1
|
Miller B, Imig JD, Li M, Schupbach P, Woo S, Benbrook DM, Sorokin A. Prevention of hypertension-induced renal vascular dysfunction through a p66Shc-targeted mechanism. Am J Physiol Renal Physiol 2025; 328:F693-F701. [PMID: 40172516 DOI: 10.1152/ajprenal.00331.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/10/2024] [Accepted: 03/27/2025] [Indexed: 04/04/2025] Open
Abstract
Renal microvascular injury occurs in most patients with hypertension-induced nephropathy (HN). We have shown that overexpression of adaptor protein p66Shc is implicated in the loss of renal microvascular reactivity in hypertensive rats. Since sulfur heteroarotinoid A2 (SHetA2) modulates p66Shc, we tested whether SHetA2 would restore renal microvascular reactivity and mitigate kidney injury in a rat HN model. Dahl salt sensitive (SS) and p66Shc knockout (p66Shc-KO) rats were used in a well-established rat model of HN, characterized by severe renal vascular dysfunction. SHetA2 was either added acutely to isolated rat afferent arterioles or chronically administrated to rats during HN development. The ability of SHetA2 treatment to restore afferent arteriolar contraction in response to increased perfusion pressure or ATP was evaluated using the perfused juxtamedullary nephron preparation. The progression of renal damage was evaluated by measuring urinary protein excretion and conducting analysis of glomerular injury. Comparison of renal microvascular responses to perfusion pressure in p66Shc-KO rats and parental SS rats, in the presence and absence of acute preincubation with SHetA2, revealed a dose-dependent ability of SHetA2 to restore renal microvascular reactivity in SS rats with little effect upon p66Shc knockouts. Moreover, chronic treatment with SHetA2 prevented loss of renal microvascular responses and decline in renal function. SHetA2 was more potent and effective in males compared with females. Targeting p66Shc with SHetA2 diminishes renal damage and restores renal afferent arteriolar reactivity caused by hypertension. These results justify further translation of these findings to develop SHetA2 for prevention and treatment of hypertension-induced kidney damage.NEW & NOTEWORTHY Acute preincubation with modulator of p66Shc signaling sulfur heteroarotinoid A2 (SHetA2) revealed dose-dependent ability of SHetA2 to restore renal microvascular reactivity in rats with hypertension-induced nephropathy. Moreover, chronic treatment with SHetA2 prevented loss of renal microvascular responses and decline in renal function. Thus, targeting p66Shc with SHetA2 diminishes renal damage and restores renal afferent arteriolar reactivity caused by hypertension.
Collapse
Affiliation(s)
- Bradley Miller
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John D Imig
- Department of Pharmacology and Toxicology, Drug Discovery Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Mengjie Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States
| | - Perrin Schupbach
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States
| | - Doris M Benbrook
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Andrey Sorokin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
2
|
Garland J, Hussain S, Rai R, Kennedy AL, Isingizwe ZR, Benbrook DM. Targeting HSP70-E7 Interaction With SHetA2: A Novel Therapeutic Strategy for Cervical Cancer. J Med Virol 2024; 96:e70088. [PMID: 39588793 PMCID: PMC11633939 DOI: 10.1002/jmv.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
Cervical cancer is predominantly driven by persistent infections with high-risk human papillomavirus and the continuous activity of its E6 and E7 oncoproteins. This study explored the role of heat shock proteins 70 kDa (HSP70s) in enhancing the function of these oncoproteins and examined the impact of SHetA2, an investigational new drug, on this interaction. We found that HSP70 specifically binds to E7, but not E6, protein and that SHetA2 disrupts this binding. This disruption led to a significant reduction in E6 and E7 mRNA and E7 protein levels, while effects on E6 protein levels were minimal. SHetA2 treatment also resulted in altered levels of cell cycle regulatory proteins, reduced cell cycle progression, and decreased metabolic viability in cervical cancer cell lines and xenograft models. These findings support the potential of SHetA2 to impair cervical cancer progression by targeting HSP70/E7 interactions, highlighting its promise as a therapeutic strategy for treating cervical cancer.
Collapse
Affiliation(s)
- Justin Garland
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10 St, Oklahoma City, OK 73104, USA
| | - Showket Hussain
- ICMR-National Institute of Cancer Prevention and Research, Division of Molecular Diagnostics and Molecular Oncology, Noida, India
- Gynecologic Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10 St, Oklahoma City, OK 73104, USA
| | - Rajani Rai
- Gynecologic Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10 St, Oklahoma City, OK 73104, USA
| | - Amy L. Kennedy
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10 St, Oklahoma City, OK 73104, USA
| | - Zitha Redempta Isingizwe
- Gynecologic Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10 St, Oklahoma City, OK 73104, USA
| | - Doris M. Benbrook
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10 St, Oklahoma City, OK 73104, USA
- Gynecologic Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10 St, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Rai R, Lightfoot S, Benbrook DM. Manipulation of metabolic responses enhances SHetA2 efficacy without toxicity in cervical cancer cell lines and xenografts. Gynecol Oncol 2024; 180:44-54. [PMID: 38052108 PMCID: PMC10922646 DOI: 10.1016/j.ygyno.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE The high frequency of cervical cancer recurrence after primary therapy necessitates alternative treatments. High-risk human papillomavirus (HR-HPV) causes cervical cancer and it's continued presence supports elevated metabolism, proliferation and survival of cancer cells. The low-to-no toxicity new investigational drug, SHetA2, counteracts high-risk human papillomavirus (HR-HPV) effects on cell proliferation and survival in cervical cancer cells and xenograft tumors by disrupting heat shock protein 70 chaperone protection of oncogenic proteins. Our objective was to study the involvement of metabolism in SHetA2 effects on cervical cancer cells and tumors. METHODS SHetA2-mediated proteomic and metabolic effects were measured in HR-HPV-positive CaSKi and SiHa and HR-HPV-negative C-33 A cervical cancer cell lines. Combined treatment with 2-deoxyglucose (2-DG) was evaluated in cell culture and SiHa xenografts. RESULTS SHetA2 inhibited oxidative phosphorylation (OxPhos) and altered levels of proteins involved in metabolism, protein synthesis, and DNA replication and repair. Cervical cancer cells responded by elevating glycolysis. Inhibition of the glycolytic responses using galactose media or 2-DG increased SHetA2 sensitivity of two HR-HPV-positive, but not an HR-HPV-negative cervical cancer cell line. Interaction of 2-DG and SHetA2 was synergistic in HR-HPV positive cell lines in association with augmentation of SHetA2 ATP reduction, but not SHetA2 DNA damage induction. These results were verified in a SiHa xenograft tumor model without evidence of toxicity. CONCLUSIONS Compensatory glycolysis counteracts OxPhos inhibition in SHetA2-treated HR-HPV-positive cervical cancer cell lines. Prevention of compensatory glycolysis with 2-DG or another glycolysis inhibitor has the potential to improve SHetA2 therapy without toxicity.
Collapse
Affiliation(s)
- Rajani Rai
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, USA
| | - Stanley Lightfoot
- Department of Pathology, University of Oklahoma Health Sciences Center, USA
| | - Doris Mangiaracina Benbrook
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, USA.
| |
Collapse
|
4
|
Sharma A, Liu X, Chandra V, Rai R, Benbrook DM, Woo S. Pharmacodynamics of Cyclin D1 Degradation in Ovarian Cancer Xenografts with Repeated Oral SHetA2 Dosing. AAPS J 2023; 26:5. [PMID: 38087107 PMCID: PMC11610768 DOI: 10.1208/s12248-023-00874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
SHetA2 is a promising, orally active small molecule with anticancer properties that target heat shock proteins. In this study, we aimed to investigate the pharmacodynamic (PD) effects of SHetA2 using preclinical in vitro and in vivo models of ovarian cancer and establish a physiologically based pharmacokinetic (PBPK)/PD model to describe their relationships with SHetA2 concentrations in mice. We found that daily oral administration of 60 mg/kg SHetA2 for 7 days resulted in consistent plasma PK and tissue distribution, achieving tumor drug concentrations required for growth inhibition in ovarian cancer cell lines. SHetA2 effectively induced cyclin D1 degradation in cancer cells in a dose-dependent manner, with up to 70% reduction observed and an IC50 of 4~5 µM. We identified cyclin D1 as a potential PD marker for SHetA2, based on a well-correlated time profile with SHetA2 PK. Additionally, we examined circulating levels of ccK18 as a non-invasive PD marker for SHetA2-induced apoptotic activity and found it unsuitable due to high variability. Using a PBPK/PD model, we depicted SHetA2 levels and their promoting effects on cyclin D1 degradation in tumors following multiple oral doses. The model suggested that twice-daily dosing regimens would be effective for sustained reduction in cyclin D1 protein. Our study provides valuable insights into the PK/PD of SHetA2, facilitating future clinical trial designs and dosing schedules.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., Oklahoma City, Oklahoma, 73117-1200, USA
| | - Xin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, 352 Pharmacy Building, Buffalo, New York, 14214, USA
| | - Vishal Chandra
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma, 73104, USA
| | - Rajani Rai
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma, 73104, USA
| | - Doris M Benbrook
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma, 73104, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, 352 Pharmacy Building, Buffalo, New York, 14214, USA.
| |
Collapse
|
5
|
Rai R, Chandra V, Kennedy AL, Zuna RE, Benbrook DM. Distinct mechanism of cervical cancer cell death caused by the investigational new drug SHetA2. Front Oncol 2022; 12:958536. [PMID: 36203464 PMCID: PMC9531157 DOI: 10.3389/fonc.2022.958536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Drug-targetable vulnerabilities of cancer cells include their dependence on heat shock proteins (HSPs) to support elevated mitochondrial metabolism and counteract cell death factors. The investigational new drug SHetA2 targets these vulnerabilities in ovarian and endometrial cancer cells by disrupting complexes of the mortalin HSP with its client proteins (mitochondrial support proteins, metabolic enzymes, p53) leading to mitochondrial leakage of cytochrome c and apoptosis-inducing factor (AIF), and caspase-dependent apoptosis. Our objective was to evaluate the roles of mitochondrial damage and another SHetA2-target HSP protein, cytoplasmic heat shock cognate 70 (hsc70), in the mechanism of SHetA2 killing of cervical cancer cells. Cervical cancer cells responded to SHetA2 with excessive mitophagy that did not deter AIF leakage into the cytoplasm. Then, hsc70 was unable to prevent cytoplasmic AIF nuclear translocation and promotion of DNA damage and cell death, because SHetA2 disrupted hsc70/AIF complexes. The Cancer Genome Atlas analysis found that overexpression of hsc70, but not mortalin, was associated with worse cervical cancer patient survival. Use of specific inhibitors documented that AIF and mitophagy, but not caspases, contributed to the mechanism of SHetA2-induced cell death in cervical cancer cells. As validation, excessive mitophagy and lack of caspase activation were observed in SHetA2-inhibited xenograft tumors.
Collapse
Affiliation(s)
- Rajani Rai
- Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Vishal Chandra
- Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Amy L. Kennedy
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Rosemary E. Zuna
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Doris Mangiaracina Benbrook
- Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States,*Correspondence: Doris Mangiaracina Benbrook,
| |
Collapse
|
6
|
Elwakeel A. Abrogating the Interaction Between p53 and Mortalin (Grp75/HSPA9/mtHsp70) for Cancer Therapy: The Story so far. Front Cell Dev Biol 2022; 10:879632. [PMID: 35493098 PMCID: PMC9047732 DOI: 10.3389/fcell.2022.879632] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
p53 is a transcription factor that activates the expression of a set of genes that serve as a critical barrier to oncogenesis. Inactivation of p53 is the most common characteristic in sporadic human cancers. Mortalin is a differentially sub-cellularly localized member of the heat shock protein 70 family of chaperones that has essential mitochondrial and extra-mitochondrial functions. Elevated mortalin levels in multiple cancerous tissues and tumor-derived cell lines emphasized its key role in oncogenesis. One of mortalin’s major oncogenic roles is the inactivation of p53. Mortalin binds to p53 sequestering it in the cytoplasm. Hence, p53 cannot freely shuttle to the nucleus to perform its tumor suppressor functions as a transcription factor. This protein-protein interaction was reported to be cancer-specific, hence, a selective druggable target for a rationalistic cancer therapeutic strategy. In this review article, the chronological identification of mortalin-p53 interactions is summarized, the challenges and general strategies for targeting protein-protein interactions are briefly discussed, and information about compounds that have been reported to abrogate mortalin-p53 interaction is provided. Finally, the reasons why the disruption of this druggable interaction has not yet been applied clinically are discussed.
Collapse
|
7
|
Benbrook DM. SHetA2 Attack on Mortalin and Colleagues in Cancer Therapy and Prevention. Front Cell Dev Biol 2022; 10:848682. [PMID: 35281109 PMCID: PMC8906462 DOI: 10.3389/fcell.2022.848682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Heat Shock Proteins of the 70-kDa family (HSP70s) do not cause cancer by themselves, but instead protect cells as they transform into cancer. These molecular chaperones bind numerous client proteins and utilize ATP hydrolysis to facilitate proper protein folding, formation of functional complexes and cellular localizations, or degradation of irreparably damaged proteins. Their transient upregulation by stressful situations avoids induction of programmed cell death. Continued upregulation of the mortalin, heat shock cognate (hsc70) and glucose regulated protein 78 (Grp78) support cancer development and progression by supporting pro-proliferative and metabolic functions and repressing pro-death functions of oncoproteins and tumor suppressor proteins. This review describes the discovery and development of a lead anti-cancer compound, sulfur heteroarotinoid A2 (SHetA2, NSC726189), which was originally developed to bind retinoic acid receptors, but was subsequently found to work independently of these receptors. The discovery and validation of mortalin, hsc70 and Grp78 as SHetA2 target proteins is summarized. The documented and hypothesized roles of these HSP70 proteins and their clients in the mechanism of SHetA2 inhibition of cancer without toxicity are discussed. Use of this mechanistic data to evaluate drug action in a cancer clinical trial and develop synergistic drug combinations is explained. Knowledge needed to optimize SHetA2 analogs for use in cancer therapy and prevention is proposed as future directions.
Collapse
|
8
|
Chandra V, Rai R, Benbrook DM. Utility and Mechanism of SHetA2 and Paclitaxel for Treatment of Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13102322. [PMID: 34066052 PMCID: PMC8150795 DOI: 10.3390/cancers13102322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Incidence and death rates for endometrial cancer are steadily rising world-wide. Endometrial cancer patients at high risk for recurrence are treated with chemotherapy, which causes significant toxicity. Molecularly targeted drugs have been found to cause less toxicity than chemotherapy. We studied a low-toxicity drug, called SHetA2, which targets three heat shock A proteins that are highly mutated in endometrial cancers. Our results demonstrated that SHetA2 inhibits endometrial cancer cells and tumors, and enhances therapeutic effects of paclitaxel without increasing toxicity. This information supports development of clinical trials to test if combining SHetA2 with paclitaxel can increase the paclitaxel therapeutic effect without increasing toxicity, or allows a lowered paclitaxel dose to achieve the same level of therapeutic effect, but with reduced toxicity. Our new knowledge about how SHetA2 works can be translated into development of biomarkers to predict with patients would most likely benefit from SHetA2-based therapy. Abstract Endometrial cancer patients with advanced disease or high recurrence risk are treated with chemotherapy. Our objective was to evaluate the utility and mechanism of a novel drug, SHetA2, alone and in combination with paclitaxel, in endometrial cancer. SHetA2 targets the HSPA chaperone proteins, Grp78, hsc70, and mortalin, which have high mutation rates in endometrial cancer. SHetA2 effects on cancerous phenotypes, mitochondria, metabolism, protein expression, mortalin/client protein complexes, and cell death were evaluated in AN3CA, Hec13b, and Ishikawa endometrial cancer cell lines, and on growth of Ishikawa xenografts. In all three cell lines, SHetA2 inhibited anchorage-independent growth, migration, invasion, and ATP production, and induced G1 cell cycle arrest, mitochondrial damage, and caspase- and apoptosis inducing factor (AIF)-mediated apoptosis. These effects were associated with altered levels of proteins involved in cell cycle regulation, mitochondrial function, protein synthesis, endoplasmic reticulum stress, and metabolism; disruption of mortalin complexes with mitochondrial and metabolism proteins; and inhibition of oxidative phosphorylation and glycolysis. SHetA2 and paclitaxel exhibited synergistic combination indices in all cell lines and exerted greater xenograft tumor growth inhibition than either drug alone. SHetA2 is active against endometrial cancer cell lines in culture and in vivo and acts synergistically with paclitaxel.
Collapse
|
9
|
Kennedy AL, Rai R, Isingizwe ZR, Zhao YD, Lightfoot SA, Benbrook DM. Complementary Targeting of Rb Phosphorylation and Growth in Cervical Cancer Cell Cultures and a Xenograft Mouse Model by SHetA2 and Palbociclib. Cancers (Basel) 2020; 12:cancers12051269. [PMID: 32429557 PMCID: PMC7281234 DOI: 10.3390/cancers12051269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer is caused by high-risk human papillomavirus (HPV) types and treated with conventional chemotherapy with surgery and/or radiation. HPV E6 and E7 proteins increase phosphorylation of retinoblastoma (Rb) by cyclin D1/cyclin dependent kinase (CDK)4/6 complexes. We hypothesized that cyclin D1 degradation by the SHetA2 drug in combination with palbociclib inhibition of CDK4/6 activity synergistically reduces phosphorylated Rb (phospho-Rb) and inhibits cervical cancer growth. The effects of these drugs, alone, and in combination, were evaluated in SiHa and CaSki HPV-positive and C33A HPV-negative cervical cancer cell lines using cell culture, western blots and ELISA, and in a SiHa xenograft model. Endpoints were compared by isobolograms, ANOVA, and Chi-Square. In all cell lines, combination indexes documented synergistic interaction of SHetA2 and palbociclib in association SHetA2 reduction of cyclin D1 and phospho-Rb, palbociclib reduction of phospho-Rb, and enhanced phospho-Rb reduction upon drug combination. Both drugs significantly reduced phospho-Rb and growth of SiHa xenograft tumors as single agents and acted additively when combined, with no evidence of toxicity. Dilated CD31-negative blood vessels adjacent to, or within, areas of necrosis and apoptosis were observed in all drug-treated tumors. These results justify development of the SHetA2 and palbociclib combination for targeting phospho-Rb in cervical cancer treatment.
Collapse
Affiliation(s)
- Amy L. Kennedy
- Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Rajani Rai
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Zitha Redempta Isingizwe
- Department of Pharmaceutical Sciences, College of Pharmacy University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Yan Daniel Zhao
- Department of Biostatistics and Epidemiology, College of Public Health University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Stanley A. Lightfoot
- Center for Cancer Prevention and Drug Development, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Doris M. Benbrook
- Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Pharmaceutical Sciences, College of Pharmacy University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Biostatistics and Epidemiology, College of Public Health University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Center for Cancer Prevention and Drug Development, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Correspondence:
| |
Collapse
|
10
|
Mahjabeen S, Hatipoglu MK, Kosanke SD, Garcia-Contreras D, Benbrook DM, Garcia-Contreras L. Vaginal Suppositories Containing SHetA2 to Treat Cervical Dysplasia: Pharmacokinetics of Daily Doses and Preliminary Safety Profile. J Pharm Sci 2020; 109:2000-2008. [PMID: 32113976 DOI: 10.1016/j.xphs.2020.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/04/2020] [Accepted: 02/21/2020] [Indexed: 01/03/2023]
Abstract
SHetA2 is a new drug with potential to treat cervical dysplasia, but only 0.02% of the dose is absorbed into the cervix after oral administration. By contrast, 23.9% of the dose is absorbed into the cervix after vaginal administration. This study determines the pharmacokinetic and pharmacodynamic parameters after daily vaginal doses of SHetA2 in suppositories and assesses its safety. Daily dosed mice maintained therapeutic concentrations of SHetA2 in the cervix for 65 h. The steady-state area under the curve concentration versus time (AUCcervix) after the last dose was similar to that after a single dose indicating that there was no drug accumulation in the cervix. By contrast, the maximum drug concentration (Cmax-cervix) was smaller in the daily dosed group (52.19 μg/g) than after a single dose (121.84 μg/g), whereas the half-life (t1/2-cervix) was also shorter in the daily dosed group (9.94 h) than after a single dose (23.32 h). Notably, daily vaginal doses of SHetA2 reduced the levels of cyclin D1 (the pharmacodynamic endpoint) to a larger extent (∼45%) than after the administration of a single dose (∼26%). No adverse effects were observed in the mice for the duration of the study; thus, daily vaginal doses of SHetA2 appear to be safe.
Collapse
Affiliation(s)
- Sanjida Mahjabeen
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Manolya Kukut Hatipoglu
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; Genetics and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Stanley D Kosanke
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | | | - Doris M Benbrook
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
11
|
Sharma A, Li M, Thavathiru E, Ibrahim M, Garcia-Contreras L, Benbrook DM, Woo S. Physiologically Based Pharmacokinetic Modeling and Tissue Distribution Characteristics of SHetA2 in Tumor-Bearing Mice. AAPS JOURNAL 2020; 22:51. [PMID: 32086622 DOI: 10.1208/s12248-020-0421-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
The orally available novel small molecule SHetA2 is the lead sulfur-containing heteroarotinoid that selectively inhibits cancer cells over normal cells, and is currently under clinical development for anticancer treatment and cancer prevention. The objective of this study was to assess and characterize the tissue distribution of SHetA2 in tumor-bearing mice by developing a physiologically based pharmacokinetic (PBPK) model. An orthotopic SKOV3 ovarian cancer xenograft mouse model was used to most accurately mimic the ovarian cancer tumor microenvironment in the peritoneal cavity. SHetA2 concentrations in plasma and 14 different tissues were measured at various time points after a single intravenous dose of 10 mg/kg and oral dose of 60 mg/kg, and these data were used to develop a whole-body PBPK model. SHetA2 exhibited a multi-exponential plasma concentration decline with an elimination half-life of 4.5 h. Rapid and extensive tissue distribution, which was best described by a perfusion rate-limited model, was observed with the tissue-to-plasma partition coefficients (kp = 1.4-21.2). The PBPK modeling estimated the systemic clearance (76.4 mL/h) from circulation as a main elimination pathway of SHetA2. It also indicated that the amount absorbed into intestine was the major determining factor for the oral bioavailability (22.3%), while the first-pass loss from liver and intestine contributed minimally (< 1%). Our results provide an insight into SHetA2 tissue distribution characteristics. The developed PBPK model can be used to predict the drug exposure at tumors or local sites of action for different dosing regimens and scaled up to humans to correlate with efficacy.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Mengjie Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Elangovan Thavathiru
- Department of Obstetrics and Gynecology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Mariam Ibrahim
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Doris M Benbrook
- Department of Obstetrics and Gynecology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. .,Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
12
|
Ramraj SK, Elayapillai SP, Pelikan RC, Zhao YD, Isingizwe ZR, Kennedy AL, Lightfoot SA, Benbrook DM. Novel ovarian cancer maintenance therapy targeted at mortalin and mutant p53. Int J Cancer 2020; 147:1086-1097. [PMID: 31845320 DOI: 10.1002/ijc.32830] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022]
Abstract
Current ovarian cancer maintenance therapy is limited by toxicity and no proven impact on overall survival. To study a maintenance strategy targeted at missense mutant p53, we hypothesized that the release of mutant p53 from mortalin inhibition by the SHetA2 drug combined with reactivation of mutant p53 with the PRIMA-1MET drug inhibits growth and tumor establishment synergistically in a mutant-p53 dependent manner. The Cancer Genome Atlas (TCGA) data and serous ovarian tumors were evaluated for TP53 and HSPA9/mortalin status. SHetA2 and PRIMA-1MET were tested in ovarian cancer cell lines and fallopian tube secretory epithelial cells using isobolograms, fluorescent cytometry, Western blots and ELISAs. Drugs were administered to mice after peritoneal injection of MESOV mutant p53 ovarian cancer cells and prior to tumor establishment, which was evaluated by logistic regression. Fifty-eight percent of TP53 mutations were missense and there were no mortalin mutations in TCGA high-grade serous ovarian cancers. Mortalin levels were sequentially increased in serous benign, borderline and carcinoma tumors. SHetA2 caused p53 nuclear and mitochondrial accumulation in cancer, but not in healthy, cells. Endogenous or exogenous mutant p53 increased SHetA2 resistance. PRIMA-1MET decreased this resistance and interacted synergistically with SHetA2 in mutant and wild type p53-expressing cell lines in association with elevated reactive oxygen species/ATP ratios. Tumor-free rates in animals were 0% (controls), 25% (PRIMA1MET ), 42% (SHetA2) and 67% (combination). SHetA2 (p = 0.004) and PRIMA1MET (p = 0.048) functioned additively in preventing tumor development with no observed toxicity. These results justify the development of SHetA2 and PRIMA-1MET alone and in combination for ovarian cancer maintenance therapy.
Collapse
Affiliation(s)
- Satish K Ramraj
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Sugantha P Elayapillai
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Richard C Pelikan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Yan D Zhao
- Biostatistics & Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zitha R Isingizwe
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Amy L Kennedy
- Department of Pathology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Stanley A Lightfoot
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Doris M Benbrook
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK.,Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK.,Obstetrics and Gynecologic, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
13
|
Ginn E, Baek J, Zou H, Fallatah MMJ, Liu S, Sevigny MB, Louie M. Enantiomer of the novel flexible heteroarotinoid, SL-1-09, blocks cell cycle progression in breast cancer cells. Eur J Pharmacol 2019; 862:172634. [PMID: 31494077 DOI: 10.1016/j.ejphar.2019.172634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/24/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
Abstract
Flexible heteroarotinoids (Flex-Hets) are compounds with promising anti-cancer activities. SHetA2, a first-generation Flex-Het, has been shown to inhibit the growth of cervical, head and neck, kidney, lung, ovarian, prostate, and breast cancers. However, SHetA2's high lipophilicity, limited selectivity, low oral bioavailability, and complicated synthesis has led to the development of second-generation compounds, such as 1-(1-(naphthalen-1-yl)ethyl)-3-(4-nitrophenyl) thiourea or SL-1-09. Results from our lab show that SL-1-09 exhibits anti-cancer activities against ERα+ and ERα- breast cancer cells at micromolar concentrations. SL-1-09 is a mixture of two enantiomers, R and S. The objective of this study was to further analyze these enantiomers to determine their individual anti-cancer activities. Cell cycle analysis demonstrated that the percentage of cells in S-phase is reduced significantly when breast cancer cell lines MCF-7, T47D and MDA-MB-453 cells are treated with 5.0 μM of the S enantiomer. Consistent with this finding, treatment of these cells with the S enantiomer resulted in lower expression levels of cell cycle proteins. Overall, our data indicate that the S enantiomer shows greater growth inhibitory effects than the R form against ERα+ (MCF7 and T47D) and ERα- (MDA-MB-453) breast cancer cells, suggesting that the activity observed in SL-1-09 is most likely due to the ability of the S enantiomer to block cell cycle progression.
Collapse
Affiliation(s)
- Emily Ginn
- Department of Natural Science and Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Jihyun Baek
- Department of Natural Science and Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Hongye Zou
- Department of Natural Science and Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Maryam M J Fallatah
- Department of Natural Science and Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Shengquan Liu
- College of Pharmacy, Touro University-California, Vallejo, CA, 94592, USA
| | - Mary B Sevigny
- Department of Natural Science and Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Maggie Louie
- Department of Natural Science and Mathematics, Dominican University of California, San Rafael, CA, 94901, USA.
| |
Collapse
|
14
|
Kukut Hatipoglu M, Mahjabeen S, Garcia-Contreras L. Development and validation of a reverse phase HPLC method for SHetA2, a novel anti-cancer drug, in mouse biological samples. J Pharm Biomed Anal 2019; 170:124-131. [PMID: 30921646 DOI: 10.1016/j.jpba.2019.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/10/2019] [Accepted: 03/16/2019] [Indexed: 12/24/2022]
Abstract
SHetA2 is a flexible heteroarotinoid that has the potential to prevent and treat lung, ovarian and cervical cancer without significant toxicity. A simple and reliable high performance liquid chromatographic (HPLC) method was developed to determine SHetA2 concentrations in the lungs, reproductive organs and plasma of mice. SHetA2 was extracted from these biological matrices by solid phase and liquid-liquid extraction in the presence of 4% H3PO4 and acetonitrile followed by filtration through a Captiva® filtration plate. Drug concentrations in the filtrates were quantified by a Waters HPLC Alliance system coupled with XBridge® C18 column, guard column and UV detection at 361 nm. The mobile phase consisted of methanol and 0.25 N sodium acetate buffer (80:20, v/v) at pH: 3. SHetA2 was eluted after 5.35 and 6.14 min for tissues and plasma, respectively. Recovery of SHetA2 from biological samples was more than 95% of the spiked amount in tissues and more than 80% of the spiked amount in plasma. The limit of detection (LOD) was 0.005 μg/mL and the limit of quantitation (LOQ) was 0.025 μg/mL, which were 280 and 56 times lower than the predicted therapeutic concentration of SHetA2, respectively. The method was suitable to quantify SHetA2 concentrations in biological matrices from animal studies administering the drug by the vaginal, pulmonary and oral routes that had the purpose of determining the pharmacokinetic parameters of drug disposition. The HPLC method developed meets the ICH Harmonized Tripartite Guideline of a reliable, sensitive, reproducible and accurate method to be used in the determination of drug concentrations in biological samples.
Collapse
Affiliation(s)
- Manolya Kukut Hatipoglu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sanjida Mahjabeen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
15
|
Ren J, Sui H, Fang F, Li Q, Li B. The application of Apc Min/+ mouse model in colorectal tumor researches. J Cancer Res Clin Oncol 2019; 145:1111-1122. [PMID: 30887153 DOI: 10.1007/s00432-019-02883-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE ApcMin/+ mouse is an excellent animal model bearing multiple intestinal neoplasia, used to simulate human familial adenomatous polyposis and colorectal tumors. The key point of this model is the mutation of Apc gene, which is a significant tumor-suppressor gene in the Wnt signaling pathway. There are also some other possible mechanisms responsible for the development of colorectal tumors in the ApcMin/+ mouse model, such as tumor-associated signaling pathways activation, the changes of tumor-related genes, and the involvement of some related proteins or molecules. METHODS The relevant literatures about ApcMin/+ mouse model from PUBMED databases are reviewed in this study. RESULTS In recent years, increasing studies have focused on the application of ApcMin/+ mouse model in colorectal tumor, trying to find effective therapeutic targets for further use. CONCLUSION This article will give a brief review on the related molecular mechanisms of the ApcMin/+ mouse model and its application in colorectal tumor researches.
Collapse
Affiliation(s)
- Junze Ren
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Hua Sui
- Department of Medical Oncology, Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fanfu Fang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Qi Li
- Department of Medical Oncology, Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bai Li
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
16
|
Ibrahim M, Hatipoglu MK, Garcia-Contreras L. Cryogenic Fabrication of Dry Powders to Enhance the Solubility of a Promising Anticancer Drug, SHetA2, for Oral Administration. AAPS PharmSciTech 2019; 20:20. [PMID: 30604109 DOI: 10.1208/s12249-018-1204-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/31/2018] [Indexed: 01/29/2023] Open
Abstract
SHetA2 is a novel anticancer drug with poor aqueous solubility. In formal toxicological studies, Kolliphor HS 15 was used as a solubilizing agent to increase the oral bioavailability of SHetA2. The purpose of this study was to formulate SHetA2 and Kolliphor HS 15 as solid powders to facilitate their filling in hard gelatin capsules for clinical trials. Two manufacturing processes, ultra-rapid freeze-drying (URFD) and spray freeze drying (SFD), were employed to fabricate solid powders of SHetA2-Kolliphor HS 15 and trehalose. The morphology, size, flowability, and compressibility of URFD-SHetA2 and SFD-SHetA2 powders were characterized. The crystallinity and apparent maximum solubility of SHetA2 in both powders were also determined. SFD-SHetA2 powders were spherical in shape, small, and with a wide size distribution while the URFD-SHetA2 powders were irregularly shaped and big but with a narrower distribution. DSC and XRD analyses indicated that SHetA2 was mostly amorphous in both powders. The flow of both powders was categorized as "good" (angle of repose < 35°). The uniformity of drug content in URFD-SHetA2 powders was more variable than that in SFD-SHetA2 powders. The solubility profile of SHetA2 in both powders SGF exhibited a transient supersaturation "spring effect" due to the drug's amorphousness followed by extended supersaturation "parachute effect" at approximately 6 μg/ml for both powders compared to 0.02 ± 0.01 μg/ml for unprocessed drug. In conclusion, both URFD and SFD formed solid SHetA2 Kolliphor powders that are possible formulation candidates to be filled in hard gelatin capsules for clinical trials.
Collapse
|
17
|
Mahjabeen S, Hatipoglu MK, Benbrook DM, Garcia-Contreras L. Pharmacokinetics and Pharmacodynamics of Escalating Doses of SHetA2 After Vaginal Administration to Mice. J Pharm Sci 2018; 107:3179-3186. [PMID: 30196041 PMCID: PMC6342475 DOI: 10.1016/j.xphs.2018.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/25/2022]
Abstract
SHetA2 is a novel compound with strong potential to treat cervical dysplasia, but its low aqueous solubility limits its oral bioavailability. A vaginal suppository achieved SHetA2 cervix concentrations that were severalfold above the predicted therapeutic levels. Thus, we aimed at determining the minimum dose that would achieve SHetA2 therapeutic levels while reducing cyclin D1 levels, the pharmacodynamic end point. The disposition of SHetA2 after vaginal administration of escalating SHetA2 doses and the corresponding reduction in cyclin D1 levels was compared to that after the conventional oral treatment. Vaginal administration of a 15-mg/kg dose achieved an area under the cervix concentration versus time curve (AUCcervix) that was ∼120 times larger than that after a 60 mg/kg administered orally. AUCcervix and Cmax-cervix did not increase proportionally with respect to the dose, with the 30-mg/kg dose resulting in higher AUCcervix and Cmax-cervix (1368.53 μg.mL/h and 155.38 μg/g, respectively) compared to the 15 mg/kg (334.98 μg.mL/h and 121.78 μg/g, respectively) or 60 mg/kg (1178.55 μg.mL/h and 410.38 μg/g, respectively). Likewise, the 30-mg/kg dose caused a larger reduction in cyclin D1 levels than the other doses. Thus, the 30-mg/kg dose was selected for future efficacy studies in a mouse model of cervical neoplasia.
Collapse
Affiliation(s)
- Sanjida Mahjabeen
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901
| | - Manolya Kukut Hatipoglu
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901
| | - Doris M Benbrook
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901
| | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901.
| |
Collapse
|
18
|
Mahjabeen S, Hatipoglu MK, Benbrook DM, Kosanke SD, Garcia-Contreras D, Garcia-Contreras L. Influence of the estrus cycle of the mouse on the disposition of SHetA2 after vaginal administration. Eur J Pharm Biopharm 2018; 130:272-280. [PMID: 30064701 PMCID: PMC6092953 DOI: 10.1016/j.ejpb.2018.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 01/08/2023]
Abstract
SHetA2 is a novel compound with the potential to treat cervical dysplasia, but has poor water solubility. A vaginal suppository formulation was able to achieve therapeutic concentrations in the cervix of mice, but these concentrations were variable. Histological analysis indicated that mice in the same group were in different stages of their estrous cycle, which is known to induce anatomical changes in their gynecological tissues. We investigated the effects of these changes on the pharmacokinetics and pharmacodynamics of SHetA2 when administered vaginally. Mice were synchronized to be either in estrous or diestrus stage for administration of the SHetA2 suppository. Pharmacokinetic parameters were calculated from the SHetA2 concentrations vs. time data. The reduction in the expression of cyclin D1 protein in the cervix was used as pharmacodynamic endpoint. Mice dosed during diestrus had a larger AUCcervix (335 μg mL h-1), higher Cmax (121.8 ± 38.7 µg/g) and longer t1/2-cervix (30.3 h) compared to mice dosed during estrus (120 μg mL h-1, 44.6 ± 29.5 µg/g and 3.6 h respectively). Therapeutic concentrations of SHetA2 were maintained for 48 h in the cervix of mice dosed during diestrus and for only 12 h in the estrus group. The treatment reduced the expression of cyclin D1 protein in the cervix of mice in the estrus to a larger extent. These results indicate that the estrous cycle of mice influences significantly the disposition of SHetA2 after vaginal administration and may also influence its efficacy.
Collapse
Affiliation(s)
- Sanjida Mahjabeen
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Manolya Kukut Hatipoglu
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Doris M Benbrook
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stanley D Kosanke
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
19
|
Sharma A, Benbrook DM, Woo S. Pharmacokinetics and interspecies scaling of a novel, orally-bioavailable anti-cancer drug, SHetA2. PLoS One 2018; 13:e0194046. [PMID: 29634717 PMCID: PMC5892888 DOI: 10.1371/journal.pone.0194046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/25/2018] [Indexed: 01/08/2023] Open
Abstract
SHetA2 is a small molecule drug with promising cancer prevention and therapeutic activity and a high preclinical safety profile. The study objectives were to perform interspecies scaling and pharmacokinetic (PK) modeling of SHetA2 for human PK prediction. The PK data obtained from mice, rats, and dogs after intravenous and oral doses were used for simultaneous fitting to PK models. The disposition of SHetA2 was best described by a two-compartment model. The absorption kinetics was well characterized with a first-order absorption model for mice and rats, and a gastrointestinal transit model for dogs. Oral administration of SHetA2 showed a relatively fast absorption in mice, prolonged absorption (i.e., flip-flop kinetics) toward high doses in rats, and an early peak followed by a secondary peak at high doses in dogs. The oral bioavailability was 17.7-19.5% at 20-60 mg/kg doses in mice, <1.6% at 100-2000 mg/kg in rats, and 11.2% at 100 mg/kg decreasing to 3.45% at 400 mg/kg and 1.11% at 1500 mg/kg in dogs. The disposition parameters were well correlated with the body weight for all species using the allometric equation, which predicted values of CL (17.3 L/h), V1 (36.2 L), V2 (68.5 L) and CLD (15.2 L/h) for a 70-kg human. The oral absorption rate and bioavailability of SHetA2 was highly dependent on species, doses, formulations, and possibly other factors. The limited bioavailability at high doses was taken into consideration for the suggested first-in-human dose, which was much lower than the dose estimated based on toxicology studies. In summary, the present study provided the PK model for SHetA2 that depicted the disposition and absorption kinetics in preclinical species, and computational tools for human PK prediction.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Doris Mangiaracina Benbrook
- Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
20
|
Benbrook DM, Janakiram NB, Chandra V, Pathuri G, Madka V, Stratton NC, Masamha CP, Farnsworth CN, Garcia-Contreras L, Hatipoglu MK, Lighfoot S, Rao CV. Development of a dietary formulation of the SHetA2 chemoprevention drug for mice. Invest New Drugs 2017; 36:561-570. [PMID: 29273857 PMCID: PMC6014882 DOI: 10.1007/s10637-017-0550-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2022]
Abstract
Development of cancer chemoprevention compounds requires enhanced consideration for toxicity and route of administration because the target population is healthy. The small molecule drug, SHetA2 (NSC 726189), exhibited in vivo chemoprevention activity and lack of toxicity when administered by oral gavage. Our objective was to determine if a dietary formulation of SHetA2 could achieve effective tissue drug levels without toxicity. C57bl/6 J mice were monitored on modified American Institute of Nutrition (AIN)76A diet mixed with SHetA2 in a 3:1 ratio with Kolliphor HS15, a self-emulsifying drug delivery system (SEDDS) to deliver 37.5, 62.5, 125, 187 or 250 mg SHetA2/kg/day. Blood and tissues were evaluated after 1, 3 and 6 weeks. The 187 mg/kg/day dose was identified as optimal based on achievement of maximum blood and tissue drug levels in the effective micromolar range without evidence of toxicity. The 250 mg/kg/day group exhibited lower drug levels and the highest intestinal drug content suggesting that an upper limit of intestinal absorption had been surpassed. Only this highest dose resulted in liver and kidney function tests that were outside of the normal range, and significant reduction of cyclin D1 protein in normal cervical tissue. SHetA2 reduced cyclin D1 to greater extents in cancer compared to non-cancer cell cultures. Given this differential effect, optimal chemoprevention without toxicity would be expected to occur at doses that reduced cyclin D1 in neoplastic, but not in normal tissues. These findings support further development of SHetA2 as a chemoprevention agent and potential food additive.
Collapse
Affiliation(s)
- Doris M Benbrook
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., BRC 1217A, Oklahoma City, OK, 73104, USA. .,Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.,Hematologic Oncology Section, College of Medicine, Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.,VA Medical Center, Oklahoma City, OK, 73104, USA
| | - Vishal Chandra
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., BRC 1217A, Oklahoma City, OK, 73104, USA.,Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.,Hematologic Oncology Section, College of Medicine, Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.,Hematologic Oncology Section, College of Medicine, Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA
| | - Nicole C Stratton
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.,Hematologic Oncology Section, College of Medicine, Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA
| | - Chioniso P Masamha
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., BRC 1217A, Oklahoma City, OK, 73104, USA.,Butler University, 4600 Sunset Avenue, Indianapolis, IN, 46208, USA
| | | | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, College of Pharmacy, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 1110 N. Stonewall, Oklahoma City, OK, 73117, USA
| | - Manolya Kukut Hatipoglu
- Department of Pharmaceutical Sciences, College of Pharmacy, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 1110 N. Stonewall, Oklahoma City, OK, 73117, USA
| | - Stan Lighfoot
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.,Hematologic Oncology Section, College of Medicine, Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.,VA Medical Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
21
|
Wu G, Li J, Yue J, Zhang S, Yunusi K. Liposome encapsulated luteolin showed enhanced antitumor efficacy to colorectal carcinoma. Mol Med Rep 2017; 17:2456-2464. [PMID: 29207088 PMCID: PMC5783491 DOI: 10.3892/mmr.2017.8185] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/17/2017] [Indexed: 12/17/2022] Open
Abstract
Luteolin is a falconoid compound that is present in various types of plants and possesses remarkable potential as a chemopreventive agent. However, the poor aqueous solubility of luteolin limits its clinical application. In the present study, an approach towards chemoprevention was explored using liposomes to deliver luteolin, and the antitumor efficacy was investigated in colorectal carcinoma. The present findings demonstrated that luteolin was efficiently encapsulated into liposomes with an encapsulation efficiency as high as 90%. The particle size of the liposomal luteolin (Lipo-Lut) and ζ-potential were optimized. In vitro studies demonstrated that, Lipo-Lut had a significant inhibitory effect on the growth on the CT26 colorectal carcinoma cell line compared with free luteolin (Free-Lut). The in vivo study indicated that Lipo-Lut could achieve superior antitumor effects against CT26 tumor compared with luteolin alone. The present results suggested that liposome delivery of luteolin improved solubility, bioavailability and may have potential applications in chemoprevention in clinical settings.
Collapse
Affiliation(s)
- Guixia Wu
- Department of Physiology, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Jing Li
- Department of Physiology, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Jinqiao Yue
- Department of Medical Examination, Changji Vocational and Technical College, Changji, Xinjiang 830000, P.R. China
| | - Shuying Zhang
- Department of Gynaecology and Obstetrics, The 474th Hospital of People's Liberation Army of China, Urumqi, Xinjiang 830011, P.R. China
| | - Kurexi Yunusi
- Department of Biochemistry, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
22
|
Mahjabeen S, Hatipoglu MK, Chandra V, Benbrook DM, Garcia-Contreras L. Optimization of a Vaginal Suppository Formulation to Deliver SHetA2 as a Novel Treatment for Cervical Dysplasia. J Pharm Sci 2017; 107:638-646. [PMID: 28989018 DOI: 10.1016/j.xphs.2017.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/14/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Cervical dysplasia induced by the human papilloma virus unpredictably progresses to cervical cancer. Therapeutic options are invasive and affect the patient's quality of life. SHetA2 has demonstrated therapeutic efficacy against human and murine human papilloma virus-induced tumors, but its oral bioavailability is <1%. An optimized vaginal suppository formulation can deliver SHetA2 in sufficient doses to prevent cervical dysplasia. The quality by design approach was employed to optimize the suppository formulation consisting of cocoa butter as base with 5% Kolliphor and 40% SHetA2. The suppository had a content uniformity of 105.44 ± 0.42%, melted in <8 min, and had a complete release of SHetA2 in water. Administration of the suppository to mice-achieved cervix concentrations that were significantly higher than the SHetA2 therapeutic concentration, with the maximum concentration (Cmax-cervix = 336.78 μg/g) being more than 100-fold the therapeutic SHetA2 concentration. Furthermore, the levels of cyclin D1 protein decreased 9-fold indicating a correlation of drug concentrations with the pharmacodynamic endpoint. These proof-of-concept studies suggest that the SHetA2 optimized vaginal suppository formulation may have a potential use in the prevention of cervical dysplasia, but detailed efficacy studies are required to confirm this assumption.
Collapse
Affiliation(s)
- Sanjida Mahjabeen
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Manolya K Hatipoglu
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Vishal Chandra
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Doris M Benbrook
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
23
|
Sharma A, Thavathiru E, Benbrook DM, Woo S. Bioanalytical method development and validation of HPLCUV assay for the quantification of SHetA2 in mouse and human plasma: Application to pharmacokinetics study. ACTA ACUST UNITED AC 2017; 6. [PMID: 29708233 PMCID: PMC5922436 DOI: 10.7243/2050-120x-6-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background SHetA2 is an oral anticancer agent being investigated for cancer
treatment and prevention. The aim of this study was to develop and validate
a simple, cost-effective, and sensitive HPLC-UV method for the
quantification of SHetA2 in biological samples and to apply the method to
pharmacokinetic studies of the drug. Methods Sample preparation for mouse and human plasmas involved liquid-liquid
precipitation and extraction using chilled acetonitrile with 2,
3-Diphenylquinoxaline as an internal standard. The separation of SHetA2 and
internal standard was achieved via Waters XBridge™ BEH 130 C18 (3.5
μm, 2.1×150 mm) column coupled with a Waters
XBridge™ C-18 (3.5 μm, 2.1×10 mm) guard column using
65% v/v acetonitrile: distilled water as a mobile phase in an
isocratic mode with a flow rate of 0.18 ml/min. The analytes were eluted at
a detection wavelength of 341 nm at a column temperature of
25°C. Results The method was validated across a range of 5-1000 ng/ml for SHetA2 in
plasma, with a lower limit of quantification of 5 ng/ml. The method showed
high recovery in human (79.9-81.8%) and mouse (95.4-109.2%)
plasma with no matrix effect. The intra- and inter-day accuracy and
precision studies demonstrated that the method was specific, sensitive, and
reliable. Stability studies showed that SHetA2 is stable for 20 h
postoperatively in the auto sampler, and for six weeks at -80°C in
plasma. Repetitive freezing and thawing may be avoided by preparing the
aliquots and storing them at -80°C. The developed method was
successfully applied to study the plasma pharmacokinetics of SHetA2 in
tumor-bearing nude mice after intravenous and oral administration. Conclusion A novel method for quantifying SHetA2 in mouse and human plasmas has
been validated and is being applied for pharmacokinetic evaluation of SHetA2
in tumor-bearing mice. The developed method will be utilized for the
quantification of SHetA2 in clinical studies.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave. CPB331, Oklahoma City, Oklahoma 73117-1200, USA
| | - Elangovan Thavathiru
- Department of Obstetrics and Gynecology, Stephenson Cancer Center (SCC), University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma 73104, USA
| | - Doris Mangiaracina Benbrook
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave. CPB331, Oklahoma City, Oklahoma 73117-1200, USA.,Department of Obstetrics and Gynecology, Stephenson Cancer Center (SCC), University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma 73104, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave. CPB331, Oklahoma City, Oklahoma 73117-1200, USA
| |
Collapse
|
24
|
Xie G, Wang CZ, Yu C, Qiu Y, Wen XD, Zhang CF, Yuan CS, Jia W. Metabonomic Profiling Reveals Cancer Chemopreventive Effects of American Ginseng on Colon Carcinogenesis in Apc(Min/+) Mice. J Proteome Res 2015; 14:3336-47. [PMID: 26136108 PMCID: PMC6098237 DOI: 10.1021/acs.jproteome.5b00388] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
American ginseng (Panax quinquefolius L.) is one of the most commonly used herbal medicines in the West. It has been reported to possess significant antitumor effects that inhibit the process of carcinogenesis. However, the mechanisms underlying its anticancer effects remain largely unresolved. In this study, we investigated the cancer chemopreventive effects of American ginseng on the progression of high fat (HF) diet-enhanced colorectal carcinogenesis with a genetically engineered Apc(Min/+) mouse model. The metabolic alterations in sera of experimental mice perturbed by HF diet intervention as well as the American ginseng treatment were measured by gas chromatography time-of-flight mass spectrometry (GC-TOFMS) and liquid chromatography time-of-flight mass spectrometry (LC-TOFMS) analysis. American ginseng treatment significantly extended the life span of the Apc(Min/+) mouse. Significant alterations of metabolites involving amino acids, organic acids, fatty acids, and carbohydrates were observed in Apc(Min/+) mouse in sera, which were attenuated by American ginseng treatment and concurrent with the histopathological improvement with significantly reduced tumor initiation, progression and gut inflammation. These metabolic changes suggest that the preventive effect of American ginseng is associated with attenuation of impaired amino acid, carbohydrates, and lipid metabolism. It also appears that American ginseng induced significant metabolic alterations independent of the Apc(Min/+) induced metabolic changes. The significantly altered metabolites induced by American ginseng intervention include arachidonic acid, linolelaidic acid, glutamate, docosahexaenoate, tryptophan, and fructose, all of which are associated with inflammation and oxidation. This suggests that American ginseng exerts the chemopreventive effects by anti-inflammatory and antioxidant mechanisms.
Collapse
Affiliation(s)
- Guoxiang Xie
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- University of Hawaii Cancer Center, Honolulu, HI 96813
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, IL 60637
| | - Chunhao Yu
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, IL 60637
| | - Yunping Qiu
- Albert Einstein College of Medicine, Bronx, NY 10461
| | - Xiao-Dong Wen
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, IL 60637
| | - Chun-Feng Zhang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, IL 60637
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, IL 60637
| | - Wei Jia
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- University of Hawaii Cancer Center, Honolulu, HI 96813
| |
Collapse
|
25
|
Huisman SA, Bijman-Lagcher W, IJzermans JNM, Smits R, de Bruin RWF. Fasting protects against the side effects of irinotecan but preserves its anti-tumor effect in Apc15lox mutant mice. Cell Cycle 2015; 14:2333-9. [PMID: 25955194 DOI: 10.1080/15384101.2015.1044170] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Irinotecan is a widely used topoisomerase-I-inhibitor with a very narrow therapeutic window because of its severe toxicity. In the current study we have examined the effects of fasting prior to irinotecan treatment on toxicity and anti-tumor activity. FabplCre;Apc(15lox/+) mice, which spontaneously develop intestinal tumors, of 27 weeks of age were randomized into 3-day fasted and ad libitum fed groups, followed by treatment with a flat-fixed high dose of irinotecan or vehicle. Side-effects were recorded until 11 days after the start of the experiment. Tumor size, and markers for cell-cycle activity, proliferation, angiogenesis, and senescence were measured. Fasted mice were protected against the side-effects of irinotecan treatment. Ad libitum fed mice developed visible signs of discomfort including weight loss, lower activity, ruffled coat, hunched-back posture, diarrhea, and leukopenia. Irinotecan reduced tumor size in fasted and ad libitum fed groups similarly compared to untreated controls (2.4 ± 0.67 mm and 2.4 ± 0.82 mm versus 3.0 ± 1.05 mm and 2.8 ± 1.08 mm respectively, P < 0.001). Immunohistochemical analysis showed reduced proliferation, a reduced number of vascular endothelial cells, and increased levels of senescence in tumors of both irinotecan treated groups. In conclusion, 3 days of fasting protects against the toxic side-effects of irinotecan in a clinically relevant mouse model of spontaneously developing colorectal cancer without affecting its anti-tumor activity. These results support fasting as a powerful way to improve treatment of colorectal carcinoma patients.
Collapse
Affiliation(s)
- Sander A Huisman
- a Department of Surgery ; Erasmus University Medical Center ; Rotterdam , the Netherlands
| | | | | | | | | |
Collapse
|
26
|
Long M, Tao S, Rojo de la Vega M, Jiang T, Wen Q, Park SL, Zhang DD, Wondrak GT. Nrf2-dependent suppression of azoxymethane/dextran sulfate sodium-induced colon carcinogenesis by the cinnamon-derived dietary factor cinnamaldehyde. Cancer Prev Res (Phila) 2015; 8:444-54. [PMID: 25712056 DOI: 10.1158/1940-6207.capr-14-0359] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/09/2015] [Indexed: 12/23/2022]
Abstract
The progressive nature of colorectal cancer and poor prognosis associated with the metastatic phase of the disease create an urgent need for the development of more efficacious strategies targeting colorectal carcinogenesis. Cumulative evidence suggests that the redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defence, represents a promising molecular target for colorectal cancer chemoprevention. Recently, we have identified cinnamon, the ground bark of Cinnamomum aromaticum (cassia cinnamon) and Cinnamomum verum (Ceylon cinnamon), as a rich dietary source of the Nrf2 inducer cinnamaldehyde (CA) eliciting the Nrf2-regulated antioxidant response in human epithelial colon cells, conferring cytoprotection against electrophilic and genotoxic insult. Here, we have explored the molecular mechanism underlying CA-induced Nrf2 activation in colorectal epithelial cells and have examined the chemopreventive potential of CA in a murine colorectal cancer model comparing Nrf2(+/+) with Nrf2(-/-) mice. In HCT116 cells, CA caused a Keap1-C151-dependent increase in Nrf2 protein half-life via blockage of ubiquitination with upregulation of cytoprotective Nrf2 target genes and elevation of cellular glutathione. After optimizing colorectal Nrf2 activation and target gene expression by dietary CA-supplementation regimens, we demonstrated that CA suppresses AOM/DSS-induced inflammatory colon carcinogenesis with modulation of molecular markers of colorectal carcinogenesis. Dietary suppression of colorectal cancer using CA supplementation was achieved in Nrf2(+/+) but not in Nrf2(-/-) mice confirming the Nrf2 dependence of CA-induced chemopreventive effects. Taken together, our data suggest feasibility of colorectal cancer suppression by dietary CA, an FDA-approved food additive derived from the third most consumed spice in the world.
Collapse
Affiliation(s)
- Min Long
- Department of Pharmacology and Toxicology, College of Pharmacy and Arizona Cancer Center, University of Arizona, Tucson, Arizona. Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Shasha Tao
- Department of Pharmacology and Toxicology, College of Pharmacy and Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy and Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Tao Jiang
- Department of Pharmacology and Toxicology, College of Pharmacy and Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Qing Wen
- Department of Pharmacology and Toxicology, College of Pharmacy and Arizona Cancer Center, University of Arizona, Tucson, Arizona. Department of Pharmacy, Jinan Central Hospital, Shandong University, Shandong, P.R. China
| | - Sophia L Park
- Department of Pharmacology and Toxicology, College of Pharmacy and Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy and Arizona Cancer Center, University of Arizona, Tucson, Arizona.
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and Arizona Cancer Center, University of Arizona, Tucson, Arizona.
| |
Collapse
|
27
|
American ginseng significantly reduced the progression of high-fat-diet-enhanced colon carcinogenesis in Apc (Min/+) mice. J Ginseng Res 2015. [PMID: 26199554 PMCID: PMC4506368 DOI: 10.1016/j.jgr.2014.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of death worldwide. Chronic gut inflammation is recognized as a risk factor for tumor development, including CRC. American ginseng is a very commonly used ginseng species in the West. METHODS A genetically engineered Apc (Min/+) mouse model was used in this study. We analyzed the saponin composition of American ginseng used in this project, and evaluated its effects on the progression of high-fat-diet-enhanced CRC carcinogenesis. RESULTS After oral ginseng administration (10-20 mg/kg/d for up to 32 wk), experimental data showed that, compared with the untreated mice, ginseng very significantly reduced tumor initiation and progression in both the small intestine (including the proximal end, middle end, and distal end) and the colon (all p < 0.01). This tumor number reduction was more obvious in those mice treated with a low dose of ginseng. The tumor multiplicity data were supported by body weight changes and gut tissue histology examinations. In addition, quantitative real-time polymerase chain reaction analysis showed that compared with the untreated group, ginseng very significantly reduced the gene expression of inflammatory cytokines, including interleukin-1α (IL-1α), IL-1β, IL-6, tumor necrosis factor-α, granulocyte-colony stimulating factor, and granulocyte-macrophage colony-stimulating factor in both the small intestine and the colon (all p < 0.01). CONCLUSION Further studies are needed to link our observed effects to the actions of the gut microbiome in converting the parent ginsenosides to bioactive ginseng metabolites. Our data suggest that American ginseng may have potential value in CRC chemoprevention.
Collapse
|
28
|
Roper J, Martin ES, Hung KE. Overview of genetically engineered mouse models of colorectal carcinoma to enable translational biology and drug development. ACTA ACUST UNITED AC 2014; 65:14.29.1-10. [PMID: 24934606 DOI: 10.1002/0471141755.ph1429s65] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Preclinical models for colorectal cancer (CRC) are critical for translational biology and drug development studies to characterize and treat this condition. Mouse models of human cancer are particularly popular because of their relatively low cost, short life span, and ease of use. Genetically engineered mouse models (GEMMs) of CRC are engineered from germline or somatic modification of critical tumor suppressor genes and/or oncogenes that drive mutations in human disease. Detailed in this overview are the salient features of several useful colorectal cancer GEMMs and their value as tools for translational biology and preclinical drug development.
Collapse
Affiliation(s)
- Jatin Roper
- Division of Gastroenterology and Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | | | | |
Collapse
|
29
|
Benbrook DM, Nammalwar B, Long A, Matsumoto H, Singh A, Bunce RA, Berlin KD. SHetA2 interference with mortalin binding to p66shc and p53 identified using drug-conjugated magnetic microspheres. Invest New Drugs 2013; 32:412-23. [PMID: 24254390 PMCID: PMC4045313 DOI: 10.1007/s10637-013-0041-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/09/2013] [Indexed: 11/03/2022]
Abstract
SHetA2 is a small molecule flexible heteroarotinoid (Flex-Het) with promising cancer prevention and therapeutic activity. Extensive preclinical testing documented lack of SHetA2 toxicity at doses 25 to 150 fold above effective doses. Knowledge of the SHetA2 molecular target(s) that mediate(s) the mechanism of SHetA2 action is critical to appropriate design of clinical trials and improved analogs. The aim of this study was to develop a method to identify SHetA2 binding proteins in cancer cells. A known metabolite of SHetA2 that has a hydroxyl group available for attachment was synthesized and conjugated to a linker for attachment to a magnetic microsphere. SHetA2-conjugated magnetic microspheres and unconjugated magnetic microspheres were separately incubated with aliquots of a whole cell protein extract from the A2780 human ovarian cancer cell line. After washing away non-specifically bound proteins with the protein extraction buffer, SHetA2-binding proteins were eluted with an excess of free SHetA2. In two independent experiments, an SDS gel band of about 72 kDa was present at differential levels in wells of eluent from SHetA2-microspheres in comparison to wells of eluent from unconjugated microspheres. Mass spectrometry analysis of the bands (QStar) and straight eluents (Orbitrap) identified mortalin (HSPA9) to be present in the eluent from SHetA2-microspheres and not in eluent from unconjugated microspheres. Co-immunoprecipitation experiments demonstrated that SHetA2 interfered with mortalin binding to p53 and p66 Src homologous-collagen homologue (p66shc) inside cancer cells. Mortalin and SHetA2 conflictingly regulate the same molecules involved in mitochondria-mediated intrinsic apoptosis. The results validate the power of this protocol for revealing drug targets.
Collapse
Affiliation(s)
- Doris Mangiaracina Benbrook
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Room 1372, Oklahoma City, OK, USA,
| | | | | | | | | | | | | |
Collapse
|