1
|
Hong WC, Kim M, Kim JH, Kang HW, Fang S, Jung HS, Kwon W, Jang JY, Kim HJ, Park JS. The FOXP1-ABCG2 axis promotes the proliferation of cancer stem cells and induces chemoresistance in pancreatic cancer. Cancer Gene Ther 2025:10.1038/s41417-025-00896-7. [PMID: 40169859 DOI: 10.1038/s41417-025-00896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 04/03/2025]
Abstract
Pancreatic cancer is an aggressive disease with low survival and high recurrence rates. A major obstacle in treating pancreatic cancer is the frequent development of chemoresistance to the standard therapeutic drug, gemcitabine. One mechanism by which pancreatic cancer develops chemoresistance is through the proliferation of cancer stem cells (CSC). However, the mechanisms regulating stemness in chemoresistant tumors remain unclear. Here, we found that the expression of the transcription factor Forkhead Box P1 (FOXP1) was elevated in chemoresistant pancreatic cancer and crucial for establishing CSC characteristics. Silencing FOXP1 reduced the expressions of stemness-associated genes and diminished the formation of both spheroids and colonies, highlighting the crucial role of FOXP1 in regulating stemness in chemoresistant tumor cells. Mechanistically, we discovered that FOXP1 regulates the expression of ATP-binding cassette superfamily G member 2 (ABCG2), which induces the efflux of gemcitabine. Knockdown of FOXP1 reduced the expression of ABCG2, resulting in decreased proliferation and increased sensitivity to gemcitabine. Moreover, the inhibition of FOXP1 in orthotopic mouse models reduced tumor growth and proliferation, and enhanced sensitivity to gemcitabine. Together, our data reveal FOXP1 as a potent oncogene that promotes CSC growth in chemoresistant pancreatic cancer.
Collapse
Affiliation(s)
- Woosol Chris Hong
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minsoo Kim
- Korea Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Ju Hyun Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Woong Kang
- Korea Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Sungsoon Fang
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye-Sol Jung
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wooil Kwon
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo Jung Kim
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Joon Seong Park
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Su H, Huang L, Zhou J, Yang G. Prostate cancer stem cells and their targeted therapies. Front Cell Dev Biol 2024; 12:1410102. [PMID: 39175878 PMCID: PMC11338935 DOI: 10.3389/fcell.2024.1410102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Prostate cancer (PCa) is the most common malignancy among men worldwide. Through androgen receptor signaling inhibitor (ARSI) treatment, patients eventually succumb to castration-resistant prostate cancer (CRPC). For this, the prostate cancer stem cells (PCSCs), as a minor population of tumor cells that can promote tumor relapse, ARSI resistance, and disease progression, are gaining attention. Therefore, specific therapy targeting PCSCs has momentum. This study reviewed the identification and characterization of PCSCs and PCSC-based putative biomarkers and summarized their mechanisms of action. We further discussed clinical trials of novel therapeutic interventions focused on PCSC-related pathways, the PCSC microenvironment, cutting-edge miRNA therapy, and immunotherapy approaches from a mechanistic standpoint. This review provides updated insights into PCSC plasticity, identifying new PCSC biomarkers and optimized treatments for patients with advanced PCa.
Collapse
Affiliation(s)
- Huilan Su
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Song WH, Lim YS, Kim JE, Kang HY, Lee C, Rajbongshi L, Hwang SY, Oh SO, Kim BS, Lee D, Song YJ, Yoon S. A Marine Collagen-Based 3D Scaffold for In Vitro Modeling of Human Prostate Cancer Niche and Anti-Cancer Therapeutic Discovery. Mar Drugs 2024; 22:295. [PMID: 39057404 PMCID: PMC11277582 DOI: 10.3390/md22070295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recently, the need to develop a robust three-dimensional (3D) cell culture system that serves as a valuable in vitro tumor model has been emphasized. This system should closely mimic the tumor growth behaviors observed in vivo and replicate the key elements and characteristics of human tumors for the effective discovery and development of anti-tumor therapeutics. Therefore, in this study, we developed an effective 3D in vitro model of human prostate cancer (PC) using a marine collagen-based biomimetic 3D scaffold. The model displayed distinctive molecular profiles and cellular properties compared with those of the 2D PC cell culture. This was evidenced by (1) increased cell proliferation, migration, invasion, colony formation, and chemoresistance; (2) upregulated expression of crucial multidrug-resistance- and cancer-stemness-related genes; (3) heightened expression of key molecules associated with malignant progressions, such as epithelial-mesenchymal transition transcription factors, Notch, matrix metalloproteinases, and pluripotency biomarkers; (4) robust enrichment of prostate cancer stem cells (CSCs); and (5) enhanced expression of integrins. These results suggest that our 3D in vitro PC model has the potential to serve as a research platform for studying PC and prostate CSC biology, as well as for screening novel therapies targeting PC and prostate CSCs.
Collapse
Affiliation(s)
- Won Hoon Song
- Department of Urology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Ye Seon Lim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Ji-Eun Kim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Hae Yeong Kang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
| | - Changyong Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Lata Rajbongshi
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Seon Yeong Hwang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea;
| | - Yong Jung Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| |
Collapse
|
4
|
Tatar C, Avci CB, Acikgoz E, Oktem G. Doxorubicin-induced senescence promotes resistance to cell death by modulating genes associated with apoptotic and necrotic pathways in prostate cancer DU145 CD133 +/CD44 + cells. Biochem Biophys Res Commun 2023; 680:194-210. [PMID: 37748252 DOI: 10.1016/j.bbrc.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Cancer stem cells (CSCs) are the most important cause of cancer treatment failure. Traditional cancer treatments, such as chemotherapy and radiotherapy, damage healthy cells alongside malignant cells, leading to severe adverse effects. Therefore, inducing cellular senescence without triggering apoptosis, which further damages healthy cells, may be an alternative strategy. However, there is insufficient knowledge regarding senescence induction in CSCs that show resistance to treatment and stemness properties. The present study aims to elucidate the effects of senescence induction on proliferation, cell cycle, and apoptosis in prostate CSCs and non-CSCs. Prostate CSCs were isolated from DU145 cancer cells using the FACS method. Subsequently, senescence induction was performed in RWPE-1, DU145, prostate CSCs, and non-CSCs by using different concentrations of Doxorubicin (DOX). Cellular senescence was detected using the senescence markers SA-β-gal, Ki67, and senescence-associated heterochromatin foci (SAHF). The effects of senescence on cell cycle and apoptosis were evaluated using the Muse Cell Analyzer, and genes in signaling pathways associated with the apoptotic/necrotic pathway were analyzed by real-time PCR. Prostate CSCs were isolated with 95.6 ± 1.4% purity according to CD133+/CD44+ characteristics, and spheroid formation belonging to stem cells was observed. After DOX-induced senescence, we observed morphological changes, SA-β-gal positivity, SAHF, and the lack of Ki67 in senescent cells. Furthermore; we detected G2/M cell cycle arrest and downregulation of various apoptosis-related genes in senescent prostate CSCs. Our results showed that DOX is a potent inducer of senescence for prostate CSCs, inhibits proliferation by arresting the cell cycle, and senescent prostate CSCs develop resistance to apoptosis.
Collapse
Affiliation(s)
- Cansu Tatar
- Department of Stem Cell, Institute of Health Science, Ege University, 35100, Izmir, Turkey.
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, 65080, Turkey.
| | - Gulperi Oktem
- Department of Stem Cell, Institute of Health Science, Ege University, 35100, Izmir, Turkey; Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
| |
Collapse
|
5
|
Zaarour RF, Ribeiro M, Azzarone B, Kapoor S, Chouaib S. Tumor microenvironment-induced tumor cell plasticity: relationship with hypoxic stress and impact on tumor resistance. Front Oncol 2023; 13:1222575. [PMID: 37886168 PMCID: PMC10598765 DOI: 10.3389/fonc.2023.1222575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The role of tumor interaction with stromal components during carcinogenesis is crucial for the design of efficient cancer treatment approaches. It is widely admitted that tumor hypoxic stress is associated with tumor aggressiveness and thus impacts susceptibility and resistance to different types of treatments. Notable biological processes that hypoxia functions in include its regulation of tumor heterogeneity and plasticity. While hypoxia has been reported as a major player in tumor survival and dissemination regulation, the significance of hypoxia inducible factors in cancer stem cell development remains poorly understood. Several reports indicate that the emergence of cancer stem cells in addition to their phenotype and function within a hypoxic tumor microenvironment impacts cancer progression. In this respect, evidence showed that cancer stem cells are key elements of intratumoral heterogeneity and more importantly are responsible for tumor relapse and escape to treatments. This paper briefly reviews our current knowledge of the interaction between tumor hypoxic stress and its role in stemness acquisition and maintenance. Our review extensively covers the influence of hypoxia on the formation and maintenance of cancer stem cells and discusses the potential of targeting hypoxia-induced alterations in the expression and function of the so far known stem cell markers in cancer therapy approaches. We believe that a better and integrated understanding of the effect of hypoxia on stemness during carcinogenesis might lead to new strategies for exploiting hypoxia-associated pathways and their targeting in the clinical setting in order to overcome resistance mechanisms. More importantly, at the present time, efforts are oriented towards the design of innovative therapeutical approaches that specifically target cancer stem cells.
Collapse
Affiliation(s)
- RF. Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - M. Ribeiro
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - B. Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - S. Kapoor
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - S. Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, Villejuif, France
| |
Collapse
|
6
|
Koukourakis IM, Platoni K, Kouloulias V, Arelaki S, Zygogianni A. Prostate Cancer Stem Cells: Biology and Treatment Implications. Int J Mol Sci 2023; 24:14890. [PMID: 37834336 PMCID: PMC10573523 DOI: 10.3390/ijms241914890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Stem cells differentiate into mature organ/tissue-specific cells at a steady pace under normal conditions, but their growth can be accelerated during the process of tissue healing or in the context of certain diseases. It is postulated that the proliferation and growth of carcinomas are sustained by the presence of a vital cellular compartment resembling stem cells residing in normal tissues: 'stem-like cancer cells' or cancer stem cells (CSCs). Mutations in prostate stem cells can lead to the formation of prostate cancer. Prostate CSCs (PCSCs) have been identified and partially characterized. These express surface markers include CD44, CD133, integrin α2β1, and pluripotency factors like OCT4, NANOG, and SOX2. Several signaling pathways are also over-activated, including Notch, PTEN/Akt/PI3K, RAS-RAF-MEK-ERK and HH. Moreover, PCSCs appear to induce resistance to radiotherapy and chemotherapy, while their presence has been linked to aggressive cancer behavior and higher relapse rates. The development of treatment policies to target PCSCs in tumors is appealing as radiotherapy and chemotherapy, through cancer cell killing, trigger tumor repopulation via activated stem cells. Thus, blocking this reactive stem cell mobilization may facilitate a positive outcome through cytotoxic treatment.
Collapse
Affiliation(s)
- Ioannis M. Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece; (I.M.K.); (A.Z.)
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 12462 Athens, Greece
| | - Vassilis Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 12462 Athens, Greece;
| | - Stella Arelaki
- Translational Functional Cancer Genomics, National Center for Tumor Diseases, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece; (I.M.K.); (A.Z.)
| |
Collapse
|
7
|
Xie C, Wang Z, Ba Y, Aguilar J, Kyan A, Zhong L, Hao J. BMP signaling inhibition overcomes chemoresistance of prostate cancer. Am J Cancer Res 2023; 13:4073-4086. [PMID: 37818054 PMCID: PMC10560954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/17/2023] [Indexed: 10/12/2023] Open
Abstract
Chemoresistance is a major therapeutic challenge to prostate cancer and its underlying molecular mechanism is poorly understood. Previously, it has been suggested that bone morphogenetic protein (BMP) signaling is down-regulated during the prostate cancer progression from the early androgen-sensitive stage to the metastatic castration-resistant stage. However, no literature reports are available for BMP signaling in more advanced-chemoresistant prostate cancer. In this study, we found the expression levels of the BMP type I receptor members, Activin-like kinase-2 (ALK2) and Activin-like kinase-3 (ALK3), were significantly higher in the chemoresistant prostate cancer cells than those in the chemosensitive prostate cancer cells. In addition, the phospho-Smad1/5/9 proteins, the pivotal intracellular effectors of the BMP signaling, were notably elevated in the chemoresistant prostate cancer cells over the chemosensitive prostate cancer cells, indicating that BMP signaling is highly activated in the chemoresistant prostate cancer cells. We also found that BMP signaling inhibition with either DMH1 or the knockdown of ALK2/ALK3 sensitized chemoresistant prostate cancer cells to the chemotherapy drug docetaxel in a dose-dependent manner. Our further study indicates that DMH1 suppressed the migration and invasion of chemoresistant prostate cancer cells in vitro, and attenuated chemoresistant prostate tumor growth in the mouse xenograft model in vivo. In addition, we showed that DMH1 disrupted the sphere formation in DU145-TxR and PC3-TxR cells, and suppressed the expression of marker genes of the cancer stem cells (CSCs). In conclusion, our study demonstrates that BMP signaling is associated with prostate cancer chemoresistance and BMP signaling inhibition effectively overcomes the cancer chemoresistance potentially through the disruption of CSCs' stemness.
Collapse
Affiliation(s)
- Chen Xie
- College of Veterinary Medicine, Western University of Health SciencesPomona, CA 91766, USA
| | - Zhijun Wang
- Department of Clinical Pharmacy Practice, School of Pharmacy & Pharmaceutical Sciences, University of CaliforniaIrvine, CA 92697, USA
| | - Yong Ba
- Department of Chemistry and Biochemistry, California State UniversityLos Angeles, CA 90032, USA
| | - Jose Aguilar
- College of Veterinary Medicine, Western University of Health SciencesPomona, CA 91766, USA
| | - Austin Kyan
- College of Veterinary Medicine, Western University of Health SciencesPomona, CA 91766, USA
| | - Li Zhong
- College of Osteopathic Medicine of the Pacific, Western University of Health SciencesPomona, CA 91766, USA
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health SciencesPomona, CA 91766, USA
| |
Collapse
|
8
|
Al Salhi Y, Sequi MB, Valenzi FM, Fuschi A, Martoccia A, Suraci PP, Carbone A, Tema G, Lombardo R, Cicione A, Pastore AL, De Nunzio C. Cancer Stem Cells and Prostate Cancer: A Narrative Review. Int J Mol Sci 2023; 24:ijms24097746. [PMID: 37175453 PMCID: PMC10178135 DOI: 10.3390/ijms24097746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer stem cells (CSCs) are a small and elusive subpopulation of self-renewing cancer cells with the remarkable ability to initiate, propagate, and spread malignant disease. In the past years, several authors have focused on the possible role of CSCs in PCa development and progression. PCa CSCs typically originate from a luminal prostate cell. Three main pathways are involved in the CSC development, including the Wnt, Sonic Hedgehog, and Notch signaling pathways. Studies have observed an important role for epithelial mesenchymal transition in this process as well as for some specific miRNA. These studies led to the development of studies targeting these specific pathways to improve the management of PCa development and progression. CSCs in prostate cancer represent an actual and promising field of research.
Collapse
Affiliation(s)
- Yazan Al Salhi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Manfredi Bruno Sequi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Fabio Maria Valenzi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Andrea Fuschi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Alessia Martoccia
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Paolo Pietro Suraci
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Antonio Carbone
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Giorgia Tema
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Riccardo Lombardo
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Antonio Cicione
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Antonio Luigi Pastore
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Cosimo De Nunzio
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
9
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
10
|
Linke D, Donix L, Peitzsch C, Erb HHH, Dubrovska A, Pfeifer M, Thomas C, Fuessel S, Erdmann K. Comprehensive Evaluation of Multiple Approaches Targeting ABCB1 to Resensitize Docetaxel-Resistant Prostate Cancer Cell Lines. Int J Mol Sci 2022; 24:ijms24010666. [PMID: 36614114 PMCID: PMC9820728 DOI: 10.3390/ijms24010666] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Docetaxel (DTX) is a mainstay in the treatment of metastatic prostate cancer. Failure of DTX therapy is often associated with multidrug resistance caused by overexpression of efflux membrane transporters of the ABC family such as the glycoprotein ABCB1. This study investigated multiple approaches targeting ABCB1 to resensitize DTX-resistant (DTXR) prostate cancer cell lines. In DU145 DTXR and PC-3 DTXR cells as well as age-matched parental controls, the expression of selected ABC transporters was analyzed by quantitative PCR, Western blot, flow cytometry and immunofluorescence. ABCB1 effluxing activity was studied using the fluorescent ABCB1 substrate rhodamine 123. The influence of ABCB1 inhibitors (elacridar, tariquidar), ABCB1-specific siRNA and inhibition of post-translational glycosylation on DTX tolerance was assessed by cell viability and colony formation assays. In DTXR cells, only ABCB1 was highly upregulated, which was accompanied by a strong effluxing activity and additional post-translational glycosylation of ABCB1. Pharmacological inhibition and siRNA-mediated knockdown of ABCB1 completely resensitized DTXR cells to DTX. Inhibition of glycosylation with tunicamycin affected DTX resistance partially in DU145 DTXR cells, which was accompanied by a slight intracellular accumulation and decreased effluxing activity of ABCB1. In conclusion, DTX resistance can be reversed by various strategies with small molecule inhibitors representing the most promising and feasible approach.
Collapse
Affiliation(s)
- Dinah Linke
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lukas Donix
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), 01307 Dresden, Germany
| | - Holger H. H. Erb
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Manuel Pfeifer
- Institute of Legal Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Thomas
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Susanne Fuessel
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Correspondence: ; Tel.: +49-351-458-14544
| | - Kati Erdmann
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| |
Collapse
|
11
|
Identification and Validation of Three Hub Genes Involved in Cell Proliferation and Prognosis of Castration-Resistant Prostate Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8761112. [PMID: 36035209 PMCID: PMC9402298 DOI: 10.1155/2022/8761112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 01/17/2023]
Abstract
Background The acquisition of castration resistance is lethal and inevitable in most prostate cancer patients under hormone therapy. However, effective biomarkers and therapeutic targets for castration-resistant prostate cancer remain to be defined. Methods Comprehensive bioinformatics tools were used to screen hub genes in castration-resistant prostate cancer and were verified in androgen-dependent prostate cancer and castration-resistant prostate cancer in TCGA and the SU2C/PCF Dream Team database, respectively. Gene set enrichment analysis and in vitro experiments were performed to determine the potential functions of hub genes involved in castration-resistant prostate cancer progression. Results Three hub genes were screened out by bioinformatics analysis: MCM4, CENPI, and KNTC1. These hub genes were upregulated in castration-resistant prostate cancer and showed high diagnostic and prognostic value. Moreover, the expression levels of the hub genes were positively correlated with neuroendocrine prostate cancer scores, which represent the degree of castration-resistant prostate cancer aggression. Meanwhile, in vitro experiments confirmed that hub gene expression was increased in castration-resistant prostate cancer cell lines and that inhibition of hub genes hindered cell cycle transition, resulting in suppression of castration-resistant prostate cancer cell proliferation, which confirmed the gene set enrichment analysis results. Conclusions MCM4, CENPI, and KNTC1 could serve as candidate diagnostic and prognostic biomarkers of castration-resistant prostate cancer and may provide potential preventive and therapeutic targets.
Collapse
|
12
|
Wolf I, Gratzke C, Wolf P. Prostate Cancer Stem Cells: Clinical Aspects and Targeted Therapies. Front Oncol 2022; 12:935715. [PMID: 35875084 PMCID: PMC9304860 DOI: 10.3389/fonc.2022.935715] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite decades of research and successful improvements in diagnosis and therapy, prostate cancer (PC) remains a major challenge. In recent years, it has become clear that PC stem cells (PCSCs) are the driving force in tumorigenesis, relapse, metastasis, and therapeutic resistance of PC. In this minireview, we discuss the impact of PCSCs in the clinical practice. Moreover, new therapeutic approaches to combat PCSCs are presented with the aim to achieve an improved outcome for patients with PC.
Collapse
Affiliation(s)
- Isis Wolf
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Philipp Wolf,
| |
Collapse
|
13
|
Gangavarapu KJ, Jowdy PF, Foster BA, Huss WJ. Role of prostate stem cells and treatment strategies in benign prostate hyperplasia. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:154-169. [PMID: 35874288 PMCID: PMC9301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Benign prostate hyperplasia (BPH) is a progressive disease with a direct correlation between incidence and age. Since the treatment and management of BPH involve harmful side effects and decreased quality of life for the patient, the primary focus of research should be to find better and longer-lasting therapeutic options. The mechanisms regulating prostate stem cells in development can be exploited to decrease prostate growth. BPH is defined as the overgrowth of the prostate, and BPH is often diagnosed when lower urinary tract symptoms (LUTS) of urine storage or voiding symptoms cause patients to seek treatment. While multiple factors are involved in the hyperplastic growth of the stromal and epithelial compartments of the prostate, the clonal proliferation of stem cells is considered one of the main reasons for BPH initiation and regrowth of the prostate after therapies for BPH fail. Several theories explain possible reasons for the involvement of stem cells in the development, progression, and pathogenesis of BPH. The aim of the current review is to discuss current literature on the fundamentals of prostate development and the role of stem cells in BPH. This review examines the rationale for the hypothesis that unregulated stem cell properties can lead to BPH and therapeutic targeting of stem cells may reduce treatment-related side effects and prevent the regrowth of the prostate.
Collapse
Affiliation(s)
- Kalyan J Gangavarapu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Peter F Jowdy
- Department of Dermatology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Jacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffalo, NY 14203, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| |
Collapse
|
14
|
Cancer Stem Cell Markers for Urinary Carcinoma. Stem Cells Int 2022; 2022:3611677. [PMID: 35342431 PMCID: PMC8941535 DOI: 10.1155/2022/3611677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer stem cell (CSC) refers to cancer cells with stem cell properties, that is, they have the ability of “self-renewal” and “differentiation.” Cancer stem cells exist in cancer cells and are the “culprit” of cancer recurrence and metastasis. It is difficult to be found because of its small amount, and it is difficult for anticancer drugs to produce effects on it. At present, the isolation and identification of cancer stem cells from many solid tumors are still quite difficult, mainly due to the lack of specific molecular markers of cancer stem cells. In this review, cancer stem cell surface markers and functional markers in urinary system were summarized. These markers can provide molecular targets for cancer therapy.
Collapse
|
15
|
Lazertinib improves the efficacy of chemotherapeutic drugs in ABCB1 or ABCG2 overexpression cancer cells in vitro, in vivo, and ex vivo. Mol Ther Oncolytics 2022; 24:636-649. [PMID: 35284628 PMCID: PMC8897717 DOI: 10.1016/j.omto.2022.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
Abstract
Multidrug resistance (MDR) is the major cause of chemotherapy failure, which is usually caused by the overexpression of ATP-binding cassette (ABC) transporters such as ABCB1 and ABCG2. To date, no MDR modulator has been clinically approved. Here, we found that lazertinib (YH25448; a novel third-generation tyrosine kinase inhibitor [TKI]) could enhance the anticancer efficacy of MDR transporter substrate anticancer drugs in vitro,in vivo, and ex vivo. Mechanistically, lazertinib was shown to inhibit the drug efflux activities of ABCB1 and ABCG2 and thus increase the intracellular accumulation of the transporter substrate anticancer drug. Moreover, lazertinib was found to stimulate the ATPase activity of ABCB1/ABCG2 and inhibit the photolabeling of the transporters by 125I-iodoarylazidoprazosin (IAAP). However, lazertinib neither changed the expression or locolization of ABCB1 and ABCG2 nor blocked the signal pathway of Akt or Erk1/2 at a drug concentration effective for MDR reversal. Overall, our results demonstrate that lazertinib effectively reverses ABCB1- or ABCG2-mediated MDR by competitively binding to the ATP-binding site and inhibiting drug efflux function. This is the first report demonstrating the novel combined use of lazertinib and conventional chemotherapeutical drugs to overcome MDR in ABCB1/ABCG2-overexpressing cancer cells.
Collapse
|
16
|
Yamamoto S, Fukuhara H, Seki H, Kawada C, Nakayama T, Karashima T, Ogura SI, Inoue K. Predictors of therapeutic efficacy of 5-aminolevulinic acid-based photodynamic therapy in human prostate cancer. Photodiagnosis Photodyn Ther 2021; 35:102452. [PMID: 34303032 DOI: 10.1016/j.pdpdt.2021.102452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a minimally invasive cancer therapy. However, its therapeutic efficacy for prostate cancer is not yet fully understood. In this study, the predictors of therapeutic efficacy of 5-aminolevulinic acid-based PDT (ALA-PDT) on prostate cancer cells are investigated. MATERIALS AND METHODS The human prostate cancer cell lines, PC-3, 22Rv1, DU145, and LNCap were used to investigate the effects of ALA-PDT on protoporphyrin IX (PpIX) intracellular accumulation, which was measured by flow cytometry. The cytotoxicity of ALA-PDT was evaluated by MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay. The levels of porphyrin metabolism-related enzyme and transporter mRNA were comprehensively evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was evaluated by Western blot. A xenograft model was created using PC-3 and 22Rv1, and then, pathological analysis was performed to determine the therapeutic effect of ALA-PDT RESULTS: PC-3 and LNCap cells showed high accumulation of PpIX and high sensitivity to ALA-PDT, while 22Rv1 and DU145 showed low accumulation of PpIX and low sensitivity to ALA-PDT. ALA-PDT-induced cytotoxicity correlated negatively with PpIX accumulation. The in vitro assays identified the ATP-binding cassette transporter subfamily G2 (ABCG2) transporter dimer as a predictor of treatment response. In vivo immunohistochemical staining of ABCG2 transporter showed low expression in PC-3 cells and high expression in 22Rv1 cells, and ALA-PDT-induced tumor tissue degeneration was greater in PC-3 cells than in 22Rv1 cells. CONCLUSION The ABCG2 transporter is a useful predictor of the therapeutic effect of ALA-PDT on human prostate cancer cells.
Collapse
Affiliation(s)
- Shinkuro Yamamoto
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| | - Hideo Fukuhara
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan; Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| | - Hitomi Seki
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| | - Chiaki Kawada
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| | - Taku Nakayama
- Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Takashi Karashima
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| | - Shun-Ichiro Ogura
- Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan; Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| |
Collapse
|
17
|
Mohan A, Raj Rajan R, Mohan G, Kollenchery Puthenveettil P, Maliekal TT. Markers and Reporters to Reveal the Hierarchy in Heterogeneous Cancer Stem Cells. Front Cell Dev Biol 2021; 9:668851. [PMID: 34150761 PMCID: PMC8209516 DOI: 10.3389/fcell.2021.668851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
A subpopulation within cancer, known as cancer stem cells (CSCs), regulates tumor initiation, chemoresistance, and metastasis. At a closer look, CSCs show functional heterogeneity and hierarchical organization. The present review is an attempt to assign marker profiles to define the functional heterogeneity and hierarchical organization of CSCs, based on a series of single-cell analyses. The evidences show that analogous to stem cell hierarchy, self-renewing Quiescent CSCs give rise to the Progenitor CSCs with limited proliferative capacity, and later to a Progenitor-like CSCs, which differentiates to Proliferating non-CSCs. Functionally, the CSCs can be tumor-initiating cells (TICs), drug-resistant CSCs, or metastasis initiating cells (MICs). Although there are certain marker profiles used to identify CSCs of different cancers, molecules like CD44, CD133, ALDH1A1, ABCG2, and pluripotency markers [Octamer binding transcriptional factor 4 (OCT4), SOX2, and NANOG] are used to mark CSCs of a wide range of cancers, ranging from hematological malignancies to solid tumors. Our analysis of the recent reports showed that a combination of these markers can demarcate the heterogeneous CSCs in solid tumors. Reporter constructs are widely used for easy identification and quantification of marker molecules. In this review, we discuss the suitability of reporters for the widely used CSC markers that can define the heterogeneous CSCs. Since the CSC-specific functions of CD44 and CD133 are regulated at the post-translational level, we do not recommend the reporters for these molecules for the detection of CSCs. A promoter-based reporter for ABCG2 may also be not relevant in CSCs, as the expression of the molecule in cancer is mainly regulated by promoter demethylation. In this context, a dual reporter consisting of one of the pluripotency markers and ALDH1A1 will be useful in marking the heterogeneous CSCs. This system can be easily adapted to high-throughput platforms to screen drugs for eliminating CSCs.
Collapse
Affiliation(s)
- Amrutha Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Reshma Raj Rajan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Gayathri Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | |
Collapse
|
18
|
Xie C, Lin PJ, Hao J. Eggmanone Effectively Overcomes Prostate Cancer Cell Chemoresistance. Biomedicines 2021; 9:biomedicines9050538. [PMID: 34066000 PMCID: PMC8151738 DOI: 10.3390/biomedicines9050538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer chemoresistance is a major therapeutic problem, and the underlying mechanism is not well understood and effective therapies to overcome this problem are not available. Phosphodiesterase-4 (PDE4), a main intracellular enzyme for cAMP hydrolysis, has been previously shown to involve in the early chemo-sensitive prostate cancer cell proliferation and progression, but its role in the more-advanced chemo-resistant prostate cancer is completely unknown. Here we found that the expression of PDE4 subtype, PDE4D, is highly elevated in the chemo-resistant prostate cancer cells (DU145-TxR and PC3-TxR) in comparison to the chemo-sensitive prostate cancer cells (DU145 and PC3). Inhibition of PDE4D with a potent and selective PDED4 inhibitor, Eggmanone, effectively decreases the invasion and proliferation as well as induces cell death of the chemo-resistant prostate cancer cells (DU145-TxR and PC3-TxR). These results were confirmed by siRNA knockdown of PDE4D. We and colleagues previously reported that Eggmanone can effectively blocked sonic Hedgehog signaling via PDE4D inhibition, and here our study suggests that that Eggmanone downregulated proliferation of the chemo-resistant prostate cancer cells via sonic Hedgehog signaling. In addition, Eggmanone treatment dose-dependently increases docetaxel cytotoxicity to DU145-TxR and PC3-TxR. As cancer stem cells (CSCs) are known to be implicated in cancer chemoresistance, we further examined Eggmanone impacts on CSC-like properties in the chemo-resistant prostate cancer cells. Our study shows that Eggmanone effectively down-regulates the expression of CSCs’ marker genes Nanog and ABC sub-family G member 2 (ABCG2) and attenuates sphere formation in DU145-TxR and PC3-TxR cells. In summary, our work shows that Eggmanone effectively overcomes the chemoresistance of prostate cancer cells presumably through sonic Hedgehog signaling and targeting CSCs, suggesting that Eggmanone may serve as a novel agent for chemo-resistant prostate cancer.
Collapse
Affiliation(s)
- Chen Xie
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Pen-Jen Lin
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA;
- Correspondence: ; Tel.: +1-(909)-469-8686; Fax: +1-909-469-5635
| |
Collapse
|
19
|
Mohan A, Raj R R, Mohan G, K P P, Thomas Maliekal T. Reporters of Cancer Stem Cells as a Tool for Drug Discovery. Front Oncol 2021; 11:669250. [PMID: 33968778 PMCID: PMC8100607 DOI: 10.3389/fonc.2021.669250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023] Open
Abstract
In view of the importance of cancer stem cells (CSCs) in chemoresistance, metastasis and recurrence, the biology of CSCs were explored in detail. Based on that, several modalities were proposed to target them. In spite of the several clinical trials, a successful CSC-targeting drug is yet to be identified. The number of molecules screened and entered for clinical trial for CSC-targeting is comparatively low, compared to other drugs. The bottle neck is the lack of a high-throughput adaptable screening strategy for CSCs. This review is aimed to identify suitable reporters for CSCs that can be used to identify the heterogeneous CSC populations, including quiescent CSCs, proliferative CSCs, drug resistant CSCs and metastatic CSCs. Analysis of the tumor microenvironment regulating CSCs revealed that the factors in CSC-niche activates effector molecules that function as CSC markers, including pluripotency markers, CD133, ABCG2 and ALDH1A1. Among these factors OCT4, SOX2, NANOG, ABCG2 and ALDH1A1 are ideal for making reporters for CSCs. The pluripotency molecules, like OCT4, SOX2 and NANOG, regulate self-renewal, chemoresistance and metastasis. ABCG2 is a known regulator of drug resistance while ALDH1A1 modulates self-renewal, chemoresistance and metastasis. Considering the heterogeneity of CSCs, including a quiescent population and a proliferative population with metastatic ability, we propose the use of a combination of reporters. A dual reporter consisting of a pluripotency marker and a marker like ALDH1A1 will be useful in screening drugs that target CSCs.
Collapse
Affiliation(s)
- Amrutha Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, India
| | - Reshma Raj R
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Gayathri Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Padmaja K P
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | |
Collapse
|
20
|
Salem NA, Mahnke AH, Tseng AM, Garcia CR, Jahromi HK, Geoffroy CG, Miranda RC. A novel Oct4/Pou5f1-like non-coding RNA controls neural maturation and mediates developmental effects of ethanol. Neurotoxicol Teratol 2021; 83:106943. [PMID: 33221301 PMCID: PMC7856281 DOI: 10.1016/j.ntt.2020.106943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 01/22/2023]
Abstract
Prenatal ethanol exposure can result in loss of neural stem cells (NSCs) and decreased brain growth. Here, we assessed whether a noncoding RNA (ncRNA) related to the NSC self-renewal factor Oct4/Pou5f1, and transcribed from a processed pseudogene locus on mouse chromosome 9 (mOct4pg9), contributed to the loss of NSCs due to ethanol. Mouse fetal cortical-derived NSCs, cultured ex vivo to mimic the early neurogenic environment of the fetal telencephalon, expressed mOct4pg9 ncRNA at significantly higher levels than the parent Oct4/Pou5f1 mRNA. Ethanol exposure increased expression of mOct4pg9 ncRNA, but decreased expression of Oct4/Pou5f1. Gain- and loss-of-function analyses indicated that mOct4pg9 overexpression generally mimicked effects of ethanol exposure, resulting in increased proliferation and expression of transcripts associated with neural maturation. Moreover, mOct4pg9 associated with Ago2 and with miRNAs, including the anti-proliferative miR-328-3p, whose levels were reduced following mOct4pg9 overexpression. Finally, mOct4pg9 inhibited Oct4/Pou5f1-3'UTR-dependent protein translation. Consistent with these observations, data from single-cell transcriptome analysis showed that mOct4pg9-expressing progenitors lack Oct4/Pou5f1, but instead overexpress transcripts for increased mitosis, suggesting initiation of transit amplification. Collectively, these data suggest that the inhibitory effects of ethanol on brain development are explained, in part, by a novel ncRNA which promotes loss of NSC identity and maturation.
Collapse
Affiliation(s)
- Nihal A Salem
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Alexander M Tseng
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Cadianna R Garcia
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Hooman K Jahromi
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA.
| |
Collapse
|
21
|
Liu Q, Gu J, Zhang E, He L, Yuan ZX. Targeted Delivery of Therapeutics to Urological Cancer Stem Cells. Curr Pharm Des 2020; 26:2038-2056. [PMID: 32250210 DOI: 10.2174/1381612826666200403131514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Urological cancer refers to cancer in organs of the urinary system and the male reproductive system. It mainly includes prostate cancer, bladder cancer, renal cancer, etc., seriously threatening patients' survival. Although there are many advances in the treatment of urological cancer, approved targeted therapies often result in tumor recurrence and therapy failure. An increasing amount of evidence indicated that cancer stem cells (CSCs) with tumor-initiating ability were the source of treatment failure in urological cancer. The development of CSCstargeted strategy can provide a possibility for the complete elimination of urological cancer. This review is based on a search of PubMed, Google scholar and NIH database (http://ClinicalTrials.gov/) for English language articles containing the terms: "biomarkers", "cancer stem cells", "targeting/targeted therapy", "prostate cancer", bladder cancer" and "kidney cancer". We summarized the biomarkers and stem cell features of the prostate, bladder and renal CSCs, outlined the targeted strategies for urological CSCs from signaling pathways, cytokines, angiogenesis, surface markers, elimination therapy, differentiation therapy, immunotherapy, microRNA, nanomedicine, etc., and highlighted the prospects and future challenges in this research field.
Collapse
Affiliation(s)
- Qiang Liu
- Yaopharma Co., Ltd. Chongqing, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| | - E Zhang
- Officers college of PAP, Chengdu, Sichuan, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Steroid receptor RNA activator inhibits the migration, invasion and stemness characteristics of renal cell carcinoma cells. Int J Mol Med 2020; 46:1765-1776. [PMID: 33000206 PMCID: PMC7521558 DOI: 10.3892/ijmm.2020.4730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) has a high mortality rate among urological malignancies, and its underlying mechanisms remain unclear. Steroid receptor RNA coactivator (SRA) belongs to the long non-coding RNAs (lncRNAs) and has been demonstrated to be closely related to various types of cancer. In the present study, the decreased expression level of SRA was first confirmed in RCC tissues and cell lines by RT-qPCR. Using knockdown or overexpression systems, it was then found that SRA inhibited the proliferation of RCC cell lines and promoted their apoptosis. In addition, SRA suppressed the migration and invasion, and altered EMT-related markers in RCC cells. More importantly, it was demonstrated that SRA reduced percentage of CD44+/CD24− cells and the sphere-forming efficiency. SRA also attenuated the expression levels of CD44, SOX-2, ABCG2 and OCT-4, which are all associated with cancer cell stemness characteristics. Although SRA increased the phosphorylation of extracellular-regulated protein kinase (ERK), the ERK1/2 pathway could not further interfere with the alteration of EMT-related markers mediated by SRA. Notably, the ERK inhibitor, PD98059, abolished ERK1/2 phosphorylation, whereas it did not exert any marked effects on cell proliferation and EMT-related markers mediated by SRA. Taken together, the findings of the present study indicate that SRA is an important molecule that inhibits the migration, invasion and stem cell characteristics of RCC cells; the ERK signaling pathway may not be involved in this process.
Collapse
|
23
|
Lee IC, Fadera S, Liu HL. Strategy of differentiation therapy: effect of dual-frequency ultrasound on the induction of liver cancer stem-like cells on a HA-based multilayer film system. J Mater Chem B 2020; 7:5401-5411. [PMID: 31414097 DOI: 10.1039/c9tb01120j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer stem cells (CSCs) and normal stem cells share the ability to self-renew and drive tumor formation, recurrence, and distant metastasis and are resistant to chemotherapeutic drugs. One potential therapeutic approach for targeting CSCs is to induce CSCs to differentiate into normal cancer cells to eliminate self-renewal and enhance drug sensitivity. We developed a hyaluronic acid (HA)-based multilayer film system for selecting CSC-like hepatocellular carcinoma (HCC) cell colonies. Herein, we assess the differentiation therapy of HCC CSCs using dual-frequency low-intensity ultrasound (LIUS). HA-based multilayer films of poly (allylamine hydrochloride), (PAH/HA)6, were used to isolate CSC colonies. Colony formation, maintenance, and CSC marker expression were identified. The colony-formation rate was investigated, and putative CSC markers for CD44/CD133 expression after 7 days of culture were upregulated on (PAH/HA)6 multilayer films. Dual-frequency LIUS was used to induce CSC colony differentiation, and the phenotype variation, CSC marker expression, gene expression, drug-resistance ability, and invasion ability of CSC colonies with/without LIUS stimulation were compared. The numbers of colonies and CD44/CD133 double-positive cells and the expression levels of stem cell-related genes and proteins associated with stemness all decreased due to differentiation after LIUS exposure. Furthermore, a significant reduction in CSC drug resistance and invasion ability was observed. These results indicate that dual-frequency LIUS induces CSC differentiation and reduces drug resistance and invasion ability. Differentiation of CSCs provides an alternative therapeutic strategy to reverse CSC stemness and force their loss of self-renewal ability. CSC-targeted therapy holds great promise as an effective therapeutic approach for the treatment of human tumors.
Collapse
Affiliation(s)
- I-Chi Lee
- Graduate Institute of Biomedical Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 33302, Taiwan. and Neurosurgery Department, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Siaka Fadera
- Graduate Institute of Biomedical Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 33302, Taiwan.
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 33302, Taiwan. and Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
24
|
Begicevic RR, Arfuso F, Falasca M. Bioactive lipids in cancer stem cells. World J Stem Cells 2019; 11:693-704. [PMID: 31616544 PMCID: PMC6789187 DOI: 10.4252/wjsc.v11.i9.693] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/08/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
Tumours are known to be a heterogeneous group of cells, which is why they are difficult to eradicate. One possible cause for this is the existence of slow-cycling cancer stem cells (CSCs) endowed with stem cell-like properties of self-renewal, which are responsible for resistance to chemotherapy and radiotherapy. In recent years, the role of lipid metabolism has garnered increasing attention in cancer. Specifically, the key roles of enzymes such as stearoyl-CoA desaturase-1 and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase in CSCs, have gained particular interest. However, despite accumulating evidence on the role of proteins in controlling lipid metabolism, very little is known about the specific role played by lipid products in CSCs. This review highlights recent findings on the role of lipid metabolism in CSCs, focusing on the specific mechanism by which bioactive lipids regulate the fate of CSCs and their involvement in signal transduction pathways.
Collapse
Affiliation(s)
- Romana-Rea Begicevic
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
25
|
Ferroni L, Gardin C, Dalla Paola L, Campo G, Cimaglia P, Bellin G, Pinton P, Zavan B. Characterization of Dermal Stem Cells of Diabetic Patients. Cells 2019; 8:cells8070729. [PMID: 31315286 PMCID: PMC6678145 DOI: 10.3390/cells8070729] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are lesions that involve loss of epithelium and dermis, sometimes involving deep structures, compartments, and bones. The aim of this work is to investigate the innate regenerative properties of dermal tissue around ulcers by the identification and analysis of resident dermal stem cells (DSCs). Dermal samples were taken at the edge of DFUs, and genes related to the wound healing process were analyzed by the real-time PCR array. The DSCs were isolated and analyzed by immunofluorescence, flow cytometry, and real-time PCR array to define their stemness properties. The gene expression profile of dermal tissue showed a dysregulation in growth factors, metalloproteinases, collagens, and integrins involved in the wound healing process. In the basal condition, diabetic DSCs adhered on the culture plate with spindle-shaped fibroblast-like morphology. They were positive to the mesenchymal stem cells markers CD44, CD73, CD90, and CD105, but negative for the hematopoietic markers CD14, CD34, CD45, and HLA-DR. In diabetic DSCs, the transcription of genes related to self-renewal and cell division were equivalent to that in normal DSCs. However, the expression of CCNA2, CCND2, CDK1, ALDH1A1, and ABCG2 was downregulated compared with that of normal DSCs. These genes are also related to cell cycle progression and stem cell maintenance. Further investigation will improve the understanding of the molecular mechanisms by which these genes together govern cell proliferation, revealing new strategies useful for future treatment of DFUs.
Collapse
Affiliation(s)
- Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy
- University of Ferrara, Department of Medical Sciences, via Fossato di Mortara 70, 44,121 Ferrara, Italy
| | - Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy
- University of Ferrara, Department of Medical Sciences, via Fossato di Mortara 70, 44,121 Ferrara, Italy
| | - Luca Dalla Paola
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy
| | - Gianluca Campo
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy
- University of Ferrara, Department of Medical Sciences, via Fossato di Mortara 70, 44,121 Ferrara, Italy
| | - Paolo Cimaglia
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy
| | - Gloria Bellin
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy
- University of Ferrara, Department of Medical Sciences, via Fossato di Mortara 70, 44,121 Ferrara, Italy
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44,121 Ferrara, Italy
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy.
- University of Ferrara, Department of Medical Sciences, via Fossato di Mortara 70, 44,121 Ferrara, Italy.
| |
Collapse
|
26
|
Li CY, Basit A, Gupta A, Gáborik Z, Kis E, Prasad B. Major glucuronide metabolites of testosterone are primarily transported by MRP2 and MRP3 in human liver, intestine and kidney. J Steroid Biochem Mol Biol 2019; 191:105350. [PMID: 30959153 PMCID: PMC7075494 DOI: 10.1016/j.jsbmb.2019.03.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 01/29/2023]
Abstract
Testosterone glucuronide (TG), androsterone glucuronide (AG), etiocholanolone glucuronide (EtioG) and dihydrotestosterone glucuronide (DHTG) are the major metabolites of testosterone (T), which are excreted in urine and bile. Glucuronides can be deconjugated to active androgen in gut lumen after biliary excretion, which in turn can affect physiological levels of androgens. The goal of this study was to quantitatively characterize the mechanisms by which TG, AG, EtioG and DHTG are eliminated from liver, intestine, and kidney utilizing relative expression factor (REF) approach. Using vesicular transport assay with recombinant human MRP2, MRP3, MRP4, MDR1 and BCRP, we first identified that TG, AG, EtioG, and DHTG were primarily substrates of MRP2 and MRP3, although lower levels of transport were also observed with MDR1 and BCRP vesicles. The transport kinetic analyses revealed higher intrinsic clearances of TG by MRP2 and MRP3 as compared to that of DHTG, AG, and EtioG. MRP3 exhibited higher affinity for the transport of the studied glucuronides than MRP2. We next quantified the protein abundances of these efflux transporters in vesicles and compared the same with pooled total membrane fractions isolated from human tissues by quantitative LC-MS/MS proteomics. The fractional contribution of individual transporters (ft) was estimated by proteomics-based physiological scaling factors, i.e., transporter abundance in whole tissue versus vesicles, and corrected for inside-out vesicles (determined by 5'-nucleotidase assay). The glucuronides of inactive androgens, AG and EtioG were preferentially transported by MRP3, whereas the glucuronides of active androgens, TG and DHTG were mainly transported by MRP2 in liver. Efflux by bile canalicular transport may indicate the potential role of enterohepatic recirculation in regulating the circulating active androgens after deconjugation in the gut. In intestine, MRP3 possibly contributes most to the efflux of these glucuronides. In kidney, all studied glucuronides seemed to be preferentially effluxed by MRP2 and MDR1 (for EtioG). These REF based analysis need to be confirmed with in vivo findings. Overall, characterization of the efflux mechanisms of T glucuronide metabolites is important for predicting the androgen disposition and interindividual variability, including drug-androgen interaction in humans. The mechanistic data can be extrapolated to other androgen relevant organs (e.g. prostate, testis and placenta) by integrating these data with quantitative tissue proteomics data.
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Abdul Basit
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Anshul Gupta
- Amgen Research, Department of Pharmacokinetics and Drug Metabolism, Cambridge, MA, USA
| | | | - Emese Kis
- SOLVO Biotechnology, Budapest, Hungary
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
27
|
Wang L, Lin N, Li Y. The PI3K/AKT signaling pathway regulates ABCG2 expression and confers resistance to chemotherapy in human multiple myeloma. Oncol Rep 2019; 41:1678-1690. [PMID: 30664164 PMCID: PMC6365707 DOI: 10.3892/or.2019.6968] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Side population (SP) cells are involved in the development of multidrug resistance (MDR) in human multiple myeloma (MM), due to their cancer stem cell (CSC)‑like phenotypes. ATP‑binding cassette (ABC) drug transporter proteins have been reported to be closely associated with MDR in leukemia; however, the correlation between ABC proteins and the progression of MM remains unclear. The present study used MM cell lines and clinical samples to determine the role of ABC subfamily G member 2 (ABCG2) in MM via flow cytometry, reverse transcription‑quantitative polymerase chain reaction and western blotting. SP cells sorted from MM cell lines, including NCI‑H929 cells, via fluorescence‑activated cell sorting, exhibited CSC‑like phenotypes and expressed high levels of ABCG2. Expression of ABCG2 and activation of the phosphatidylinositol 3‑kinase (PI3K)/AKT serine/threonine kinase (AKT) signaling pathway was positively associated with the proportion of SP cells in the NCI‑H929 cell line. In addition, suppression of the PI3K/AKT pathway using LY294002 or rapamycin counteracted the protective effects of ABCG2 against chemotherapeutic drug treatment. Mechanistically, PI3K/AKT signaling may regulate ABCG2 expression, and ABCG2 may regulate phosphatase and tensin homolog expression via a potential negative feedback loop. Furthermore, SP cell proportion, ABCG2 expression and PI3K/AKT pathway activation were associated with disease progression in patients with MM. These findings indicated the critical roles of ABCG2 and PI3K/AKT signaling in controlling stemness of MM cells, and suggested a novel strategy for targeting ABCG2 and PI3K/AKT signaling to treat MM with MDR.
Collapse
Affiliation(s)
- Lei Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Na Lin
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yan Li
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
28
|
Pharmacological targeting of mitochondria in cancer stem cells: An ancient organelle at the crossroad of novel anti-cancer therapies. Pharmacol Res 2019; 139:298-313. [DOI: 10.1016/j.phrs.2018.11.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
29
|
Vlachostergios PJ, Paddock M, Molina AM. Molecular Targeted Therapies of Prostate Cancer. MOLECULAR PATHOLOGY LIBRARY 2018. [DOI: 10.1007/978-3-319-64096-9_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Abstract
Cancer is a daunting global problem confronting the world's population. The most frequent therapeutic approaches include surgery, chemotherapy, radiotherapy, and more recently immunotherapy. In the case of chemotherapy, patients ultimately develop resistance to both single and multiple chemotherapeutic agents, which can culminate in metastatic disease which is a major cause of patient death from solid tumors. Chemoresistance, a primary cause of treatment failure, is attributed to multiple factors including decreased drug accumulation, reduced drug-target interactions, increased populations of cancer stem cells, enhanced autophagy activity, and reduced apoptosis in cancer cells. Reprogramming tumor cells to undergo drug-induced apoptosis provides a promising and powerful strategy for treating resistant and recurrent neoplastic diseases. This can be achieved by downregulating dysregulated antiapoptotic factors or activation of proapoptotic factors in tumor cells. A major target of dysregulation in cancer cells that can occur during chemoresistance involves altered expression of Bcl-2 family members. Bcl-2 antiapoptotic molecules (Bcl-2, Bcl-xL, and Mcl-1) are frequently upregulated in acquired chemoresistant cancer cells, which block drug-induced apoptosis. We presently overview the potential role of Bcl-2 antiapoptotic proteins in the development of cancer chemoresistance and overview the clinical approaches that use Bcl-2 inhibitors to restore cell death in chemoresistant and recurrent tumors.
Collapse
|
31
|
Begicevic RR, Falasca M. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. Int J Mol Sci 2017; 18:E2362. [PMID: 29117122 PMCID: PMC5713331 DOI: 10.3390/ijms18112362] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
The efficacy of chemotherapy is one of the main challenges in cancer treatment and one of the major obstacles to overcome in achieving lasting remission and a definitive cure in patients with cancer is the emergence of cancer resistance. Indeed, drug resistance is ultimately accountable for poor treatment outcomes and tumour relapse. There are various molecular mechanisms involved in multidrug resistance, such as the change in the activity of membrane transporters primarily belonging to the ATP binding cassette (ABC) transporter family. In addition, it has been proposed that this common feature could be attributed to a subpopulation of slow-cycling cancer stem cells (CSCs), endowed with enhanced tumorigenic potential and multidrug resistance. CSCs are characterized by the overexpression of specific surface markers that vary in different cancer cell types. Overexpression of ABC transporters has been reported in several cancers and more predominantly in CSCs. While the major focus on the role played by ABC transporters in cancer is polarized by their involvement in chemoresistance, emerging evidence supports a more active role of these proteins, in which they release specific bioactive molecules in the extracellular milieu. This review will outline our current understanding of the role played by ABC transporters in CSCs, how their expression is regulated and how they support the malignant metabolic phenotype. To summarize, we suggest that the increased expression of ABC transporters in CSCs may have precise functional roles and provide the opportunity to target, particularly these cells, by using specific ABC transporter inhibitors.
Collapse
Affiliation(s)
- Romana-Rea Begicevic
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia.
| |
Collapse
|