1
|
Do LK, Lee HM, Ha YS, Lee CH, Kim J. Amino acids in cancer: Understanding metabolic plasticity and divergence for better therapeutic approaches. Cell Rep 2025; 44:115529. [PMID: 40193251 DOI: 10.1016/j.celrep.2025.115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/09/2025] Open
Abstract
Metabolic reprogramming is a hallmark of malignant transformation. While initial studies in the field of cancer metabolism focused on central carbon metabolism, the field has expanded to metabolism beyond glucose and glutamine and uncovered the important role of amino acids in tumorigenesis and tumor immunity as energy sources, signaling molecules, and precursors for (epi)genetic modification. As a result of the development and application of new technologies, a multifaceted picture has emerged, showing that context-dependent heterogeneity in amino acid metabolism exists between tumors and even within distinct regions of solid tumors. Understanding the complexity and flexibility of amino acid metabolism in cancer is critical because it can influence therapeutic responses and predict clinical outcomes. This overview discusses the current findings on the heterogeneity in amino acid metabolism in cancer and how understanding the metabolic diversity of amino acids can be translated into more clinically relevant therapeutic interventions.
Collapse
Affiliation(s)
- Linda K Do
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Hyun Min Lee
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Chan-Hyeong Lee
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Jiyeon Kim
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
2
|
Torang A, Kirov AB, Lammers V, Cameron K, Wouters VM, Jackstadt RF, Lannagan TRM, de Jong JH, Koster J, Sansom O, Medema JP. Enterocyte-like differentiation defines metabolic gene signatures of CMS3 colorectal cancers and provides therapeutic vulnerability. Nat Commun 2025; 16:264. [PMID: 39747069 PMCID: PMC11696116 DOI: 10.1038/s41467-024-55574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Colorectal cancer (CRC) is stratified into four consensus molecular subtypes (CMS1-4). CMS3 represents the metabolic subtype, but its wiring remains largely undefined. To identify the underlying tumorigenesis of CMS3, organoids derived from 16 genetically engineered mouse models are analyzed. Upon in vitro Cre-recombinase activation, transformation is established and transcriptional profiling reveals that distinct CMSs (CMS2-4) are modeled with different organoids. CMS3-like, metabolic signature-positive, organoids are induced by KRAS mutations. Interestingly, metabolic signatures are subsequently shown to result from enterocyte-like differentiation both in organoids and human cancers. Further analysis reveals carbamoyl-phosphate synthase 1 (CPS1) and sucrase-isomaltase (SI) as signature proteins. More importantly, CPS1 is crucial for de novo pyrimidine synthesis in CMS3 and its inhibition targets proliferation and stemness, facilitating enterocyte-like differentiation, while CMS2 and CMS4 models are not affected. Our data point to an enterocyte-like differentiation of CMS3 CRCs and reveal a selective vulnerability of this subtype through CPS1 inhibition.
Collapse
Affiliation(s)
- Arezo Torang
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Aleksandar B Kirov
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Veerle Lammers
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Kate Cameron
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Valérie M Wouters
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Rene F Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Heidelberg, Germany Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Joan H de Jong
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Jan Koster
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Owen Sansom
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
- Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Zarlenga DS, Hoberg EP, Thompson P, Rosenthal B. Trichinella: Becoming a parasite. Vet Parasitol 2025; 333:110220. [PMID: 38910035 DOI: 10.1016/j.vetpar.2024.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
Phylogenetic evidence indicates that free-living nematodes gave rise to parasitic nematodes where parasitism evolved independently at least 15 times. The high level of genetic and biological diversity among parasites dictates an equally high level of diversity in the transition to parasitism. We previously hypothesized that horizontal gene transfer (HGT) played an important role in the evolution of parasitism among early ancestors of Trichinella, mediated by an interplay of ecological and evolutionary pathways that contributed to persistence and diversification. We propose that host selection may have been associated with the metabolism of ammonia and engender a new paradigm whereby the reprogrammed nurse cell is capable of generating cyanate thereby enabling the importance of the Trichinella cyanase in the longevity of the cell. Parasites and parasitism have revealed considerable resilience against a backdrop of climate change and environmental perturbation. Here we provide a putative link between key periods in the evolution of Trichinella and major geological and climatological events dating back 500 million years. A useful lens for exploring such ideas, the Stockholm Paradigm, integrates Ecological Fitting (a foundation for host colonization and diversification), the Oscillation Hypothesis (recurring shifts between trends in generalization and specialization relative to host range), the Geographic Mosaic Theory of Coevolution (microevolutionary co-adaptive processes), and the Taxon Pulse Hypothesis (alternating events of biotic expansion i.e., exploitation in evolutionary and ecological time). Here we examine how one or more of these interactive theories, in a phylogenetic-historical context and in conjunction with HGT, may help explain the scope and depth of diversity among Trichinella genotypes.
Collapse
Affiliation(s)
- Dante S Zarlenga
- USDA-Agricultural Research Service, Animal Parasitic Diseases Lab, Beltsville, MD, USA.
| | - Eric P Hoberg
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA
| | - Peter Thompson
- USDA-Agricultural Research Service, Animal Parasitic Diseases Lab, Beltsville, MD, USA
| | - Benjamin Rosenthal
- USDA-Agricultural Research Service, Animal Parasitic Diseases Lab, Beltsville, MD, USA
| |
Collapse
|
4
|
Lypova N, Dougherty SM, Clem BF, Feng J, Yin X, Zhang X, Li X, Chesney JA, Imbert-Fernandez Y. PFKFB3-dependent redox homeostasis and DNA repair support cell survival under EGFR-TKIs in non-small cell lung carcinoma. Cancer Metab 2024; 12:37. [PMID: 39696407 PMCID: PMC11658331 DOI: 10.1186/s40170-024-00366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The efficacy of tyrosine kinase inhibitors (TKIs) targeting the EGFR is limited due to the persistence of drug-tolerant cell populations, leading to therapy resistance. Non-genetic mechanisms, such as metabolic rewiring, play a significant role in driving lung cancer cells into the drug-tolerant state, allowing them to persist under continuous drug treatment. METHODS Our study employed a comprehensive approach to examine the impact of the glycolytic regulator 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) on the adaptivity of lung cancer cells to EGFR TKI therapies. We conducted metabolomics to trace glucose rerouting in response to PFKFB3 inhibition during TKI treatment. Live cell imaging and DCFDA oxidation were used to quantify levels of oxidation stress. Immunocytochemistry and Neutral Comet assay were employed to evaluate DNA integrity in response to therapy-driven oxidative stress. RESULTS Our metabolic profiling revealed that PFKFB3 inhibition significantly alters the metabolic profile of TKI-treated cells. It limited glucose utilization in the polyol pathway, glycolysis, and TCA cycle, leading to a depletion of ATP levels. Furthermore, pharmacological inhibition of PFKFB3 overcome TKI-driven redox capacity by diminishing the expression of glutathione peroxidase 4 (GPX4), thereby exacerbating oxidative stress. Our study also unveiled a novel role of PFKFB3 in DNA oxidation and damage by controlling the expression of DNA-glycosylases involved in base excision repair. Consequently, PFKFB3 inhibition improved the cytotoxicity of EGFR-TKIs by facilitating ROS-dependent cell death. CONCLUSIONS Our results suggest that PFKFB3 inhibition reduces glucose utilization and DNA damage repair, limiting the adaptivity of the cells to therapy-driven oxidative stress and DNA integrity insults. Inhibiting PFKFB3 can be an effective strategy to eradicate cancer cells surviving under EGFR TKI therapy before they enter the drug-resistant state. These findings may have potential implications in the development of new therapies for drug-resistant cancer treatment.
Collapse
Affiliation(s)
- Nadiia Lypova
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| | - Susan M Dougherty
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Brian F Clem
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- UofL Health-Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Jing Feng
- Center for Regulatory Environmental Analytical Metabolomics, University of Louisville, Louisville, KY, 40208, USA
- Department of Chemistry, University of Louisville, Louisville, KY, 40208, USA
| | - Xinmin Yin
- Center for Regulatory Environmental Analytical Metabolomics, University of Louisville, Louisville, KY, 40208, USA
- Department of Chemistry, University of Louisville, Louisville, KY, 40208, USA
| | - Xiang Zhang
- Center for Regulatory Environmental Analytical Metabolomics, University of Louisville, Louisville, KY, 40208, USA
- Department of Chemistry, University of Louisville, Louisville, KY, 40208, USA
| | - Xiaohong Li
- Department of Anatomical Sciences and Neurobiology, Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
| | - Jason A Chesney
- UofL Health-Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Yoannis Imbert-Fernandez
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
- UofL Health-Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
5
|
Ghosh N, Mahalanobish S, Sil PC. Reprogramming of urea cycle in cancer: Mechanism, regulation and prospective therapeutic scopes. Biochem Pharmacol 2024; 228:116326. [PMID: 38815626 DOI: 10.1016/j.bcp.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hepatic urea cycle, previously known as ornithine cycle, is the chief biochemical pathway that deals with the disposal of excessive nitrogen in form of urea, resulted from protein breakdown and concomitant condensation of ammonia. Enzymes involved in urea cycle are expressed differentially outside hepatic tissue and are mostly involved in production of arginine from citrulline in arginine-depleted condition. Inline, cancer cells frequently adapt metabolic rewiring to support sufficient biomass production in order to sustain tumor cell survival, multiplication and subsequent growth. For the accomplishment of this aim, metabolic reprogramming in cancer cells is set in way so that cellular nitrogen and carbon repertoire can be utilized and channelized maximally towards anabolic reactions. A strategy to meet such outcome is to cut down unnecessary catabolic reactions and nitrogen elimination. Thus, transfigured urea cycle is a hallmark of neoplasia. During oncogenesis, altered expression and regulation of enzymes involved in urea cycle is a revolutionary approach meet to maximum incorporation of nitrogen for sustaining tumor specific biogenesis. Currently, we have reviewed neoplasm-specific deregulations of urea cycle-enzymes in different types and stages of cancers suggesting its context-oriented dynamic nature. Considering such insight to be valuable in terms of prospective cancer diagnosis and therapeutics adaptive evolution of deregulated urea cycle has been enlightened.
Collapse
Affiliation(s)
- Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
6
|
Zhang H, Cao C, Xiong H. Construction and validation of a prognostic model for stemness-related genes in lung adenocarcinoma. Transl Cancer Res 2024; 13:1351-1366. [PMID: 38617509 PMCID: PMC11009808 DOI: 10.21037/tcr-23-1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
Background Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer with poor overall prognosis. Early identification of high-risk patients and individualized treatment can help extend the survival time of patients. This study aimed to construct and validate a prognostic prediction least absolute shrinkage and selection operator (LASSO) model for stemness-related genes in LUAD. Methods Firstly, LUAD RNA-sequencing data and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. The tumor stemness index based on mRNA expression (mRNAsi) was calculated, and the relationship between mRNAsi and the survival prognosis as well as clinical features of LUAD patients was analyzed. Then, the weighted gene co-expression network analysis (WGCNA) method was used to screen for gene modules highly correlated with mRNAsi, and functional annotation [Gene Ontology (GO) analysis] and pathway enrichment analysis [Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis] were performed for the selected stemness-related gene module. Furthermore, prognosis-associated genes were determined from the stemness-related genes through univariate Cox analysis, and a prognostic model was constructed using LASSO analysis. Finally, a series of validations including survival curve analysis, receiver operating characteristic (ROC) curve analysis, and risk analysis were conducted for the prognostic model, and nomogram based on the risk model and various clinicopathological features were constructed. Results LUAD patients with high mRNAsi had a higher mortality rate than those with low mRNAsi. GO analysis showed that stemness-related genes were mainly involved in mRNA processing and extracellular matrix organization, while KEGG analysis revealed their involvement in cell cycle and PI3K-Akt signaling pathways. A prognostic model based on 12 stemness-related genes was constructed using LASSO regression. Validation of the prognostic model demonstrated its good accuracy in predicting the prognosis of LUAD patients. Conclusions mRNAsi plays an important role in the occurrence and development of LUAD. This study successfully constructed a prognostic prediction LASSO model for stemness-related genes in LUAD, which can serve as a novel prognostic indicator for LUAD and may be an effective complement to the current Tumor Node Metastasis (TNM) clinical staging of LUAD.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlin Cao
- Department of the Second Clinical College, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Gao P, Mei Z, Liu Z, Zhu D, Yuan H, Zhao R, Xu K, Zhang T, Jiang Y, Suo C, Chen X. Association between serum urea concentrations and the risk of colorectal cancer, particularly in individuals with type 2 diabetes: A cohort study. Int J Cancer 2024; 154:297-306. [PMID: 37671773 DOI: 10.1002/ijc.34719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Dysregulation of the urea cycle (UC) has been detected in colorectal cancer (CRC). However, the impact of the UC's end product, urea, on CRC development remains unclear. We investigated the association between serum urea and CRC risk based on the data of 348 872 participants cancer-free at recruitment from the UK Biobank. Multivariable Cox proportional hazards models were fitted to conduct risk estimates. Stratification analyses based on sex, diet pattern, metabolic factors (including body mass index [BMI], the estimated glomerular filtration rate [eGFR] and type 2 diabetes [T2D]) and genetic profiles (the polygenic risk score [PRS] of CRC) were conducted to find potential modifiers. During an average of 9.0 years of follow-up, we identified 3408 (1.0%) CRC incident cases. Serum urea showed a nonlinear relationship with CRC risk (P-nonlinear: .035). Lower serum urea levels were associated with a higher CRC risk, with a fully-adjusted hazard ratio (HR) of 1.26 (95% confidence interval [CI]: 1.13-1.41) in the first quartile (Q1) of urea, compared to the Q4. This association was largely consistent across subgroups of sex, protein diet, BMI, eGFR and CRC-PRSs (P-interaction >.05); however, it was stronger in the T2D, with an interaction between urea and T2D on both additive (synergy index: 3.32, [95% CI: 1.24-8.88]) and multiplicative scales (P-interaction: .019). Lower serum urea concentrations were associated with an increased risk of CRC, with a more pronounced effect observed in individuals with T2D. Maintaining stable levels of serum urea has important implications for CRC prevention, particularly in individuals with T2D.
Collapse
Affiliation(s)
- Peipei Gao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Zhendong Mei
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhenqiu Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Dongliang Zhu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Renjia Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Kelin Xu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Tiejun Zhang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Department of Epidemiology and Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
| |
Collapse
|
8
|
Owusu-Ansah M, Guptan N, Alindogan D, Morizono M, Caldovic L. NAGS, CPS1, and SLC25A13 (Citrin) at the Crossroads of Arginine and Pyrimidines Metabolism in Tumor Cells. Int J Mol Sci 2023; 24:ijms24076754. [PMID: 37047726 PMCID: PMC10094985 DOI: 10.3390/ijms24076754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Urea cycle enzymes and transporters collectively convert ammonia into urea in the liver. Aberrant overexpression of carbamylphosphate synthetase 1 (CPS1) and SLC25A13 (citrin) genes has been associated with faster proliferation of tumor cells due to metabolic reprogramming that increases the activity of the CAD complex and pyrimidine biosynthesis. N-acetylglutamate (NAG), produced by NAG synthase (NAGS), is an essential activator of CPS1. Although NAGS is expressed in lung cancer derived cell lines, expression of the NAGS gene and its product was not evaluated in tumors with aberrant expression of CPS1 and citrin. We used data mining approaches to identify tumor types that exhibit aberrant overexpression of NAGS, CPS1, and citrin genes, and evaluated factors that may contribute to increased expression of the three genes and their products in tumors. Median expression of NAGS, CPS1, and citrin mRNA was higher in glioblastoma multiforme (GBM), glioma, and stomach adenocarcinoma (STAD) samples compared to the matched normal tissue. Median expression of CPS1 and citrin mRNA was higher in the lung adenocarcinoma (LUAD) sample while expression of NAGS mRNA did not differ. High NAGS expression was associated with an unfavorable outcome in patients with glioblastoma and GBM. Low NAGS expression was associated with an unfavorable outcome in patients with LUAD. Patterns of DNase hypersensitive sites and histone modifications in the upstream regulatory regions of NAGS, CPS1, and citrin genes were similar in liver tissue, lung tissue, and A549 lung adenocarcinoma cells despite different expression levels of the three genes in the liver and lung. Citrin gene copy numbers correlated with its mRNA expression in glioblastoma, GBM, LUAD, and STAD samples. There was little overlap between NAGS, CPS1, and citrin sequence variants found in patients with respective deficiencies, tumor samples, and individuals without known rare genetic diseases. The correlation between NAGS, CPS1, and citrin mRNA expression in the individual glioblastoma, GBM, LUAD, and STAD samples was very weak. These results suggest that the increased cytoplasmic supply of either carbamylphosphate, produced by CPS1, or aspartate may be sufficient to promote tumorigenesis, as well as the need for an alternative explanation of CPS1 activity in the absence of NAGS expression and NAG.
Collapse
Affiliation(s)
- Melissa Owusu-Ansah
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Nikita Guptan
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Dylon Alindogan
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Michio Morizono
- School of Mathematics, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ljubica Caldovic
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| |
Collapse
|
9
|
Xu JQ, Fu YL, Zhang J, Zhang KY, Ma J, Tang JY, Zhang ZW, Zhou ZY. Targeting glycolysis in non-small cell lung cancer: Promises and challenges. Front Pharmacol 2022; 13:1037341. [PMID: 36532721 PMCID: PMC9748442 DOI: 10.3389/fphar.2022.1037341] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/04/2022] [Indexed: 08/17/2023] Open
Abstract
Metabolic disturbance, particularly of glucose metabolism, is a hallmark of tumors such as non-small cell lung cancer (NSCLC). Cancer cells tend to reprogram a majority of glucose metabolism reactions into glycolysis, even in oxygen-rich environments. Although glycolysis is not an efficient means of ATP production compared to oxidative phosphorylation, the inhibition of tumor glycolysis directly impedes cell survival and growth. This review focuses on research advances in glycolysis in NSCLC and systematically provides an overview of the key enzymes, biomarkers, non-coding RNAs, and signaling pathways that modulate the glycolysis process and, consequently, tumor growth and metastasis in NSCLC. Current medications, therapeutic approaches, and natural products that affect glycolysis in NSCLC are also summarized. We found that the identification of appropriate targets and biomarkers in glycolysis, specifically for NSCLC treatment, is still a challenge at present. However, LDHB, PDK1, MCT2, GLUT1, and PFKM might be promising targets in the treatment of NSCLC or its specific subtypes, and DPPA4, NQO1, GAPDH/MT-CO1, PGC-1α, OTUB2, ISLR, Barx2, OTUB2, and RFP180 might be prognostic predictors of NSCLC. In addition, natural products may serve as promising therapeutic approaches targeting multiple steps in glycolysis metabolism, since natural products always present multi-target properties. The development of metabolic intervention that targets glycolysis, alone or in combination with current therapy, is a potential therapeutic approach in NSCLC treatment. The aim of this review is to describe research patterns and interests concerning the metabolic treatment of NSCLC.
Collapse
Affiliation(s)
- Jia-Qi Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Li Fu
- Department of Oncology, Shenzhen (Fu Tian) Hospital, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai-Yu Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Wei Zhang
- Department of Oncology, Shenzhen (Fu Tian) Hospital, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Unraveling the therapeutic potential of carbamoyl phosphate synthetase 1 (CPS1) in human disease. Bioorg Chem 2022; 130:106253. [DOI: 10.1016/j.bioorg.2022.106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
11
|
Saddozai UAK, Wang F, Khattak S, Akbar MU, Badar M, Khan NH, Zhang L, Zhu W, Xie L, Li Y, Ji X, Guo X. Define the Two Molecular Subtypes of Epithelioid Malignant Pleural Mesothelioma. Cells 2022; 11:cells11182924. [PMID: 36139498 PMCID: PMC9497219 DOI: 10.3390/cells11182924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a fatal disease of respiratory system. Despite the availability of invasive biomarkers with promising results, there are still significant diagnostic and therapeutic challenges in the treatment of MPM. One of three main mesothelioma cell types, epithelioid mesothelioma makes up approximately 70% of all mesothelioma cases. Different observational findings are under process, but the molecular heterogeneity and pathogenesis of epithelioid malignant pleural mesothelioma (eMPM) are still not well understood. Through molecular analysis, expression profiling data were used to determine the possibility and optimal number of eMPM molecular subtypes. Next, clinicopathological characteristics and different molecular pathways of each subtype were analyzed to prospect the clinical applications and advanced mechanisms of eMPM. In this study, we identified two distinct epithelioid malignant pleural mesothelioma subtypes with distinct gene expression patterns. Subtype I eMPMs were involved in steroid hormone biosynthesis, porphyrin and chlorophyll metabolism, and drug metabolism, while subtype II eMPMs were involved in rational metabolism, tyrosine metabolism, and chemical carcinogenesis pathways. Additionally, we identified potential subtype-specific therapeutic targets, including CCNE1, EPHA3, RNF43, ROS1, and RSPO2 for subtype I and CDKN2A and RET for subtype II. Considering the need for potent diagnostic and therapeutic biomarkers for eMPM, we are anticipating that our findings will help both in exploring underlying mechanisms in the development of eMPM and in designing targeted therapy for eMPM.
Collapse
Affiliation(s)
- Umair Ali Khan Saddozai
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fengling Wang
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Saadullah Khattak
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Badar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Nazeer Hussain Khan
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Lu Zhang
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yongqiang Li
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xinying Ji
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Correspondence: (X.J.); (X.G.)
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Correspondence: (X.J.); (X.G.)
| |
Collapse
|
12
|
Tu J, Tang M, Li G, Chen L, Huang Y. Molecular Typing Based on Oxidative Stress Genes and Establishment of Prognostic Characteristics of 7 Genes in Lung Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9683819. [PMID: 36148413 PMCID: PMC9485712 DOI: 10.1155/2022/9683819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Oxidative stress could maintain different biological processes in human cancer. However, the effect of oxidative stress on lung adenocarcinoma (LUAD) should be studied. This study analyzed the expression and clinical importance of oxidative stress in LUAD in detail. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were employed for obtaining LUAD expression profiles. Based on oxidative stress-related genes, molecular subtypes substantially correlated with the LUAD prognosis were discovered with ConsensusClusterPlus. Differentially expressed genes (DEGs) among subtypes were found using the Limma software package. Least absolute shrinkage and selection operator- (Lasso-) Cox analysis was employed to create the polygenic risk model. RiskScore and clinically relevant features were used to create nomograms. By utilizing oxidative stress-related genes and reliable clustering, stable molecular subtypes were first discovered. The prognosis, clinical characteristics, route characteristics, and immunological characteristics of these three molecular subtypes were all different. Subsequently, by using differential expression genes among molecular subtypes and Lasso, 7 main genes linked with the oxidative stress phenotype were discovered. A prognostic risk model was also built on the basis of major genes associated with the oxidative stress phenotype. The model demonstrated a high level of resilience and was unaffected by clinical-pathological features. It played a stable predictive role in independent datasets. Ultimately, to improve the prognosis model and survival prediction, RiskScore (RS) was combined with clinicopathological variables, and a decision tree model was used. The model exhibited a high prediction accuracy as well as the ability to predict survival. This research found that oxidative stress-related genes have a major involvement in the onset and progression of LUAD and that they may influence LUAD susceptibility to immunotherapy and standard chemotherapy. Furthermore, the identified risk models for 7 genes linked with oxidative stress exhibited could assist clinical treatment decisions and prognosis prediction. The classifier could be used as a molecular diagnostic tool for assessing LUAD patients' prognosis risk.
Collapse
Affiliation(s)
- Jing Tu
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Guoqing Li
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Liang Chen
- Intensive Care Unit, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Yong Huang
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| |
Collapse
|
13
|
Babuta J, Hall Z, Athersuch T. Dysregulated Metabolism in EGFR-TKI Drug Resistant Non-Small-Cell Lung Cancer: A Systematic Review. Metabolites 2022; 12:metabo12070644. [PMID: 35888768 PMCID: PMC9316206 DOI: 10.3390/metabo12070644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Drug resistance is a common barrier to continued effective treatment in cancer. In non-small-cell lung cancer (NSCLC), tyrosine kinase inhibitors that target the epidermal growth factor receptor (EGFR-TKIs) exhibit good efficacy in cancer treatment until acquired resistance occurs. It has been observed that drug resistance is accompanied by numerous molecular-level changes, including significant shifts in cellular metabolism. The purpose of this study was to critically and systematically review the published literature with respect to how metabolism differs in drug-resistant compared to drug-sensitive NSCLC. Understanding the differences between resistant and sensitive cells is vital and has the potential to allow interventions that enable the re-sensitisation of resistant cells to treatment, and consequently reinitiate the therapeutic effect of EGFR-TKIs. The main literature search was performed using relevant keywords in PubMed and Ovid (Medline) and reviewed using the Covidence platform. Of the 1331 potentially relevant literature records retrieved, 27 studies were subsequently selected for comprehensive analysis. Collectively, the literature revealed that NSCLC cell lines resistant to EGFR-TKI treatment possess characteristic metabolic and lipidomic phenotypic signatures that differentiate them from sensitive lines. Further exploration of these reported differences suggests that drug-resistant cell lines are differentially reliant on cellular energy sources and that modulation of relative energy production pathways may lead to the reversal of drug resistance.
Collapse
|
14
|
The Role of TRIP6, ABCC3 and CPS1 Expression in Resistance of Ovarian Cancer to Taxanes. Int J Mol Sci 2021; 23:ijms23010073. [PMID: 35008510 PMCID: PMC8744980 DOI: 10.3390/ijms23010073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
The main problem precluding successful therapy with conventional taxanes is de novo or acquired resistance to taxanes. Therefore, novel experimental taxane derivatives (Stony Brook taxanes; SB-Ts) are synthesized and tested as potential drugs against resistant solid tumors. Recently, we reported alterations in ABCC3, CPS1, and TRIP6 gene expression in a breast cancer cell line resistant to paclitaxel. The present study aimed to investigate gene expression changes of these three candidate molecules in the highly resistant ovarian carcinoma cells in vitro and corresponding in vivo models treated with paclitaxel and new experimental Stony Brook taxanes of the third generation (SB-T-121605 and SB-T-121606). We also addressed their prognostic meaning in ovarian carcinoma patients treated with taxanes. We estimated and observed changes in mRNA and protein profiles of ABCC3, CPS1, and TRIP6 in resistant and sensitive ovarian cancer cells and after the treatment of resistant ovarian cancer models with paclitaxel and Stony Brook taxanes in vitro and in vivo. Combining Stony Brook taxanes with paclitaxel caused downregulation of CPS1 in the paclitaxel-resistant mouse xenograft tumor model in vivo. Moreover, CPS1 overexpression seems to play a role of a prognostic biomarker of epithelial ovarian carcinoma patients’ poor survival. ABCC3 was overexpressed in EOC tumors, but after the treatment with taxanes, its up-regulation disappeared. Based on our results, we can suggest ABCC3 and CPS1 for further investigations as potential therapeutic targets in human cancers.
Collapse
|
15
|
Emerging Molecular Dependencies of Mutant EGFR-Driven Non-Small Cell Lung Cancer. Cells 2021; 10:cells10123553. [PMID: 34944063 PMCID: PMC8699920 DOI: 10.3390/cells10123553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations are the molecular driver of a subset of non-small cell lung cancers (NSCLC); tumors that harbor these mutations are often dependent on sustained oncogene signaling for survival, a concept known as “oncogene addiction”. Inhibiting EGFR with tyrosine kinase inhibitors has improved clinical outcomes for patients; however, successive generations of inhibitors have failed to prevent the eventual emergence of resistance to targeted agents. Although these tumors have a well-established dependency on EGFR signaling, there remain questions about the underlying genetic mechanisms necessary for EGFR-driven oncogenesis and the factors that allow tumor cells to escape EGFR dependence. In this review, we highlight the latest findings on mutant EGFR dependencies, co-operative drivers, and molecular mechanisms that underlie sensitivity to EGFR inhibitors. Additionally, we offer perspective on how these discoveries may inform novel combination therapies tailored to EGFR mutant NSCLC.
Collapse
|
16
|
Hajaj E, Sciacovelli M, Frezza C, Erez A. The context-specific roles of urea cycle enzymes in tumorigenesis. Mol Cell 2021; 81:3749-3759. [PMID: 34469752 DOI: 10.1016/j.molcel.2021.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
The expression of the urea cycle (UC) proteins is dysregulated in multiple cancers, providing metabolic benefits to tumor survival, proliferation, and growth. Here, we review the main changes described in the expression of UC enzymes and metabolites in different cancers at various stages and suggest that these changes are dynamic and should hence be viewed in a context-specific manner. Understanding the evolvability in the activity of the UC pathway in cancer has implications for cancer-immune cell interactions and for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Hajaj
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK.
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
17
|
Wang KX, Chen YP, Lu AP, Du GH, Qin XM, Guan DG, Gao L. A metabolic data-driven systems pharmacology strategy for decoding and validating the mechanism of Compound Kushen Injection against HCC. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114043. [PMID: 33753143 DOI: 10.1016/j.jep.2021.114043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound Kushen Injection (CKI) is a widely used TCM formula for treatment of carcinomatous pain and tumors of digestive system including hepatocellular carcinoma (HCC). However, the potential mechanisms of CKI for treatment of HCC have not been systematically and deeply studied. AIM OF STUDY A metabolic data-driven systems pharmacology approach was utilized to investigate the potential mechanisms of CKI for treatment of HCC. MATERIALS AND METHODS Based on phenotypic data generated by metabolomics and genotypic data of drug targets, a propagation model based on Dijkstra program was proposed to decode the effective network of key genotype-phenotype of CKI in treating HCC. The pivotal pathway was predicted by target propagation mode of our proposed model, and was validated in SMMC-7721 cells and diethylnitrosamine-induced rats. RESULTS Metabolomics results indicated that 12 differential metabolites, and 5 metabolic pathways might be involved in the anti-HCC effect of CKI. A total of 86 metabolic related genes that affected by CKI were obtained. The results calculated by propagation model showed that 6475 shortest distance chains might be involved in the anti-HCC effect of CKI. According to the results of propagation mode, EGFR was identified as the core target of CKI for the anti-HCC effect. Finally, EGFR and its related pathway EGFR-STAT3 signaling pathway were validated in vivo and in vitro. CONCLUSION The proposed method provides a methodological reference for explaining the underlying mechanism of TCM in treating HCC.
Collapse
Affiliation(s)
- Ke-Xin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
| | - Yu-Peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Ai-Ping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, China.
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
| |
Collapse
|
18
|
Li N, Mao W, Gao Y, Wang D, Song Z, Chen Z. Liquid chromatography-mass spectrometry based metabolic characterization of pleural effusion in patients with acquired EGFR-TKI resistance. J Pharm Biomed Anal 2021; 202:114147. [PMID: 34029974 DOI: 10.1016/j.jpba.2021.114147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 02/08/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) acquired resistance remains a major barrier in the clinical treatment of lung adenocarcinoma with epidermal growth factor receptor (EGFR) mutations. Despite extensive efforts, mechanism of acquired resistance has not yet been elucidated clearly. The subject of this study was to characterize the metabolic signatures relevant to acquired EGFR-TKI resistance in pleural effusion (PE), and identify potential biomarkers in PE of patients with acquired EGFR-TKI resistance. PE from EGFR-TKI untreated group (n = 30) and EGFR-TKI resistant group (n = 18) was analyzed using liquid chromatography-mass spectrometry (LCMS) based metabolomic. Multivariate statistical analysis revealed distinctive diff ;erences between the groups. A total of 34 significantly differential metabolites in PE were identified, among which, the acquired EGFR-TKI resistant group had higher levels of l-lysine, taurine, ornithine and citrulline, and lower levels of l-tryptophan, kynurenine, l-phenylalanine, l-leucine, N-formyl-l-methionine, 3-hydroxyphenylacetic acid and N-acetyl-d-phenylalanine in PE than that of the EGFR-TKI untreated group. These metabolites are mainly involved in six amino acid metabolic pathways. In addition, 3-hydroxyphenylacetic acid and N-acetyl-d-phenylalanine showed the highest AUC values of 0.934 and 0.929 in receiver operating characteristic analysis. Through LCMS metabolomics, our study identified potential biomarkers in PE, differentiating EGFR-TKI resistant patients from untreated patients, as well as the mechanisms underlying acquired EGFR-TKI resistance; thus, providing novel insights into acquired EGFR-TKI resistance.
Collapse
Affiliation(s)
- Na Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Weimin Mao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yun Gao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Ding Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Zhengbo Song
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| | - Zhongjian Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
19
|
Blockade of AMPK-Mediated cAMP-PKA-CREB/ATF1 Signaling Synergizes with Aspirin to Inhibit Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13071738. [PMID: 33917483 PMCID: PMC8038809 DOI: 10.3390/cancers13071738] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Epidemiological and experimental studies have demonstrated that aspirin (acetylsalicylic acid) may prevent the incidence of some types of human cancer, including colorectal cancer and hepatocellular carcinoma (HCC). In addition, preclinical studies indicate that aspirin in combination with other treatments may achieve a more significant anti-cancer effect for established tumors. This study aims to improve the anti-cancer effect of aspirin by targeting signaling pathways related to aspirin and its targets. We find that aspirin may induce cAMP–PKA–CREB/ATF1 signaling in HCC via AMPK and its downstream target carbamoyl-phosphate synthase 1 (CPS1). Blockade of PKA–CREB/ATF1 signaling by the natural agent berbamine could sensitize HCC to aspirin. This research indicates that the combination of two inexpensive drugs, aspirin and berbamine, holds promise in preventing and treating HCC. Abstract Aspirin can prevent or inhibit inflammation-related cancers, such as colorectal cancer and hepatocellular carcinoma (HCC). However, the effectiveness of chemotherapy may be compromised by activating oncogenic pathways in cancer cells. Elucidation of such chemoresistance mechanisms is crucial to developing novel strategies to maximize the anti-cancer effects of aspirin. Here, we report that aspirin markedly induces CREB/ATF1 phosphorylation in HCC cells, which compromises aspirin’s anti-HCC effect. Inhibition of AMP-activated protein kinase (AMPK) abrogates the induction of CREB/ATF1 phosphorylation by aspirin. Mechanistically, activation of AMPK by aspirin results in decreased expression of the urea cycle enzyme carbamoyl-phosphate synthase 1 (CPS1) in HCC cells and xenografts. Treatment with aspirin or CPS1 knockdown stimulates soluble adenylyl cyclase expression, thereby increasing cyclic AMP (cAMP) synthesis and stimulating PKA–CREB/ATF1 signaling. Importantly, abrogation of aspirin-induced CREB/ATF1 phosphorylation could sensitize HCC to aspirin. The bis-benzylisoquinoline alkaloid berbamine suppresses the expression of cancerous inhibitor of protein phosphatase 2A (CIP2A), leading to protein phosphatase 2A-mediated downregulation of CREB/ATF1 phosphorylation. The combination of berbamine and aspirin significantly inhibits HCC in vitro and in vivo. These data demonstrate that the regulation of cAMP-PKA-CREB/ATF1 signaling represents a noncanonical function of CPS1. Targeting the PKA–CREB/ATF1 axis may be a strategy to improve the therapeutic effects of aspirin on HCC.
Collapse
|
20
|
Yue J, Dai Q, Hao S, Zhu S, Liu X, Tang Z, Li M, Fang H, Lin C, Luo Z. Suppression of the NTS-CPS1 regulatory axis by AFF1 in lung adenocarcinoma cells. J Biol Chem 2021; 296:100319. [PMID: 33493519 PMCID: PMC7949158 DOI: 10.1016/j.jbc.2021.100319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Upregulation of the neuropeptide neurotensin (NTS) in a subgroup of lung cancers has been linked to poor prognosis. However, the regulatory pathway centered on NTS in lung cancer remains unclear. Here we identified the NTS-specific enhancer in lung adenocarcinoma cells. The AF4/FMR2 (AFF) family protein AFF1 occupies the NTS enhancer and inhibits NTS transcription. Clustering analysis of lung adenocarcinoma gene expression data demonstrated that NTS expression is highly positively correlated with the expression of the oncogenic factor CPS1. Detailed analyses demonstrated that the IL6 pathway antagonizes NTS in regulating CPS1. Thus, our analyses revealed a novel NTS-centered regulatory axis, consisting of AFF1 as a master transcription suppressor and IL6 as an antagonist in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Junjie Yue
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Qian Dai
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shaohua Hao
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shiqi Zhu
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xiaoxu Liu
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zhiqun Tang
- Singapore Eye research Institute, Singapore, Singapore
| | - Meng Li
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Haitong Fang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Chengqi Lin
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Zhuojuan Luo
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
21
|
Tang Z, Xu Z, Zhu X, Zhang J. New insights into molecules and pathways of cancer metabolism and therapeutic implications. Cancer Commun (Lond) 2020; 41:16-36. [PMID: 33174400 PMCID: PMC7819563 DOI: 10.1002/cac2.12112] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/17/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cells are abnormal cells that can reproduce and regenerate rapidly. They are characterized by unlimited proliferation, transformation and migration, and can destroy normal cells. To meet the needs for cell proliferation and migration, tumor cells acquire molecular materials and energy through unusual metabolic pathways as their metabolism is more vigorous than that of normal cells. Multiple carcinogenic signaling pathways eventually converge to regulate three major metabolic pathways in tumor cells, including glucose, lipid, and amino acid metabolism. The distinct metabolic signatures of cancer cells reflect that metabolic changes are indispensable for the genesis and development of tumor cells. In this review, we report the unique metabolic alterations in tumor cells which occur through various signaling axes, and present various modalities available for cancer diagnosis and clinical therapy. We further provide suggestions for the development of anti‐tumor therapeutic drugs.
Collapse
Affiliation(s)
- Zhenye Tang
- Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, the Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, 524023, P. R. China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, P. R. China
| | - Zhenhua Xu
- Center for Cancer and Immunology, Brain Tumor Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, the Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, 524023, P. R. China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, P. R. China.,The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, Guangdong, 524023, P. R. China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, 524023, P. R. China
| | - Jinfang Zhang
- Lingnan Medical Research Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, the First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P. R. China
| |
Collapse
|
22
|
Zheng YG, Zhang WQ, Meng L, Wu XQ, Zhang L, An L, Li CL, Gao CY, Xu L, Liu Y. Design, synthesis and biological evaluation of 4-aniline quinazoline derivatives conjugated with hydrogen sulfide (H2S) donors as potent EGFR inhibitors against L858R resistance mutation. Eur J Med Chem 2020; 202:112522. [DOI: 10.1016/j.ejmech.2020.112522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
|
23
|
Awad AM, Saleh MA, Abu-Elsaad NM, Ibrahim TM. Erlotinib can halt adenine induced nephrotoxicity in mice through modulating ERK1/2, STAT3, p53 and apoptotic pathways. Sci Rep 2020; 10:11524. [PMID: 32661331 PMCID: PMC7359038 DOI: 10.1038/s41598-020-68480-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Renal fibrosis is a failed regenerative process that facilitates chronic kidney disease progression. The current study was designed to study the effect of erlotinib, a receptor tyrosine kinase inhibitor, on the progression of renal fibrosis. The study included four groups of mice: control group; adenine group: received adenine (0.2% w/w) daily with food for 4 weeks; erlotinib group: received 80 mg/kg/day erlotinib orally (6 ml/kg/day, 1.3% w/v suspension in normal saline 0.9%) for 4 weeks; adenine + erlotinib group: received adenine and erlotinib concurrently. Kidney function and antioxidant biomarkers were measured. Renal expression of Bcl2 and p53 and histopathological changes (tubular injury and renal fibrosis) were scored. Renal tissue levels of transforming growth factor-β1, p-ERK1/2 and p-STAT3 were measured. Results obtained showed significant decrease (P < 0.001) in serum creatinine, urea and uric acid in erlotinib + adenine group. Level of malondialdehyde was decreased significantly (P < 0.001) while reduced glutathione and catalase levels were increased (P < 0.01) by erlotinib concurrent administration. Erlotinib markedly reduced fibrosis and tubular injury and decreased TGF-β1, p-ERK1/2 and p-STAT3 (P < 0.5). In addition, expression level of Bcl-2 was elevated (P < 0.001) while that of p53-was reduced compared to adenine alone. Erlotinib can attenuate renal fibrosis development and progression through anti-fibrotic, antioxidant and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Ahmed M Awad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Mansoura, Eldakahlia, 35516, Egypt
| | - Mohamed A Saleh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Mansoura, Eldakahlia, 35516, Egypt.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Nashwa M Abu-Elsaad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Mansoura, Eldakahlia, 35516, Egypt.
| | - Tarek M Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Mansoura, Eldakahlia, 35516, Egypt
| |
Collapse
|
24
|
Abstract
The Epidermal Growth Factor Receptor (EGFR) is frequently expressed at elevated levels in different forms of cancer and expression often correlates positively with cancer progression and poor prognosis. Different mutant forms of this protein also contribute to cancer heterogeneity. A constitutively active form of EGFR, EGFRvIII is one of the most important variants. EGFR is responsible for the maintenance and functions of cancer stem cells (CSCs), including stemness, metabolism, immunomodulatory-activity, dormancy and therapy-resistance. EGFR regulates these pathways through several signaling cascades, and often cooperates with other RTKs to exert further control. Inhibitors of EGFR have been extensively studied and display some anticancer efficacy. However, CSCs can also acquire resistance to EGFR inhibitors making effective therapy even more difficult. To ameliorate this limitation of EGFR inhibitors when used as single agents, it may be of value to simultaneously combine multiple EGFR inhibitors or use EGFR inhibitors with regulators of other important cancer phenotype regulating molecules, such as STAT3, or involved in important processes such as DNA repair. These combinatorial approaches require further experimental confirmation, but if successful would expand and improve therapeutic outcomes employing EGFR inhibitors as one arm of the therapy.
Collapse
|
25
|
Rolfe A, Yao S, Nguyen TV, Omoto K, Colombo F, Virrankoski M, Vaillancourt FH, Yu L, Cook A, Reynolds D, Ioannidis S, Zhu P, Larsen NA, Bolduc DM. Discovery of 2,6-Dimethylpiperazines as Allosteric Inhibitors of CPS1. ACS Med Chem Lett 2020; 11:1305-1309. [PMID: 32551016 DOI: 10.1021/acsmedchemlett.0c00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Carbamoyl phosphate synthetase 1 (CPS1) is a potential synthetic lethal target in LKB1-deficient nonsmall cell lung cancer, where its overexpression supports the production of pyrimidine synthesis. In other cancer types, CPS1 overexpression and activity may prevent the accumulation of toxic levels of intratumoral ammonia to support tumor growth. Herein we report the discovery of a novel series of potent and selective small-molecule inhibitors of CPS1. Piperazine 2 was initially identified as a promising CPS1 inhibitor through a high-throughput screening effort. Subsequent structure-activity relationship optimization and structure-based drug design led to the discovery of piperazine H3B-616 (25), a potent allosteric inhibitor of CPS1 (IC50 = 66 nM).
Collapse
Affiliation(s)
- Alan Rolfe
- H3 Biomedicine Inc., 300 Technology Square, Fifth Floor, Cambridge, Massachusetts 02139, United States
| | - Shihua Yao
- H3 Biomedicine Inc., 300 Technology Square, Fifth Floor, Cambridge, Massachusetts 02139, United States
| | - Toung-Vi Nguyen
- H3 Biomedicine Inc., 300 Technology Square, Fifth Floor, Cambridge, Massachusetts 02139, United States
| | - Kiyoyuki Omoto
- H3 Biomedicine Inc., 300 Technology Square, Fifth Floor, Cambridge, Massachusetts 02139, United States
| | - Federico Colombo
- H3 Biomedicine Inc., 300 Technology Square, Fifth Floor, Cambridge, Massachusetts 02139, United States
| | - Milena Virrankoski
- H3 Biomedicine Inc., 300 Technology Square, Fifth Floor, Cambridge, Massachusetts 02139, United States
| | - Frédéric H. Vaillancourt
- H3 Biomedicine Inc., 300 Technology Square, Fifth Floor, Cambridge, Massachusetts 02139, United States
| | - Lihua Yu
- H3 Biomedicine Inc., 300 Technology Square, Fifth Floor, Cambridge, Massachusetts 02139, United States
| | - Andrew Cook
- H3 Biomedicine Inc., 300 Technology Square, Fifth Floor, Cambridge, Massachusetts 02139, United States
| | - Dominic Reynolds
- H3 Biomedicine Inc., 300 Technology Square, Fifth Floor, Cambridge, Massachusetts 02139, United States
| | - Stephanos Ioannidis
- H3 Biomedicine Inc., 300 Technology Square, Fifth Floor, Cambridge, Massachusetts 02139, United States
| | - Ping Zhu
- H3 Biomedicine Inc., 300 Technology Square, Fifth Floor, Cambridge, Massachusetts 02139, United States
| | - Nicholas A. Larsen
- H3 Biomedicine Inc., 300 Technology Square, Fifth Floor, Cambridge, Massachusetts 02139, United States
| | - David M. Bolduc
- H3 Biomedicine Inc., 300 Technology Square, Fifth Floor, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Wu G, Zhao Z, Yan Y, Zhou Y, Wei J, Chen X, Lin W, Ou C, Li J, Wang X, Xiong K, Zhou J, Xu Z. CPS1 expression and its prognostic significance in lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:341. [PMID: 32355785 PMCID: PMC7186668 DOI: 10.21037/atm.2020.02.146] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Studies have increasingly shown that carbamoyl phosphate synthetase 1 (CPS1) plays a vital role in the occurrence and development of human malignant disease. Unfortunately, the detailed function of CPS1 in the development and prognosis of lung cancer, especially lung adenocarcinoma (LADC), is still not fully understood. In this research, we performed a comprehensive bioinformatics analysis with respect to the function of CPS1 in human LADC. Methods Several biological databases including UALCAN, GEPIA and Oncomine were used to analyze the expression of CPS1 in LADC. Meanwhile, TCGA and GEO databases were utilized to analyze relevant clinical data. In addition, databases including Methsurv, etc., were used to analyze CPS1 methylation levels in LADC. Results The Oncomine platform, UALCAN and gene expression profiling interactive analysis (GEPIA) were used and revealed that the expression levels of CPS1 were significantly increased in LADC tissues. Furthermore, we analyzed the methylation level of CPS1 in LADC and found that cases with high levels of CPS1 showed hypomethylated CPS1. The clinical data from the Wanderer database, which is linked to The Cancer Genome Atlas (TCGA) database, demonstrated that the expression and methylation values of CPS1 were both significantly related to the clinical characteristics and prognosis of LADC. Through analysis of the dataset from the Gene Expression Omnibus (GEO) database, we found that the expression level of CPS1 was markedly downregulated in human A549 lung cancer cells treated with the chemotherapeutic drug motexafin gadolinium (MGd) in a time-dependent manner. Conclusions Our work indicated that CPS1 is upregulated in LADC samples and that CPS1 might be used as a potential biomarker for the diagnostic and prognostic evaluation of LADC. Determining the detailed biological function of CPS1 in LADC tissues will provide promising and insightful information for our further study.
Collapse
Affiliation(s)
- Geting Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Institute of Skull Base Surgery and Neuro-oncology at Hunan, Changsha 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jia Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
27
|
Yao S, Nguyen TV, Rolfe A, Agrawal AA, Ke J, Peng S, Colombo F, Yu S, Bouchard P, Wu J, Huang KC, Bao X, Omoto K, Selvaraj A, Yu L, Ioannidis S, Vaillancourt FH, Zhu P, Larsen NA, Bolduc DM. Small Molecule Inhibition of CPS1 Activity through an Allosteric Pocket. Cell Chem Biol 2020; 27:259-268.e5. [PMID: 32017919 DOI: 10.1016/j.chembiol.2020.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Carbamoyl phosphate synthetase 1 (CPS1) catalyzes the first step in the ammonia-detoxifying urea cycle, converting ammonia to carbamoyl phosphate under physiologic conditions. In cancer, CPS1 overexpression supports pyrimidine synthesis to promote tumor growth in some cancer types, while in others CPS1 activity prevents the buildup of toxic levels of intratumoral ammonia to allow for sustained tumor growth. Targeted CPS1 inhibitors may, therefore, provide a therapeutic benefit for cancer patients with tumors overexpressing CPS1. Herein, we describe the discovery of small-molecule CPS1 inhibitors that bind to a previously unknown allosteric pocket to block ATP hydrolysis in the first step of carbamoyl phosphate synthesis. CPS1 inhibitors are active in cellular assays, blocking both urea synthesis and CPS1 support of the pyrimidine biosynthetic pathway, while having no activity against CPS2. These newly discovered CPS1 inhibitors are a first step toward providing researchers with valuable tools for probing CPS1 cancer biology.
Collapse
Affiliation(s)
- Shihua Yao
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Tuong-Vi Nguyen
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Alan Rolfe
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Anant A Agrawal
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Jiyuan Ke
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Shouyong Peng
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Federico Colombo
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Sean Yu
- RMI Laboratories LLC, 418 Industrial Drive, North Wales, PA 19454, USA
| | - Patricia Bouchard
- NMX Research and Solutions, Inc., 500 Cartier Boulevard W., Laval, Quebec H7V 5B7, Canada
| | - Jiayi Wu
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Kuan-Chun Huang
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Xingfeng Bao
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Kiyoyuki Omoto
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Anand Selvaraj
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Lihua Yu
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | | | | | - Ping Zhu
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Nicholas A Larsen
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - David M Bolduc
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Pham-Danis C, DeGregori J. Studying Cancer Evolution and Therapeutic Responses in Different Organs: The Pros and Cons of a Broad Focus. Cancer Res 2019; 79:4582-4584. [PMID: 31439547 DOI: 10.1158/0008-5472.can-19-1303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/26/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022]
Abstract
Cellular adaptation brought upon by insults such as old age and therapeutic exposure is a complex phenomenon in which cells undergo adaptive phenotypic changes. Our lab has focused on understanding the mechanisms underlying adaptation during the evolution of cancer, from the early stages of development to the ability of cancer cells to escape therapeutic challenges. Our studies span hematopoietic and lung systems. Herein, we discuss the advantages and disadvantages involved in studying two vastly different organ systems. Through the use of these organ/cancer model systems, we hope to develop interventions to limit oncogenic adaptation leading to cancer development and to prevent adaptation of cancers following treatment leading to cancer relapse.
Collapse
Affiliation(s)
- Catherine Pham-Danis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|