1
|
Vettorato E, Verona M, Bellio G, Croci S, Filadi R, Bisio A, Spessot E, Andrighetto A, Maniglio D, Asti M, Marzaro G, Mastrotto F. Development and Validation of Novel Z-360-Based Macromolecules for the Active Targeting of CCK2-R. Mol Pharm 2024; 21:3848-3865. [PMID: 38959127 DOI: 10.1021/acs.molpharmaceut.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The cholecystokinin type 2 receptor (CCK2-R) represents an ideal target for cancer therapy since it is overexpressed in several tumors and is associated with poor prognosis. Nastorazepide (Z-360), a selective CCK2-R antagonist, has been widely investigated as a CCK2-R ligand for targeted therapy; however, its high hydrophobicity may represent a limit to cell selectivity and optimal in vivo biodistribution. Here, we present three new fluorescent Z-360 derivatives (IP-002G-Rho, IP-002L-Rho, and IP-002M-Rho) in which nastorazepide was linked, through spacers bearing different saccharides (glucose (G), lactose (L), and maltotriose (M)), to sulforhodamine B. A fourth compound (IP-002H-Rho) with no pendant sugar was also synthesized as a control. Through two-dimensional (2D) and three-dimensional (3D) in vitro studies, we evaluated the compound association with and selectivity for CCK2-R-overexpressing cells (A431-CCK2-R+) vs CCK2-R-underexpressing cells (A431 WT). 2D in vitro studies highlighted a progressive increase of IP-002x-Rho association with A431-CCK2-R+ cells according to the linker hydrophilicity, that is, maltotriose > lactose > glucose > hydrogen, with IP-002M-Rho showing a 2.4- and a 1.36-fold higher uptake than IP-002G-Rho and IP-002L-Rho, respectively. Unexpectedly, IP-002H-Rho showed a similar cell association to that of IP-002L-Rho but with no difference between the two tested cell lines. On the contrary, association with A431-CCK2-R+ cells as compared to the A431 WT was found to be 1.08-, 1.14-, and 1.37-fold higher for IP-002G-Rho, IP-002L-Rho, and IP-002M-Rho, respectively, proving IP-002M-Rho to be the best-performing compound, as also confirmed by competition studies. Trafficking studies on A431-CCK2-R+ cells incubated with IP-002M-Rho suggested the coexistence of receptor-mediated endocytosis and simple diffusion. On the contrary, a high and selective uptake of IP-002M-Rho by A431-CCK2-R+ cells only was observed on 3D scaffolds embedded with cells, underlining the importance of 3D models in in vitro preliminary evaluation.
Collapse
Affiliation(s)
- Elisa Vettorato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
- Legnaro National Laboratories, Italian Institute of Nuclear Physics (INFN), viale dell'Università, 2, 35020 Legnaro (Padova), Italy
| | - Marco Verona
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Greta Bellio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Stefania Croci
- Clinical Immunology, Allergy, and Advanced Biotechnologies Unit, AUSL-IRCCS of Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Eugenia Spessot
- Department of Industrial Engineering and BIOtech Research Center, University of Trento, via Delle Regole 101, 38123 Trento, Italy
| | - Alberto Andrighetto
- Legnaro National Laboratories, Italian Institute of Nuclear Physics (INFN), viale dell'Università, 2, 35020 Legnaro (Padova), Italy
| | - Devid Maniglio
- Department of Industrial Engineering and BIOtech Research Center, University of Trento, via Delle Regole 101, 38123 Trento, Italy
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS of Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
2
|
Yang K, Jin H, Gao X, Wang GC, Zhang GQ. Elucidating the molecular determinants in the process of gastrin C-terminal pentapeptide amide end activating cholecystokinin 2 receptor by Gaussian accelerated molecular dynamics simulations. Front Pharmacol 2023; 13:1054575. [PMID: 36756145 PMCID: PMC9899899 DOI: 10.3389/fphar.2022.1054575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/02/2022] [Indexed: 01/24/2023] Open
Abstract
Gastrin plays important role in stimulating the initiation and development of many gastrointestinal diseases through interacting with the cholecystokinin 2 receptor (CCK2R). The smallest bioactive unit of gastrin activating CCK2R is the C-terminal tetrapeptide capped with an indispensable amide end. Understanding the mechanism of this smallest bioactive unit interacting with CCK2R on a molecular basis could provide significant insights for designing CCK2R antagonists, which can be used to treat gastrin-related diseases. To this end, we performed extensive Gaussian accelerated molecular dynamics simulations to investigate the interaction between gastrin C-terminal pentapeptide capped with/without amide end and CCK2R. The amide cap influences the binding modes of the pentapeptide with CCK2R by weakening the electrostatic attractions between the C-terminus of the pentapeptide and basic residues near the extracellular domain in CCK2R. The C-terminus with the amide cap penetrates into the transmembrane domain of CCK2R while floating at the extracellular domain without the amide cap. Different binding modes induced different conformational dynamics of CCK2R. Residue pairs in CCK2R had stronger correlated motions when binding with the amidated pentapeptide. Key residues and interactions important for CCK2R binding with the amidated pentagastrin were also identified. Our results provide molecular insights into the determinants of the bioactive unit of gastrin activating CCK2R, which would be of great help for the design of CCK2R antagonists.
Collapse
Affiliation(s)
- Kecheng Yang
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou, China,*Correspondence: Kecheng Yang,
| | - Huiyuan Jin
- School of International Studies, Zhengzhou University, Zhengzhou, China
| | - Xu Gao
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Gang-Cheng Wang
- Department of General Surgery, Affiliated Cancer Hospitalof Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Guo-Qiang Zhang
- Department of General Surgery, Affiliated Cancer Hospitalof Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
3
|
The Cholecystokinin Type 2 Receptor, a Pharmacological Target for Pain Management. Pharmaceuticals (Basel) 2021; 14:ph14111185. [PMID: 34832967 PMCID: PMC8618735 DOI: 10.3390/ph14111185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
Over the past decades, accumulating evidence has demonstrated a pivotal role of cholecystokinin type 2 receptor (CCK2R) in pain modulation. The established role of CCK2R activation in directly facilitating nociception has led to the development of several CCK2R antagonists, which have been shown to successfully alleviate pain in several rodent models of pain. However, the outcomes of clinical trials are more modest since they have not demonstrated the expected biological effect obtained in animals. Such discordances of results between preclinical and clinical studies suggest reconsidering our knowledge about the molecular basis of the pharmacology and functioning of CCK2R. This review focuses on the cellular localization of CCK2R specifically in the sensory nervous system and discusses in further detail the molecular mechanisms and signal transduction pathways involved in controlling pain perception. We then provide a comprehensive overview of the most successful compounds targeting CCK2R and report recent advances in pharmacological strategies used to achieve CCK2R modulation. We purposely distinguish between CCK2R benefits obtained in preclinical models and outcomes in clinical trials with different pain etiologies. Lastly, we emphasize the biological and clinical relevance of CCK2R as a promising target for the development of new treatments for pain management.
Collapse
|
4
|
Zeng Q, Ou L, Wang W, Guo DY. Gastrin, Cholecystokinin, Signaling, and Biological Activities in Cellular Processes. Front Endocrinol (Lausanne) 2020; 11:112. [PMID: 32210918 PMCID: PMC7067705 DOI: 10.3389/fendo.2020.00112] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
The structurally-related peptides, gastrin and cholecystokinin (CCK), were originally discovered as humoral stimulants of gastric acid secretion and pancreatic enzyme release, respectively. With the aid of methodological advances in biochemistry, immunochemistry, and molecular biology in the past several decades, our concept of gastrin and CCK as simple gastrointestinal hormones has changed considerably. Extensive in vitro and in vivo studies have shown that gastrin and CCK play important roles in several cellular processes including maintenance of gastric mucosa and pancreatic islet integrity, neurogenesis, and neoplastic transformation. Indeed, gastrin and CCK, as well as their receptors, are expressed in a variety of tumor cell lines, animal models, and human samples, and might contribute to certain carcinogenesis. In this review, we will briefly introduce the gastrin and CCK system and highlight the effects of gastrin and CCK in the regulation of cell proliferation and apoptosis in both normal and abnormal conditions. The potential imaging and therapeutic use of these peptides and their derivatives are also summarized.
Collapse
Affiliation(s)
- Qiang Zeng
- Health Management Institute, People's Liberation Army General Hospital, Beijing, China
| | - Lei Ou
- Health Management Institute, People's Liberation Army General Hospital, Beijing, China
| | - Wei Wang
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- *Correspondence: Wei Wang
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- Dong-Yu Guo
| |
Collapse
|
5
|
Mjønes P, Nordrum IS, Sørdal Ø, Sagatun L, Fossmark R, Sandvik A, Waldum HL. Expression of the Cholecystokinin-B Receptor in Neoplastic Gastric Cells. Discov Oncol 2017; 9:40-54. [PMID: 28980157 PMCID: PMC5775387 DOI: 10.1007/s12672-017-0311-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer is an important disease due to its high mortality. Despite the decline in frequency, most cases are discovered late in its course, and most of the cancer patients die within a few years of diagnosis. In addition to Helicobacter pylori gastritis, gastrin is considered an important factor in the development of this disease, and thus, cholecystokinin-B receptor (CCKBR) becomes of interest. The aim of our study was to explore whether CCKBR is expressed in stomach cancers. Thirty-seven tumors from 19 men and 18 women diagnosed with either adenocarcinoma or neuroendocrine neoplasm (NENs) were included in this study. The tumors were classified into 29 adenocarcinomas and eight NENs. Immunohistochemistry with antibodies against chromogranin A (CgA), synaptophysin and CCKBR, and in situ hybridization with probes against CgA, CCKBR and histidine decarboxylase were used to further explore these tumors. Thirty-three (89%) of the tumors expressed CCKBR protein, whereas only 20 (54%) of all tumors expressed CCKBR mRNA. Of the 20 tumors expressing CCKBR mRNA, eight were NENs and 12 were adenocarcinoma. The highest amount of CCKBR was expressed in NEN. Interestingly, a high degree of co-expression of CCKBR and CgA was observed when the two markers were examined together with in situ hybridization. In conclusion, we found that all eight NENs expressed CCKBR and neuroendocrine markers in a majority of tumor cells. The same markers were also expressed in a proportion of adenocarcinomas supporting the view that gastrin is important in the development of gastric cancer.
Collapse
Affiliation(s)
- Patricia Mjønes
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway. .,Department of Pathology, St Olav's Hospital-Trondheim University Hospital, Trondheim, Norway. .,Department of Laboratory Medicine, Children's and Woman's Health, NTNU, Trondheim, Norway.
| | - Ivar S Nordrum
- Department of Pathology, St Olav's Hospital-Trondheim University Hospital, Trondheim, Norway.,Department of Laboratory Medicine, Children's and Woman's Health, NTNU, Trondheim, Norway
| | - Øystein Sørdal
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St Olav's Hospital-Trondheim University Hospital, Trondheim, Norway
| | - Liv Sagatun
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St Olav's Hospital-Trondheim University Hospital, Trondheim, Norway
| | - Reidar Fossmark
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St Olav's Hospital-Trondheim University Hospital, Trondheim, Norway
| | - Arne Sandvik
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St Olav's Hospital-Trondheim University Hospital, Trondheim, Norway
| | - Helge L Waldum
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St Olav's Hospital-Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
6
|
Balázs A, Németh BC, Ördög B, Hegyi E, Hritz I, Czakó L, Czimmer J, Gódi S, Csiszkó A, Rakonczay Z, Párniczky A, Izbéki F, Halász A, Kahán Z, Hegyi P, Sahin-Tóth M. A Common CCK-B Receptor Intronic Variant in Pancreatic Adenocarcinoma in a Hungarian Cohort. Pancreas 2016; 45:541-545. [PMID: 26646278 PMCID: PMC4783207 DOI: 10.1097/mpa.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Variant c.811+32C>A in intron 4 of the cholecystokinin-B receptor gene (CCKBR) was reported to correlate with higher pancreatic cancer risk and poorer survival. The variant was suggested to induce retention of intron 4, resulting in a new splice form with enhanced receptor activity. Our objective was to validate the c.811+32C>A variant as an emerging biomarker for pancreatic cancer risk and prognosis. METHODS We genotyped variant c.811+32C>A in 122 pancreatic adenocarcinoma case patients and 106 control subjects by sequencing and examined its association with cancer risk and patient survival. We tested the functional effect of variant c.811+32C>A on pre-messenger RNA splicing in human embryonic kidney 293T and Capan-1 cells transfected with CCKBR minigenes. RESULTS The allele frequency of the variant was similar between patients and control subjects (18.4% and 17.9%, respectively). Survival analysis showed no significant difference between median survival of patients with the C/C genotype (266 days) and patients with the A/C or A/A genotypes (257 days). CCKBR minigenes with or without variant c.811+32C>A exhibited no difference in expression of the intron-retaining splice variant. CONCLUSION These data indicate that variant c.811+32C>A in CCKBR does not have a significant impact on pancreatic cancer risk or survival in a Hungarian cohort.
Collapse
Affiliation(s)
- Anita Balázs
- From the *First Department of Medicine, University of Szeged, Szeged, Hungary; †Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA; ‡Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary; §2nd Department of Pediatrics, Comenius University Medical School, University Children's Hospital, Bratislava, Slovakia; ∥First Department of Internal Medicine, University of Pécs, Hungary; ¶Institute of Surgery, University of Debrecen, Clinical Center, Debrecen, Hungary; #Heim Pál Children's Hospital, Budapest, Hungary; **First Department of Medicine, Szent György Teaching Hospital of County Fejér, Székesfehérvár, Hungary; ††Department of Oncotherapy, University of Szeged, Szeged, Hungary; and ‡‡MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang H, Liu WJ, Shen GM, Zhang MT, Huang S, He Y. Neural mechanism of gastric motility regulation by electroacupuncture at RN12 and BL21: A paraventricular hypothalamic nucleus-dorsal vagal complex-vagus nerve-gastric channel pathway. World J Gastroenterol 2015; 21:13480-13489. [PMID: 26730159 PMCID: PMC4690177 DOI: 10.3748/wjg.v21.i48.13480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/06/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the neural mechanism by which electroacupuncture (EA) at RN12 (Zhongwan) and BL21 (Weishu) regulates gastric motility.
METHODS: One hundred and forty-four adult Sprague Dawley rats were studied in four separate experiments. Intragastric pressure was measured using custom-made rubber balloons, and extracellular neuron firing activity, which is sensitive to gastric distention in the dorsal vagal complex (DVC), was recorded by an electrophysiological technique. The expression levels of c-fos, motilin (MTL) and gastrin (GAS) in the paraventricular hypothalamic nucleus (PVN) were assayed by immunohistochemistry, and the expression levels of motilin receptor (MTL-R) and gastrin receptor (GAS-R) in both the PVN and the gastric antrum were assayed by western blotting.
RESULTS: EA at RN12 + BL21 (gastric Shu and Mu points), BL21 (gastric Back-Shu point), RN12 (gastric Front-Mu point), resulted in increased neuron-activating frequency in the DVC (2.08 ± 0.050, 1.17 ± 0.023, 1.55 ± 0.079 vs 0.75 ± 0.046, P < 0.001) compared with a model group. The expression of c-fos (36.24 ± 1.67, 29.41 ± 2.55, 31.79 ± 3.00 vs 5.73 ± 2.18, P < 0.001), MTL (22.48 ± 2.66, 20.76 ± 2.41, 19.17 ± 1.71 vs 11.68 ± 2.52, P < 0.001), GAS (24.99 ± 2.95, 21.69 ± 3.24, 23.03 ± 3.09 vs 12.53 ± 2.15, P < 0.001), MTL-R (1.39 ± 0.05, 1.22 ± 0.05, 1.17 ± 0.12 vs 0.84 ± 0.06, P < 0.001), and GAS-R (1.07 ± 0.07, 0.91 ± 0.06, 0.78 ± 0.05 vs 0.45 ± 0.04, P < 0.001) increased in the PVN after EA compared with the model group. The expression of MTL-R (1.46 ± 0.14, 1.26 ± 0.11, 0.99 ± 0.07 vs 0.65 ± 0.03, P < 0.001), and GAS-R (1.63 ± 0.11, 1.26 ± 0.16, 1.13 ± 0.02 vs 0.80 ± 0.11, P < 0.001) increased in the gastric antrum after EA compared with the model group. Damaging the PVN resulted in reduced intragastric pressure (13.67 ± 3.72 vs 4.27 ± 1.48, P < 0.001). These data demonstrate that the signals induced by EA stimulation of acupoints RN12 and BL21 are detectable in the DVC and the PVN, and increase the levels of gastrointestinal hormones and their receptors in the PVN and gastric antrum to regulate gastric motility.
CONCLUSION: EA at RN12 and BL21 regulates gastric motility, which may be achieved through the PVN-DVC-vagus-gastric neural pathway.
Collapse
|
8
|
Expression of cholecystokinin receptors in colon cancer and the clinical correlation in Taiwan. Tumour Biol 2015; 37:4579-84. [DOI: 10.1007/s13277-015-4306-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022] Open
|
9
|
Ali S, Shourideh M, Koochekpour S. Identification of novel GRM1 mutations and single nucleotide polymorphisms in prostate cancer cell lines and tissues. PLoS One 2014; 9:e103204. [PMID: 25062106 PMCID: PMC4111546 DOI: 10.1371/journal.pone.0103204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/25/2014] [Indexed: 11/18/2022] Open
Abstract
Metabotropic glutamate receptor 1 (GRM1) signaling has been implicated in benign and malignant disorders including prostate cancer (PCa). To further explore the role of genetic alterations of GRM1 in PCa, we screened the entire human GRM1 gene including coding sequence, exon-intron junctions, and flanking untranslated regions (UTRs) for the presence of mutations and single nucleotide polymorphisms (SNPs) in several PCa cell lines and matched tumor-normal tissues from Caucasian Americans (CAs) and African Americans (AAs). We used bidirectional sequencing, allele-specific PCR, and bioinformatics to identify the genetic changes in GRM1 and to predict their functional role. A novel missense mutation identified at C1744T (582 Pro > Ser) position of GRM1 gene in a primary AA-PCa cell line (E006AA) was predicted to affect the protein stability and functions. Another novel mutation identified at exon-intron junction of exon-8 in C4-2B cell line resulted in alteration of the GRM1 splicing donor site. In addition, we found missense SNP at T2977C (993 Ser > Pro) position and multiple non-coding mutations and SNPs in 3'-UTR of GRM1 gene in PCa cell lines and tissues. These novel mutations may contribute to the disease by alterations in GRM1 gene splicing, receptor activation, and post-receptor downstream signaling.
Collapse
Affiliation(s)
- Shafat Ali
- Departments of Cancer Genetics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Mojgan Shourideh
- Departments of Cancer Genetics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Shahriar Koochekpour
- Departments of Cancer Genetics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Departments of Urology, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Blosser W, Vakana E, Wyss LV, Swearingen ML, Stewart J, Stancato L, Tate CM. A method to assess target gene involvement in angiogenesis in vitro and in vivo using lentiviral vectors expressing shRNA. PLoS One 2014; 9:e96036. [PMID: 24759702 PMCID: PMC3997504 DOI: 10.1371/journal.pone.0096036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 04/03/2014] [Indexed: 02/07/2023] Open
Abstract
Current methods to study angiogenesis in cancer growth and development can be difficult and costly, requiring extensive use of in vivo methodologies. Here, we utilized an in vitro adipocyte derived stem cell and endothelial colony forming cell (ADSC/ECFC) co-culture system to investigate the effect of lentiviral-driven shRNA knockdown of target genes compared to a non-targeting shRNA control on cord formation using High Content Imaging. Cord formation was significantly reduced following knockdown of the VEGF receptor VEGFR2 in VEGF-driven cord formation and the FGF receptor FGFR1 in basic FGF (bFGF)-driven cord formation. In addition, cord formation was significantly reduced following knockdown of the transcription factor forkhead box protein O1 (FOXO1), a protein with known positive effects on angiogenesis and blood vessel stabilization in VEGF- and bFGF-driven cord formation. Lentiviral shRNA also demonstrated utility for stable knockdown of VEGFR2 and FOXO1 in ECFCs, allowing for interrogation of protein knockdown effects on in vivo neoangiogenesis in a Matrigel plug assay. In addition to interrogating the effect of gene knockdown in endothelial cells, we utilized lentiviral shRNA to knockdown specificity protein 1 (SP1), a transcription factor involved in the expression of VEGF, in U-87 MG tumor cells to demonstrate the ability to analyze angiogenesis in vitro in a tumor-driven transwell cord formation system and in tumor angiogenesis in vivo. A significant reduction in tumor-driven cord formation, VEGF secretion, and in vivo tumor angiogenesis was observed upon SP1 knockdown. Therefore, evaluation of target gene knockdown effects in the in vitro co-culture cord formation assay in the ADSC/ECFC co-culture, ECFCs alone, and in tumor cells translated directly to in vivo results, indicating the in vitro method as a robust, cost-effective and efficient in vitro surrogate assay to investigate target gene involvement in endothelial or tumor cell function in angiogenesis.
Collapse
Affiliation(s)
- Wayne Blosser
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Eliza Vakana
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Lisa V. Wyss
- Advanced Testing Laboratories, Cincinnati, Ohio, United States of America
| | - Michelle L. Swearingen
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Julie Stewart
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Louis Stancato
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Courtney M. Tate
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| |
Collapse
|
11
|
Misund K, Selvik LKM, Rao S, Nørsett K, Bakke I, Sandvik AK, Lægreid A, Bruland T, Prestvik WS, Thommesen L. NR4A2 is regulated by gastrin and influences cellular responses of gastric adenocarcinoma cells. PLoS One 2013; 8:e76234. [PMID: 24086717 PMCID: PMC3785466 DOI: 10.1371/journal.pone.0076234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/21/2013] [Indexed: 01/18/2023] Open
Abstract
The peptide hormone gastrin is known to play a role in differentiation, growth and apoptosis of cells in the gastric mucosa. In this study we demonstrate that gastrin induces Nuclear Receptor 4A2 (NR4A2) expression in the adenocarcinoma cell lines AR42J and AGS-GR, which both possess the gastrin/CCK2 receptor. In vivo, NR4A2 is strongly expressed in the gastrin responsive neuroendocrine ECL cells in normal mucosa, whereas gastric adenocarcinoma tissue reveals a more diffuse and variable expression in tumor cells. We show that NR4A2 is a primary early transient gastrin induced gene in adenocarcinoma cell lines, and that NR4A2 expression is negatively regulated by inducible cAMP early repressor (ICER) and zinc finger protein 36, C3H1 type-like 1 (Zfp36l1), suggesting that these gastrin regulated proteins exert a negative feedback control of NR4A2 activated responses. FRAP analyses indicate that gastrin also modifies the nucleus-cytosol shuttling of NR4A2, with more NR4A2 localized to cytoplasm upon gastrin treatment. Knock-down experiments with siRNA targeting NR4A2 increase migration of gastrin treated adenocarcinoma AGS-GR cells, while ectopically expressed NR4A2 increases apoptosis and hampers gastrin induced invasion, indicating a tumor suppressor function of NR4A2. Collectively, our results uncover a role of NR4A2 in gastric adenocarcinoma cells, and suggest that both the level and the localization of NR4A2 protein are of importance regarding the cellular responses of these cells.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Adenocarcinoma/metabolism
- Blotting, Western
- Butyrate Response Factor 1/metabolism
- Cell Line, Tumor
- Feedback, Physiological/physiology
- Flow Cytometry
- Fluorescence Recovery After Photobleaching
- Gastrins/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/physiology
- Gene Knockdown Techniques
- Humans
- Immunohistochemistry
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Stomach Neoplasms/metabolism
Collapse
Affiliation(s)
- Kristine Misund
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Linn-Karina Myrland Selvik
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Faculty of Technology, Sør-Trøndelag University College, Trondheim, Norway
| | - Shalini Rao
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Faculty of Technology, Sør-Trøndelag University College, Trondheim, Norway
| | - Kristin Nørsett
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingunn Bakke
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Arne K. Sandvik
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Gastroenterology and Hepatology, Medical Clinic, St. Olav’s University Hospital, Trondheim, Norway
| | - Astrid Lægreid
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Torunn Bruland
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Wenche S. Prestvik
- Faculty of Technology, Sør-Trøndelag University College, Trondheim, Norway
| | - Liv Thommesen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Faculty of Technology, Sør-Trøndelag University College, Trondheim, Norway
- * E-mail:
| |
Collapse
|
12
|
Selvik LKM, Fjeldbo CS, Flatberg A, Steigedal TS, Misund K, Anderssen E, Doseth B, Langaas M, Tripathi S, Beisvag V, Lægreid A, Thommesen L, Bruland T. The duration of gastrin treatment affects global gene expression and molecular responses involved in ER stress and anti-apoptosis. BMC Genomics 2013; 14:429. [PMID: 23805861 PMCID: PMC3698217 DOI: 10.1186/1471-2164-14-429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 06/19/2013] [Indexed: 01/13/2023] Open
Abstract
Background How cells decipher the duration of an external signal into different transcriptional outcomes is poorly understood. The hormone gastrin can promote a variety of cellular responses including proliferation, differentiation, migration and anti-apoptosis. While gastrin in normal concentrations has important physiological functions in the gastrointestine, prolonged high levels of gastrin (hypergastrinemia) is related to pathophysiological processes. Results We have used genome-wide microarray time series analysis and molecular studies to identify genes that are affected by the duration of gastrin treatment in adenocarcinoma cells. Among 403 genes differentially regulated in transiently (gastrin removed after 1 h) versus sustained (gastrin present for 14 h) treated cells, 259 genes upregulated by sustained gastrin treatment compared to untreated controls were expressed at lower levels in the transient mode. The difference was subtle for early genes like Junb and c-Fos, but substantial for delayed and late genes. Inhibition of protein synthesis by cycloheximide was used to distinguish between primary and secondary gastrin regulated genes. The majority of gastrin upregulated genes lower expressed in transiently treated cells were primary genes induced independently of de novo protein synthesis. This indicates that the duration effect of gastrin treatment is mainly mediated via post-translational signalling events, while a smaller fraction of the differentially expressed genes are regulated downstream of primary transcriptional events. Indeed, sustained gastrin treatment specifically induced prolonged ERK1/2 activation and elevated levels of the AP-1 subunit protein JUNB. Enrichment analyses of the differentially expressed genes suggested that endoplasmic reticulum (ER) stress and survival is affected by the duration of gastrin treatment. Sustained treatment exerted an anti-apoptotic effect on serum starvation-induced apoptosis via a PKC-dependent mechanism. In accordance with this, only sustained treatment induced anti-apoptotic genes like Clu, Selm and Mcl1, while the pro-apoptotic gene Casp2 was more highly expressed in transiently treated cells. Knockdown studies showed that JUNB is involved in sustained gastrin induced expression of the UPR/ER stress related genes Atf4, Herpud1 and Chac1. Conclusion The duration of gastrin treatment affects both intracellular signalling mechanisms and gene expression, and ERK1/2 and AP-1 seem to play a role in converting different durations of gastrin treatment into distinct cellular responses.
Collapse
Affiliation(s)
- Linn-Karina M Selvik
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology-NTNU, Trondheim N-7489, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
C-terminally amidated gastrins act at cholecystokinin-2 receptors (CCK2R), which are normally expressed by gastric parietal and enterochromaffin-like (ECL) cells and smooth muscle; there is also extensive expression in the CNS where the main endogenous ligand is cholecystokinin. A variety of neoplasms express CCK2R, or splice variants, including neuroendocrine, pancreatic, medullary thyroid and lung cancers. Other products of the gastrin gene (progastrin, the Gly-gastrins) may stimulate cell proliferation but are not CCK2R ligands. Depending on the cell type, stimulation of CCK2R evokes secretion, increases proliferation and cell migration, inhibits apoptosis, and controls the expression of various genes. These effects are mediated by increased intracellular calcium and activation of protein kinase C, MAPkinase and other protein kinase cascades. There has been recent progress in developing CCK2R ligands that can be used for imaging tumours expressing the receptor. New antagonists have also been developed, and there is scope for using these for suppression of gastric acid and for treatment of neuroendocrine and other CCK2R-expressing tumours.
Collapse
|
14
|
Matters GL, Clawson GA. A Speculative Role for Stromal Gastrin Signaling in Development and Dissemination of Pancreatic Ductal Adenocarcinoma. ACTA ACUST UNITED AC 2013; Suppl 4:003. [PMID: 25346875 PMCID: PMC4208305 DOI: 10.4172/2165-7092.s4-003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The peptide growth factor gastrin and its receptor, the G-protein coupled cholecystokinin receptor type B (CCKBR), play an integral role in the growth and progression of pancreatic ductal adenocarcinoma (PDAC). Gastrin immunoreactivity is found in the fetal pancreas but its expression is not detected in normal pancreas after birth, except when it is re-expressed in malignant lesions.
Collapse
Affiliation(s)
- Gail L Matters
- Department of Biochemistry and Molecular Biology, Hershey Medical Center, Pennsylvania State University, Hershey, PA, USA
| | - Gary A Clawson
- Department of Biochemistry and Molecular Biology, Hershey Medical Center, Pennsylvania State University, Hershey, PA, USA ; Gittlen Cancer Research Foundation and Departments of Pathology, Biochemistry and Molecular Biology, USA
| |
Collapse
|
15
|
Esseltine JL, Willard MD, Wulur IH, Lajiness ME, Barber TD, Ferguson SSG. Somatic mutations in GRM1 in cancer alter metabotropic glutamate receptor 1 intracellular localization and signaling. Mol Pharmacol 2013; 83:770-80. [PMID: 23303475 DOI: 10.1124/mol.112.081695] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The activity of metabotropic glutamate receptors (mGluRs) is known to be altered as the consequence of neurodegenerative diseases such as Alzheimer, Parkinson, and Huntington disease. However, little attention has been paid to this receptor family's potential link with cancer. Recent reports indicate altered mGluR signaling in various tumor types, and several somatic mutations in mGluR1a in lung cancer were recently described. Group 1 mGluRs (mGluR1a and mGluR5) are coupled primarily to Gαq, leading to the activation of phospholipase C and to the formation of diacylglycerol and inositol 1,4,5-trisphosphate, leading to the release of Ca(2+) from intracellular stores and protein kinase C (PKC) activation. In the present study, we investigated the intracellular localization and G protein-dependent and -independent signaling of eight GRM1 (mGluR1a) somatic mutations. Two mutants found in close proximity to the glutamate binding domain and cysteine-rich region (R375G and G396V) show both decreased cell surface expression and basal inositol phosphate (IP) formation. However, R375G shows increased ERK1/2 activation in response to quisqualate stimulation. A mutant located directly in the glutamate binding site (A168V) shows increased quisqualate-induced IP formation and, similar to R375G, increased ERK1/2 activation. Additionally, a mutation in the G protein-coupled receptor kinase 2/PKC regulatory region (R696W) shows decreased ERK1/2 activation, whereas a mutation within the Homer binding region in the carboxyl-terminal tail (P1148L) does not alter the intracellular localization of the receptor, but it induces changes in cellular morphology and exhibits reduced ERK1/2 activation. Taken together, these results suggest that mGluR1a signaling in cancer is disrupted by somatic mutations with multiple downstream consequences.
Collapse
Affiliation(s)
- Jessica L Esseltine
- Molecular Brain Research Group, Robarts Research Institute and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|