1
|
Yang Y, Chen X, Liu X, Li S. Progression and diagnostic challenges of desmoplastic infantile ganglioglioma in a non-infant: a case report with 5-year follow-up. Front Oncol 2025; 15:1411213. [PMID: 39995830 PMCID: PMC11847786 DOI: 10.3389/fonc.2025.1411213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Desmoplastic infantile ganglioglioma (DIG) is a rare intracranial benign tumor occurring in infants under 2 years of age. It has good biological and behavioral characteristics and occasionally has malignant characteristics, such as multiple intracranial lesions, postoperative progression or recurrence, meningeal diffusion, and metastasis. We present a non-infant with DIG who underwent tumor progression. A 16-year-old girl presented with DIG in the cerebral cistern and underwent subtotal resection. A magnetic resonance imaging (MRI) of the brain 2 years later revealed that the area of abnormal enhancement in the surgical site was approximately the same as before, and follow-up was continued. A reexamination 5 years later showed that the residual extent of the operative area was significantly larger than before and involved the right frontal and temporal lobes, considering the progression of the residual part of the tumor. This case report focuses on the occurrence of DIG and its potential malignant features, as assessed through magnetic resonance imaging.
Collapse
Affiliation(s)
- Yan Yang
- Department of Radiology, The Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang, China
| | - Xuzhu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shiguang Li
- Department of Radiology, The Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Pai V, Laughlin S, Ertl-Wagner B. Imaging of pediatric glioneuronal and neuronal tumors. Childs Nerv Syst 2024; 40:3007-3026. [PMID: 38960918 DOI: 10.1007/s00381-024-06502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Glioneuronal tumors (GNTs) are an expanding group of primary CNS neoplasms, commonly affecting children, adolescents and young adults. Most GNTs are relatively indolent, low-grade, WHO grade I lesions. In the pediatric age group, GNTs have their epicenter in the cerebral cortex and present with seizures. Alterations in the mitogen-activated protein kinase (MAPK) pathway, which regulates cell growth, are implicated in tumorigenesis. Imaging not only plays a key role in the characterization and pre-surgical evaluation of GNTs but is also crucial role in follow-up, especially with the increasing use of targeted inhibitors and immunotherapies. In this chapter, we review the clinical and imaging perspectives of common pediatric GNTs.
Collapse
Affiliation(s)
- Vivek Pai
- Division of Neuroradiology, Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, 170 Elizabeth Street, Toronto, ON, M5G 1E8, Canada
- Department of Medical Imaging, University of Toronto, 263 McCaul St, 4Th Floor, Toronto, ON, M5T 1W7, Canada
| | - Suzanne Laughlin
- Division of Neuroradiology, Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, 170 Elizabeth Street, Toronto, ON, M5G 1E8, Canada
- Department of Medical Imaging, University of Toronto, 263 McCaul St, 4Th Floor, Toronto, ON, M5T 1W7, Canada
| | - Birgit Ertl-Wagner
- Division of Neuroradiology, Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, 170 Elizabeth Street, Toronto, ON, M5G 1E8, Canada.
- Department of Medical Imaging, University of Toronto, 263 McCaul St, 4Th Floor, Toronto, ON, M5T 1W7, Canada.
| |
Collapse
|
3
|
Mazzoleni A, Awuah WA, Sanker V, Bharadwaj HR, Aderinto N, Tan JK, Huang HYR, Poornaselvan J, Shah MH, Atallah O, Tawfik A, Elmanzalawi MEAE, Ghozlan SH, Abdul-Rahman T, Moyondafoluwa JA, Alexiou A, Papadakis M. Chromosomal instability: a key driver in glioma pathogenesis and progression. Eur J Med Res 2024; 29:451. [PMID: 39227895 PMCID: PMC11373396 DOI: 10.1186/s40001-024-02043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Chromosomal instability (CIN) is a pivotal factor in gliomas, contributing to their complexity, progression, and therapeutic challenges. CIN, characterized by frequent genomic alterations during mitosis, leads to genetic abnormalities and impacts cellular functions. This instability results from various factors, including replication errors and toxic compounds. While CIN's role is well documented in cancers like ovarian cancer, its implications for gliomas are increasingly recognized. CIN influences glioma progression by affecting key oncological pathways, such as tumor suppressor genes (e.g., TP53), oncogenes (e.g., EGFR), and DNA repair mechanisms. It drives tumor evolution, promotes inflammatory signaling, and affects immune interactions, potentially leading to poor clinical outcomes and treatment resistance. This review examines CIN's impact on gliomas through a narrative approach, analyzing data from PubMed/Medline, EMBASE, the Cochrane Library, and Scopus. It highlights CIN's role across glioma subtypes, from adult glioblastomas and astrocytomas to pediatric oligodendrogliomas and astrocytomas. Key findings include CIN's effect on tumor heterogeneity and its potential as a biomarker for early detection and monitoring. Emerging therapies targeting CIN, such as those modulating tumor mutation burden and DNA damage response pathways, show promise but face challenges. The review underscores the need for integrated therapeutic strategies and improved bioinformatics tools like CINdex to advance understanding and treatment of gliomas. Future research should focus on combining CIN-targeted therapies with immune modulation and personalized medicine to enhance patient outcomes.
Collapse
Affiliation(s)
- Adele Mazzoleni
- Barts and the London School of Medicine and Dentistry, London, UK
| | | | - Vivek Sanker
- Department Of Neurosurgery, Trivandrum Medical College, Trivandrum, India
| | | | - Nicholas Aderinto
- Internal Medicine Department, LAUTECH Teaching Hospital, Ogbomoso, Nigeria
| | | | - Helen Ye Rim Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Aya Tawfik
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | | | - Sama Hesham Ghozlan
- Arab Academy for Science, Technology & Maritime Transport, Alexandria, Egypt
| | | | | | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Funogen, Department of Research & Development, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| |
Collapse
|
4
|
Jahani S, Moghadasi AN. Desmoplastic infantile astrocytoma/ ganglioglioma in a pediatric onset multiple sclerosis patient: A case report. Clin Case Rep 2024; 12:e9290. [PMID: 39114838 PMCID: PMC11305837 DOI: 10.1002/ccr3.9290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Here we present a co-occurrence of a non-typical presentation of DIG/DIA and multiple sclerosis in a 13-year-old female. Our case highlights how a thorough investigation prior to treatment is needed in patients with such condition to choose proper management for better prognosis.
Collapse
Affiliation(s)
- Shima Jahani
- Multiple Sclerosis Research Center, Neuroscience InstituteTehran University of Medical SciencesTehranIran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Barros Guinle MI, Nirschl JJ, Xing YL, Nettnin EA, Arana S, Feng ZP, Nasajpour E, Pronina A, Garcia CA, Grant GA, Vogel H, Yeom KW, Prolo LM, Petritsch CK. CDC42BPA::BRAF represents a novel fusion in desmoplastic infantile ganglioglioma/desmoplastic infantile astrocytoma. Neurooncol Adv 2024; 6:vdae050. [PMID: 38741773 PMCID: PMC11089409 DOI: 10.1093/noajnl/vdae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Affiliation(s)
| | - Jeffrey J Nirschl
- Division of Neuropathology, Department of Pathology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Yao Lulu Xing
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Ella A Nettnin
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Sophia Arana
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Zhi-Ping Feng
- The Australian National University Bioinformatics Consultancy, John Curtin School of Medical Research, The Australian National University, ACT 2600, Australia
| | - Emon Nasajpour
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Anna Pronina
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Cesar A Garcia
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Gerald A Grant
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hannes Vogel
- Division of Neuropathology, Department of Pathology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Kristen W Yeom
- Department of Radiology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Laura M Prolo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
- Division of Pediatric Neurosurgery, Lucile Packard Children’s Hospital, Palo Alto, California, USA
| | - Claudia K Petritsch
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
6
|
Sourty B, Basset L, Michalak S, Colin E, Zidane-Marinnes M, Delion M, de Carli E, Rousseau A. [Tyrosine kinase receptor gene fusion: A series of four cases of infantile-type hemispheric glioma]. Ann Pathol 2023; 43:462-474. [PMID: 37635016 DOI: 10.1016/j.annpat.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Infant-type hemispheric gliomas belong to pediatric-type diffuse high-grade gliomas according to the 2021 WHO classification of central nervous system tumors. They are characterized by tyrosine kinase gene rearrangements (NTRK1/2/3, ALK, ROS1, MET). The aim of the study was to describe the clinical, histopathologic, and molecular characteristics of such tumors, and to provide a review of the literature. PATIENTS AND METHODS This retrospective series comprises four cases of infant-type hemispheric glioma diagnosed at Angers University Hospital between 2020 and 2022. The diagnosis was suspected based on morphology and immunohistochemistry and was confirmed by molecular biology techniques. RESULTS The most common clinical sign was raised intracranial pressure. Imaging showed a large cerebral hemispheric tumor with contrast enhancement. Microscopic examination revealed diffuse astrocytoma with high-grade features, sometimes with neuronal or pseudo-ependymal differentiation. Identification of a gene fusion involving a tyrosine kinase gene allowed to make a definitive diagnosis of infant-type hemispheric glioma. DISCUSSION AND CONCLUSION Infant-type hemispheric gliomas are rare and present as large cerebral hemispheric tumors in very young children. Searching for a tyrosine kinase gene fusion should be systematic when dealing with a high-grade glioma in an infant. Importantly, these gene fusions are therapeutic targets. The impact of targeted therapies on patient survival should be evaluated in future prospective studies.
Collapse
Affiliation(s)
- Baptiste Sourty
- Département de pathologie, CHU d'Angers, 4, rue Larrey, 49933 Angers cedex 9, France.
| | - Laëtitia Basset
- Département de pathologie, CHU d'Angers, 4, rue Larrey, 49933 Angers cedex 9, France; Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, 49000 Angers, France
| | - Sophie Michalak
- Département de pathologie, CHU d'Angers, 4, rue Larrey, 49933 Angers cedex 9, France
| | - Estelle Colin
- Service de génétique médicale, CHU d'Angers, 4, rue Larrey, 49933 Angers cedex 9, France
| | | | - Matthieu Delion
- Service de neurochirurgie, CHU d'Angers, 4, rue Larrey, 49933 Angers cedex 9, France
| | - Emilie de Carli
- Unité hémato-onco-immunologie pédiatrique, CHU d'Angers, 4, rue Larrey, 49933 Angers cedex 9, France
| | - Audrey Rousseau
- Département de pathologie, CHU d'Angers, 4, rue Larrey, 49933 Angers cedex 9, France; Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, 49000 Angers, France
| |
Collapse
|
7
|
Chen W, Park JI. Tumor Cell Resistance to the Inhibition of BRAF and MEK1/2. Int J Mol Sci 2023; 24:14837. [PMID: 37834284 PMCID: PMC10573597 DOI: 10.3390/ijms241914837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BRAF is one of the most frequently mutated oncogenes, with an overall frequency of about 50%. Targeting BRAF and its effector mitogen-activated protein kinase kinase 1/2 (MEK1/2) is now a key therapeutic strategy for BRAF-mutant tumors, and therapies based on dual BRAF/MEK inhibition showed significant efficacy in a broad spectrum of BRAF tumors. Nonetheless, BRAF/MEK inhibition therapy is not always effective for BRAF tumor suppression, and significant challenges remain to improve its clinical outcomes. First, certain BRAF tumors have an intrinsic ability to rapidly adapt to the presence of BRAF and MEK1/2 inhibitors by bypassing drug effects via rewired signaling, metabolic, and regulatory networks. Second, almost all tumors initially responsive to BRAF and MEK1/2 inhibitors eventually acquire therapy resistance via an additional genetic or epigenetic alteration(s). Overcoming these challenges requires identifying the molecular mechanism underlying tumor cell resistance to BRAF and MEK inhibitors and analyzing their specificity in different BRAF tumors. This review aims to update this information.
Collapse
Affiliation(s)
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| |
Collapse
|
8
|
Tauziède‐Espariat A, Beccaria K, Dangouloff‐Ros V, Sievers P, Meurgey A, Pissaloux D, Appay R, Saffroy R, Grill J, Mariet C, Bourdeaut F, Hasty L, Métais A, Chrétien F, Blauwblomme T, Puget S, Boddaert N, Varlet P. A comprehensive analysis of infantile central nervous system tumors to improve distinctive criteria for infant-type hemispheric glioma versus desmoplastic infantile ganglioglioma/astrocytoma. Brain Pathol 2023; 33:e13182. [PMID: 37349135 PMCID: PMC10467037 DOI: 10.1111/bpa.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Recent epigenomic analyses have revealed the existence of a new DNA methylation class (MC) of infant-type hemispheric glioma (IHG). Like desmoplastic infantile ganglioglioma/astrocytoma (DIG/DIA), these tumors mainly affect infants and are supratentorial. While DIG/DIA is characterized by BRAF or RAF1 alterations, IHG has been shown to have receptor tyrosine kinase (RTK) gene fusions (ALK, ROS1, NTRK1/2/3, and MET). However, in this rapidly evolving field, a more comprehensive analysis of infantile glial/glioneuronal tumors including clinical, radiological, histopathological, and molecular data is needed. Here, we retrospectively investigated data from 30 infantile glial/glioneuronal tumors, consecutively compiled from our center. They were analyzed by two experienced pediatric neuroradiologists in consensus, without former knowledge of the molecular data. We also performed a comprehensive clinical, and histopathological examination (including molecular evaluation by next-generation sequencing, RNA sequencing, and fluorescence in situ hybridization [FISH] analyses), as well as DNA methylation profiling for the samples having sufficient material available. The integrative histopathological, genetic, and epigenetic analyses, including t-distributed stochastic neighbor embedding (t-SNE) analyses segregated tumors into 10 DIG/DIA (33.3%), six IHG (20.0%), three gangliogliomas (10.0%), two pleomorphic xanthoastrocytomas (6.7%), two pilocytic astrocytomas (6.7%), two supratentorial ependymomas, ZFTA fusion-positive (6.7%), two supratentorial ependymomas, YAP1 fusion-positive (6.7%), two embryonal tumors with PLAGL2-family amplification (6.7%), and one diffuse low-grade glioma, MAPK-pathway altered. This study highlights the significant differential features, in terms of histopathology (leptomeningeal infiltration, intense desmoplasia and ganglion cells in DIG/DIA and necrosis, microvascular proliferation, and siderophages in IHG), and radiology between DIG/DIA and IHG. Moreover, these results are consistent with the literature data concerning the molecular dichotomy (BRAF/RAF1 alterations vs. RTK genes' fusions) between DIG/DIA and IHG. This study characterized histopathologically and radiologically two additional cases of the novel embryonal tumor characterized by PLAGL2 gene amplification.
Collapse
Affiliation(s)
- Arnault Tauziède‐Espariat
- Department of Neuropathology, GHU Paris‐Psychiatrie et NeurosciencesSainte‐Anne HospitalParisFrance
- Inserm, UMR 1266, IMA‐BrainInstitut de Psychiatrie et Neurosciences de ParisParisFrance
| | - Kévin Beccaria
- Department of Pediatric Neurosurgery, Necker Hospital, APHPUniversité Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Volodia Dangouloff‐Ros
- Pediatric Radiology DepartmentHôpital Necker Enfants Malades, AP‐HPParisFrance
- Université Paris Cité, UMR 1163Institut Imagine and INSERM U1299ParisFrance
| | - Philipp Sievers
- Department of Neuropathology, Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK)German Cancer Research Center DKFZHeidelbergGermany
| | - Alexandra Meurgey
- Department of BiopathologyLéon Bérard Cancer CenterLyonFrance
- INSERM 1052, CNRS 5286Cancer Research Center of Lyon (CRCL)LyonFrance
| | - Daniel Pissaloux
- Department of BiopathologyLéon Bérard Cancer CenterLyonFrance
- INSERM 1052, CNRS 5286Cancer Research Center of Lyon (CRCL)LyonFrance
| | - Romain Appay
- APHM, CHU TimoneService d'Anatomie Pathologique et de NeuropathologieMarseilleFrance
- Aix‐Marseille University, CNRS, INP, Institute of NeurophysiopathologyMarseilleFrance
| | - Raphaël Saffroy
- Department of Biochemistry and OncogeneticsPaul Brousse HospitalVillejuifFrance
| | - Jacques Grill
- U981, Molecular Predictors and New Targets in Oncology, INSERM, Gustave RoussyUniversité Paris‐SaclayVillejuifFrance
- Department of Pediatric Oncology, Gustave RoussyUniversité Paris‐SaclayVillejuifFrance
| | - Cassandra Mariet
- Department of Pediatric Oncology, Gustave RoussyUniversité Paris‐SaclayVillejuifFrance
| | - Franck Bourdeaut
- INSERMU830Laboratory of Translational Research in Pediatric OncologyParisFrance
- Institut Curie, SIREDO Center Care, Innovation, Research in Pediatric, Adolescent and Young Adult OncologyParis Sciences Lettres Research UniversityParisFrance
| | - Lauren Hasty
- Department of Neuropathology, GHU Paris‐Psychiatrie et NeurosciencesSainte‐Anne HospitalParisFrance
| | - Alice Métais
- Department of Neuropathology, GHU Paris‐Psychiatrie et NeurosciencesSainte‐Anne HospitalParisFrance
- Inserm, UMR 1266, IMA‐BrainInstitut de Psychiatrie et Neurosciences de ParisParisFrance
| | - Fabrice Chrétien
- Department of Neuropathology, GHU Paris‐Psychiatrie et NeurosciencesSainte‐Anne HospitalParisFrance
| | - Thomas Blauwblomme
- Pediatric Radiology DepartmentHôpital Necker Enfants Malades, AP‐HPParisFrance
| | - Stéphanie Puget
- Pediatric Radiology DepartmentHôpital Necker Enfants Malades, AP‐HPParisFrance
| | - Nathalie Boddaert
- Pediatric Radiology DepartmentHôpital Necker Enfants Malades, AP‐HPParisFrance
- Université Paris Cité, UMR 1163Institut Imagine and INSERM U1299ParisFrance
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris‐Psychiatrie et NeurosciencesSainte‐Anne HospitalParisFrance
- Inserm, UMR 1266, IMA‐BrainInstitut de Psychiatrie et Neurosciences de ParisParisFrance
| | | |
Collapse
|
9
|
Dang DD, Rosenblum JS, Shah AH, Zhuang Z, Doucet-O’Hare TT. Epigenetic Regulation in Primary CNS Tumors: An Opportunity to Bridge Old and New WHO Classifications. Cancers (Basel) 2023; 15:2511. [PMID: 37173979 PMCID: PMC10177493 DOI: 10.3390/cancers15092511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Originally approved in 1979, a specific grading classification for central nervous system (CNS) tumors was devised by the World Health Organization (WHO) in an effort to guide cancer treatment and better understand prognosis. These "blue books" have since undergone several iterations based on tumor location, advancements in histopathology, and most recently, diagnostic molecular pathology in its fifth edition. As new research methods have evolved to elucidate complex molecular mechanisms of tumorigenesis, a need to update and integrate these findings into the WHO grading scheme has become apparent. Epigenetic tools represent an area of burgeoning interest that encompasses all non-Mendelian inherited genetic features affecting gene expression, including but not limited to chromatin remodeling complexes, DNA methylation, and histone regulating enzymes. The SWItch/Sucrose non-fermenting (SWI/SNF) chromatin remodeling complex is the largest mammalian family of chromatin remodeling proteins and is estimated to be altered in 20-25% of all human malignancies; however, the ways in which it contributes to tumorigenesis are not fully understood. We recently discovered that CNS tumors with SWI/SNF mutations have revealed an oncogenic role for endogenous retroviruses (ERVs), remnants of exogenous retroviruses that integrated into the germline and are inherited like Mendelian genes, several of which retain open reading frames for proteins whose expression putatively contributes to tumor formation. Herein, we analyzed the latest WHO classification scheme for all CNS tumors with documented SWI/SNF mutations and/or aberrant ERV expression, and we summarize this information to highlight potential research opportunities that could be integrated into the grading scheme to better delineate diagnostic criteria and therapeutic targets.
Collapse
Affiliation(s)
- Danielle D. Dang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jared S. Rosenblum
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashish H. Shah
- Section of Virology and Immunotherapy, Department of Neurosurgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tara T. Doucet-O’Hare
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Trinder SM, McKay C, Power P, Topp M, Chan B, Valvi S, McCowage G, Govender D, Kirby M, Ziegler DS, Manoharan N, Hassall T, Kellie S, Heath J, Alvaro F, Wood P, Laughton S, Tsui K, Dodgshun A, Eisenstat DD, Endersby R, Luen SJ, Koh ES, Sim HW, Kong B, Gottardo NG, Whittle JR, Khuong-Quang DA, Hansford JR. BRAF-mediated brain tumors in adults and children: A review and the Australian and New Zealand experience. Front Oncol 2023; 13:1154246. [PMID: 37124503 PMCID: PMC10140567 DOI: 10.3389/fonc.2023.1154246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway signaling pathway is one of the most commonly mutated pathways in human cancers. In particular, BRAF alterations result in constitutive activation of the rapidly accelerating fibrosarcoma-extracellular signal-regulated kinase-MAPK significant pathway, leading to cellular proliferation, survival, and dedifferentiation. The role of BRAF mutations in oncogenesis and tumorigenesis has spurred the development of targeted agents, which have been successful in treating many adult cancers. Despite advances in other cancer types, the morbidity and survival outcomes of patients with glioma have remained relatively stagnant. Recently, there has been recognition that MAPK dysregulation is almost universally present in paediatric and adult gliomas. These findings, accompanying broad molecular characterization of gliomas, has aided prognostication and offered opportunities for clinical trials testing targeted agents. The use of targeted therapies in this disease represents a paradigm shift, although the biochemical complexities has resulted in unexpected challenges in the development of effective BRAF inhibitors. Despite these challenges, there are promising data to support the use of BRAF inhibitors alone and in combination with MEK inhibitors for patients with both low-grade and high-grade glioma across age groups. Safety and efficacy data demonstrate that many of the toxicities of these targeted agents are tolerable while offering objective responses. Newer clinical trials will examine the use of these therapies in the upfront setting. Appropriate duration of therapy and durability of response remains unclear in the glioma patient cohort. Longitudinal efficacy and toxicity data are needed. Furthermore, access to these medications remains challenging outside of clinical trials in Australia and New Zealand. Compassionate access is limited, and advocacy for mechanism of action-based drug approval is ongoing.
Collapse
Affiliation(s)
- Sarah M. Trinder
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Campbell McKay
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Phoebe Power
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW, Australia
| | - Monique Topp
- Department of Medical Oncology, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Bosco Chan
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Santosh Valvi
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Geoffrey McCowage
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
- Australasian Children’s Cancer Trials, Clayton, VIC, Australia
| | - Dinisha Govender
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Maria Kirby
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - David S. Ziegler
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Neevika Manoharan
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Tim Hassall
- Queensland Children’s Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Stewart Kellie
- Westmead Children’s Hospital, University of Sydney, Westmead, NSW, Australia
| | - John Heath
- Department of Pediatric Oncology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Frank Alvaro
- Department of Pediatric Oncology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Paul Wood
- Monash Medical Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen Laughton
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Karen Tsui
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Andrew Dodgshun
- Children’s Haematology/Oncology Centre, Christchurch Hospital, Christchurch, New Zealand
| | - David D. Eisenstat
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Stephen J. Luen
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Eng-Siew Koh
- Department of Radiation Oncology, Liverpool and Macarther Cancer Therapy Centres, Liverpool, NSW, Australia
- Department of Medicine, University of New South Wales, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Hao-Wen Sim
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Sydney, NSW, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
| | - Benjamin Kong
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Nicholas G. Gottardo
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
| | - James R. Whittle
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Jordan R. Hansford
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- South Australian Health and Medical Research Institute South Australia, Adelaide, SA, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Jordan R. Hansford,
| |
Collapse
|
11
|
Watson CJG, Lawlor M, Sy J, Krishnaswamy M, Buckland ME, Brennan JW, Satgunaseelan L. Anaplasia and age of onset in desmoplastic infantile ganglioglioma: Case report and review of the literature. Pediatr Blood Cancer 2023; 70:e29808. [PMID: 35670752 DOI: 10.1002/pbc.29808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/10/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Christopher J G Watson
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia.,Department of Ophthalmology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Mitchell Lawlor
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia.,Department of Ophthalmology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Joanne Sy
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Mrudula Krishnaswamy
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Jeffrey W Brennan
- Department of Neurosurgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Laveniya Satgunaseelan
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Gianno F, Giovannoni I, Cafferata B, Diomedi-Camassei F, Minasi S, Barresi S, Buttarelli FR, Alesi V, Cardoni A, Antonelli M, Puggioni C, Colafati GS, Carai A, Vinci M, Mastronuzzi A, Miele E, Alaggio R, Giangaspero F, Rossi S. Paediatric-type diffuse high-grade gliomas in the 5th CNS WHO Classification. Pathologica 2022; 114:422-435. [PMID: 36534421 PMCID: PMC9763979 DOI: 10.32074/1591-951x-830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022] Open
Abstract
As a relevant element of novelty, the fifth CNS WHO Classification highlights the distinctive pathobiology underlying gliomas arising primarily in children by recognizing for the first time the families of paediatric-type diffuse gliomas, both high-grade and low-grade. This review will focus on the family of paediatric-type diffuse high-grade gliomas, which includes four tumour types: 1) Diffuse midline glioma H3 K27-altered; 2) Diffuse hemispheric glioma H3 G34-mutant; 3) Diffuse paediatric-type high-grade glioma H3-wildtype and IDH-wildtype; and 4) Infant-type hemispheric glioma. The essential and desirable diagnostic criteria as well as the entities entering in the differential will be discussed for each tumour type. A special focus will be given on the issues encountered in the daily practice, especially regarding the diagnosis of the diffuse paediatric-type high-grade glioma H3-wildtype and IDH-wildtype. The advantages and the limits of the multiple molecular tests which may be utilised to define the entities of this tumour family will be evaluated in each diagnostic context.
Collapse
Affiliation(s)
- Francesca Gianno
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
| | - Isabella Giovannoni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | | | - Simone Minasi
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
| | - Sabina Barresi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Viola Alesi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Antonello Cardoni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Manila Antonelli
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
| | - Chiara Puggioni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Oncology/Hematology, Gene and Cell Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Oncology/Hematology, Gene and Cell Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Evelina Miele
- Department of Oncology/Hematology, Gene and Cell Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
13
|
Habib MH, Alavi MZ, Goraya A, Zaman S, Ahmed A. High-grade desmoplastic infantile astrocytoma in a 1-year-old child with Down’s syndrome: a case report. J Med Case Rep 2022; 16:427. [PMCID: PMC9635066 DOI: 10.1186/s13256-022-03615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/19/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
Down’s syndrome is the most common chromosomal abnormality in humans. It has been associated with central nervous system tumors such as primary acute lymphoblastic leukemia and germinomas, but desmoplastic infantile astrocytoma has not yet been reported with Down’s syndrome. Desmoplastic infantile astrocytoma is a rare intracranial tumor that mostly occurs in the first 2 years of life. It usually presents as a large, aggressive tumor with both solid and cystic components. Genetically, it has been linked to the BRAF V600E mutation. Despite the rapid growth pattern, it usually has a favorable prognosis after neurosurgical excision. The presence of this extremely rare, genetically linked tumor, and its combination with Down’s syndrome, the most common human genetic defect, makes this a very novel clinical presentation. It also raises a very research-worthy question of an undiscovered link between these two genetic disorders.
Case presentation
In this case, we report a 1-year-old Pakistani origin male child with Down’s syndrome, who presented with progressive macrocephaly and developmental regression over the last 2 months. He was unable to sit by himself, and had lost his handgrip bilaterally. Down’s Syndrome was diagnosed soon after birth, based on typical facial features and presence of palmar crease, and later confirmed karyotypically for Trisomy 21. Upon presentation, initial blood tests did not show any abnormality. Magnetic resonance imaging of the brain was done, and showed a mixed intensity cystic mass with solid dural component posteriorly in the right parieto temporo occipital region. Craniotomy was performed, and about 85% of the tumor mass was excised. Histological examination and immunochemistry confirmed the suspected radiological diagnosis of desmoplastic infantile astrocytoma. After surgical excision, our patient gradually reacquired his previously regressed developmental milestones. Unfortunately, the remaining mass, which could not be excised due to its attachment to the highly vascular dura mater, showed regrowth on repeat brain magnetic resonance imaging. As his parents did not consent to further surgery, chemotherapy was offered as the next treatment option to prevent tumor regrowth.
Conclusions
This case report highlights the need for more case data and research to understand desmoplastic infantile astrocytoma, and their genetic correlation with Down’s syndrome. From a clinical standpoint, since desmoplastic infantile astrocytoma has a good postresection prognosis in a majority of early-diagnosed clinical cases, pediatricians, radiologists, and pathologists should consider desmoplastic infantile astrocytoma in their initial differential diagnosis in Down’s syndrome patients with macrocephaly and developmental regression during the first 2 years of life.
Collapse
|
14
|
Rudà R, Capper D, Waldman AD, Pallud J, Minniti G, Kaley TJ, Bouffet E, Tabatabai G, Aronica E, Jakola AS, Pfister SM, Schiff D, Lassman AB, Solomon DA, Soffietti R, Weller M, Preusser M, Idbaih A, Wen PY, van den Bent MJ. EANO - EURACAN - SNO Guidelines on circumscribed astrocytic gliomas, glioneuronal, and neuronal tumors. Neuro Oncol 2022; 24:2015-2034. [PMID: 35908833 PMCID: PMC9713532 DOI: 10.1093/neuonc/noac188] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the new WHO 2021 Classification of CNS Tumors the chapter "Circumscribed astrocytic gliomas, glioneuronal and neuronal tumors" encompasses several different rare tumor entities, which occur more frequently in children, adolescents, and young adults. The Task Force has reviewed the evidence of diagnostic and therapeutic interventions, which is low particularly for adult patients, and draw recommendations accordingly. Tumor diagnosis, based on WHO 2021, is primarily performed using conventional histological techniques; however, a molecular workup is important for differential diagnosis, in particular, DNA methylation profiling for the definitive classification of histologically unresolved cases. Molecular factors are increasing of prognostic and predictive importance. MRI finding are non-specific, but for some tumors are characteristic and suggestive. Gross total resection, when feasible, is the most important treatment in terms of prolonging survival and achieving long-term seizure control. Conformal radiotherapy should be considered in grade 3 and incompletely resected grade 2 tumors. In recurrent tumors reoperation and radiotherapy, including stereotactic radiotherapy, can be useful. Targeted therapies may be used in selected patients: BRAF and MEK inhibitors in pilocytic astrocytomas, pleomorphic xanthoastrocytomas, and gangliogliomas when BRAF altered, and mTOR inhibitor everolimus in subependymal giant cells astrocytomas. Sequencing to identify molecular targets is advocated for diagnostic clarification and to direct potential targeted therapies.
Collapse
Affiliation(s)
- Roberta Rudà
- Corresponding Author: Roberta Rudà, Department of Neurology, Castelfranco Veneto/Treviso Hospital and Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy ()
| | - David Capper
- Department of Neuropathology, Charité Universitätsmedizin Berlin, Berlin and German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adam D Waldman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh and Department of Brain Science, Imperial College London, United Kingdom
| | - Johan Pallud
- Department of Neurosurgery, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy and IRCCS Neuromed (IS), Italy
| | - Thomas J Kaley
- Department of Neurology, Brain Tumor Service, Memorial Sloan Kettering Cancer Center, New York, US
| | - Eric Bouffet
- Division of Paediatric Oncology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Ghazaleh Tabatabai
- Department of Neurology & Neurooncology, University of Tübingen, German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Germany
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam and Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden. Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden
| | - Stefan M Pfister
- Hopp Children´s Cancer Center Heidelberg (KiTZ), Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), and Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, US
| | - Andrew B Lassman
- Division of Neuro-Oncology, Department of Neurology and the Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY, US
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, CA, US
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience, University and City of Health and Science Hospital, Turin, Italy
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | | | | |
Collapse
|
15
|
Megías J, San-Miguel T, Sánchez M, Navarro L, Monleón D, Calabuig-Fariñas S, Morales JM, Muñoz-Hidalgo L, Roldán P, Cerdá-Nicolás M, López-Ginés C. Desmoplastic infantile astrocytoma with atypical phenotype, PTEN homozygous deletion and BRAF V600E mutation. Acta Neuropathol Commun 2022; 10:88. [PMID: 35725578 PMCID: PMC9208153 DOI: 10.1186/s40478-022-01392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Desmoplastic infantile astrocytoma (DIA) is rare, cystic and solid tumor of infants usually found in superficial cerebral hemispheres. Although DIA is usually benign, uncommon cases bearing malignant histological and aggressive clinical features have been described in the literature. We report a newborn patient who was diagnosed with a DIA and died postresection. Pathologic examination revealed that the main part of the tumor had benign features, but the internal region showed areas with a more aggressive appearance, with higher-proliferative cells, anaplastic GFAP positive cells with cellular polymorphism, necrosis foci, vascular hyperplasia with endothelial proliferation and microtrombosis. Genetic study, performed in both regions of the tumor, showed a BRAF V600E mutation and a homozygous deletion in PTEN, without changes in other relevant genes like EGFR, CDKN2A, TP53, NFKBIA, CDK4, MDM2 and PDGFRA. Although PTEN homozygous deletions are described in gliomas, the present case constitutes the first report of a PTEN mutation in a DIA, and this genetic feature may be related to the malignant behavior of a usually benign tumor. These genetic findings may point at the need of further and deeper genetic characterization of DIAs, in order to better understand the biology of this tumor and to obtain new prognostic approaches, a better clinical management and targeted therapies, especially in malignant cases of DIA.
Collapse
Affiliation(s)
- Javier Megías
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Avenida de Blasco Ibáñez, 15, 46010, Valencia, Spain.
| | - Teresa San-Miguel
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Avenida de Blasco Ibáñez, 15, 46010, Valencia, Spain
| | - Mirian Sánchez
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Avenida de Blasco Ibáñez, 15, 46010, Valencia, Spain
| | - Lara Navarro
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Avenida de Blasco Ibáñez, 15, 46010, Valencia, Spain
| | - Daniel Monleón
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Avenida de Blasco Ibáñez, 15, 46010, Valencia, Spain
| | - Silvia Calabuig-Fariñas
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Avenida de Blasco Ibáñez, 15, 46010, Valencia, Spain.,Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Valencia, Spain
| | - José Manuel Morales
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Avenida de Blasco Ibáñez, 15, 46010, Valencia, Spain
| | - Lisandra Muñoz-Hidalgo
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Avenida de Blasco Ibáñez, 15, 46010, Valencia, Spain
| | - Pedro Roldán
- Department of Neurosurgery, Clinic Hospital of Valencia, Valencia, Spain
| | - Miguel Cerdá-Nicolás
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Avenida de Blasco Ibáñez, 15, 46010, Valencia, Spain.,INCLIVA, Clinic Hospital of Valencia, Valencia, Spain
| | - Concha López-Ginés
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Avenida de Blasco Ibáñez, 15, 46010, Valencia, Spain
| |
Collapse
|
16
|
Wang Q, Meng J, Cheng J, Zhang S, Hui X, Li Q, Liu W, Ju Y, Sun L. Multifocal Desmoplastic Infantile Ganglioglioma/Astrocytoma (DIA/DIG): An Institutional Series Report and a Clinical Summary of This Rare Tumor. Front Oncol 2022; 11:608129. [PMID: 35615429 PMCID: PMC9126550 DOI: 10.3389/fonc.2021.608129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/22/2021] [Indexed: 02/05/2023] Open
Abstract
Aim Multifocal desmoplastic infantile ganglioglioma/astrocytoma (DIA/DIG) has rarely been reported. Here, two cases have been presented, reviewing the literature and proposed treatment algorithms for this rare tumor. Patients and Methods We report two patients diagnosed with multifocal DIA/DIGs in West China Hospital. In addition, a literature review was performed, in October 2019, on case reports of DIA/DIGs with multifocal lesions. The clinical and radiological features, treatment, and outcome of this rare disease were discussed. Results DIA/DIGs with multifocal locations were rare, and only thirteen cases (including ours) had been reported. This series included 8 males and 5 females with a mean age of 31.4 ± 45.7 months (range, 3-144 months). The supratentorial hemisphere, suprasellar region, posterior cranial fossa, and spinal cord were frequently involved. Ten patients (76.9%) received surgical resection for the symptomatic lesions and three patients (23.1%) underwent biopsy. Seven patients received chemotherapy postoperatively. Six individuals had tumor recurrences during the follow-up period, while three patients had tumors that spontaneously regressed. Finally, two patients died of tumor progression and one patient died of respiratory insufficiency and hypothalamic dysfunction. Conclusions Multifocal DIA/DIGs have more aggressive clinical behavior and poor outcome despite benign histology. DIA/DIGs should be included in the differential diagnosis of multifocal brain tumors in children. The mainstay of treatment is surgical resection; adjuvant treatment with chemotherapeutic drugs is unknown and requires additional research.
Collapse
Affiliation(s)
- Qiguang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jinli Meng
- Department of Radiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital C.T), Chengdu, China.,Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Cheng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Si Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenke Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Ju
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Sun
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.,Medical Insurance Office, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
dePadua M, Kulothungan P, Lath R, Prasad R, Madamchetty K, Atmakuri S, Ragamouni S, Gandhari M, Khandrika L, Jain J. Establishment and Characterization of Brain Cancer Primary Cell Cultures From Patients to Enable Phenotypic Screening for New Drugs. Front Pharmacol 2022; 13:778193. [PMID: 35370679 PMCID: PMC8970592 DOI: 10.3389/fphar.2022.778193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
Aim: Desmoplastic infantile ganglioglioma (DIG), is a rare tumor arising mainly during the first 2 years of life. Molecular characterization of these benign yet rapidly proliferating tumors has been limited to evaluating a few mutations in few genes. Our aim was to establish a live cell culture to enable the understanding of the cellular processes driving the non-malignant growth of these tumors. Methods: Tumor tissue from a rare non-infantile 8-year-old female DIG patient was dissociated and digested using collagenase to establish live cultures. Both 2D monolayer and 3D neurospheres were successfully cultured and characterized for proliferative potential, intrinsic plasticity, presence of cancer stem cells and the expression of stem cell markers. Cells cultured as 3D were embedded as tissue blocks. Immunohistochemistry was performed in both tissue and 3D sections for markers including synaptophysin, vimentin, neurofilament and MIB-1. Mutation analysis by NGS was performed using a-100 gene panel. Results: Using immunohistochemistry, the 3D cultures were shown to express markers as in the original DIG tumor tissue indicating that the spheroid cultures were able to maintain the heterogeneity found in the original tumor. Cells continued proliferating past passage 10 indicative of immortalization. Enrichment of cancer stem cells was observed in neurospheres by FACS using CD133 antibody and RT-PCR. Mutation analysis indicated the presence of germline mutations in three genes and somatic mutations in two other genes. Conclusion: A spontaneous cell line-like cell culture with high percentage of stem cells has been established from a DIG tumor for the first time.
Collapse
Affiliation(s)
- Michelle dePadua
- Department of Pathology, Apollo Hospital, Apollo Health City, Hyderabad, India
| | | | - Rahul Lath
- Department of Neurosciences, Apollo Hospital, Apollo Health City, Hyderabad, India
| | - Ravikanti Prasad
- Department of Radiology, Apollo Hospital, Apollo Health City, Hyderabad, India
| | | | | | | | | | | | - Jugnu Jain
- Saarum Sciences Pvt Ltd., Hyderabad, India.,Sapien Biosciences Pvt Ltd., Hyderabad, India
| |
Collapse
|
18
|
Cole BL. Neuropathology of Pediatric Brain Tumors: A Concise Review. Neurosurgery 2022; 90:7-15. [PMID: 34114043 DOI: 10.1093/neuros/nyab182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/31/2021] [Indexed: 01/07/2023] Open
Abstract
Pediatric brain tumors are an incredibly diverse group of neoplasms and neuropathological tumor classification is an essential part of patient care. Classification of pediatric brain tumors has changed considerably in recent years as molecular diagnostics have become incorporated with routine histopathology in the diagnostic process. This article will focus on the fundamental major histologic, immunohistochemical, and molecular features that neuropathologists use to make an integrated diagnosis of pediatric brain tumors. This concise review will focus on tumors that are integral to the central nervous system in pediatric patients including: embryonal tumors, low and high grade gliomas, glioneuronal tumors, ependymomas, and choroid plexus tumors.
Collapse
Affiliation(s)
- Bonnie L Cole
- Department of Laboratories, Seattle Children's Hospital , Seattle , Washington , USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine , Seattle , Washington , USA
| |
Collapse
|
19
|
Wang S, Sun MZ, Abecassis IJ, Weil AG, Ibrahim GM, Fallah A, Ene C, Leary SES, Cole BL, Lockwood CM, Olson JM, Geyer JR, Ellenbogen RG, Ojemann JG, Wang AC. Predictors of mortality and tumor recurrence in desmoplastic infantile ganglioglioma and astrocytoma-and individual participant data meta-analysis (IPDMA). J Neurooncol 2021; 155:155-163. [PMID: 34613581 PMCID: PMC9448015 DOI: 10.1007/s11060-021-03860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Desmoplastic infantile astrocytoma (DIA) and desmoplastic infantile ganglioglioma (DIG) are classified together as grade I neuronal and mixed neuronal-glial tumor of the central nervous system by the World Health Organization (WHO). These tumors are rare and have not been well characterized in terms of clinical outcomes. We aimed to identify clinical predictors of mortality and tumor recurrence/progression by performing an individual patient data meta-analysis (IPDMA) of the literature. METHODS A systematic literature review from 1970 to 2020 was performed, and individualized clinical data for patients diagnosed with DIA/DIG were extracted. Aggregated data were excluded from collection. Outcome measures of interest were mortality and tumor recurrence/progression, as well as time-to-event (TTE) for each of these. Participants without information on these outcome measures were excluded. Cox regression survival analyses were performed to determine predictors of mortality and tumor recurrence / progression. RESULTS We identified 98 articles and extracted individual patient data from 188 patients. The cohort consisted of 58.9% males with a median age of 7 months. The majority (68.1%) were DIGs, while 24.5% were DIAs and 7.5% were non-specific desmoplastic infantile tumors; DIAs presented more commonly in deep locations (p = 0.001), with leptomeningeal metastasis (p = 0.001), and was associated with decreased probability of gross total resection (GTR; p = 0.001). Gender, age, and tumor pathology were not statistically significant predictors of either mortality or tumor recurrence/progression. On multivariate survival analysis, GTR was a predictor of survival (HR = 0.058; p = 0.007) while leptomeningeal metastasis at presentation was a predictor of mortality (HR = 3.27; p = 0.025). Deep tumor location (HR = 2.93; p = 0.001) and chemotherapy administration (HR = 2.02; p = 0.017) were associated with tumor recurrence/progression. CONCLUSION Our IPDMA of DIA/DIG cases reported in the literature revealed that GTR was a predictor of survival while leptomeningeal metastasis at presentation was associated with mortality. Deep tumor location and chemotherapy were associated with tumor recurrence / progression.
Collapse
Affiliation(s)
- Shelly Wang
- Division of Neurosurgery, Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
- Department of Neurosurgery, University of Miami, Miami, FL, USA
| | - Matthew Z Sun
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - I Joshua Abecassis
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - Alexander G Weil
- Department of Surgery, Université de Montréal, Montreal, QC, Canada
| | - George M Ibrahim
- Division of Pediatric Neurosurgery, Sick Kids Toronto, University of Toronto, Toronto, ON, Canada
| | - Aria Fallah
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Chibawanye Ene
- Department of Neurological Surgery, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Sarah E S Leary
- Division of Hematology Oncology, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Bonnie L Cole
- Department of Anatomic Pathology, Seattle Children's Hospital, University of Washington and Laboratories, Seattle, WA, USA
| | - Christina M Lockwood
- Department of Laboratory Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - James M Olson
- Division of Hematology Oncology, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - J Russell Geyer
- Division of Hematology Oncology, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Anthony C Wang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Imperato A, Spennato P, Mazio F, Arcas E, Ozgural O, Quaglietta L, Errico ME, Cinalli G. Desmoplastic infantile astrocytoma and ganglioglioma: a series of 12 patients treated at a single institution. Childs Nerv Syst 2021; 37:2187-2195. [PMID: 33507362 DOI: 10.1007/s00381-021-05057-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/19/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Desmoplastic infantile astrocytomas and gangliogliomas (DIA/DIG) usually present with a large size, large cystic component, large dural implant, encasement of big vessels, clinical presentation within 18 months of life, high incidence of seizures and overall good prognosis, even if tumour surgery can be very challenging at first procedure. METHODS We retrospectively reviewed clinical and radiological data of patients diagnosed with desmoplastic infantile tumours who were surgically treated between 2008 and 2019. RESULTS The series included 12 patients. The median age at surgery was 91 days. The average tumour volume was 212 cm3. Cystic components were predominant ranging from 0 to 295 cm3. Active hydrocephalus was pre-operatively evident in 5 cases. Eight patients (66.6%) received total or subtotal removal, three of them (25%) underwent partial removal, and one patient (8.3%) received a biopsy. One patient died within 24 h after surgery due to severe hypotension, as a consequence of significant intraoperative blood loss. Overall, seven (58.3%) patients were reoperated on the tumour after the first procedure: 4 patients were operated twice; 3 patients were operated 3 times. Two patients presented remote localizations and underwent chemotherapy. At last follow-up, 7 patients were tumour-free, 2 are alive with stable disease, and 2 are alive with progressive disease (leptomeningeal seeding). CONCLUSION Desmoplastic infantile tumours are rare giant neonatal tumours. Total removal is the goal of treatment, but prognosis remains good even if total removal is not achieved. In case of tumour progression or epilepsy from residual tumour, reoperation is the first option, with chemotherapy reserved to unresectable or disseminated cases with mixed results, while, to date, radiotherapy still plays no role.
Collapse
Affiliation(s)
- Alessia Imperato
- Division of Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| | - Pietro Spennato
- Division of Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy.
| | - Federica Mazio
- Division of Pediatric Neuroradiology, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| | - Esperanza Arcas
- Division of Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
- Department of Neurosurgery, University Hospital Virgen de las Nieves, Granada, Spain
| | - Onur Ozgural
- Division of Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
- Department of Neurosurgery, University of Ankara, Ankara, Turkey
| | - Lucia Quaglietta
- Division of Pediatric Oncology, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| | - Maria Elena Errico
- Division of Pathology, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| | - Giuseppe Cinalli
- Division of Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| |
Collapse
|
21
|
Abstract
Primary pediatric brain tumors comprise a broad group of neoplasm subtypes that can be categorized based on their histological and molecular features according to the 2016 World Health Organization (WHO) classification of central nervous system (CNS) tumors. The majority of the pediatric brain tumors demonstrate a singular preference for this age group and have a unique molecular profile. The separation of certain tumor entities, including different types of embryonal tumors, low-grade gliomas, and high-grade gliomas, may have a significant impact by guiding appropriate treatment for these children and potentially changing their outcomes. Currently, the focus of the imaging diagnostic studies is to follow the molecular updates, searching for potential imaging patterns that translate this information in molecular profile results, therefore helping the final diagnosis. Due to the high impact of accurate diagnosis in this context, the scientific community has presented extensive research on imaging pediatric tumors in recent years. This article summarizes the key characteristics of the imaging features of the most common primary childhood brain tumors, categorizing them according to the recent WHO classification update, which is based on each of their molecular profiles. The purpose of this review article is to familiarize radiologists with their key imaging features and thereby improve diagnostic accuracy.
Collapse
|
22
|
Bag AK, Chiang J, Patay Z. Radiohistogenomics of pediatric low-grade neuroepithelial tumors. Neuroradiology 2021; 63:1185-1213. [PMID: 33779771 PMCID: PMC8295117 DOI: 10.1007/s00234-021-02691-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE In addition to histology, genetic alteration is now required to classify many central nervous system (CNS) tumors according to the most recent World Health Organization CNS tumor classification scheme. Although that is still not the case for classifying pediatric low-grade neuroepithelial tumors (PLGNTs), genetic and molecular features are increasingly being used for making treatment decisions. This approach has become a standard clinical practice in many specialized pediatric cancer centers and will likely be more widely practiced in the near future. This paradigm shift in the management of PLGNTs necessitates better understanding of how genetic alterations influence histology and imaging characteristics of individual PLGNT phenotypes. METHODS The complex association of genetic alterations with histology, clinical, and imaging of each phenotype of the extremely heterogeneous PLGNT family has been addressed in a holistic approach in this up-to-date review article. A new imaging stratification scheme has been proposed based on tumor morphology, location, histology, and genetics. Imaging characteristics of each PLGNT entity are also depicted in light of histology and genetics. CONCLUSION This article reviews the association of specific genetic alteration with location, histology, imaging, and prognosis of a specific tumor of the PLGNT family and how that information can be used for better imaging of these tumors.
Collapse
Affiliation(s)
- Asim K Bag
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 220, Memphis, TN, 38105, USA.
| | - Jason Chiang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zoltan Patay
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 220, Memphis, TN, 38105, USA
| |
Collapse
|
23
|
Abstract
Well-circumscribed intra-axial CNS tumors encompass a wide variety of gliomas and glioneuronal tumors, usually corresponding to WHO grades I and II. Nonetheless, sometimes high-grade 'diffuse' gliomas such as gliosarcoma and giant cell glioblastoma can be relatively circumscribed but are often found to have foci of diffuse infiltration on careful examination, harboring distinct molecular alterations. These tumors are excluded from the discussion in this chapter with the current review emphasizing on lower-grade entities to include a brief description of their histology and associated molecular findings. Like elsewhere in brain biopsy evaluation, imaging is crucial and acts as a surrogate to gross examination. Given the circumscribed nature of these tumors, surgery alone is the mainstay treatment in most entities.
Collapse
|
24
|
Peeters SM, Muftuoglu Y, Na B, Daniels DJ, Wang AC. Pediatric Gliomas: Molecular Landscape and Emerging Targets. Neurosurg Clin N Am 2021; 32:181-190. [PMID: 33781501 DOI: 10.1016/j.nec.2020.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Next-generation sequencing of pediatric gliomas has revealed the importance of molecular genetic characterization in understanding the biology underlying these tumors and a breadth of potential therapeutic targets. Promising targeted therapies include mTOR inhibitors for subependymal giant cell astrocytomas in tuberous sclerosis, BRAF and MEK inhibitors mainly for low-grade gliomas, and MEK inhibitors for NF1-deficient BRAF:KIAA fusion tumors. Challenges in developing targeted molecular therapies include significant intratumoral and intertumoral heterogeneity, highly varied mechanisms of treatment resistance and immune escape, adequacy of tumor penetrance, and sensitivity of brain to treatment-related toxicities.
Collapse
Affiliation(s)
- Sophie M Peeters
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite #520, Los Angeles, CA 90095, USA
| | - Yagmur Muftuoglu
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite #520, Los Angeles, CA 90095, USA
| | - Brian Na
- Department of Pediatrics, Division of Hematology/Oncology, University of California Los Angeles, 200 UCLA Medical Plaza, Suite 265, Los Angeles, CA 90095, USA
| | - David J Daniels
- Department of Neurosurgery, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Anthony C Wang
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite #520, Los Angeles, CA 90095, USA.
| |
Collapse
|
25
|
Ceglie G, Vinci M, Carai A, Rossi S, Colafati GS, Cacchione A, Tornesello A, Miele E, Locatelli F, Mastronuzzi A. Infantile/Congenital High-Grade Gliomas: Molecular Features and Therapeutic Perspectives. Diagnostics (Basel) 2020; 10:E648. [PMID: 32872331 PMCID: PMC7555400 DOI: 10.3390/diagnostics10090648] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
Brain tumors in infants account for less than 10% of all pediatric nervous system tumors. They include tumors diagnosed in fetal age, neonatal age and in the first years of life. Among these, high-grade gliomas (HGGs) are a specific entity with a paradoxical clinical course that sets them apart from their pediatric and adult counterparts. Currently, surgery represents the main therapeutic strategy in the management of these tumors. Chemotherapy does not have a well-defined role whilst radiotherapy is rarely performed, considering its late effects. Information about molecular characterization is still limited, but it could represent a new fundamental tool in the therapeutic perspective of these tumors. Chimeric proteins derived from the fusion of several genes with neurotrophic tyrosine receptor kinase mutations have been described in high-grade gliomas in infants as well as in neonatal age and the recent discovery of targeted drugs may change the long-term prognosis of these tumors, along with other target-driven therapies. The aim of this mini review is to highlight the recent advances in the diagnosis and treatment of high-grade gliomas in infants with a particular focus on the molecular landscape of these neoplasms and future clinical applications.
Collapse
Affiliation(s)
- Giulia Ceglie
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), Piazza Sant’Onofrio 4, 00146 Rome, Italy; (M.V.); (A.C.); (E.M.); (F.L.)
| | - Maria Vinci
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), Piazza Sant’Onofrio 4, 00146 Rome, Italy; (M.V.); (A.C.); (E.M.); (F.L.)
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurological and Psychiatric Sciences, Bambino Gesù Children’s Hospital (IRCCS), Piazza Sant’Onofrio 4, 00146 Rome, Italy;
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital (IRCCS), Piazza Sant’Onofrio 4, 00146 Rome, Italy;
| | - Giovanna Stefania Colafati
- Neuroradiology Unit, Department of Imaging, Bambino Gesù Children’s Hospital (IRCCS), Piazza Sant’Onofrio 4, 00146 Rome, Italy;
| | - Antonella Cacchione
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), Piazza Sant’Onofrio 4, 00146 Rome, Italy; (M.V.); (A.C.); (E.M.); (F.L.)
| | - Assunta Tornesello
- Pediatric Oncology Unit, Ospedale Vito Fazzi, Piazza Filippo Muratore, 1, 73100 Lecce, Italy;
| | - Evelina Miele
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), Piazza Sant’Onofrio 4, 00146 Rome, Italy; (M.V.); (A.C.); (E.M.); (F.L.)
| | - Franco Locatelli
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), Piazza Sant’Onofrio 4, 00146 Rome, Italy; (M.V.); (A.C.); (E.M.); (F.L.)
- Department of Maternal, Infantile, and Urological Sciences, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), Piazza Sant’Onofrio 4, 00146 Rome, Italy; (M.V.); (A.C.); (E.M.); (F.L.)
| |
Collapse
|
26
|
Clarke M, Mackay A, Ismer B, Pickles JC, Tatevossian RG, Newman S, Bale TA, Stoler I, Izquierdo E, Temelso S, Carvalho DM, Molinari V, Burford A, Howell L, Virasami A, Fairchild AR, Avery A, Chalker J, Kristiansen M, Haupfear K, Dalton JD, Orisme W, Wen J, Hubank M, Kurian KM, Rowe C, Maybury M, Crosier S, Knipstein J, Schüller U, Kordes U, Kram DE, Snuderl M, Bridges L, Martin AJ, Doey LJ, Al-Sarraj S, Chandler C, Zebian B, Cairns C, Natrajan R, Boult JKR, Robinson SP, Sill M, Dunkel IJ, Gilheeney SW, Rosenblum MK, Hughes D, Proszek PZ, Macdonald TJ, Preusser M, Haberler C, Slavc I, Packer R, Ng HK, Caspi S, Popović M, Faganel Kotnik B, Wood MD, Baird L, Davare MA, Solomon DA, Olsen TK, Brandal P, Farrell M, Cryan JB, Capra M, Karremann M, Schittenhelm J, Schuhmann MU, Ebinger M, Dinjens WNM, Kerl K, Hettmer S, Pietsch T, Andreiuolo F, Driever PH, Korshunov A, Hiddingh L, Worst BC, Sturm D, Zuckermann M, Witt O, Bloom T, Mitchell C, Miele E, Colafati GS, Diomedi-Camassei F, Bailey S, Moore AS, Hassall TEG, Lowis SP, Tsoli M, Cowley MJ, Ziegler DS, Karajannis MA, Aquilina K, Hargrave DR, Carceller F, Marshall LV, et alClarke M, Mackay A, Ismer B, Pickles JC, Tatevossian RG, Newman S, Bale TA, Stoler I, Izquierdo E, Temelso S, Carvalho DM, Molinari V, Burford A, Howell L, Virasami A, Fairchild AR, Avery A, Chalker J, Kristiansen M, Haupfear K, Dalton JD, Orisme W, Wen J, Hubank M, Kurian KM, Rowe C, Maybury M, Crosier S, Knipstein J, Schüller U, Kordes U, Kram DE, Snuderl M, Bridges L, Martin AJ, Doey LJ, Al-Sarraj S, Chandler C, Zebian B, Cairns C, Natrajan R, Boult JKR, Robinson SP, Sill M, Dunkel IJ, Gilheeney SW, Rosenblum MK, Hughes D, Proszek PZ, Macdonald TJ, Preusser M, Haberler C, Slavc I, Packer R, Ng HK, Caspi S, Popović M, Faganel Kotnik B, Wood MD, Baird L, Davare MA, Solomon DA, Olsen TK, Brandal P, Farrell M, Cryan JB, Capra M, Karremann M, Schittenhelm J, Schuhmann MU, Ebinger M, Dinjens WNM, Kerl K, Hettmer S, Pietsch T, Andreiuolo F, Driever PH, Korshunov A, Hiddingh L, Worst BC, Sturm D, Zuckermann M, Witt O, Bloom T, Mitchell C, Miele E, Colafati GS, Diomedi-Camassei F, Bailey S, Moore AS, Hassall TEG, Lowis SP, Tsoli M, Cowley MJ, Ziegler DS, Karajannis MA, Aquilina K, Hargrave DR, Carceller F, Marshall LV, von Deimling A, Kramm CM, Pfister SM, Sahm F, Baker SJ, Mastronuzzi A, Carai A, Vinci M, Capper D, Popov S, Ellison DW, Jacques TS, Jones DTW, Jones C. Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes. Cancer Discov 2020; 10:942-963. [PMID: 32238360 PMCID: PMC8313225 DOI: 10.1158/2159-8290.cd-19-1030] [Show More Authors] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 11/16/2022]
Abstract
Infant high-grade gliomas appear clinically distinct from their counterparts in older children, indicating that histopathologic grading may not accurately reflect the biology of these tumors. We have collected 241 cases under 4 years of age, and carried out histologic review, methylation profiling, and custom panel, genome, or exome sequencing. After excluding tumors representing other established entities or subgroups, we identified 130 cases to be part of an "intrinsic" spectrum of disease specific to the infant population. These included those with targetable MAPK alterations, and a large proportion of remaining cases harboring gene fusions targeting ALK (n = 31), NTRK1/2/3 (n = 21), ROS1 (n = 9), and MET (n = 4) as their driving alterations, with evidence of efficacy of targeted agents in the clinic. These data strongly support the concept that infant gliomas require a change in diagnostic practice and management. SIGNIFICANCE: Infant high-grade gliomas in the cerebral hemispheres comprise novel subgroups, with a prevalence of ALK, NTRK1/2/3, ROS1, or MET gene fusions. Kinase fusion-positive tumors have better outcome and respond to targeted therapy clinically. Other subgroups have poor outcome, with fusion-negative cases possibly representing an epigenetically driven pluripotent stem cell phenotype.See related commentary by Szulzewsky and Cimino, p. 904.This article is highlighted in the In This Issue feature, p. 890.
Collapse
Affiliation(s)
- Matthew Clarke
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Alan Mackay
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Britta Ismer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Jessica C Pickles
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ruth G Tatevossian
- Department of Neuropathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tejus A Bale
- Department of Neuropathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Iris Stoler
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Berlin, Germany
| | - Elisa Izquierdo
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Sara Temelso
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Diana M Carvalho
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Valeria Molinari
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Anna Burford
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Louise Howell
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Alex Virasami
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Amy R Fairchild
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Aimee Avery
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jane Chalker
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Mark Kristiansen
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Kelly Haupfear
- Department of Neuropathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - James D Dalton
- Department of Neuropathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Wilda Orisme
- Department of Neuropathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ji Wen
- Department of Neuropathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael Hubank
- Molecular Diagnostics, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Kathreena M Kurian
- Brain Tumour Research Centre, University of Bristol, Bristol, United Kingdom
| | - Catherine Rowe
- Brain Tumour Research Centre, University of Bristol, Bristol, United Kingdom
| | - Mellissa Maybury
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
- Oncology Service, Queensland Children's Hospital, Brisbane, Australia
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Stephen Crosier
- Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Jeffrey Knipstein
- Division of Pediatric Hematology/Oncology/BMT, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ulrich Schüller
- Department of Neuropathology, University Hospital Hamburg-Eppendorf, and Research Institute Children's Cancer Center, Hamburg, Germany
- Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Kordes
- Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - David E Kram
- Section of Pediatric Hematology-Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Matija Snuderl
- Department of Neuropathology, NYU Langone Health, New York, New York
| | - Leslie Bridges
- Department of Neuropathology, St George's Hospital NHS Trust, London, United Kingdom
| | - Andrew J Martin
- Department of Neurosurgery, St George's Hospital NHS Trust, London, United Kingdom
| | - Lawrence J Doey
- Department of Clinical Neuropathology, Kings College Hospital NHS Trust, London, United Kingdom
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology, Kings College Hospital NHS Trust, London, United Kingdom
| | - Christopher Chandler
- Department of Neurosurgery, Kings College Hospital NHS Trust, London, United Kingdom
| | - Bassel Zebian
- Department of Neurosurgery, Kings College Hospital NHS Trust, London, United Kingdom
| | - Claire Cairns
- Department of Neurosurgery, Kings College Hospital NHS Trust, London, United Kingdom
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Jessica K R Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Martin Sill
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ira J Dunkel
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Stephen W Gilheeney
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Marc K Rosenblum
- Department of Neuropathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Debbie Hughes
- Molecular Diagnostics, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Paula Z Proszek
- Molecular Diagnostics, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Tobey J Macdonald
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Matthias Preusser
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christine Haberler
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Roger Packer
- Center for Neuroscience and Behavioural Medicine, Children's National Medical Center, Washington, DC
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, China
| | - Shani Caspi
- Cancer Research Center, Sheba Medical Center, Tel Aviv, Israel
| | - Mara Popović
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Faganel Kotnik
- Department of Hematology and Oncology, University Children's Hospital, Ljubljana, Slovenia
| | - Matthew D Wood
- Department of Pathology, Oregon Health & Science University, Portland, Oregon
| | - Lissa Baird
- Department of Neurosurgery, Oregon Health & Science University, Portland, Oregon
| | - Monika Ashok Davare
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, California
- Clinical Cancer Genomics Laboratory, University of California, San Francisco, California
| | - Thale Kristin Olsen
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Petter Brandal
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Michael Farrell
- Department of Histopathology, Beaumont Hospital, Dublin, Ireland
| | - Jane B Cryan
- Department of Histopathology, Beaumont Hospital, Dublin, Ireland
| | - Michael Capra
- Paediatric Oncology, Our Lady's Children's Hospital, Dublin, Ireland
| | - Michael Karremann
- Department of Pediatrics, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Schittenhelm
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Germany
| | | | - Martin Ebinger
- Department of Pediatric Hematology and Oncology, University Hospital Tübingen, Germany
| | - Winand N M Dinjens
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Hospital Muenster, Germany
| | - Simone Hettmer
- Department of Pediatric Hematology and Oncology, University Hospital Freiburg, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | - Felipe Andreiuolo
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | - Pablo Hernáiz Driever
- Department of Paediatric Haematology/Oncology Charité Universitätsmedizin, Berlin, Germany
| | - Andrey Korshunov
- Department of Neuropathology, University Hospital Heidelberg, Germany
| | - Lotte Hiddingh
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara C Worst
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominik Sturm
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc Zuckermann
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Olaf Witt
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Tabitha Bloom
- BRAIN UK, University of Southampton, Southampton, United Kingdom
| | - Clare Mitchell
- BRAIN UK, University of Southampton, Southampton, United Kingdom
| | - Evelina Miele
- Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Giovanna Stefania Colafati
- Oncological Neuroradiology Unit, Department of Diagnostic Imaging, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | | | - Simon Bailey
- Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Andrew S Moore
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
- Oncology Service, Queensland Children's Hospital, Brisbane, Australia
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Timothy E G Hassall
- Oncology Service, Queensland Children's Hospital, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Stephen P Lowis
- Brain Tumour Research Centre, University of Bristol, Bristol, United Kingdom
| | - Maria Tsoli
- Children's Cancer Institute, University of New South Wales, Sydney, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - Mark J Cowley
- Children's Cancer Institute, University of New South Wales, Sydney, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - David S Ziegler
- Children's Cancer Institute, University of New South Wales, Sydney, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Kristian Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Darren R Hargrave
- Department of Paediatric Oncology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Fernando Carceller
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Lynley V Marshall
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Centre Göttingen, Germany
| | - Stefan M Pfister
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Department of Paediatric Haematology/Oncology Charité Universitätsmedizin, Berlin, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Suzanne J Baker
- Department of Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Angela Mastronuzzi
- Neuro-oncology Unit, Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Andrea Carai
- Oncological Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - David Capper
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sergey Popov
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
- Department of Pathology, University of Wales Hospital NHS Trust, Cardiff, United Kingdom
| | - David W Ellison
- Department of Neuropathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Thomas S Jacques
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom.
| | - David T W Jones
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
27
|
Duke ES, Packer RJ. Update on Pediatric Brain Tumors: the Molecular Era and Neuro-immunologic Beginnings. Curr Neurol Neurosci Rep 2020; 20:30. [PMID: 32564169 DOI: 10.1007/s11910-020-01050-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW To provide an update on the current landscape of pediatric brain tumors and the impact of novel molecular insights on classification, diagnostics, and therapeutics. RECENT FINDINGS Scientific understanding of the genetic basis of central nervous system tumors has expanded rapidly over the last several years. The shift in classification of tumors to a molecularly based schema, accompanied by a growing number of early phase clinical trials of therapies aimed at inhibiting tumoral genetic and epigenetic programs, as well as those attempting to harness and magnify the immune response, has allowed a deeper pathophysiologic understanding of brain tumors and simultaneously provided opportunities for novel treatment. Over the last 5 years, there has been tremendous growth in the field of pediatric neuro-oncology with increasing understanding of the genetic and epigenetic heterogeneity of CNS tumors. Attempts are underway to translate these insights into tumor-specific treatments.
Collapse
Affiliation(s)
- Elizabeth S Duke
- Brain Tumor Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, 20010, USA.,Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, 20010, USA
| | - Roger J Packer
- Brain Tumor Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, 20010, USA. .,Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, 20010, USA.
| |
Collapse
|
28
|
Abstract
Neuronal and mixed glioneuronal tumors represent a group of neoplasms with varying degrees of neural and glial elements. Their age of presentation varies, but they are most commonly seen in children and young adults. With the exception of anaplastic ganglioglioma and other atypical variants, most lesions are low grade; however, they can have significant morbidity because of seizures, mass effect, or difficult to treat hydrocephalus. Although many tumors show overlapping clinical and imaging features, some have relatively distinctive imaging characteristics that may aid in narrowing the differential diagnosis. In this review, we discuss relevant clinical and pathologic characteristics of these tumors and provide an overview of conventional and advanced imaging features that provide clues as to the diagnosis.
Collapse
|
29
|
Abstract
Brain tumors constitute the largest source of oncologic mortality in children and low-grade gliomas are among most common pediatric central nervous system tumors. Pediatric low-grade gliomas differ from their counterparts in the adult population in their histopathology, genetics, and standard of care. Over the past decade, an increasingly detailed understanding of the molecular and genetic characteristics of pediatric brain tumors led to tailored therapy directed by integrated phenotypic and genotypic parameters and the availability of an increasing array of molecular-directed therapies. Advances in neuroimaging, conformal radiation therapy, and conventional chemotherapy further improved treatment outcomes. This article reviews the current classification of pediatric low-grade gliomas, their histopathologic and radiographic features, state-of-the-art surgical and adjuvant therapies, and emerging therapies currently under study in clinical trials.
Collapse
|
30
|
Perez E, Capper D. Invited Review: DNA methylation-based classification of paediatric brain tumours. Neuropathol Appl Neurobiol 2020; 46:28-47. [PMID: 31955441 DOI: 10.1111/nan.12598] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022]
Abstract
DNA methylation-based machine learning algorithms represent powerful diagnostic tools that are currently emerging for several fields of tumour classification. For various reasons, paediatric brain tumours have been the main driving forces behind this rapid development and brain tumour classification tools are likely further advanced than in any other field of cancer diagnostics. In this review, we will discuss the main characteristics that were important for this rapid advance, namely the high clinical need for improvement of paediatric brain tumour diagnostics, the robustness of methylated DNA and the consequential possibility to generate high-quality molecular data from archival formalin-fixed paraffin-embedded pathology specimens, the implementation of a single array platform by most laboratories allowing data exchange and data pooling to an unprecedented extent, as well as the high suitability of the data format for machine learning. We will further discuss the four most central output qualities of DNA methylation profiling in a diagnostic setting (tumour classification, tumour sub-classification, copy number analysis and guidance for additional molecular testing) individually for the most frequent types of paediatric brain tumours. Lastly, we will discuss DNA methylation profiling as a tool for the detection of new paediatric brain tumour classes and will give an overview of the rapidly growing family of new tumours identified with the aid of this technique.
Collapse
Affiliation(s)
- E Perez
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - D Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
Merlin MS, Gilson P, Rouyer M, Chastagner P, Doz F, Varlet P, Leroux A, Gauchotte G, Merlin JL. Rapid fully-automated assay for routine molecular diagnosis of BRAF mutations for personalized therapy of low grade gliomas. Pediatr Hematol Oncol 2020; 37:29-40. [PMID: 31642744 DOI: 10.1080/08880018.2019.1679304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: BRAF mutation analysis is important to personalize the management with low-grade gliomas (LGG) in children and adults, with therapeutic and prognostic impacts. In recurrent tumors, targeted therapies such as BRAF inhibitors had been reported to induce disease stabilization and significant radiographic responses. This highlights the potential interest of BRAF mutation to stratify patients for targeted therapy. Standard operating procedures (SOP) for BRAF V600E mutation detection can be time-consuming and consequently delay treatment choice in patients with acute deterioration. Here, we evaluated IdyllaTM fully automated PCR (FA-PCR) assay for the rapid determination of BRAF mutational status in children and adult LGG.Methods: Formalin-fixed and paraffin-embedded (FFPE) samples from three histological LGG subtypes (ganglioglioma, pleomorphic xantoastrocytoma, and dysembryoplastic neuroepithelial tumor) with previous SOP-characterized BRAF mutational status were re-analyzed using the FA-PCR. Overall concordance with the mutational status determined using SOP, as well as sensitivity and specificity of FA-PCR technique were assessed.Results: All 14 samples gave interpretable results with FA-PCR. Overall concordance of BRAF mutational status between FA-PCR and SOP was 100%. Sensitivity and specificity were 100%.Conclusion: This study confirms the reliability of FA-PCR for BRAF mutations analysis in children and adult LGG. Considering the short time to results enabled by FA-PCR, providing results in less than 90 minutes, this technique represents an interesting option for the molecular diagnosis of LGG and personalization of treatment.
Collapse
Affiliation(s)
- Marie-Sophie Merlin
- Université de Lorraine, CNRS UMR7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandoeuvre-lès- Nancy, France.,Université de Lorraine, CNRS UMR7039 CRAN, Centre Hospitalier Régional Universitaire (CHRU), Hôpital d'enfants, Service d'Oncologie Pédiatrique, Vandoeuvre-lès-Nancy, France
| | - Pauline Gilson
- Université de Lorraine, CNRS UMR7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandoeuvre-lès- Nancy, France
| | - Marie Rouyer
- Université de Lorraine, CNRS UMR7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandoeuvre-lès- Nancy, France
| | - Pascal Chastagner
- Université de Lorraine, CNRS UMR7039 CRAN, Centre Hospitalier Régional Universitaire (CHRU), Hôpital d'enfants, Service d'Oncologie Pédiatrique, Vandoeuvre-lès-Nancy, France
| | - François Doz
- Service d'Oncologie Pédiatrique, Institut Curie, Paris, France
| | - Pascale Varlet
- Service de Neuropathologie, Centre Hospitalier St Anne, Paris, France
| | - Agnès Leroux
- Université de Lorraine, CNRS UMR7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandoeuvre-lès- Nancy, France
| | - Guillaume Gauchotte
- Université de Lorraine, INSERM UMRS954 NGERE, Service d'Anatomie Pathologique, CHRU Nancy, Vandoeuvre-lès- Nancy, France
| | - Jean-Louis Merlin
- Université de Lorraine, CNRS UMR7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandoeuvre-lès- Nancy, France
| |
Collapse
|
32
|
Blessing MM, Blackburn PR, Krishnan C, Harrod VL, Barr Fritcher EG, Zysk CD, Jackson RA, Milosevic D, Nair AA, Davila JI, Balcom JR, Jenkins RB, Halling KC, Kipp BR, Nageswara Rao AA, Laack NN, Daniels DJ, Macon WR, Ida CM. Desmoplastic Infantile Ganglioglioma: A MAPK Pathway-Driven and Microglia/Macrophage-Rich Neuroepithelial Tumor. J Neuropathol Exp Neurol 2019; 78:1011-1021. [DOI: 10.1093/jnen/nlz086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Abstract
MAPK pathway activation has been recurrently observed in desmoplastic infantile ganglioglioma/astrocytoma (DIG/DIA) with reported disproportionally low mutation allele frequencies relative to the apparent high tumor content, suggesting that MAPK pathway alterations may be subclonal. We sought to expand the number of molecularly profiled cases and investigate if tumor cell composition could account for the observed low mutation allele frequencies. Molecular (targeted neuro-oncology next-generation sequencing/RNA sequencing and OncoScan microarray) and immunohistochemical (CD68-PGM1/CD163/CD14/CD11c/lysozyme/CD3/CD20/CD34/PD-L1) studies were performed in 7 DIG. Activating MAPK pathway alterations were identified in 4 (57%) cases: 3 had a BRAF mutation (V600E/V600D/V600_W604delinsDQTDG, at 8%–27% variant allele frequency) and 1 showed a TPM3-NTRK1 fusion. Copy number changes were infrequent and nonrecurrent. All tumors had at least 30% of cells morphologically and immunophenotypically consistent with microglial/macrophage lineage. Two subtotally resected tumors regrew; 1 was re-excised and received adjuvant treatment (chemotherapy/targeted therapy), with clinical response to targeted therapy only. Even with residual tumor, all patients are alive (median follow-up, 83 months; 19–139). This study further supports DIG as another MAPK pathway-driven neuroepithelial tumor, thus expanding potential treatment options for tumors not amenable to surgical cure, and suggests that DIG is a microglia/macrophage-rich neuroepithelial tumor with frequent low driver mutation allele frequencies.
Collapse
Affiliation(s)
- Melissa M Blessing
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Patrick R Blackburn
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Chandra Krishnan
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Virginia L Harrod
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Emily G Barr Fritcher
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Christopher D Zysk
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Rory A Jackson
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Dragana Milosevic
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Asha A Nair
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Jaime I Davila
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Jessica R Balcom
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Robert B Jenkins
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Kevin C Halling
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Benjamin R Kipp
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Amulya A Nageswara Rao
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Nadia N Laack
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - David J Daniels
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - William R Macon
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| | - Cristiane M Ida
- Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children’s Medical Center, Austin, Texas
| |
Collapse
|
33
|
Benson JC, Summerfield D, Guerin JB, Kun Kim D, Eckel L, Daniels DJ, Morris P. Mixed Solid and Cystic Mass in an Infant. AJNR Am J Neuroradiol 2019; 40:1792-1795. [PMID: 31582387 DOI: 10.3174/ajnr.a6226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 11/07/2022]
Abstract
Desmoplastic infantile tumors are rare supratentorial brain tumors that occur in pediatric patients. Desmoplastic infantile tumors are made up of 2 subtypes: desmoplastic infantile gangliogliomas and desmoplastic infantile astrocytomas. Desmoplastic infantile tumors are often identifiable on imaging on the basis of multiple characteristics. Nevertheless, pathologic analysis is required to confirm the diagnosis, particularly when the imaging features are atypical. Here, the radiology findings, surgical approach and subsequent management, and pathology of a desmoplastic infantile ganglioglioma are described.
Collapse
Affiliation(s)
- J C Benson
- From the Departments of Radiology (J.C.B., J.B.G., D.K.K., L.E., P.M.)
| | | | - J B Guerin
- From the Departments of Radiology (J.C.B., J.B.G., D.K.K., L.E., P.M.)
| | - D Kun Kim
- From the Departments of Radiology (J.C.B., J.B.G., D.K.K., L.E., P.M.)
| | - L Eckel
- From the Departments of Radiology (J.C.B., J.B.G., D.K.K., L.E., P.M.)
| | - D J Daniels
- Neurosurgery (D.J.D.), Mayo Clinic, Rochester, Minesotta
| | - P Morris
- From the Departments of Radiology (J.C.B., J.B.G., D.K.K., L.E., P.M.)
| |
Collapse
|
34
|
Cohen AR. The great neurosurgical masquerader: 3 cases of desmoplastic infantile ganglioglioma. J Neurosurg Pediatr 2019; 24:258-266. [PMID: 31277058 DOI: 10.3171/2019.5.peds19151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/06/2019] [Indexed: 11/06/2022]
Abstract
Desmoplastic infantile ganglioglioma (DIG) is a rare, distinctive, supratentorial neoplasm with a generally favorable prognosis. Clinical, radiographic, and pathologic features can sometimes mimic those of a malignant tumor and other serious intracranial disorders. The author describes his experience with 3 cases of DIG, each of which initially masqueraded as another neurological disease with a very different prognosis. Case 1 was an infant boy referred for evaluation of a hemorrhagic infarction at birth. Case 2 was an infant girl referred for evaluation of a holohemispheric malignant neoplasm. Case 3 was an infant girl referred for evaluation of an intracranial mass believed to be a subdural empyema or possible sarcoma. In each case the lesion was resected and found to be a WHO grade I DIG. Each child has had a benign postoperative course. DIG can be mistaken for other serious neurological conditions including malignant neoplasm, cerebral infarction, and infection. It is prudent to consider this rare, low-grade resectable tumor in the differential diagnosis of atypical intracranial masses of childhood, as the impact on prognosis can be profound. The author discusses management strategies for DIG, including a role for molecular sequencing.
Collapse
|
35
|
Clinical relevance of BRAF status in glial and glioneuronal tumors: A systematic review. J Clin Neurosci 2019; 66:196-201. [DOI: 10.1016/j.jocn.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/29/2019] [Accepted: 05/11/2019] [Indexed: 12/18/2022]
|
36
|
Oncogenic BRAF Alterations and Their Role in Brain Tumors. Cancers (Basel) 2019; 11:cancers11060794. [PMID: 31181803 PMCID: PMC6627484 DOI: 10.3390/cancers11060794] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/26/2022] Open
Abstract
Alterations of the v-raf murine sarcoma viral oncogene homolog B (BRAF) have been extensively studied in several tumor entities and are known to drive cell growth in several tumor entities. Effective targeted therapies with mutation-specific small molecule inhibitors have been developed and established for metastasized malignant melanoma. The BRAF V600E mutation and KIAA1549-BRAF fusion are alterations found in several brain tumors and show a distinct prognostic impact in some entities. Besides the diagnostic significance for the classification of central nervous system tumors, these alterations present possible therapy targets that may be exploitable for oncological treatments, as it has been established for malignant melanomas. In this review the different central nervous system tumors harboring BRAF alterations are presented and the diagnostic significance, prognostic role, and therapeutic potential are discussed.
Collapse
|