1
|
Kim G, Ahn SH, Jang SK, Kim S, Kim H, Park KS, Jin HO, Park CS, Seong MK, Kim HA, Park IC. Bemcentinib enhances sensitivity to estrogen receptor inhibitors in breast cancer cells. Int J Biochem Cell Biol 2025; 180:106750. [PMID: 39900236 DOI: 10.1016/j.biocel.2025.106750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Estrogen receptor (ER)-positive breast cancer accounts for a substantial proportion of breast cancer cases and is typically managed using ER inhibitors, such as tamoxifen and fulvestrant. However, the development of resistance to these therapies is a significant clinical challenge, and the improvement of therapeutic strategies is crucial. This study aimed to investigate the potential of bemcentinib, a well-known AXL inhibitor, to enhance the sensitivity of MCF7 breast cancer cells to 4-hydroxytamoxifen (4-OHT) and fulvestrant. Our findings revealed that bemcentinib effectively decreased S6K1 phosphorylation and synergistically induced cell death when used in combination with ER inhibitors. Bemcentinib treatment also unexpectedly activated STAT3, and inhibition of STAT3 enhanced cell death induced by bemcentinib and 4-OHT. Notably, the combination of bemcentinib and 4-OHT effectively induced cell death even in tamoxifen-resistant MCF7 cells (MCF7-TR), highlighting its potential to overcome tamoxifen resistance. Interestingly, AXL knockdown did not enhance the sensitivity to 4-OHT or affect S6K1 signaling in either MCF7 or MCF7-TR cells, suggesting that the sensitizing effect of bemcentinib through S6K1 inhibition may be independent of AXL expression. Our findings suggest that bemcentinib treatment, particularly in combination therapy, could be a promising strategy for improving treatment efficacy and overcoming tamoxifen resistance in ER-positive breast cancer.
Collapse
Affiliation(s)
- Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Se Hee Ahn
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea; Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Se-Kyeong Jang
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Selim Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Chan Sub Park
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Min-Ki Seong
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyun-Ah Kim
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea.
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea.
| |
Collapse
|
2
|
Danielli SG, Wurth J, Morice S, Kisele S, Surdez D, Delattre O, Bode PK, Wachtel M, Schäfer BW. Evaluation of the Role of AXL in Fusion-positive Pediatric Rhabdomyosarcoma Identifies the Small-molecule Inhibitor Bemcentinib (BGB324) as Potent Chemosensitizer. Mol Cancer Ther 2024; 23:864-876. [PMID: 38471796 PMCID: PMC11148551 DOI: 10.1158/1535-7163.mct-23-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/16/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Rhabdomyosarcoma (RMS) is a highly aggressive pediatric cancer with features of skeletal muscle differentiation. More than 80% of the high-risk patients ultimately fail to respond to chemotherapy treatment, leading to limited therapeutic options and dismal prognostic rates. The lack of response and subsequent tumor recurrence is driven in part by stem cell-like cells, the tumor subpopulation that is enriched after treatment, and characterized by expression of the AXL receptor tyrosine kinase (AXL). AXL mediates survival, migration, and therapy resistance in several cancer types; however, its function in RMS remains unclear. In this study, we investigated the role of AXL in RMS tumorigenesis, migration, and chemotherapy response, and whether targeting of AXL with small-molecule inhibitors could potentiate the efficacy of chemotherapy. We show that AXL is expressed in a heterogeneous manner in patient-derived xenografts (PDX), primary cultures and cell line models of RMS, consistent with its stem cell-state selectivity. By generating a CRISPR/Cas9 AXL knock-out and overexpressing models, we show that AXL contributes to the migratory phenotype of RMS, but not to chemotherapy resistance. Instead, pharmacologic blockade with the AXL inhibitors bemcentinib (BGB324), cabozantinib and NPS-1034 rapidly killed RMS cells in an AXL-independent manner and augmented the efficacy of the chemotherapeutics vincristine and cyclophosphamide. In vivo administration of the combination of bemcentinib and vincristine exerted strong antitumoral activity in a rapidly progressing PDX mouse model, significantly reducing tumor burden compared with single-agent treatment. Collectively, our data identify bemcentinib as a promising drug to improve chemotherapy efficacy in patients with RMS.
Collapse
Affiliation(s)
- Sara G. Danielli
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Jakob Wurth
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Sarah Morice
- Balgrist University Hospital, Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Samanta Kisele
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Peter K. Bode
- Department of Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Beat W. Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Miao YR, Rankin EB, Giaccia AJ. Therapeutic targeting of the functionally elusive TAM receptor family. Nat Rev Drug Discov 2024; 23:201-217. [PMID: 38092952 PMCID: PMC11335090 DOI: 10.1038/s41573-023-00846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 03/07/2024]
Abstract
The TAM receptor family of TYRO3, AXL and MERTK regulates tissue and immune homeostasis. Aberrant TAM receptor signalling has been linked to a range of diseases, including cancer, fibrosis and viral infections. Specifically, the dysregulation of TAM receptors can enhance tumour growth and metastasis due to their involvement in multiple oncogenic pathways. For example, TAM receptors have been implicated in the epithelial-mesenchymal transition, maintaining the stem cell phenotype, immune modulation, proliferation, angiogenesis and resistance to conventional and targeted therapies. Therapeutically, multiple TAM receptor inhibitors are in preclinical and clinical development for cancers and other indications, with those targeting AXL being the most clinically advanced. Although there has been notable clinical advancement in recent years, challenges persist. This Review aims to provide both biological and clinical insights into the current therapeutic landscape of TAM receptor inhibitors, and evaluates their potential for the treatment of cancer and non-malignant diseases.
Collapse
Affiliation(s)
- Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
4
|
Repici A, Ardizzone A, De Luca F, Colarossi L, Prestifilippo A, Pizzino G, Paterniti I, Esposito E, Capra AP. Signaling Pathways of AXL Receptor Tyrosine Kinase Contribute to the Pathogenetic Mechanisms of Glioblastoma. Cells 2024; 13:361. [PMID: 38391974 PMCID: PMC10886920 DOI: 10.3390/cells13040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Brain tumors are a diverse collection of neoplasms affecting the brain with a high prevalence rate in people of all ages around the globe. In this pathological context, glioblastoma, a form of glioma that belongs to the IV-grade astrocytoma group, is the most common and most aggressive form of the primary brain tumors. Indeed, despite the best treatments available including surgery, radiotherapy or a pharmacological approach with Temozolomide, glioblastoma patients' mortality is still high, within a few months of diagnosis. Therefore, to increase the chances of these patients surviving, it is critical to keep finding novel treatment opportunities. In the past, efforts to treat glioblastoma have mostly concentrated on customized treatment plans that target specific mutations such as epidermal growth factor receptor (EGFR) mutations, Neurotrophic Tyrosine Receptor Kinase (NTRK) fusions, or multiple receptors using multi-kinase inhibitors like Sunitinib and Regorafenib, with varying degrees of success. Here, we focused on the receptor tyrosine kinase AXL that has been identified as a mediator for tumor progression and therapy resistance in various cancer types, including squamous cell tumors, small cell lung cancer, and breast cancer. Activated AXL leads to a significant increase in tumor proliferation, tumor cell migration, and angiogenesis in different in vitro and in vivo models of cancer since this receptor regulates interplay with apoptotic, angiogenic and inflammatory pathways. Based on these premises, in this review we mainly focused on the role of AXL in the course of glioblastoma, considering its primary biological mechanisms and as a possible target for the application of the most recent treatments.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Angela Prestifilippo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Gabriele Pizzino
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| |
Collapse
|
5
|
Ariaei A, Ramezani F. The promising impact of Bemcentinib and Repotrectinib on sleep impairment in Alzheimer's disease. J Biomol Struct Dyn 2023; 42:13538-13554. [PMID: 37909502 DOI: 10.1080/07391102.2023.2276876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disease, demands effective medication to alleviate symptoms. This study focused on sleep impairment as an overt clinical symptom and tauopathy as a prominent molecular symptom of this disease. Multiple compounds from three biomolecule libraries (719 compounds; ChemDiv:366 - ChEMBL:180 - PubChem:173) were evaluated for potential binding affinity and safety using AutoDock Vina and pkCSM, respectively, resulting in the selection of four candidate compounds (Lestaurtinib, Repotrectinib, Bemcentinib, and Zotiraciclib). Due to the similarity of Repotrectinib and Bemcentinib binding sites to ATP, 300 ns Martini 3 coarse-grained molecular dynamics (MD) was performed on these two molecules and ATP by NAMD. The stability of tau protein in the presence of drugs was assessed using a 200 ns Martini 3 MD simulation. Binding site analysis discloses Bemcentinib and Repotrectinib as two inhibitors occupying most amino acids in binding with ATP. The RMSD and RMS average correlation results revealed protein containing Bemcentinib and Repotrectinib to have a more stable state compared to ATP in the first 220 ns simulation. There was only a single detachment of Bemcentinib, while Repotrictinib detached twice at the end of the simulation. Eventually, adding Bemcentinib and Repotrectinib to the enzyme-tau complex significantly increased the number of tau detachments during the 200 ns simulation. We report Bemcentinib and Repotrectinib, formerly prescribed for cancer, as potential inhibitors of the CK1 δ. Besides their high binding affinity compared to ATP, they can inhibit all ATP-binding sites and alter the tau binding stability.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Armin Ariaei
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Tapia M, Hernando C, Martínez MT, Burgués O, Tebar-Sánchez C, Lameirinhas A, Ágreda-Roca A, Torres-Ruiz S, Garrido-Cano I, Lluch A, Bermejo B, Eroles P. Clinical Impact of New Treatment Strategies for HER2-Positive Metastatic Breast Cancer Patients with Resistance to Classical Anti-HER Therapies. Cancers (Basel) 2023; 15:4522. [PMID: 37760491 PMCID: PMC10527351 DOI: 10.3390/cancers15184522] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
HER2-positive breast cancer accounts for 15-20% of all breast cancer cases. This subtype is characterized by an aggressive behavior and poor prognosis. Anti-HER2 therapies have considerably improved the natural course of the disease. Despite this, relapse still occurs in around 20% of patients due to primary or acquired treatment resistance, and metastasis remains an incurable disease. This article reviews the main mechanisms underlying resistance to anti-HER2 treatments, focusing on newer HER2-targeted therapies. The progress in anti-HER2 drugs includes the development of novel antibody-drug conjugates with improvements in the conjugation process and novel linkers and payloads. Moreover, trastuzumab deruxtecan has enhanced the efficacy of trastuzumab emtansine, and the new drug trastuzumab duocarmazine is currently undergoing clinical trials to assess its effect. The combination of anti-HER2 agents with other drugs is also being evaluated. The addition of immunotherapy checkpoint inhibitors shows some benefit in a subset of patients, indicating the need for useful biomarkers to properly stratify patients. Besides, CDK4/6 and tyrosine kinase inhibitors are also included in the design of new treatment strategies. Lapitinib, neratinib and tucatinib have been approved for HER2-positive metastasis patients, however clinical trials are currently ongoing to optimize combined strategies, to reduce toxicity, and to better define the useful setting. Clinical research should be strengthened along with the discovery and validation of new biomarkers, as well as a deeper understanding of drug resistance and action mechanisms.
Collapse
Affiliation(s)
- Marta Tapia
- Department of Clinical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain; (M.T.); (C.H.); (M.T.M.); (C.T.-S.); (A.L.); (B.B.)
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (A.L.); (A.Á.-R.); (S.T.-R.); (I.G.-C.)
| | - Cristina Hernando
- Department of Clinical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain; (M.T.); (C.H.); (M.T.M.); (C.T.-S.); (A.L.); (B.B.)
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (A.L.); (A.Á.-R.); (S.T.-R.); (I.G.-C.)
| | - María Teresa Martínez
- Department of Clinical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain; (M.T.); (C.H.); (M.T.M.); (C.T.-S.); (A.L.); (B.B.)
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (A.L.); (A.Á.-R.); (S.T.-R.); (I.G.-C.)
| | - Octavio Burgués
- Department of Pathology, Hospital Clinic of Valencia, 46010 Valencia, Spain;
- Biomedical Research Networking Center in Oncology (CIBERONC), 28029 Madrid, Spain
| | - Cristina Tebar-Sánchez
- Department of Clinical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain; (M.T.); (C.H.); (M.T.M.); (C.T.-S.); (A.L.); (B.B.)
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (A.L.); (A.Á.-R.); (S.T.-R.); (I.G.-C.)
| | - Ana Lameirinhas
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (A.L.); (A.Á.-R.); (S.T.-R.); (I.G.-C.)
| | - Anna Ágreda-Roca
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (A.L.); (A.Á.-R.); (S.T.-R.); (I.G.-C.)
| | - Sandra Torres-Ruiz
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (A.L.); (A.Á.-R.); (S.T.-R.); (I.G.-C.)
| | - Iris Garrido-Cano
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (A.L.); (A.Á.-R.); (S.T.-R.); (I.G.-C.)
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, 46022 Valencia, Spain
| | - Ana Lluch
- Department of Clinical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain; (M.T.); (C.H.); (M.T.M.); (C.T.-S.); (A.L.); (B.B.)
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (A.L.); (A.Á.-R.); (S.T.-R.); (I.G.-C.)
- Biomedical Research Networking Center in Oncology (CIBERONC), 28029 Madrid, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Begoña Bermejo
- Department of Clinical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain; (M.T.); (C.H.); (M.T.M.); (C.T.-S.); (A.L.); (B.B.)
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (A.L.); (A.Á.-R.); (S.T.-R.); (I.G.-C.)
- Biomedical Research Networking Center in Oncology (CIBERONC), 28029 Madrid, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (A.L.); (A.Á.-R.); (S.T.-R.); (I.G.-C.)
- Biomedical Research Networking Center in Oncology (CIBERONC), 28029 Madrid, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
7
|
Ou H, Fan Y, Guo X, Lao Z, Zhu M, Li G, Zhao L. Identifying key genes related to inflammasome in severe COVID-19 patients based on a joint model with random forest and artificial neural network. Front Cell Infect Microbiol 2023; 13:1139998. [PMID: 37113134 PMCID: PMC10126306 DOI: 10.3389/fcimb.2023.1139998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) has been spreading astonishingly and caused catastrophic losses worldwide. The high mortality of severe COVID-19 patients is an serious problem that needs to be solved urgently. However, the biomarkers and fundamental pathological mechanisms of severe COVID-19 are poorly understood. The aims of this study was to explore key genes related to inflammasome in severe COVID-19 and their potential molecular mechanisms using random forest and artificial neural network modeling. Methods Differentially expressed genes (DEGs) in severe COVID-19 were screened from GSE151764 and GSE183533 via comprehensive transcriptome Meta-analysis. Protein-protein interaction (PPI) networks and functional analyses were conducted to identify molecular mechanisms related to DEGs or DEGs associated with inflammasome (IADEGs), respectively. Five the most important IADEGs in severe COVID-19 were explored using random forest. Then, we put these five IADEGs into an artificial neural network to construct a novel diagnostic model for severe COVID-19 and verified its diagnostic efficacy in GSE205099. Results Using combining P value < 0.05, we obtained 192 DEGs, 40 of which are IADEGs. The GO enrichment analysis results indicated that 192 DEGs were mainly involved in T cell activation, MHC protein complex and immune receptor activity. The KEGG enrichment analysis results indicated that 192 GEGs were mainly involved in Th17 cell differentiation, IL-17 signaling pathway, mTOR signaling pathway and NOD-like receptor signaling pathway. In addition, the top GO terms of 40 IADEGs were involved in T cell activation, immune response-activating signal transduction, external side of plasma membrane and phosphatase binding. The KEGG enrichment analysis results indicated that IADEGs were mainly involved in FoxO signaling pathway, Toll-like receptor, JAK-STAT signaling pathway and Apoptosis. Then, five important IADEGs (AXL, MKI67, CDKN3, BCL2 and PTGS2) for severe COVID-19 were screened by random forest analysis. By building an artificial neural network model, we found that the AUC values of 5 important IADEGs were 0.972 and 0.844 in the train group (GSE151764 and GSE183533) and test group (GSE205099), respectively. Conclusion The five genes related to inflammasome, including AXL, MKI67, CDKN3, BCL2 and PTGS2, are important for severe COVID-19 patients, and these molecules are related to the activation of NLRP3 inflammasome. Furthermore, AXL, MKI67, CDKN3, BCL2 and PTGS2 as a marker combination could be used as potential markers to identify severe COVID-19 patients.
Collapse
Affiliation(s)
- Haiya Ou
- Department of Gastroenterology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yaohua Fan
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxuan Guo
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zizhao Lao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiling Zhu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- *Correspondence: Meiling Zhu, ; Geng Li, ; Lijun Zhao,
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Meiling Zhu, ; Geng Li, ; Lijun Zhao,
| | - Lijun Zhao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- *Correspondence: Meiling Zhu, ; Geng Li, ; Lijun Zhao,
| |
Collapse
|
8
|
Rao H, Song X, Lei J, Lu P, Zhao G, Kang X, Zhang D, Zhang T, Ren Y, Peng C, Li Y, Pei J, Cao Z. Ibrutinib Prevents Acute Lung Injury via Multi-Targeting BTK, FLT3 and EGFR in Mice. Int J Mol Sci 2022; 23:13478. [PMID: 36362264 PMCID: PMC9657648 DOI: 10.3390/ijms232113478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 09/12/2023] Open
Abstract
Ibrutinib has potential therapeutic or protective effects against viral- and bacterial-induced acute lung injury (ALI), likely by modulating the Bruton tyrosine kinase (BTK) signaling pathway. However, ibrutinib has multi-target effects. Moreover, immunity and inflammation targets in ALI treatment are poorly defined. We investigated whether the BTK-, FLT3-, and EGFR-related signaling pathways mediated the protective effects of ibrutinib on ALI. The intratracheal administration of poly I:C or LPS after ibrutinib administration in mice was performed by gavage. The pathological conditions of the lungs were assessed by micro-CT and HE staining. The levels of neutrophils, lymphocytes, and related inflammatory factors in the lungs were evaluated by ELISA, flow cytometry, immunohistochemistry, and immunofluorescence. Finally, the expression of proteins associated with the BTK-, FLT3-, and EGFR-related signaling pathways were evaluated by Western blotting. Ibrutinib (10 mg/kg) protected against poly I:C-induced (5 mg/kg) and LPS-induced (5 mg/kg) lung inflammation. The wet/dry weight ratio (W/D) and total proteins in the bronchoalveolar lavage fluid (BALF) were markedly reduced after ibrutinib (10 mg/kg) treatment, relative to the poly I:C- and LPS-treated groups. The levels of ALI indicators (NFκB, IL-1β, IL-6, TNF-α, IFN-γ, neutrophils, and lymphocytes) were significantly reduced after treatment. Accordingly, ibrutinib inhibited the poly I:C- and LPS-induced BTK-, FLT3-, and EGFR-related pathway activations. Ibrutinib inhibited poly I:C- and LPS-induced acute lung injury, and this may be due to its ability to suppress the BTK-, FLT3-, and EGFR-related signaling pathways. Therefore, ibrutinib is a potential protective agent for regulating immunity and inflammation in poly I:C- and LPS-induced ALI.
Collapse
Affiliation(s)
- Huanan Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaominting Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jieting Lei
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guiying Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Duanna Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yali Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
9
|
Hong J, Maacha S, Pidkovka N, Bates A, Salaria SN, Washington MK, Belkhiri A. AXL Promotes Metformin-Induced Apoptosis Through Mediation of Autophagy by Activating ROS-AMPK-ULK1 Signaling in Human Esophageal Adenocarcinoma. Front Oncol 2022; 12:903874. [PMID: 35936716 PMCID: PMC9354051 DOI: 10.3389/fonc.2022.903874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
AXL receptor tyrosine kinase promotes an invasive phenotype and chemotherapy resistance in esophageal adenocarcinoma (EAC). AXL has been implicated in the regulation of autophagy, but the underlying molecular mechanism remains poorly understood. Herein, we investigate the mechanistic role of AXL in autophagy as well as metformin-induced effects on the growth and survival of EAC. We demonstrate that AXL mediates autophagic flux through activation of AMPK-ULK1 signaling in a reactive oxygen species (ROS)-dependent mechanism by glucose starvation. AXL positively regulates basal cellular ROS levels without significantly affecting mitochondrial ROS production in EAC cells. Pharmacological inhibition of cellular ROS using Trolox abrogates glucose starvation-induced AMPK signaling and autophagy. We demonstrate that AXL expression is required for metformin-induced apoptosis in EAC cells in vitro. The apoptosis induction by metformin is markedly attenuated by inhibition of autophagy through genetic silencing of Beclin1 or ATG7 autophagy mediators, thereby confirming the requirement of intact autophagy for enhancing metformin-induced apoptosis in EAC cells. Our data indicate that metformin-induced autophagy displays a pro-apoptotic function in EAC cells. We show that the metformin-induced suppression of tumor growth in vivo is highly dependent on AXL expression in a tumor xenograft mouse model of EAC. We demonstrate that AXL promotes metformin-induced apoptosis through activation of autophagy in EAC. AXL may be a valuable biomarker to identify tumors that are sensitive to metformin. Therefore, AXL expression could inform the selection of patients for future clinical trials to evaluate the therapeutic efficacy of metformin in EAC.
Collapse
Affiliation(s)
- Jun Hong
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Selma Maacha
- Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Nataliya Pidkovka
- Department of Health Science, South College, Nashville, TN, United States
| | - Andreia Bates
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Safia N. Salaria
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mary K. Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Abbes Belkhiri,
| |
Collapse
|
10
|
Endocytic trafficking of GAS6-AXL complexes is associated with sustained AKT activation. Cell Mol Life Sci 2022; 79:316. [PMID: 35622156 PMCID: PMC9135597 DOI: 10.1007/s00018-022-04312-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/27/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
AXL, a TAM receptor tyrosine kinase (RTK), and its ligand growth arrest-specific 6 (GAS6) are implicated in cancer metastasis and drug resistance, and cellular entry of viruses. Given this, AXL is an attractive therapeutic target, and its inhibitors are being tested in cancer and COVID-19 clinical trials. Still, astonishingly little is known about intracellular mechanisms that control its function. Here, we characterized endocytosis of AXL, a process known to regulate intracellular functions of RTKs. Consistent with the notion that AXL is a primary receptor for GAS6, its depletion was sufficient to block GAS6 internalization. We discovered that upon receptor ligation, GAS6–AXL complexes were rapidly internalized via several endocytic pathways including both clathrin-mediated and clathrin-independent routes, among the latter the CLIC/GEEC pathway and macropinocytosis. The internalization of AXL was strictly dependent on its kinase activity. In comparison to other RTKs, AXL was endocytosed faster and the majority of the internalized receptor was not degraded but rather recycled via SNX1-positive endosomes. This trafficking pattern coincided with sustained AKT activation upon GAS6 stimulation. Specifically, reduced internalization of GAS6–AXL upon the CLIC/GEEC downregulation intensified, whereas impaired recycling due to depletion of SNX1 and SNX2 attenuated AKT signaling. Altogether, our data uncover the coupling between AXL endocytic trafficking and AKT signaling upon GAS6 stimulation. Moreover, our study provides a rationale for pharmacological inhibition of AXL in antiviral therapy as viruses utilize GAS6–AXL-triggered endocytosis to enter cells.
Collapse
|
11
|
Naik RR, Shakya AK, Aladwan SM, El-Tanani M. Kinase Inhibitors as Potential Therapeutic Agents in the Treatment of COVID-19. Front Pharmacol 2022; 13:806568. [PMID: 35444538 PMCID: PMC9014181 DOI: 10.3389/fphar.2022.806568] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Corona virus is quickly spreading around the world. The goal of viral management is to disrupt the virus's life cycle, minimize lung damage, and alleviate severe symptoms. Numerous strategies have been used, including repurposing existing antivirals or drugs used in previous viral outbreaks. One such strategy is to repurpose FDA-approved kinase inhibitors that are potential chemotherapeutic agents and have demonstrated antiviral activity against a variety of viruses, including MERS, SARS-CoV-1, and others, by inhibiting the viral life cycle and the inflammatory response associated with COVID-19. The purpose of this article is to identify licensed kinase inhibitors that have the ability to reduce the virus's life cycle, from entrance through viral propagation from cell to cell. Several of these inhibitors, including imatinib, ruxolitinib, silmitasertib, and tofacitinib (alone and in conjunction with hydroxychloroquine), are now undergoing clinical studies to determine their efficacy as a possible treatment drug. The FDA approved baricitinib (a Janus kinase inhibitor) in combination with remdesivir for the treatment of COVID-19 patients receiving hospital care in November 2020. While in vitro trials with gilteritinib, fedratinib, and osimertinib are encouraging, further research is necessary before these inhibitors may be used to treat COVID-19 patients.
Collapse
Affiliation(s)
- Rajashri R. Naik
- Department of Biopharmaceutics and Clinical Pharmacy, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ashok K. Shakya
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Safwan M. Aladwan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed El-Tanani
- Department of Biopharmaceutics and Clinical Pharmacy, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
12
|
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, West R, Dastghaib S, Igder S, Torshizi SRN, Mahmoodzadeh A, Mokarram P, Madrakian T, Albensi BC, Łos MJ, Ghavami S, Pecic S. Enhancing autophagy in Alzheimer's disease through drug repositioning. Pharmacol Ther 2022; 237:108171. [PMID: 35304223 DOI: 10.1016/j.pharmthera.2022.108171] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the biggest human health threats due to increases in aging of the global population. Unfortunately, drugs for treating AD have been largely ineffective. Interestingly, downregulation of macroautophagy (autophagy) plays an essential role in AD pathogenesis. Therefore, targeting autophagy has drawn considerable attention as a therapeutic approach for the treatment of AD. However, developing new therapeutics is time-consuming and requires huge investments. One of the strategies currently under consideration for many diseases is "drug repositioning" or "drug repurposing". In this comprehensive review, we have provided an overview of the impact of autophagy on AD pathophysiology, reviewed the therapeutics that upregulate autophagy and are currently used in the treatment of other diseases, including cancers, and evaluated their repurposing as a possible treatment option for AD. In addition, we discussed the potential of applying nano-drug delivery to neurodegenerative diseases, such as AD, to overcome the challenge of crossing the blood brain barrier and specifically target molecules/pathways of interest with minimal side effects.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Aida Adlimoghaddam
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada
| | | | - Ryan West
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benedict C Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; Nova Southeastern Univ. College of Pharmacy, Davie, FL, United States of America; University of Manitoba, College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America.
| |
Collapse
|
13
|
Astakhov AV, Chernenko AY, Kutyrev VV, Ranny GS, Minyaev ME, Chernyshev VM, Ananikov VP. Selective Buchwald–Hartwig arylation of C-amino-1,2,4-triazoles and other coordinating aminoheterocycles enabled by bulky NHC ligands and TPEDO activator. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01832b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A facile method for selective N-(hetero)arylation of coordinating 3(5)-amino-1,2,4-triazoles under Pd/NHC catalysis using TPEDO as a new efficient Pd(ii) to Pd(0) reductant has been developed.
Collapse
Affiliation(s)
- Alexander V. Astakhov
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Andrey Yu. Chernenko
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Vadim V. Kutyrev
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Gleb S. Ranny
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Victor M. Chernyshev
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|