1
|
Nguyen QTT, Kim J, Yoo HC, Lee EJ. Strategies to overcome chemoresistance in epithelial ovarian cancer: Navigating beyond challenges. Crit Rev Oncol Hematol 2025; 210:104706. [PMID: 40127787 DOI: 10.1016/j.critrevonc.2025.104706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/04/2025] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Epithelial ovarian cancer (EOC) is the most fetal gynecological malignancy. The main causes of treatment failure are primary and acquired chemoresistance that remains a major therapeutic challenge. The mechanisms underlying chemoresistance in EOC are complex and not fully understood. This review explores novel therapeutic strategies targeting chemoresistant EOC, including advanced drug delivery systems, targeting non-coding RNAs, peptide-based therapies, immunotherapy, and the use of poly-ADP ribose polymerase inhibitors. By summarizing the latest research and potential treatments, this review aims to contribute to the development of more effective therapies for patients with chemoresistant EOC.
Collapse
Affiliation(s)
- Que Thanh Thanh Nguyen
- Department of Obstetrics and Gynecology, School of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea; Organoid Medical Research Center, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jihye Kim
- Department of Obstetrics and Gynecology, School of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hee Chan Yoo
- Organoid Medical Research Center, Chung-Ang University, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Eun-Ju Lee
- Department of Obstetrics and Gynecology, School of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea; Organoid Medical Research Center, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Amer H, Kampan NC, Itsiopoulos C, Flanagan KL, Scott CL, Kartikasari AER, Plebanski M. Interleukin-6 Modulation in Ovarian Cancer Necessitates a Targeted Strategy: From the Approved to Emerging Therapies. Cancers (Basel) 2024; 16:4187. [PMID: 39766086 PMCID: PMC11674514 DOI: 10.3390/cancers16244187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Despite significant advances in treatments, ovarian cancer (OC) remains one of the most prevalent and lethal gynecological cancers in women. The frequent detection at the advanced stages has contributed to low survival rates, resistance to various treatments, and disease recurrence. Thus, a more effective approach is warranted to combat OC. The cytokine Interleukin-6 (IL6) has been implicated in various stages of OC development. High IL6 levels are also correlated with a lower survival rate in OC patients. In this current review, we summarized the pivotal roles of IL6 in OC, including the initiation, development, invasion, metastasis, and drug resistance mechanisms. This article systematically highlights how targeting IL6 improves OC outcomes by altering various cancer processes and reports the ongoing clinical trials that would further shape the IL6-based targeted therapies. This review also suggests how combining IL6-targeted therapies with other therapeutic strategies could further enhance their efficacy to combat OC.
Collapse
Affiliation(s)
- Hina Amer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Nirmala C. Kampan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Catherine Itsiopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Katie L. Flanagan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
- School of Medicine and School of Health Sciences, University of Tasmania, Launceston, TAS 7250, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Parkville, VIC 3052, Australia
- The Royal Women’s Hospital, Parkville, VIC 3052, Australia
| | - Apriliana E. R. Kartikasari
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| |
Collapse
|
3
|
Tang C, Zhang Y. Detailed role of Let-7e in human diseases. Pathol Res Pract 2024; 260:155436. [PMID: 39018928 DOI: 10.1016/j.prp.2024.155436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
As part of the epigenetic machinery, microRNAs (miRNAs) are extensively utilized by eukaryotes. By modulating gene expression in a variety of ways, these short RNAs mediate crucial physiological processes. This suggests that abnormalities in miRNA biogenesis and expression can be traced back to a variety of diseases. In addition, miRNAs are promising clinical candidates, especially for preclinical diagnosis. The Let family of miRNAs was one of the first to be discovered. As a prominent member of this category, extensive research has been conducted on Let-7e. The vast majority of evidence indicates an association between let-7e dysregulation and the onset and progression of disease, including malignancies. Because their effect depends on the genetic profile of disease and the affected tissue, different miRNAs play diverse roles in various diseases. However, what counts in miRNA studies is that just one miRNA may target numerous mRNAs in a cell at the exact time, therefore summarizing the effect of a single miRNA in human diseases can provide better insights into disease detection and treatment. The goal of this study is to gain a deeper understanding of how let-7e functions in human cells so that it can be utilized more effectively in clinical settings for diagnosis, prognosis, and treatment. We have reviewed the research on let-7e, focusing on the molecular underpinnings of biological processes controlled by this miRNA that contribute to the development and etiology of numerous disorders.
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuling Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
4
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
5
|
Alshahrani SH, Yuliastanti T, Al-Dolaimy F, Korotkova NL, Rasulova I, Almuala AF, Alsaalamy A, Ali SHJ, Alasheqi MQ, Mustafa YF. A glimpse into let-7e roles in human disorders; friend or foe? Pathol Res Pract 2024; 253:154992. [PMID: 38103367 DOI: 10.1016/j.prp.2023.154992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
MicroRNAs (miRNAs) have been linked to abnormal expression and regulation in a number of diseases, including cancer. Recent studies have concentrated on miRNA Let-7e's significance in precision medicine for cancer screening and diagnosis as well as its prognostic and therapeutic potential. Differential let-7e levels in bodily fluids have the possibility to enable early detection of cancer utilizing less-invasive techniques, reducing biopsy-related risks. Although Let-7e miRNAs have been described as tumor suppressors, it is crucial to note that there exists proof to support their oncogenic activity in vitro and in in vivo. Let-7e's significance in chemo- and radiation treatment decisions has also been demonstrated. Let-7e can also prevent the synthesis of proinflammatory cytokines in a number of degenerative disorders, including musculoskeletal and neurological conditions. For the first time, an overview of the significance of let-7e in the prevention, detection, and therapy of cancer and other conditions has been given in the current review. Additionally, we focused on the specific molecular processes that underlie the actions of let-7e, more particularly, on malignant cells.
Collapse
Affiliation(s)
| | | | | | - Nadezhda L Korotkova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation; Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Abbas Firras Almuala
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
6
|
Kong J, Xu S, Zhang P, Wang Y. Transcription Factor E2F8 Promotes Cisplatin Resistance in Hepatocellular Carcinoma by Regulating DNA Damage via NUSAP1. Int J Toxicol 2023; 42:420-429. [PMID: 37331996 DOI: 10.1177/10915818231182114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
DNA damage repair has been the key mechanism of cisplatin resistance in hepatocellular carcinoma (HCC). The present study elucidated the molecular mechanism by which nucleolar and spindle-associated protein 1 (NUSAP1) influenced cisplatin tolerance in HCC by regulating DNA damage. First, high mRNA expression of E2F8 and NUSAP1 in HCC was detected by real-time quantitative PCR in cells and tumor tissue. The interaction between E2F8 and NUSAP1 was confirmed by chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays that E2F8 bound to the promoter region of NUSAP1 and regulated its transcriptional activity. The effects of the E2F8/NUSAP1 axis on cell viability, cell cycle, DNA damage protein γ-H2AX, and cisplatin resistance were investigated by CCK-8, flow cytometry, comet detection, and western blot. The results showed that NUSAP1 knockdown blocked the cell cycle in G0/G1 phase, promoted cisplatin-induced DNA damage, and enhanced cisplatin sensitivity in HCC. Overexpressed E2F8 promoted cell cycle arrest by silencing NUSAP1 in HCC, and promoting DNA damage as well as cisplatin sensitivity. In conclusion, our results suggested that E2F8 enhanced the chemoresistance of HCC cells to cisplatin by activating NUSAP1 to inhibit DNA damage, which provides a basis for describing new therapeutic targets that effectively exacerbate DNA damage and improve the chemical sensitivity of HCC to cisplatin.
Collapse
Affiliation(s)
- Jianqiao Kong
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Song Xu
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Peng Zhang
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yi Wang
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
7
|
Wang K, Wu Y, Lai L, Wang X, Sun S. How ligands regulate the binding of PARP1 with DNA: Deciphering the mechanism at the molecular level. PLoS One 2023; 18:e0290176. [PMID: 37582112 PMCID: PMC10426920 DOI: 10.1371/journal.pone.0290176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
The catalytic (CAT) domain is a key region of poly (ADP-ribose) polymerase 1 (PARP1), which has crucial interactions with inhibitors, DNA, and other domains of PARP1. To facilitate the development of potential inhibitors of PARP1, it is of great significance to clarify the differences in structural dynamics and key residues between CAT/inhibitors and DNA/PARP1/inhibitors through structure-based computational design. In this paper, conformational changes in PAPR1 and differences in key residue interactions induced by inhibitors were revealed at the molecular level by comparative molecular dynamics (MD) simulations and energy decomposition. On one hand, PARP1 inhibitors indirectly change some residues of the CAT domain which interact with DNA and other domains. Furthermore, the interaction between ligands and catalytic binding sites can be transferred to the DNA recognition domain of PARP1 by a strong negative correlation movement among multi-domains of PARP1. On the other hand, it is not reliable to use the binding energy of CAT/ligand as a measure of ligand activity, because it may in some cases differs greatly from the that of PARP1/DNA/ligand. For PARP1/DNA/ligand, the stronger the binding stability between the ligand and PARP1, the stronger the binding stability between PARP1 and DNA. The findings of this work can guide further novel inhibitor design and the structural modification of PARP1 through structure-based computational design.
Collapse
Affiliation(s)
- Kai Wang
- School of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Yizhou Wu
- School of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Lizhu Lai
- School of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Xin Wang
- School of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Shuya Sun
- School of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| |
Collapse
|
8
|
Al-Sisan SM, Zihlif MA, Hammad HM. Differential miRNA expression of hypoxic MCF7 and PANC-1 cells. Front Endocrinol (Lausanne) 2023; 14:1110743. [PMID: 37583428 PMCID: PMC10424510 DOI: 10.3389/fendo.2023.1110743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/21/2023] [Indexed: 08/17/2023] Open
Abstract
Background Hypoxia plays a critical role in the tumor microenvironment by affecting cellular proliferation, metabolism, apoptosis, DNA repair, and chemoresistance. Since hypoxia provokes a distinct shift of microRNA, it is important to illustrate the relative contribution of each hypoxamiR to cancer progression. Aims The present study aims to shed light on the hypoxamiRs that are involved in pancreatic and breast cancer progression to highlight novel targets for the development of new therapies. Methods For 20 cycles, MCF7 breast cancer cells and PANC-1 pancreatic cancer cells were subjected to chronic cyclic hypoxia, which consisted of 72 hours of hypoxia followed by 24 hours of reoxygenation. After 10 and 20 cycles of hypoxia, miRNA expression alterations were profiled using RT-PCR array and further analyzed using a visual analytics platform. The MTT cell proliferation assay was used to determine hypoxic cells' chemoresistance to doxorubicin. Results Under chronic cyclic hypoxia, hypoxic PANC-1 cells have a comparable doubling time with their normoxic counterparts, whereas hypoxic MCF7 cells show a massive increase in doubling time when compared to their normoxic counterparts. Both hypoxic cell lines developed EMT-like phenotypes as well as doxorubicin resistance. According to the findings of miRNet, 6 and 10 miRNAs were shown to play an important role in enriching six hallmarks of pancreatic cancer in the 10th and 20th cycles of hypoxia, respectively, while 7 and 11 miRNAs were shown to play an important role in enriching the four hallmarks of breast cancer in the 10th and 20th cycles of hypoxia, respectively. Conclusions miR-221, miR-21, miR-155, and miR-34 were found to be involved in the potentiation of hypoxic PANC-1 hallmarks at both the 10th and 20th cycles, while miR-93, miR-20a, miR-15, and miR-17 were found to be involved in the potentiation of hypoxic MCF7 hallmarks at both the 10th and 20th cycles. This variation in miRNA expression was also connected to the emergence of an EMT-like phenotype, alterations in proliferation rates, and doxorubicin resistance. The chemosensitivity results revealed that chronic cyclic hypoxia is critical in the formation of chemoresistant phenotypes in pancreatic and breast cancer cells. miR-181a and let-7e expression disparities in PANC1, as well as miR-93, miR-34, and miR-27 expression disparities in MCF7, may be associated with the formation of chemoresistant MCF7 and PANC-1 cells following 20 cycles of chronic cyclic hypoxia. Indeed, further research is needed since the particular mechanisms that govern these processes are unknown.
Collapse
Affiliation(s)
- Sandy M. Al-Sisan
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Malek A. Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Hana M. Hammad
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| |
Collapse
|
9
|
Dey G, Bharti R, Braley C, Alluri R, Esakov E, Crean-Tate K, McCrae K, Joehlin-Price A, Rose PG, Lathia J, Gong Z, Reizes O. LCK facilitates DNA damage repair by stabilizing RAD51 and BRCA1 in the nucleus of chemoresistant ovarian cancer. J Ovarian Res 2023; 16:122. [PMID: 37370140 PMCID: PMC10294509 DOI: 10.1186/s13048-023-01194-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Poly-ADP Ribose Polymerase (PARP) targeted therapy is clinically approved for the treatment of homologous recombination (HR) repair deficient tumors. The remarkable success of this therapy in the treatment of HR repair deficient cancers has not translated to HR-proficient cancers. Our studies identify the novel role of non-receptor lymphocyte-specific protein tyrosine kinase (LCK) in the regulation of HR repair in endometrioid epithelial ovarian cancer (eEOC) model. We show that DNA damage leads to direct interaction of LCK with the HR repair proteins RAD51 and BRCA1 in a kinase dependent manner RAD51 and BRCA1 stabilization. LCK expression is induced and activated in the nucleus in response to DNA damage insult. Disruption of LCK expression attenuates RAD51, BRCA1, and BRCA2 protein expression by hampering there stability and results in inhibition of HR-mediated DNA repair including suppression of RAD51 foci formation, and augmentation of γH2AX foci formation. In contrast LCK overexpression leads to increased RAD51 and BRCA1 expression with a concomitant increase in HR DNA damage repair. Importantly, attenuation of LCK sensitizes HR-proficient eEOC cells to PARP inhibitor in cells and pre-clinical mouse studies. Collectively, our findings identify a novel therapeutic strategy to expand the utility of PARP targeted therapy in HR proficient ovarian cancer.
Collapse
Affiliation(s)
- Goutam Dey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Rashmi Bharti
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Chad Braley
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ravi Alluri
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Emily Esakov
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Katie Crean-Tate
- Division of Gynecologic Cancer, Women's Health Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Keith McCrae
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | | | - Peter G Rose
- Division of Gynecologic Cancer, Women's Health Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Zihua Gong
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
10
|
Chen M, Lei N, Tian W, Li Y, Chang L. Recent advances of non-coding RNAs in ovarian cancer prognosis and therapeutics. Ther Adv Med Oncol 2022; 14:17588359221118010. [PMID: 35983027 PMCID: PMC9379276 DOI: 10.1177/17588359221118010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/15/2022] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer (OC) is the third most common gynecological malignancy with the highest mortality worldwide. OC is usually diagnosed at an advanced stage, and the standard treatment is surgery combined with platinum or paclitaxel chemotherapy. However, chemoresistance inevitably appears coupled with the easy recurrence and poor prognosis. Thus, early diagnosis, predicting prognosis, and reducing chemoresistance are of great significance for controlling the progression and improving treatment effects of OC. Recently, much insight has been gained into the non-coding RNA (ncRNA) that is employed for RNAs but does not encode a protein, and many types of ncRNAs have been characterized including long-chain non-coding RNAs, microRNAs, and circular RNAs. Accumulating evidence indicates these ncRNAs play very active roles in OC progression and metastasis. In this review, we briefly discuss the ncRNAs as biomarkers for OC prognosis. We focus on the recent advances of ncRNAs as therapeutic targets in preventing OC metastasis, chemoresistance, immune escape, and metabolism. The novel strategies for ncRNAs-targeted therapy are also exploited for improving the survival of OC patients.
Collapse
Affiliation(s)
- Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wanjia Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Level 2, Research and Education Centre, 4-10 South Street, Kogarah, NSW 2217, Australia
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| |
Collapse
|
11
|
Sun S, Wang X, Lin R, Wang K. Deciphering the functional mechanism of zinc ions of PARP1 binding with single strand breaks and double strand breaks. RSC Adv 2022; 12:19029-19039. [PMID: 35865614 PMCID: PMC9240923 DOI: 10.1039/d2ra02683j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
Poly(ADP-ribose)polymerase 1 (PARP1) is a key target for the treatment of cancer-related diseases, and plays an important role in biological processes such as DNA repair, regulating a variety of metabolic and signal transduction processes. Understanding the dynamic binding mechanisms between each domain of PARP1 and DNA is of great significance to deepen the understanding on the function of PARP1 and to facilitate the design of inhibitors. Herein, strategies such as classical molecular dynamics simulation, conformational analysis, binding free energy calculation and energy decomposition were used to shed light on the binding mechanisms of different DNA binding domains (DBDs, including ZnF1, ZnF2 and ZnF3) in PARP1 with DNA and on the influences of zinc ions on the binding process. On one hand, during binding with DNA, ZnF2 tends to expand its space to identify the DNA damage sites and ZnF1/ZnF2 recognizes the interfaces on both sides of DNA damage rather than one side during the process of DNA repair. More importantly, the stable secondary structure of L2 of ZnF2 (PRO146 to MET153) is the key conformational change for ZnF1 and ZnF2 to recognize DNA damage. Meanwhile, ZnF3 has little effect on the binding mechanisms of PARP1. On the other hand, for the structural differences of DBD domains, zinc ions in ZnF1 and ZnF2 (Zn1 and Zn2) have an impact not only on the conformational changes of PARP1, but also on the conformational changes brought by the interaction of double strand breaks (DSB) and single strand breaks (SSB). And meanwhile, Zn3 also has little effect on ZnF3 for the system of ZnF3/DSB. The findings presented in this work deepen the understanding on the functional mechanism of PARP1 and provide a theoretical basis for further study on the interaction between different inhibitors and DBD domains to design more potential inhibitors. Poly(ADP-ribose)polymerase 1 (PARP1) is a key target for treatment of cancer-related diseases. Detailed structural changes DBD in PARP1 during the binding process with DNA were investigated and the dynamic conformational differences of DBD caused by zinc ions were revealed.![]()
Collapse
Affiliation(s)
- Shuya Sun
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine No. 232, Waihuan East Road Guangzhou 510006 China
| | - Xin Wang
- School of Agriculture and Biology, Zhongkai University of Agriculture and Engineering Guangzhou 510000 P. R. China
| | - Rongfeng Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine No. 232, Waihuan East Road Guangzhou 510006 China
| | - Kai Wang
- School of Agriculture and Biology, Zhongkai University of Agriculture and Engineering Guangzhou 510000 P. R. China .,Abinitio Technology Company, Ltd Guangzhou 510640 P. R. China
| |
Collapse
|
12
|
TOPBP1 regulates resistance of gastric cancer to oxaliplatin by promoting transcription of PARP1. DNA Repair (Amst) 2022; 111:103278. [DOI: 10.1016/j.dnarep.2022.103278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 11/18/2022]
|
13
|
Culture Condition of Bone Marrow Stromal Cells Affects Quantity and Quality of the Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms23031017. [PMID: 35162938 PMCID: PMC8834965 DOI: 10.3390/ijms23031017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) released by bone marrow stromal cells (BMSCs) have been shown to act as a transporter of bioactive molecules such as RNAs and proteins in the therapeutic actions of BMSCs in various diseases. Although EV therapy holds great promise to be a safer cell-free therapy overcoming issues related to cell therapy, manufacturing processes that offer scalable and reproducible EV production have not been established. Robust and scalable BMSC manufacturing methods have been shown to enhance EV production; however, the effects on EV quality remain less studied. Here, using human BMSCs isolated from nine healthy donors, we examined the effects of high-performance culture media that can rapidly expand BMSCs on EV production and quality in comparison with the conventional culture medium. We found significantly increased EV production from BMSCs cultured in the high-performance media without altering their multipotency and immunophenotypes. RNA sequencing revealed that RNA contents in EVs from high-performance media were significantly reduced with altered profiles of microRNA enriched in those related to cellular growth and proliferation in the pathway analysis. Given that pre-clinical studies at the laboratory scale often use the conventional medium, these findings could account for the discrepancy in outcomes between pre-clinical and clinical studies. Therefore, this study highlights the importance of selecting proper culture conditions for scalable and reproducible EV manufacturing.
Collapse
|
14
|
Huang YH, Yin SJ, Gong YY, Li ZR, Yang Q, Fan YX, Zhou T, Meng R, Wang P, He GH. PARP1 as a prognostic biomarker for human cancers: a meta-analysis. Biomark Med 2021; 15:1563-1578. [PMID: 34651514 DOI: 10.2217/bmm-2020-0891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: A comprehensive meta-analysis was carried out to evaluate the association between high PARP1 expression and clinical outcomes in diverse types of cancers. Materials & methods: The electronic databases for all articles about PARP1 expression and cancers were searched. Additionally, bioinformatics analysis was utilized to validate the results of the meta-analysis. Results: Fifty-two studies with a total of 7140 patients were included in the current meta-analysis. High PARP1 expression was found to be significantly associated with poor overall survival and recurrence in various cancers, which were further strengthened and complemented by the results of bioinformatic analysis. Furthermore, increased PAPR1 expression was also related to clinicopathological features. Conclusion: Our findings confirmed that PARP1 might be a promising biomarker for prognosis in human cancers.
Collapse
Affiliation(s)
- Yan-Hua Huang
- Research Center of Clinical Pharmacology, Yunnan Provincial Hospital of Traditional Chinese Medicine, 120 Guanghua Rd, Kunming, 650032, China.,Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Sun-Jun Yin
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Yuan-Yuan Gong
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Zhi-Ran Li
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Qin Yang
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Yu-Xin Fan
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Tao Zhou
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Rui Meng
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Ping Wang
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Gong-Hao He
- Research Center of Clinical Pharmacology, Yunnan Provincial Hospital of Traditional Chinese Medicine, 120 Guanghua Rd, Kunming, 650032, China.,Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| |
Collapse
|
15
|
Traditional Chinese medicine reverses cancer multidrug resistance and its mechanism. Clin Transl Oncol 2021; 24:471-482. [PMID: 34643878 DOI: 10.1007/s12094-021-02716-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/28/2021] [Indexed: 01/14/2023]
Abstract
Chemotherapy is one of the most commonly used clinical treatments among the currently available cancer therapies. However, the phenomenon of Multidrug resistance (MDR) has become a challenge in the treatment process, weakening the impact of chemotherapy. Extensive research on elucidating the development of cancer MDR has identified the following mechanisms that play a critical role in the development of several MDR reversal agents: abnormal expression of cell membrane transporters, adaptation of cancer cells to the microenvironment, regulation of hypoxia, repair of DNA damage and reduction of apoptosis, the enhancement of the EMT process, the existence of cancer stem cells (CSCs), and the abnormal activation of key signaling pathways. However, they failed to demonstrate significant efficacy due to severe side effects during their clinical trials. Traditional Chinese medicines (TCMs) are known to play an important anti-cancer role since they have low toxicity, high efficacy, and safety and can reverse MDR. TCMs reversal agents can be divided into Chinese medicine monomers, synthetic monomers, analogs, or derivatives. Several studies have shown that TCMs can effectively overcome cancer MDR and can be effectively used for treating cancer patients.
Collapse
|