activities using MTT assay. MZF1 expression in rotenone-treated SH-SY5Y cells was detected by qRT-PCR and Western blot. MZF1 overexpression plasmid or MZF1 overexpression plasmid and RBM3 siRNA was transfected into SH-SY5Y cells, and then the expressions of MZF1 and RBM3 were detected. Oxidative stress (OS) in SH-SY5Y cells was detected using CMH2DCF-DA probes. Cell apoptosis rate was detected by flow cytometry. CHIP assay and dual-luciferase reporter assay were used to detect the binding between MZF1 and RBM3 promoter. RESULTS The expression of MZF1 was significantly lower in the rotenone-induced SH-SY5Y cells. Overexpression of MZF1 significantly reduced OS and apoptosis in rotenone-induced SH-SY5Y cells. MZF1 was a transcription factor of RBM3, which promoted the transcription of RBM3, and knockdown of RBM3 inhibited the protective effect of MZF1 overexpression on SH-SY5Y cells. CONCLUSION MZF1 alleviates OS and apoptosis induced by rotenone in SH-SY5Y cells by promoting RBM3 transcription.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, China
| | - Wen Chai
- Department of Neurology, Jiangxi Provincial People's Hospital, China
| | - Zhengbing Xiang
- Department of Neurology, Jiangxi Provincial People's Hospital, China
| | - Xinhua Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, China
| |
Collapse
|
13
|
Zhang N, Ng AS, Cai S, Li Q, Yang L, Kerr D. Novel therapeutic strategies: targeting epithelial-mesenchymal transition in colorectal cancer. Lancet Oncol 2021; 22:e358-e368. [PMID: 34339656 DOI: 10.1016/s1470-2045(21)00343-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a process during which cells lose their epithelial characteristics, for instance apical-basal cell polarity and cell-cell contact, and gain mesenchymal properties, such as increased motility. In colorectal cancer, EMT has an important role in tumour progression, metastasis, and drug resistance. There has been accumulating evidence from preclinical and early clinical studies that show that EMT markers might serve as outcome predictors and potential therapeutic targets in colorectal cancer. This Review describes the fundamentals of EMT, including biology, newly partial EMT, and associated changes. We also provide a comprehensive summary of therapeutic compounds capable of targeting EMT markers, including drugs in preclinical and clinical trials and those with repurpose potential. Lastly, we explore the obstacles of EMT bench-to-bedside drug development.
Collapse
Affiliation(s)
- Nan Zhang
- West China School of Medicine, Sichuan University, Chengdu, China; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer, Oxford, UK; Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Aik Seng Ng
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer, Oxford, UK
| | - Shijie Cai
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer, Oxford, UK
| | - Qiu Li
- West China School of Medicine, Sichuan University, Chengdu, China; Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- West China School of Medicine, Sichuan University, Chengdu, China; University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer, Oxford, UK; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - David Kerr
- West China School of Medicine, Sichuan University, Chengdu, China; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer, Oxford, UK
| |
Collapse
|
14
|
Kim I, Park H, Hwang I, Moon D, Yun H, Lee EJ, Kim HS. Discovery of chemerin as the new chemoattractant of human mesenchymal stem cells. Cell Biosci 2021; 11:120. [PMID: 34210352 PMCID: PMC8252297 DOI: 10.1186/s13578-021-00631-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Background The homing capacity of human mesenchymal stem cells (hMSCs) to the injured sites enables systemic administration of hMSCs in clinical practice. In reality, only a small proportion of MSCs are detected in the target tissue, which is a major bottleneck for MSC-based therapies. We still don’t know the mechanism how MSCs are chemo-attracted to certain target organ and engrafted through trans-endothelial migration. In this study, we aimed to determine the mechanism how the circulating hMSCs home to the injured liver. Methods and results When we compare the cytokine array between normal and injured mouse liver at 1-day thioacetamide (TAA)-treatment, we found that chemerin, CXCL2, and CXCL10 were higher in the injured liver than normal one. Among three, only chemerin was the chemoattractant of hMSCs in 2D- and 3D-migration assay. Analysis of the signal transduction pathways in hMSCs showed that chemerin activated the phosphorylation of JNK1/2, ERK1/2 and p38, and finally upregulated CD44, ITGA4, and MMP-2 that are involved in the transendothelial migration and extravasation of MSCs. Upstream transcription regulators of CD44, ITGA4, and MMP-2 after chemerin treatment were MZF1, GATA3, STAT3, and STAT5A. To develop chemerin as a chemoattractant tool, we cloned gene encoding the active chemerin under the CMV promoter (CMV-aChemerin). We analyzed the migration of hMSCs in the 3D model for space of the Disse, which mimics transmigration of hMSCs in the liver. CMV-aChemerin-transfected hepatocytes were more effective to attract hMSC than control hepatocytes, leading to the enhanced transendothelial migration and homing of hMSCs to liver. The homing efficiency of the intravascularly-delivered hMSCs to liver was evaluated after systemic introduction of the CMV-aChemerin plasmid packed in liposome-vitamin A conjugates which target liver. CMV-aChemerin plasmid targeting liver significantly enhanced homing efficiency of hMSCs to liver compared with control plasmid vector. Conclusions Chemerin is the newly found chemoattractant of hMSCs and may be a useful tool to manipulate the homing of the intravascularly-administered hMSC to the specific target organ. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00631-3.
Collapse
Affiliation(s)
- Irene Kim
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul National University Hospital, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea
| | - Hyomin Park
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul National University Hospital, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea
| | - Injoo Hwang
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul National University Hospital, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea
| | - Dodam Moon
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul National University Hospital, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea
| | - Hyunji Yun
- Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Ju Lee
- Biomedical Research Institute, Seoul National University Hospital, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea.
| | - Hyo-Soo Kim
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul National University Hospital, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Kanojia D, Panek WK, Cordero A, Fares J, Xiao A, Savchuk S, Kumar K, Xiao T, Pituch KC, Miska J, Zhang P, Kam KL, Horbinski C, Balyasnikova IV, Ahmed AU, Lesniak MS. BET inhibition increases βIII-tubulin expression and sensitizes metastatic breast cancer in the brain to vinorelbine. Sci Transl Med 2021; 12:12/558/eaax2879. [PMID: 32848091 DOI: 10.1126/scitranslmed.aax2879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/29/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022]
Abstract
Metastases from primary breast cancer result in poor survival. βIII-tubulin (TUBB3) has been established as a therapeutic target for breast cancer metastases specifically to the brain. In this study, we conducted a systematic analysis to determine the regulation of TUBB3 expression in breast cancer metastases to the brain and strategically target these metastases using vinorelbine (VRB), a drug approved by the U.S. Food and Drug Administration (FDA). We found that human epidermal growth factor receptor 2 (HER2) signaling regulates TUBB3 expression in both trastuzumab-sensitive and trastuzumab-resistant neoplastic cells. We further discovered that bromodomain and extra-terminal domain (BET) inhibition increases TUBB3 expression, rendering neoplastic cells more susceptible to apoptosis by VRB. Orthotopic xenograft assays using two different breast cancer cell models revealed a reduction in tumor volume with BET inhibition and VRB treatment. In addition, in vivo studies using a model of multiple brain metastasis (BM) showed improved survival with the combination of radiation + BET inhibitor (iBET-762) + VRB (75% long-term survivors, P < 0.05). Using in silico analysis and BET inhibition, we found that the transcription factor myeloid zinc finger-1 (MZF-1) protein binds to the TUBB3 promoter. BET inhibition decreases MZF-1 expression and subsequently increases TUBB3 expression. Overexpression of MZF-1 decreases TUBB3 expression and reduces BM in vivo, whereas its knockdown increases TUBB3 expression in breast cancer cells. In summary, this study demonstrates a regulatory mechanism of TUBB3 and provides support for an application of BET inhibition to sensitize breast cancer metastases to VRB-mediated therapy.
Collapse
Affiliation(s)
- Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wojciech K Panek
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alex Cordero
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Annie Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Solomiia Savchuk
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Krishan Kumar
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ting Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Katarzyna C Pituch
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kwok-Ling Kam
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
16
|
Du W, Phinney NZ, Huang H, Wang Z, Westcott J, Toombs JE, Zhang Y, Beg MS, Wilkie TM, Lorens JB, Brekken RA. AXL Is a Key Factor for Cell Plasticity and Promotes Metastasis in Pancreatic Cancer. Mol Cancer Res 2021; 19:1412-1421. [PMID: 33811159 DOI: 10.1158/1541-7786.mcr-20-0860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/24/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA), a leading cause of cancer-related death in the United States, has a high metastatic rate, and is associated with persistent immune suppression. AXL, a member of the TAM (TYRO3, AXL, MERTK) receptor tyrosine kinase family, is a driver of metastasis and immune suppression in multiple cancer types. Here we use single-cell RNA-sequencing to reveal that AXL is expressed highly in tumor cells that have a mesenchymal-like phenotype and that AXL expression correlates with classic markers of epithelial-to-mesenchymal transition. We demonstrate that AXL deficiency extends survival, reduces primary and metastatic burden, and enhances sensitivity to gemcitabine in an autochthonous model of PDA. PDA in AXL-deficient mice displayed a more differentiated histology, higher nucleoside transporter expression, and a more active immune microenvironment compared with PDA in wild-type mice. Finally, we demonstrate that AXL-positive poorly differentiated tumor cells are critical for PDA progression and metastasis, emphasizing the potential of AXL as a therapeutic target in PDA. IMPLICATIONS: These studies implicate AXL as a marker of undifferentiated PDA cells and a target for therapy.
Collapse
Affiliation(s)
- Wenting Du
- Department of Surgery and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas.,Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Natalie Z Phinney
- Department of Surgery and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas.,Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Huocong Huang
- Department of Surgery and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhaoning Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jill Westcott
- Department of Surgery and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jason E Toombs
- Department of Surgery and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuqing Zhang
- Department of Surgery and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas.,Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Muhammad S Beg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Thomas M Wilkie
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James B Lorens
- Department of Biomedicine, Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Rolf A Brekken
- Department of Surgery and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. .,Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
17
|
Tanaka M, Dykes SS, Siemann DW. Inhibition of the Axl pathway impairs breast and prostate cancer metastasis to the bones and bone remodeling. Clin Exp Metastasis 2021; 38:321-335. [PMID: 33791875 PMCID: PMC8179919 DOI: 10.1007/s10585-021-10093-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Approximately 90% of cancer-related deaths result from cancer metastasis. In prostate and breast cancers, bone is the most common site of cancer cell dissemination. Key steps in the metastatic cascade are promoted through upregulation of critical cell signaling pathways in neoplastic cells. The present study assessed the role of the receptor tyrosine kinase Axl in prostate and breast cancer cell metastasis to bones using (i) Axl knockdown neoplastic cells and osteoclast progenitor cells in vitro, (ii) intracardiac injection of Axl knockdown tumor cells in vivo, and (iii) selective Axl inhibitor BGB324. Axl inhibition in neoplastic cells significantly decreased their metastatic potential, and suppression of Axl signaling in osteoclast precursor cells also reduced the formation of mature osteoclasts. In vivo, Axl knockdown in prostate and breast cancer cells significantly suppressed the formation and progression of bone metastases. Hence, therapeutic targeting of Axl may impair tumor metastasis to the bones through neoplastic and host cell signaling axes.
Collapse
Affiliation(s)
- Mai Tanaka
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Samantha S Dykes
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,GenCure, a Subsidiary of BioBridge Global, San Antonio, TX, 78201, USA
| | - Dietmar W Siemann
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
18
|
Wium M, Ajayi-Smith AF, Paccez JD, Zerbini LF. The Role of the Receptor Tyrosine Kinase Axl in Carcinogenesis and Development of Therapeutic Resistance: An Overview of Molecular Mechanisms and Future Applications. Cancers (Basel) 2021; 13:1521. [PMID: 33806258 PMCID: PMC8037968 DOI: 10.3390/cancers13071521] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/22/2023] Open
Abstract
Resistance to chemotherapeutic agents by cancer cells has remained a major obstacle in the successful treatment of various cancers. Numerous factors such as DNA damage repair, cell death inhibition, epithelial-mesenchymal transition, and evasion of apoptosis have all been implicated in the promotion of chemoresistance. The receptor tyrosine kinase Axl, a member of the TAM family (which includes TYRO3 and MER), plays an important role in the regulation of cellular processes such as proliferation, motility, survival, and immunologic response. The overexpression of Axl is reported in several solid and hematological malignancies, including non-small cell lung, prostate, breast, liver and gastric cancers, and acute myeloid leukaemia. The overexpression of Axl is associated with poor prognosis and the development of resistance to therapy. Reports show that Axl overexpression confers drug resistance in lung cancer and advances the emergence of tolerant cells. Axl is, therefore, an important candidate as a prognostic biomarker and target for anticancer therapies. In this review, we discuss the consequence of Axl upregulation in cancers, provide evidence for its role in cancer progression and the development of drug resistance. We will also discuss the therapeutic potential of Axl in the treatment of cancer.
Collapse
Affiliation(s)
- Martha Wium
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (M.W.); (A.F.A.-S.)
| | - Aderonke F. Ajayi-Smith
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (M.W.); (A.F.A.-S.)
| | - Juliano D. Paccez
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | - Luiz F. Zerbini
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (M.W.); (A.F.A.-S.)
| |
Collapse
|
19
|
Shima A, Matsuoka H, Yamaoka A, Michihara A. Transcription of CLDND1 in human brain endothelial cells is regulated by the myeloid zinc finger 1. Clin Exp Pharmacol Physiol 2021; 48:260-269. [PMID: 33037622 DOI: 10.1111/1440-1681.13416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
Increased permeability of endothelial cells lining the blood vessels in the brain leads to vascular oedema and, potentially, to stroke. The tight junctions (TJs), primarily responsible for the regulation of vascular permeability, are multi-protein complexes comprising the claudin family of proteins and occludin. Several studies have reported that downregulation of the claudin domain containing 1 (CLDND1) gene enhances vascular permeability, which consequently increases the risk of stroke. However, the transcriptional regulation of CLDND1 has not been studied extensively. Therefore, this study aimed to identify the transcription factors (TFs) regulating CLDND1 expression. A luciferase reporter assay identified a silencer within the first intron of CLDND1, which was identified as a potential binding site of the myeloid zinc finger 1 (MZF1) through in silico and TFBIND software analyses, and confirmed through a reporter assay using the MZF1 expression vector and chromatin immunoprecipitation (ChIP) assays. Moreover, the transient overexpression of MZF1 significantly increased the mRNA and protein expression levels of CLDND1, conversely, which were suppressed through the siRNA-mediated MZF1 knockdown. Furthermore, the permeability of FITC-dextran was observed to be increased on MZF1 knockdown as compared to that of the siGFP control. Our data revealed the underlying mechanism of the transcriptional regulation of CLDND1 by the MZF1. The findings suggest a potential role of MZF1 in TJ formation, which could be studied further and applied to prevent cerebral haemorrhage.
Collapse
Affiliation(s)
- Akiho Shima
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Hiroshi Matsuoka
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Alice Yamaoka
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Akihiro Michihara
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| |
Collapse
|
20
|
Li J, Liao T, Liu H, Yuan H, Ouyang T, Wang J, Chai S, Li J, Chen J, Li X, Zhao H, Xiong N. Hypoxic Glioma Stem Cell-Derived Exosomes Containing Linc01060 Promote Progression of Glioma by Regulating the MZF1/c-Myc/HIF1α Axis. Cancer Res 2021; 81:114-128. [PMID: 33158815 DOI: 10.1158/0008-5472.can-20-2270] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
Glioma stem cells (GSC) are a subpopulation of tumor cells with special abilities to proliferate and differentiate in gliomas. They are one of the main causes of tumor recurrence, especially under hypoxic conditions. Although long noncoding RNAs (lncRNA) are known to be involved in numerous biological processes and are implied in the occurrence of certain diseases, their role in tumor development and progression remains poorly understood. Here we explored the mechanisms by which lncRNA derived from hypoxic GSCs (H-GSC) cause glioma progression. Isolation and identification of the Linc01060 gene, the exosomes containing them, and the proteins from tumor cells regulating the gene allowed for studying the effects of Linc01060 on proliferation and glycometabolism. H-GSC exerted their effects by transferring exosomes to glioma cells, resulting in a significant increase in Linc01060 levels. Mechanistically, Linc01060 directly interacted with the transcription factor myeloid zinc finger 1 (MZF1) and enhanced its stability. Linc01060 facilitated nuclear translocation of MZF1 and promoted MZF1-mediated c-Myc transcriptional activities. In addition, c-Myc enhanced the accumulation of the hypoxia-inducible factor-1 alpha (HIF1α) at the posttranscriptional level. HIF1α bound the hormone response elements of the Linc01060 promoter, upregulating the transcription of Linc01060 gene. Clinically, Linc01060 was upregulated in glioma and was significantly correlated with tumor grade and poor clinical prognosis. Overall, these data show that secretion of Linc01060-containing exosomes from H-GSCs activates prooncogenic signaling pathways in glioma cells to promote disease progression. SIGNIFICANCE: These findings suggest that inhibition of Linc01060-containing exosomes or targeting the Linc01060/MZF1/c-Myc/HIF1α axis may be an effective therapeutic strategy in glioma.
Collapse
Affiliation(s)
- Junjun Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Tingting Liao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Hongya Liu
- Wuhan Cell Learning Technology Co. Ltd., Wuhan, Hubei, P.R. China
| | - Hongliang Yuan
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Taohui Ouyang
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Jiajing Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Songshan Chai
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jinsong Li
- Department of Thoracic surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingchao Chen
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Nanxiang Xiong
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
21
|
AXL Receptor in Breast Cancer: Molecular Involvement and Therapeutic Limitations. Int J Mol Sci 2020; 21:ijms21228419. [PMID: 33182542 PMCID: PMC7696061 DOI: 10.3390/ijms21228419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer was one of the first malignancies to benefit from targeted therapy, i.e., treatments directed against specific markers. Inhibitors against HER2 are a significant example and they improved the life expectancy of a large cohort of patients. Research on new biomarkers, therefore, is always current and important. AXL, a member of the TYRO-3, AXL and MER (TAM) subfamily, is, today, considered a predictive and prognostic biomarker in many tumor contexts, primarily breast cancer. Its oncogenic implications make it an ideal target for the development of new pharmacological agents; moreover, its recent role as immune-modulator makes AXL particularly attractive to researchers involved in the study of interactions between cancer and the tumor microenvironment (TME). All these peculiarities characterize AXL as compared to other members of the TAM family. In this review, we will illustrate the biological role played by AXL in breast tumor cells, highlighting its molecular and biological features, its involvement in tumor progression and its implication as a target in ongoing clinical trials.
Collapse
|
22
|
von Itzstein MS, Burke MC, Brekken RA, Aguilera TA, Zeh HJ, Beg MS. Targeting TAM to Tame Pancreatic Cancer. Target Oncol 2020; 15:579-588. [PMID: 32996059 DOI: 10.1007/s11523-020-00751-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is expected to become the second leading cause of cancer-related death within the next few years. Current therapeutic strategies have limited effectiveness and therefore there is an urgency to develop novel effective therapies. The receptor tyrosine kinase subfamily TAM (Tyro3, Axl, MerTK) is directly implicated in the pathogenesis of the metastatic, chemoresistant, and immunosuppressive phenotype in pancreatic cancer. TAM inhibitors are promising investigational therapies for pancreatic cancer due to their potential to target multiple aspects of pancreatic cancer biology. Specifically, recent mechanistic investigations and therapeutic combinations in the preclinical setting suggest that TAM inhibition with chemotherapy, targeted therapy, and immunotherapy should be evaluated clinically.
Collapse
Affiliation(s)
- Mitchell S von Itzstein
- Division of Hematology/Oncology, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8852, USA
- Division of Hematology and Medical Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael C Burke
- Division of Hematology/Oncology, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8852, USA
- Division of Hematology and Medical Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rolf A Brekken
- Division of Surgical Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Todd A Aguilera
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Division of Surgical Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Muhammad Shaalan Beg
- Division of Hematology/Oncology, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8852, USA.
- Division of Hematology and Medical Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Hu Y, Wang F, Xu F, Fang K, Fang Z, Shuai X, Cai K, Chen J, Hu P, Chen D, Xu P, Hu C, Zeng Z, Zhong J, Li W, Tang J, Huang M, Zhao Y, Wang C, Zhao G. A reciprocal feedback of Myc and lncRNA MTSS1-AS contributes to extracellular acidity-promoted metastasis of pancreatic cancer. Theranostics 2020; 10:10120-10140. [PMID: 32929338 PMCID: PMC7481418 DOI: 10.7150/thno.49147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Rationale: Previous studies have reported on the role of extracellular acidity in the metastasis of numerous cancers. However, the involvement of long noncoding RNA (lncRNA) in the extracellular acidity-induced cancer metastasis of pancreatic cancer (PC) remains unclear. Methods: Different expression levels of lncRNAs in PC cells under normal and acidic conditions were compared by RNA sequencing (RNA-seq). The effects of antisense lncRNA of metastasis suppressor 1 (MTSS1-AS) on acidic PC cells were assessed by gain- and loss-of-function experiments. Fluorescence in situ hybridization, RNA immunoprecipitation, RNA pull-down, Western blot, luciferase reporter, and Chromatin immunoprecipitation assays were employed to determine the regulatory mechanisms of MTSS1-AS in the acidity-induced metastasis of PC cells. The expression of MTSS1-AS and associated pathways were compared in PC samples and peritumoral normal tissues. Results: RNA-seq demonstrated that MTSS1-AS was significantly downregulated in pancreatic cells cultured with the acidic medium. The overexpression of MTSS1-AS remarkably inhibited the acidity-promoted metastasis of PC cells by upregulating the expression of its sense gene metastasis suppressor 1 (MTSS1). Mechanistically, MTSS1-AS scaffolded the interaction between E3 ubiquitin-protein ligase STIP1 homology and U-box containing protein 1 (STUB1) and transcription regulator myeloid zinc finger 1 (MZF1), leading to ubiquitination-mediated degradation of MZF1. Further, MZF1 inhibited the expression of MTSS1 by binding to the MTSS1 promoter. Thus, the acidity-reduced MTSS1-AS facilitated the stability of MZF1 and its inhibitory effect on MTSS1 transcription, thereby promoting the metastasis of PC cells under acidic conditions. Moreover, MTSS1-AS was transcriptionally repressed by the binding of MYC proto-oncogene (Myc) with initiator (Inr) elements of the MTSS1-AS promoter. Meanwhile, MTSS1-AS mutually repressed the expression of Myc by impairing the MZF1-mediated transcription activation of Myc, thereby forming a negative feedback loop between MTSS1-AS and Myc in acidic PC cells. In accordance with the experimental results, MTSS1-AS and MTSS1 were downregulated in PC and correlated with poor overall survival. Conclusions: The results implicated that a reciprocal feedback loop between Myc and MTSS1-AS contributed to the extracellular acidity-promoted metastasis of PC, and indicated that MTSS1-AS was a valuable biomarker and therapeutic target for PC.
Collapse
Affiliation(s)
- Yuhang Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fengyu Xu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaifeng Fang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi Fang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoming Shuai
- Department of Gastroenterology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kailin Cai
- Department of Gastroenterology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinhuang Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ping Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ding Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Xu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chaojie Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhu Zeng
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianxin Zhong
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Li
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiang Tang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengqi Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
24
|
Krüger M, Metzger C, Al-Nawas B, Kämmerer PW, Brieger J. Cigarette smoke modulates binding of the transcription factor MZF1 to the VEGF promoter and regulates VEGF expression in dependence of genetic variation SNP 405. J Oral Pathol Med 2020; 49:780-786. [PMID: 32449233 DOI: 10.1111/jop.13038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) affects carcinogenesis of the upper aerodigestive tract. Cigarette smoke (CSE) influences VEGF-gene regulation. The single nucleotide polymorphism +405 G/C (SNP +405 G/C) and the transcriptional factor (TF) myeloid zinc finger 1 (MZF1) are endogenic regulators of the VEGFpromoter as the polymorphism 405 potentially affects binding of the transcription factor MZF1. Therefore, this in vitro study analysed cancer cells of the upper aerodigestive tract after CSE incubation concerning MZF1-binding specificity and VEGF expression in dependency of VEGF polymorphism +405 G/C compared to wild type (wt). METHODS In human alveolar epithelial-like type-II cells (A549) and oral squamous cell cancer cells (HNSCCUM-02T) SNP +405 G/C- and MZF1-dependent VEGF promoter activity and VEGF expression were analysed by qRT-PCR and Western blot after incubation with 10% CSE. Temporary knock-down of MZF1 was performed using siRNA. MZF1 binding was analysed by Co-Chromatin-Immunoprecipitation (Co-ChiP) (each test n = 3). RESULTS We found a stronger MZF1 binding to VEGF polymorphism 405 in A549 cells (P < .05) compared to HNSCCUM-02T cells (P = .02), where MZF1 binding was reduced. MZF1 knock out reduced VEGF promoter activity in HNSCCUM-02T cells, showing the relevance of the factor for transcriptional activation of the VEGF promoter. Finally, we found that CSE increases promoter activity in both cell lines and no significant differences between the two analysed polymorphisms concerning their activating capacity. CONCLUSION In summary, both VEGF promoter polymorphisms are similar effective in terms of transcriptional activity, and MZF1 is a transcriptional activator of VEGF promoter. Moreover, cigarette smoke increases MZF1 binding of VEGF-promoter and directly affects VEGF-gene regulation.
Collapse
Affiliation(s)
- Maximilian Krüger
- Department of Oral and Maxillofacial Surgery - Plastic Surgery, University Medical Centre Mainz, Mainz, Germany
| | - Carmen Metzger
- Department of Otorhinolaryngology, University Medical Centre Mainz, Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery - Plastic Surgery, University Medical Centre Mainz, Mainz, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery - Plastic Surgery, University Medical Centre Mainz, Mainz, Germany
| | - Jürgen Brieger
- Department of Otorhinolaryngology, University Medical Centre Mainz, Mainz, Germany
| |
Collapse
|
25
|
Niu Q, Xing F, Gu HW, Bai L, Zhang J, Yuan JJ, Mao YY, Li ZS, Zhang W, Xu JT. Upregulation of Myeloid Zinc Finger 1 in Dorsal Root Ganglion via Regulating Matrix Metalloproteinase-2/9 and Voltage-gated Potassium 1.2 Expression Contributes to Complete Freund’s Adjuvant-induced Inflammatory Pain. Neuroscience 2020; 432:174-187. [DOI: 10.1016/j.neuroscience.2020.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/30/2022]
|
26
|
AXL as a Target in Breast Cancer Therapy. JOURNAL OF ONCOLOGY 2020; 2020:5291952. [PMID: 32148495 PMCID: PMC7042526 DOI: 10.1155/2020/5291952] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/18/2020] [Indexed: 12/21/2022]
Abstract
AXL is a receptor tyrosine kinase (RTK) that has been implicated in diverse tumor-promoting processes such as proliferation, migration, invasion, survival, and apoptosis. AXL therefore plays a role in cancer progression, and AXL has been implicated in a wide variety of malignancies from solid tumors to hematopoietic cancers where it is often associated with poor prognosis. In cancer, AXL has been shown to promote epithelial to mesenchymal transition (EMT), metastasis formation, drug resistance, and a role for AXL in modulation of the tumor microenvironment and immune response has been identified. In light of these activities multiple AXL inhibitors have been developed, and several of these have entered clinical trials in the U.S. In breast cancer, high levels of AXL expression have been observed. The role of AXL in cancer with a focus on therapeutic implications for breast cancer is discussed.
Collapse
|
27
|
Brix DM, Bundgaard Clemmensen KK, Kallunki T. Zinc Finger Transcription Factor MZF1-A Specific Regulator of Cancer Invasion. Cells 2020; 9:cells9010223. [PMID: 31963147 PMCID: PMC7016646 DOI: 10.3390/cells9010223] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Over 90% of cancer deaths are due to cancer cells metastasizing into other organs. Invasion is a prerequisite for metastasis formation. Thus, inhibition of invasion can be an efficient way to prevent disease progression in these patients. This could be achieved by targeting the molecules regulating invasion. One of these is an oncogenic transcription factor, Myeloid Zinc Finger 1 (MZF1). Dysregulated transcription factors represent a unique, increasing group of drug targets that are responsible for aberrant gene expression in cancer and are important nodes driving cancer malignancy. Recent studies report of a central involvement of MZF1 in the invasion and metastasis of various solid cancers. In this review, we summarize the research on MZF1 in cancer including its function and role in lysosome-mediated invasion and in the expression of genes involved in epithelial to mesenchymal transition. We also discuss possible means to target it on the basis of the current knowledge of its function in cancer.
Collapse
Affiliation(s)
- Ditte Marie Brix
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (D.M.B.); (K.K.B.C.)
- Danish Medicines Council, Dampfærgevej 27-29, 2100 Copenhagen, Denmark
| | - Knut Kristoffer Bundgaard Clemmensen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (D.M.B.); (K.K.B.C.)
| | - Tuula Kallunki
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (D.M.B.); (K.K.B.C.)
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-35-25-7746
| |
Collapse
|
28
|
Fang E, Wang X, Wang J, Hu A, Song H, Yang F, Li D, Xiao W, Chen Y, Guo Y, Liu Y, Li H, Huang K, Zheng L, Tong Q. Therapeutic targeting of YY1/MZF1 axis by MZF1-uPEP inhibits aerobic glycolysis and neuroblastoma progression. Am J Cancer Res 2020; 10:1555-1571. [PMID: 32042322 PMCID: PMC6993229 DOI: 10.7150/thno.37383] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
As a hallmark of metabolic reprogramming, aerobic glycolysis contributes to tumorigenesis and aggressiveness. However, the mechanisms and therapeutic strategies regulating aerobic glycolysis in neuroblastoma (NB), one of leading causes of cancer-related death in childhood, still remain elusive. Methods: Transcriptional regulators and their downstream glycolytic genes were identified by a comprehensive screening of publicly available datasets. Dual-luciferase, chromatin immunoprecipitation, real-time quantitative RT-PCR, western blot, gene over-expression or silencing, co-immunoprecipitation, mass spectrometry, peptide pull-down assay, sucrose gradient sedimentation, seahorse extracellular flux, MTT colorimetric, soft agar, matrigel invasion, and nude mice assays were undertaken to explore the biological effects and underlying mechanisms of transcriptional regulators in NB cells. Survival analysis was performed by using log-rank test and Cox regression assay. Results: Transcription factor myeloid zinc finger 1 (MZF1) was identified as an independent prognostic factor (hazard ratio=2.330, 95% confidence interval=1.021 to 3.317), and facilitated glycolysis process through increasing expression of hexokinase 2 (HK2) and phosphoglycerate kinase 1 (PGK1). Meanwhile, a 21-amino acid peptide encoded by upstream open reading frame of MZF1, termed as MZF1-uPEP, bound to zinc finger domain of Yin Yang 1 (YY1), resulting in repressed transactivation of YY1 and decreased transcription of MZF1 and downstream genes HK2 and PGK1. Administration of a cell-penetrating MZF1-uPEP or lentivirus over-expressing MZF1-uPEP inhibited the aerobic glycolysis, tumorigenesis and aggressiveness of NB cells. In clinical NB cases, low expression of MZF1-uPEP or high expression of MZF1, YY1, HK2, or PGK1 was associated with poor survival of patients. Conclusions: These results indicate that therapeutic targeting of YY1/MZF1 axis by MZF1-uPEP inhibits aerobic glycolysis and NB progression.
Collapse
|
29
|
AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer 2019; 18:153. [PMID: 31684958 PMCID: PMC6827209 DOI: 10.1186/s12943-019-1090-3] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023] Open
Abstract
Molecular targeted therapy for cancer has been a research hotspot for decades. AXL is a member of the TAM family with the high-affinity ligand growth arrest-specific protein 6 (GAS6). The Gas6/AXL signalling pathway is associated with tumour cell growth, metastasis, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance, immune regulation and stem cell maintenance. Different therapeutic agents targeting AXL have been developed, typically including small molecule inhibitors, monoclonal antibodies (mAbs), nucleotide aptamers, soluble receptors, and several natural compounds. In this review, we first provide a comprehensive discussion of the structure, function, regulation, and signalling pathways of AXL. Then, we highlight recent strategies for targeting AXL in the treatment of cancer.AXL-targeted drugs, either as single agents or in combination with conventional chemotherapy or other small molecule inhibitors, are likely to improve the survival of many patients. However, future investigations into AXL molecular signalling networks and robust predictive biomarkers are warranted to select patients who could receive clinical benefit and to avoid potential toxicities.
Collapse
|
30
|
Zhang S, Shi W, Ramsay ES, Bliskovsky V, Eiden AM, Connors D, Steinsaltz M, DuBois W, Mock BA. The transcription factor MZF1 differentially regulates murine Mtor promoter variants linked to tumor susceptibility. J Biol Chem 2019; 294:16756-16764. [PMID: 31548308 DOI: 10.1074/jbc.ra119.009779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/18/2019] [Indexed: 01/15/2023] Open
Abstract
Mechanistic target of rapamycin (MTOR) is a highly conserved serine/threonine kinase that critically regulates cell growth, proliferation, differentiation, and survival. Previously, we have implicated Mtor as a plasmacytoma-resistance locus, Pctr2, in mice. Here, we report that administration of the tumor-inducing agent pristane decreases Mtor gene expression to a greater extent in mesenteric lymph nodes of BALB/cAnPt mice than of DBA/2N mice. We identified six allelic variants in the Mtor promoter region in BALB/cAnPt and DBA/2N mice. To determine the effects of these variants on Mtor transcription, we constructed a series of luciferase reporters containing these promoter variants and transfected them into mouse plasmacytoma cells. We could attribute the differences in Mtor promoter activity between the two mouse strains to a C → T change at the -6 position relative to the transcriptional start site Tssr 40273; a T at this position in the BALB promoter creates a consensus binding site for the transcription factor MZF1 (myeloid zinc finger 1). Results from electrophoretic mobility shift assays and DNA pulldown assays with ChIP-PCR confirmed that MZF1 binds to the cis-element TGGGGA located in the -6/-1 Mtor promoter region. Of note, MZF1 significantly and differentially down-regulated Mtor promoter activity, with MZF1 overexpression reducing Mtor expression more strongly in BALB mice than in DBA mice. Moreover, MZF1 overexpression reduced Mtor expression in both fibroblasts and mouse plasmacytoma cells, and Mzf1 knockdown increased Mtor expression in BALB3T3 and NIH3T3 fibroblast cells. Our results provide evidence that MZF1 down-regulates Mtor expression in pristane-induced plasmacytomas in mice.
Collapse
Affiliation(s)
- Shuling Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Wei Shi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Edward S Ramsay
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Valery Bliskovsky
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Adrian Max Eiden
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel Connors
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Matthew Steinsaltz
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Wendy DuBois
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
31
|
Nam RK, Benatar T, Wallis CJD, Kobylecky E, Amemiya Y, Sherman C, Seth A. MicroRNA-139 is a predictor of prostate cancer recurrence and inhibits growth and migration of prostate cancer cells through cell cycle arrest and targeting IGF1R and AXL. Prostate 2019; 79:1422-1438. [PMID: 31269290 DOI: 10.1002/pros.23871] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND We previously identified a panel of five microRNAs (miRNAs) associated with biochemical recurrence and metastasis following prostatectomy from prostate cancer patients using next-generation sequencing-based whole miRNome sequencing and quantitative polymerase chain reaction-based validation analysis. In this study, we examined the mechanism of action of miR-139-5p, one of the downregulated miRNAs identified in the panel. METHODS Using a cohort of 585 patients treated with radical prostatectomy, we examined the prognostic significance of miR-139 (dichotomized around the median) using the Kaplan-Meier method and Cox proportional hazard models. We validated these results using The Cancer Genome Atlas (TCGA) data. We created cell lines that overexpressed miR-139 to confirm its targets as well as examine pathways through which miR-139 may function using cell-based assays. RESULTS Low miR-139 expression was significantly associated with a variety of prognostic factors in prostate cancer, including Gleason score, pathologic stage, margin positivity, and lymph node status. MiR-139 expression was associated with prognosis: the cumulative incidence of biochemical recurrence and metastasis were significantly lower among patients with high miR-139 expression (P = .0004 and .038, respectively). Validation in the TCGA data set showed a significant association between dichotomized miR-139 expression and biochemical recurrence (odds ratio, 0.52; 95% confidence interval, 0.33-0.82). Overexpression of miR-139 in prostate cancer cells led to a significant reduction in cell proliferation and migration compared with control cells, with cells arrested in G2 of cell cycle. IGF1R and AXL were identified as potential targets of miR-139 based on multiple miRNA-binding sites in 3'-untranslated regions of both the genes and their association with prostate cancer growth pathways. Luciferase assays verified AXL and IGF1R as direct targets of miR-139. Furthermore, immunoblotting of prostate cancer cells demonstrated IGF1R and AXL protein expression were inhibited by miR-139 treatment, which was reversed by the addition of miR-139 antagomir. Examination of the molecular mechanism of growth inhibition by miR-139 revealed the downregulation of activated AKT and cyclin D1, with upregulation of the CDK inhibitor p21. CONCLUSIONS miR-139 is associated with improved prognosis in patients with localized prostate cancer, which may be mediated through downregulation of IGF1R and/or AXL and associated signaling pathway components.
Collapse
Affiliation(s)
- Robert K Nam
- Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Tania Benatar
- Platform Biological Sciences, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Christopher J D Wallis
- Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Kobylecky
- Platform Biological Sciences, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Yutaka Amemiya
- Genomics Core Facility, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Christopher Sherman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Arun Seth
- Platform Biological Sciences, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Genomics Core Facility, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Jimbo T, Hatanaka M, Komatsu T, Taira T, Kumazawa K, Maeda N, Suzuki T, Ota M, Haginoya N, Isoyama T, Fujiwara K. DS-1205b, a novel selective inhibitor of AXL kinase, blocks resistance to EGFR-tyrosine kinase inhibitors in a non-small cell lung cancer xenograft model. Oncotarget 2019; 10:5152-5167. [PMID: 31497246 PMCID: PMC6718264 DOI: 10.18632/oncotarget.27114] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/29/2019] [Indexed: 02/03/2023] Open
Abstract
The AXL receptor tyrosine kinase is involved in signal transduction in malignant cells. Recent studies have shown that the AXL upregulation underlies epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) resistance in EGFR-mutant non-small cell lung cancer (NSCLC). In this study, we investigated the effect of DS-1205b, a novel and selective inhibitor of AXL, on tumor growth and resistance to EGFR TKIs. In AXL-overexpressing NIH3T3 cells, DS-1205b potently inhibited hGAS6 ligand-induced migration in vitro and exerted significant antitumor activity in vivo. AXL was upregulated by long-term erlotinib or osimertinib treatment in HCC827 EGFR-mutant NSCLC cells, and DS-1205b treatment in combination with osimertinib or erlotinib effectively inhibited signaling downstream of EGFR in a cell-based assay. In an HCC827 EGFR-mutant NSCLC xenograft mouse model, combination treatment with DS-1205b and erlotinib significantly delayed the onset of tumor resistance compared to erlotinib monotherapy, and DS-1205b restored the antitumor activity of erlotinib in erlotinib-resistant tumors. DS-1205b also delayed the onset of resistance when used in combination with osimertinib in the model. These findings strongly suggest that DS-1205b can prolong the therapeutic benefit of EGFR TKIs in nonclinical as well as clinical settings.
Collapse
Affiliation(s)
- Takeshi Jimbo
- Oncology Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Mana Hatanaka
- Oncology Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | - Tomoe Taira
- Oncology Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kentaro Kumazawa
- Quality & Safety Management Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Naoyuki Maeda
- Oncology Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Takashi Suzuki
- Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Masahiro Ota
- Research Management Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | | | | | - Kosaku Fujiwara
- Medical Affairs Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
33
|
MZF1 and SCAND1 Reciprocally Regulate CDC37 Gene Expression in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11060792. [PMID: 31181782 PMCID: PMC6627353 DOI: 10.3390/cancers11060792] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 12/27/2022] Open
Abstract
Cell division control 37 (CDC37) increases the stability of heat shock protein 90 (HSP90) client proteins and is thus essential for numerous intracellular oncogenic signaling pathways, playing a key role in prostate oncogenesis. Notably, elevated expression of CDC37 was found in prostate cancer cells, although the regulatory mechanisms through which CDC37 expression becomes increased are unknown. Here we show both positive and negative regulation of CDC37 gene transcription by two members of the SREZBP-CTfin51-AW1-Number 18 cDNA (SCAN) transcription factor family—MZF1 and SCAND1, respectively. Consensus DNA-binding motifs for myeloid zinc finger 1 (MZF1/ZSCAN6) were abundant in the CDC37 promoter region. MZF1 became bound to these regulatory sites and trans-activated the CDC37 gene whereas MZF1 depletion decreased CDC37 transcription and reduced the tumorigenesis of prostate cancer cells. On the other hand, SCAND1, a zinc fingerless SCAN box protein that potentially inhibits MZF1, accumulated at MZF1-binding sites in the CDC37 gene, negatively regulated the CDC37 gene and inhibited tumorigenesis. SCAND1 was abundantly expressed in normal prostate cells but was reduced in prostate cancer cells, suggesting a potential tumor suppressor role of SCAND1 in prostate cancer. These findings indicate that CDC37, a crucial protein in prostate cancer progression, is regulated reciprocally by MZF1 and SCAND1.
Collapse
|
34
|
Suresh D, Zambre A, Mukherjee S, Ghoshdastidar S, Jiang Y, Joshi T, Upendran A, Kannan R. Silencing AXL by covalent siRNA-gelatin-antibody nanoconjugate inactivates mTOR/EMT pathway and stimulates p53 for TKI sensitization in NSCLC. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:102007. [PMID: 31085346 DOI: 10.1016/j.nano.2019.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/16/2019] [Accepted: 04/30/2019] [Indexed: 01/05/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality with the 5-year survival rate at a dismal 16% for the past 40 years. Drug resistance is a major obstacle to achieving long-term patient survival. Identifying and validating molecular biomarkers responsible for resistance and thereby adopting multi-directional therapy is necessary to improve the survival rate. Previous studies indicated ~20% of tyrosine kinase inhibitor (TKI) resistant NSCLC patients overexpress AXL with increase in EMT and decrease in p53 expression. To overcome the resistance, we designed gelatin nanoparticles covalently conjugated with EGFR targeting antibody and siRNA (GAbsiAXL). GAbsiAXL efficiently silences AXL, decreases mTOR and EMT signaling with concomitant increase in p53 expression. Because of the molecular changes, the AXL silencing sensitizes the cells to TKI. Our results show AXL overexpression has an important role in driving TKI resistance through close association with energy-dependent mitochondrial pathways.
Collapse
Affiliation(s)
- Dhananjay Suresh
- Department of Bioengineering, University of Missouri, Columbia, MO, USA
| | - Ajit Zambre
- Department of Radiology, University of Missouri, Columbia, MO, USA
| | - Soumavo Mukherjee
- Department of Bioengineering, University of Missouri, Columbia, MO, USA
| | | | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO, USA; Department of MU Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Anandhi Upendran
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA; MU-Institute of Clinical and Translational Science (MU-iCATS), University of Missouri, Columbia, MO, USA
| | - Raghuraman Kannan
- Department of Bioengineering, University of Missouri, Columbia, MO, USA; Department of Radiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
35
|
Badarni M, Prasad M, Balaban N, Zorea J, Yegodayev KM, Joshua BZ, Dinur AB, Grénman R, Rotblat B, Cohen L, Elkabets M. Repression of AXL expression by AP-1/JNK blockage overcomes resistance to PI3Ka therapy. JCI Insight 2019; 5:125341. [PMID: 30860495 DOI: 10.1172/jci.insight.125341] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AXL overexpression is a common resistance mechanism to anti-cancer therapies, including the resistance to BYL719 (Alpelisib) - the p110α isoform specific inhibitor of phosphoinositide 3-kinase (PI3K) - in esophagus and head and neck squamous cell carcinoma (ESCC, HNSCC respectively). However, the mechanisms underlying AXL overexpression in resistance to BYL719 remain elusive. Here we demonstrated that the AP-1 transcription factors, c-JUN and c-FOS, regulate AXL overexpression in HNSCC and ESCC. The expression of AXL was correlated with that of c-JUN both in HNSCC patients and in HNSCC and ESCC cell lines. Silencing of c-JUN and c-FOS expression in tumor cells downregulated AXL expression and enhanced the sensitivity of human papilloma virus positive (HPVPos) and negative (HPVNeg) tumor cells to BYL719 in vitro. Blocking of the c-JUN N-terminal kinase (JNK) using SP600125 in combination with BYL719 showed a synergistic anti-proliferative effect in vitro, which was accompanied by AXL downregulation and potent inhibition of the mTOR pathway. In vivo, the BYL719-SP600125 drug combination led to the arrest of tumor growth in cell line-derived and patient-derived xenograft models, and in syngeneic head and neck murine cancer models. Collectively, our data suggests that JNK inhibition in combination with anti-PI3K therapy is a new therapeutic strategy that should be tested in HPVPos and HPVNeg HNSCC and ESCC patients.
Collapse
Affiliation(s)
- Mai Badarni
- The Shraga Segal Department of Microbiology, Immunology and Genetics, and.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, and.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noa Balaban
- The Shraga Segal Department of Microbiology, Immunology and Genetics, and.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology and Genetics, and.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ksenia M Yegodayev
- The Shraga Segal Department of Microbiology, Immunology and Genetics, and.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ben-Zion Joshua
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Otolaryngology - Head & Neck Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | - Anat Bahat Dinur
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Otolaryngology - Head & Neck Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head & Neck Surgery, Turku University and Turku University Hospital, Turku, Finland
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, and.,The National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Limor Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, and.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, and.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
36
|
Abstract
IMPACT STATEMENT Cancer is among the leading causes of death worldwide. In 2016, 8.9 million people are estimated to have died from various forms of cancer. The current treatments, including surgery with chemotherapy and/or radiation therapy, are not effective enough to provide full protection from cancer, which highlights the need for developing novel therapy strategies. In this review, we summarize the molecular biology of a unique member of a subfamily of receptor tyrosine kinase, TYRO3 and discuss the new insights in TYRO3-targeted treatment for cancer therapy.
Collapse
Affiliation(s)
- Pei-Ling Hsu
- 1 Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jonathan Jou
- 2 College of Medicine, University of Illinois, IL 60612, USA
| | - Shaw-Jenq Tsai
- 1 Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
37
|
Chakraborty P, Kuo R, Vervelde L, Dutia BM, Kaiser P, Smith J. Macrophages from Susceptible and Resistant Chicken Lines have Different Transcriptomes following Marek's Disease Virus Infection. Genes (Basel) 2019; 10:genes10020074. [PMID: 30678299 PMCID: PMC6409778 DOI: 10.3390/genes10020074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Despite successful control by vaccination, Marek’s disease (MD) has continued evolving to greater virulence over recent years. To control MD, selection and breeding of MD-resistant chickens might be a suitable option. MHC-congenic inbred chicken lines, 61 and 72, are highly resistant and susceptible to MD, respectively, but the cellular and genetic basis for these phenotypes is unknown. Marek’s disease virus (MDV) infects macrophages, B-cells, and activated T-cells in vivo. This study investigates the cellular basis of resistance to MD in vitro with the hypothesis that resistance is determined by cells active during the innate immune response. Chicken bone marrow-derived macrophages from lines 61 and 72 were infected with MDV in vitro. Flow cytometry showed that a higher percentage of macrophages were infected in line 72 than in line 61. A transcriptomic study followed by in silico functional analysis of differentially expressed genes was then carried out between the two lines pre- and post-infection. Analysis supports the hypothesis that macrophages from susceptible and resistant chicken lines display a marked difference in their transcriptome following MDV infection. Resistance to infection, differential activation of biological pathways, and suppression of oncogenic potential are among host defense strategies identified in macrophages from resistant chickens.
Collapse
Affiliation(s)
- Pankaj Chakraborty
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (P.C.); (R.K.); (L.V.); (B.M.D.)
- Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
| | - Richard Kuo
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (P.C.); (R.K.); (L.V.); (B.M.D.)
| | - Lonneke Vervelde
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (P.C.); (R.K.); (L.V.); (B.M.D.)
| | - Bernadette M. Dutia
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (P.C.); (R.K.); (L.V.); (B.M.D.)
| | - Pete Kaiser
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (P.C.); (R.K.); (L.V.); (B.M.D.)
| | - Jacqueline Smith
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (P.C.); (R.K.); (L.V.); (B.M.D.)
- Correspondence: ; Tel.: +44-(0)131-6519155
| |
Collapse
|
38
|
Brix DM, Tvingsholm SA, Hansen MB, Clemmensen KB, Ohman T, Siino V, Lambrughi M, Hansen K, Puustinen P, Gromova I, James P, Papaleo E, Varjosalo M, Moreira J, Jäättelä M, Kallunki T. Release of transcriptional repression via ErbB2-induced, SUMO-directed phosphorylation of myeloid zinc finger-1 serine 27 activates lysosome redistribution and invasion. Oncogene 2019; 38:3170-3184. [PMID: 30622337 DOI: 10.1038/s41388-018-0653-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023]
Abstract
HER2/ErbB2 activation turns on transcriptional processes that induce local invasion and lead to systemic metastasis. The early transcriptional changes needed for ErbB2-induced invasion are poorly understood. Here, we link ErbB2 activation to invasion via ErbB2-induced, SUMO-directed phosphorylation of a single serine residue, S27, of the transcription factor myeloid zinc finger-1 (MZF1). Utilizing an antibody against MZF1-pS27, we show that the phosphorylation of S27 correlates significantly (p < 0.0001) with high-level expression of ErbB2 in primary invasive breast tumors. Phosphorylation of MZF1-S27 is an early response to ErbB2 activation and results in increased transcriptional activity of MZF1. It is needed for the ErbB2-induced expression of MZF1 target genes CTSB and PRKCA, and invasion of single-cells from ErbB2-expressing breast cancer spheroids. The phosphorylation of MZF1-S27 is preceded by poly-SUMOylation of K23, which can make S27 accessible to efficient phosphorylation by PAK4. Based on our results, we suggest for an activation mechanism where phosphorylation of MZF1-S27 triggers MZF1 dissociation from its transcriptional repressors such as the CCCTC-binding factor (CTCF). Our findings increase understanding of the regulation of invasive signaling in breast cancer by uncovering a detailed biological mechanism of how ErbB2 activation can rapidly lead to its invasion-promoting target gene expression and invasion.
Collapse
Affiliation(s)
- Ditte Marie Brix
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Siri Amanda Tvingsholm
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Malene Bredahl Hansen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Knut Bundgaard Clemmensen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Tiina Ohman
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014UH, Helsinki, Finland
| | - Valentina Siino
- Institute for Immunotechnology, Medicon Village, Lund University, 223 81, Lund, Sweden
| | - Matteo Lambrughi
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Klaus Hansen
- Biotech Research and Innovation Center, Copenhagen University, 2200, Copenhagen, Denmark
| | - Pietri Puustinen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology, Unit of Genome Integrity, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Peter James
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, 20014, Turku, Finland
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014UH, Helsinki, Finland
| | - José Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
| | - Tuula Kallunki
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark. .,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
39
|
Ding HX, Lv Z, Yuan Y, Xu Q. MiRNA Polymorphisms and Cancer Prognosis: A Systematic Review and Meta-Analysis. Front Oncol 2018; 8:596. [PMID: 30619739 PMCID: PMC6300499 DOI: 10.3389/fonc.2018.00596] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Accumulating studies have focused on the relationship between miRNAs polymorphisms and cancer prognosis. However, the results are conflicting and unconvincing. This systematic review and meta-analysis was conducted to explore the relationship between miRNAs polymorphisms and cancer prognosis, aiming to seek for markers with cancer prognostic function. Methods: Hazard ratio of overall survival, disease-free survival (DFS) and recurrence-free survival were calculated to evaluate the association between miRNAs polymorphisms and cancer prognosis by using Stata software 11.0. Results: We systematically reviewed the association of 17 miRNAs SNPs with cancer prognosis including 24,721 samples. It was shown that 6 miRNAs SNPs (miR-608 rs4919510, miR-492 rs2289030, miR-378 rs1076064, miR-499 rs4919510, miR-149 rs2292832, miR-196a2 rs11614913) were associated with better cancer overall survival (OS) while let-7i rs10877887 was associated with poor OS; the homozygous and heterozygote genotype of miR-423 were related to poor cancer relapse-free survival (RFS) when compared with the wild genotype; miR-146 rs2910164 was linked to favorable cancer DFS while miR-196a2 rs11614913 was associated with poor DFS. Conclusions: In summary, let-7i rs10877887, miR-608 rs4919510, miR-492 rs2289030, miR-378 rs1076064, miR-423 rs6505162, miR-499 rs4919510, miR-149 rs2292832, miR-146 rs2910164, and miR-196a2 rs11614913 might serve as potential biomarkers for cancer prognosis.
Collapse
Affiliation(s)
- Han-Xi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| | - Zhi Lv
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| |
Collapse
|
40
|
Du W, Brekken RA. Does Axl have potential as a therapeutic target in pancreatic cancer? Expert Opin Ther Targets 2018; 22:955-966. [PMID: 30244621 PMCID: PMC6292430 DOI: 10.1080/14728222.2018.1527315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Pancreatic cancer is a leading cause of cancer-related death. Metastasis, therapy resistance, and immunosuppression are dominant characteristics of pancreatic tumors. Strategies that enhance the efficacy of standard of care and/or immune therapy are likely the most efficient route to improve overall survival in this disease. Areas covered: Axl, a member of the TAM (Tyro3, Axl, MerTK) family of receptor tyrosine kinases, is involved in cell plasticity, chemoresistance, immune suppression, and metastasis in various cancers, including pancreatic cancer. This review provides an overview of Axl and its function in normal conditions, summarizes the regulation and function of Axl in cancer, and highlights the contribution of Axl to pancreatic cancer as well as its potential as a therapeutic target. Expert opinion: Axl is an attractive therapeutic target in pancreatic cancer because it contributes to many of the roadblocks that hamper therapeutic efficacy. Clinical evidence supporting Axl inhibition in pancreatic cancer is currently limited; however, multiple clinical trials have been initiated or are in the planning phase to test the effect of inhibiting Axl in conjunction with standard therapy in pancreatic cancer patients. We anticipate that these studies will provide robust validation of Axl as a therapeutic target in pancreatic cancer.
Collapse
|
41
|
Sodaro G, Blasio G, Fiorentino F, Auberger P, Costanzo P, Cesaro E. ZNF224 is a transcriptional repressor of AXL in chronic myeloid leukemia cells. Biochimie 2018; 154:127-131. [PMID: 30176265 DOI: 10.1016/j.biochi.2018.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022]
Abstract
ZNF224 is a KRAB-zinc finger transcription factor that exerts a key tumor suppressive role in chronic myelogenous leukemia. In this study, we identify the receptor tyrosine kinase Axl as a novel target of ZNF224 transcriptional repression activity. Axl overexpression is found in many types of cancer and is frequently associated with drug resistance. Interestingly, we also found that sensitivity to imatinib can be partly restored in imatinib-resistant chronic myelogenous leukemia cells by ZNF224 overexpression and the resulting suppression of Axl expression. These results, in accordance with our previous findings, support the role of ZNF224 in imatinib responsiveness and shed new insights into potential therapeutic use of ZNF224 in imatinib-resistant chronic myelogenous leukemia.
Collapse
Affiliation(s)
- Gaetano Sodaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Giancarlo Blasio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Federica Fiorentino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | | | - Paola Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy.
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| |
Collapse
|
42
|
Lin S, Wang X, Pan Y, Tian R, Lin B, Jiang G, Chen K, He Y, Zhang L, Zhai W, Jin P, Yang L, Li G, Wu Y, Hu J, Gong W, Chang Z, Sheng JQ, Lu Y, Wang JM, Huang J. Transcription Factor Myeloid Zinc-Finger 1 Suppresses Human Gastric Carcinogenesis by Interacting with Metallothionein 2A. Clin Cancer Res 2018; 25:1050-1062. [PMID: 30301827 DOI: 10.1158/1078-0432.ccr-18-1281] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/27/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Metallothionein 2A (MT2A) suppresses the progression of human gastric cancer potentially through an "MT2A-NF-κB pathway" with unclear mechanisms. This study explored the role of a transcription factor, myeloid zinc-finger 1 (MZF1), in MT2A-NF-κB pathway and its clinical significance in gastric cancer. EXPERIMENTAL DESIGN MZF1 expression and function in gastric cancer were investigated in vitro and in vivo. The relationship between MZF1 and MT2A was determined by gain-of-function and loss-of-function assays in gastric cancer cells and an immortalized gastric cell line GES-1. The prognostic value of MZF1 expression in association with MT2A was evaluated using IHC in two cohorts. RESULTS MZF1 was epigenetically silenced in human gastric cancer cell lines and primary tumors. Overexpression of MZF1 in gastric cancer cells suppressed cell proliferation and migration, as well as the growth of xenograft tumors in nude mice. Knocking-down of MZF1 transformed GES-1 cells into a malignant phenotype characterized by increased cell growth and migration. Mechanistically, MZF1 was upregulated in both GC and GES-1 cells by MT2A ectopically expressed or induced upon treatment with a garlic-derived compound, diallyl trisulfide (DATS). MZF1 associated with MT2A was colocalized in the nuclei of GES-1 cells to target the promoter of NF-κB inhibitor alpha (NFKBIA). Clinically, MT2A and MZF1 were progressively downregulated in clinical specimens undergoing gastric malignant transformation. Downregulation of MT2A and MZF1 was significantly correlated with poorer patient prognosis. CONCLUSIONS MT2A exerts its anti-gastric cancer effects by complexing with MZF1 to target NFKBIA. MT2A/MZF1 may serve as a valuable prognostic marker and a novel therapeutic target for human gastric cancer.
Collapse
Affiliation(s)
- Shuye Lin
- College of Life Sciences & Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China.,Cancer and Inflammation Program (CIP), Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, Maryland.,Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, Beijing, China
| | - Xiaoyue Wang
- College of Life Sciences & Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China.,Cancer and Inflammation Program (CIP), Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, Maryland
| | - Yuanming Pan
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, Beijing, China.,Department of Gastroenterology, Army General Hospital of PLA, Beijing, China
| | - Rongmeng Tian
- College of Life Sciences & Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Bonan Lin
- College of Life Sciences & Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Guosheng Jiang
- College of Basic Medical, Binzhou Medical University, Yantai, Shandong, China
| | - Keqiang Chen
- Cancer and Inflammation Program (CIP), Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, Maryland
| | - Yuqi He
- Department of Gastroenterology, Army General Hospital of PLA, Beijing, China
| | - Lulu Zhang
- Zhengzhou KODIA Biotechnology Co. Ltd., Zhengzhou, Henan, China
| | - Wanli Zhai
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Peng Jin
- Department of Gastroenterology, Army General Hospital of PLA, Beijing, China
| | - Lang Yang
- Department of Gastroenterology, Army General Hospital of PLA, Beijing, China
| | - Guoqiang Li
- Department of Oncology and Translational Medicine Center Baotou City Central Hospital, Baotou, Inner Mongolia, China
| | - Yun Wu
- Department of Oncology and Translational Medicine Center Baotou City Central Hospital, Baotou, Inner Mongolia, China
| | - Jiang Hu
- Department of Oncology and Translational Medicine Center Baotou City Central Hospital, Baotou, Inner Mongolia, China
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Jian-Qiu Sheng
- Department of Gastroenterology, Army General Hospital of PLA, Beijing, China
| | - Youyong Lu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, Beijing, China
| | - Ji Ming Wang
- Cancer and Inflammation Program (CIP), Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, Maryland
| | - Jiaqiang Huang
- College of Life Sciences & Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China. .,Cancer and Inflammation Program (CIP), Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, Maryland
| |
Collapse
|
43
|
Wang W, Du M, Li Z, Zhang L, Li Q, Xu Z, Li B, Wang L, Li F, Zhang D, Xu H, Yang L, Gong W, Qiang F, Zhang Z, Xu Z. A Genetic Variant Located in miR-146b Promoter Region Is Associated with Prognosis of Gastric Cancer. Cancer Epidemiol Biomarkers Prev 2018; 27:822-828. [PMID: 29685895 DOI: 10.1158/1055-9965.epi-17-1054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/13/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022] Open
Abstract
Background: SNPs in the promoter region of miRNAs have been reported to be associated with cancer prognosis. Our previous study found that miR-146b had a strong correlation with the stage classification of gastric cancer and contributed to tumor progression. The current study was aimed at investigating whether an SNP located in the promoter region of miR-146b could affect the survival rate of gastric cancer.Methods: Using bioinformatics tools, we identified one SNP (rs1536309) that is located in the miR-146b promoter. We genotyped this SNP site to assess its association with gastric cancer prognosis in 940 cases.Results: We found that the dominant model of miR-146b rs1536309 was associated with a higher survival rate of gastric cancer. The association remained significant in the subgroup analysis by age (≤60), sex (male), tumor size (≤5 cm), histologic type (diffuse), lymph node metastasis (N0), distant metastasis (M0), and TNM stage (I/II).Conclusions: Our results suggested that the miR-146b rs1536309 polymorphism may be a potential biomarker for the prognosis of gastric cancer.Impact: This is the first evidence showing that patients carrying the miR-146b-5p rs1536309 CC/CT genotypes exhibited better survival than those carrying the TT genotype, suggesting the protective effect of the C allele in the prognosis of gastric cancer. Cancer Epidemiol Biomarkers Prev; 27(7); 822-8. ©2018 AACR.
Collapse
Affiliation(s)
- Weizhi Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zheng Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bowen Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Linjun Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengyuan Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Diancai Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weida Gong
- Department of General Surgery, Yixing Tumor Hospital, Yixing, China
| | - Fulin Qiang
- Core Laboratory, Nantong Tumor Hospital, Nantong, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
44
|
Phosphorylation-dependent stabilization of MZF1 upregulates N-cadherin expression during protein kinase CK2-mediated epithelial-mesenchymal transition. Oncogenesis 2018. [PMID: 29540671 PMCID: PMC5852951 DOI: 10.1038/s41389-018-0035-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process in invasion and metastasis of cancer cells. E-cadherin to N-cadherin switching is considered a molecular hallmark of EMT. Recently, we reported that increased CK2 activity fully induces E-cadherin to N-cadherin switching, but the molecular mechanisms of N-cadherin upregulation are unknown. In this study, we examined how N-cadherin is upregulated by CK2. N-cadherin promoter analysis and ChIP analysis identified and confirmed myeloid zinc finger 1 (MZF1) as an N-cadherin transcription factor. Molecular analysis showed that MZF1 directly interacts with CK2 and is phosphorylated at serine 27. Phosphorylation stabilizes MZF1 and induces transcription of N-cadherin. MZF1 knockdown (MKD) in N-cadherin-expressing cancer cells downregulates N-cadherin expression and reverts the morphology from spindle and fibroblast-like to a rounded, epithelial shape. In addition, we showed that that MKD reduced the motility and invasiveness of N-cadherin-expressing cancer cells. Collectively, these data indicate that N-cadherin upregulation in CK2-mediated E-cadherin to N-cadherin switching is dependent on phosphorylation-mediated MZF1 stabilization. CK2 could be a good therapeutic target for the prevention of metastasis.
Collapse
|
45
|
Shen Y, Chen X, He J, Liao D, Zu X. Axl inhibitors as novel cancer therapeutic agents. Life Sci 2018; 198:99-111. [PMID: 29496493 DOI: 10.1016/j.lfs.2018.02.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/07/2018] [Accepted: 02/23/2018] [Indexed: 12/17/2022]
Abstract
Overexpression and activation of Axl receptor tyrosine kinase have been widely accepted to promote cell proliferation, chemotherapy resistance, invasion, and metastasis in several human cancers, such as lung, breast, and pancreatic cancers. Axl, a member of the TAM (Tyro3, Axl, Mer) family, and its inhibitors can specifically break the kinase signaling nodes, allowing advanced patients to regain drug sensitivity with improved therapeutic efficacy. Therefore, the research on Axl is promising and it is worthy of further investigations. In this review, we present an update on the Axl inhibitors and provide new insights into their latent application.
Collapse
Affiliation(s)
- Yingying Shen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Xiguang Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Jun He
- Department of Spine Surgery, the Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Duanfang Liao
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, Hunan, PR China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
46
|
Lee CJ, Hsu LS, Yue CH, Lin H, Chiu YW, Lin YY, Huang CY, Hung MC, Liu JY. MZF-1/Elk-1 interaction domain as therapeutic target for protein kinase Cα-based triple-negative breast cancer cells. Oncotarget 2018; 7:59845-59859. [PMID: 27542222 PMCID: PMC5312353 DOI: 10.18632/oncotarget.11337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/06/2016] [Indexed: 12/31/2022] Open
Abstract
Recent reports demonstrate that the expression of protein kinase C alpha (PKCα) in triple-negative breast cancer (TNBC) correlates with decreased survival outcomes. However, off-target effects of targeting PKCα and limited understanding of the signaling mechanisms upstream of PKCα have hampered previous efforts to manipulate this ubiquitous gene. This study shows that the expression of both myeloid zinc finger 1 (MZF-1) and Ets-like protein-1 (Elk-1) correlates with PKCα expression in TNBC. We found that the acidic domain of MZF-1 and the heparin-binding domain of Elk-1 facilitate the heterodimeric interaction between the two genes before the complex formation binds to the PKCα promoter. Blocking the formation of the heterodimer by transfection of MZF-160-72 or Elk-1145-157 peptide fragments at the MZF-1 / Elk-1 interface decreases DNA-binding activity of the MZF-1 / Elk-1 complex at the PKCα promoter. Subsequently, PKCα expression, migration, tumorigenicity, and the epithelial-mesenchymal transition potential of TNBC cells decrease. These subsequent effects are reversed by transfection with full-length PKCα, confirming that the MZF-1/Elk-1 heterodimer is a mediator of PKCα in TNBC cells. These data suggest that the next therapeutic strategy in treating PKCα-related cancer will be developed from blocking MZF-1/Elk-1 interaction through their binding domain.
Collapse
Affiliation(s)
- Chia-Jen Lee
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung-Shan Medical University, Taichung 40201, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chia-Herng Yue
- Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung 435, Taiwan.,Department of Life Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Ho Lin
- Department of Life Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Yung-Wei Chiu
- Emergency Department and Center of Hyperbaric Oxygen Therapy, Tungs' Taichung Metro Harbor Hospital, Taichung 435, Taiwan
| | - Yu-Yu Lin
- Graduate Institute of Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Chinese Medical Science, School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung 40402, Taiwan.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jer-Yuh Liu
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
47
|
Tvingsholm SA, Hansen MB, Clemmensen KKB, Brix DM, Rafn B, Frankel LB, Louhimo R, Moreira J, Hautaniemi S, Gromova I, Jäättelä M, Kallunki T. Let-7 microRNA controls invasion-promoting lysosomal changes via the oncogenic transcription factor myeloid zinc finger-1. Oncogenesis 2018; 7:14. [PMID: 29396433 PMCID: PMC5833801 DOI: 10.1038/s41389-017-0014-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer cells utilize lysosomes for invasion and metastasis. Myeloid Zinc Finger1 (MZF1) is an ErbB2-responsive transcription factor that promotes invasion of breast cancer cells via upregulation of lysosomal cathepsins B and L. Here we identify let-7 microRNA, a well-known tumor suppressor in breast cancer, as a direct negative regulator of MZF1. Analysis of primary breast cancer tissues reveals a gradual upregulation of MZF1 from normal breast epithelium to invasive ductal carcinoma and a negative correlation between several let-7 family members and MZF1 mRNA, suggesting that the inverse regulatory relationship between let-7 and MZF1 may play a role in the development of invasive breast cancer. Furthermore, we show that MZF1 regulates lysosome trafficking in ErbB2-positive breast cancer cells. In line with this, MZF1 depletion or let-7 expression inhibits invasion-promoting anterograde trafficking of lysosomes and invasion of ErbB2-expressing MCF7 spheres. The results presented here link MZF1 and let-7 to lysosomal processes in ErbB2-positive breast cancer cells that in non-cancerous cells have primarily been connected to the transcription factor EB. Identifying MZF1 and let-7 as regulators of lysosome distribution in invasive breast cancer cells, uncouples cancer-associated, invasion-promoting lysosomal alterations from normal lysosomal functions and thus opens up new possibilities for the therapeutic targeting of cancer lysosomes.
Collapse
Affiliation(s)
- Siri Amanda Tvingsholm
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Malene Bredahl Hansen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Knut Kristoffer Bundgaard Clemmensen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Ditte Marie Brix
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Bo Rafn
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Lisa B Frankel
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Riku Louhimo
- Systems Biology Laboratory, Genome-Scale Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - José Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sampsa Hautaniemi
- Systems Biology Laboratory, Genome-Scale Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Irina Gromova
- Breast Cancer Biology, Genome Integrity Group, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
| | - Tuula Kallunki
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
| |
Collapse
|
48
|
Ghiso E, Migliore C, Ciciriello V, Morando E, Petrelli A, Corso S, De Luca E, Gatti G, Volante M, Giordano S. YAP-Dependent AXL Overexpression Mediates Resistance to EGFR Inhibitors in NSCLC. Neoplasia 2017; 19:1012-1021. [PMID: 29136529 PMCID: PMC5683041 DOI: 10.1016/j.neo.2017.10.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 01/11/2023] Open
Abstract
The Yes-associated protein (YAP) is a transcriptional co-activator upregulating genes that promote cell growth and inhibit apoptosis. The main dysregulation of the Hippo pathway in tumors is due to YAP overexpression, promoting epithelial to mesenchymal transition, cell transformation, and increased metastatic ability. Moreover, it has recently been shown that YAP plays a role in sustaining resistance to targeted therapies as well. In our work, we evaluated the role of YAP in acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in lung cancer. In EGFR-addicted lung cancer cell lines (HCC4006 and HCC827) rendered resistant to several EGFR inhibitors, we observed that resistance was associated to YAP activation. Indeed, YAP silencing impaired the maintenance of resistance, while YAP overexpression decreased the responsiveness to EGFR inhibitors in sensitive parental cells. In our models, we identified the AXL tyrosine kinase receptor as the main YAP downstream effector responsible for sustaining YAP-driven resistance: in fact, AXL expression was YAP dependent, and pharmacological or genetic AXL inhibition restored the sensitivity of resistant cells to the anti-EGFR drugs. Notably, YAP overactivation and AXL overexpression were identified in a lung cancer patient upon acquisition of resistance to EGFR TKIs, highlighting the clinical relevance of our in vitro results. The reported data demonstrate that YAP and its downstream target AXL play a crucial role in resistance to EGFR TKIs and suggest that a combined inhibition of EGFR and the YAP/AXL axis could be a good therapeutic option in selected NSCLC patients.
Collapse
Affiliation(s)
- Elena Ghiso
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy.
| | - Cristina Migliore
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy
| | - Vito Ciciriello
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy
| | - Elena Morando
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy
| | - Annalisa Petrelli
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy
| | - Simona Corso
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy
| | - Emmanuele De Luca
- Thoracic Oncology Unit, San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Gaia Gatti
- Pathology Unit, San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Marco Volante
- University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy; Pathology Unit, San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Silvia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy.
| |
Collapse
|
49
|
Verma NK, Gadi A, Maurizi G, Roy UB, Mansukhani A, Basilico C. Myeloid Zinc Finger 1 and GA Binding Protein Co-Operate with Sox2 in Regulating the Expression of Yes-Associated Protein 1 in Cancer Cells. Stem Cells 2017; 35:2340-2350. [PMID: 28905448 DOI: 10.1002/stem.2705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/22/2017] [Indexed: 01/06/2023]
Abstract
The transcription factor (TF) yes-associated protein 1 (YAP1) is a major effector of the tumor suppressive Hippo signaling pathway and is also necessary to maintain pluripotency in embryonic stem cells. Elevated levels of YAP1 expression antagonize the tumor suppressive effects of the Hippo pathway that normally represses YAP1 function. High YAP1 expression is observed in several types of human cancers and is particularly prominent in cancer stem cells (CSCs). The stem cell TF Sox2, which marks and maintains CSCs in osteosarcomas (OSs), promotes YAP1 expression by binding to an intronic enhancer element and YAP1 expression is also crucial for the maintainance of OS stem cells. To further understand the regulation of YAP1 expression in OSs, we subjected the YAP1 intronic enhancer to scanning mutagenesis to identify all DNA cis-elements critical for enhancer function. Through this approach, we identified two novel TFs, GA binding protein (GABP) and myeloid zinc finger 1 (MZF1), which are essential for basal YAP1 transcription. These factors are highly expressed in OSs and bind to distinct sites in the YAP1 enhancer. Depletion of either factor leads to drastically reduced YAP1 expression and thus a reversal of stem cell properties. We also found that YAP1 can regulate the expression of Sox2 by binding to two distinct DNA binding sites upstream and downstream of the Sox2 gene. Thus, Sox2 and YAP1 reinforce each others expression to maintain stemness and tumorigenicity in OSs, but the activity of MZF1 and GABP is essential for YAP1 transcription. Stem Cells 2017;35:2340-2350.
Collapse
Affiliation(s)
| | - Abhilash Gadi
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Giulia Maurizi
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Upal Basu Roy
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Alka Mansukhani
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Claudio Basilico
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
50
|
Liu H, Jiang X, Wang T, Yu F, Wang X, Chen J, Xie X, Fan H. Myeloid zinc finger 1 protein is a key transcription stimulating factor of PYROXD2 promoter. Oncol Rep 2017; 38:3245-3253. [DOI: 10.3892/or.2017.5990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/31/2017] [Indexed: 11/05/2022] Open
|