1
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
2
|
Wu R, Li S, Sargsyan D, Yin R, Kuo HC, Peter R, Wang L, Hudlikar R, Liu X, Kong AN. DNA methylome, transcriptome, and prostate cancer prevention by phenethyl isothiocyanate in TRAMP mice. Mol Carcinog 2021; 60:391-402. [PMID: 33848375 PMCID: PMC8201649 DOI: 10.1002/mc.23299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/28/2022]
Abstract
Epigenetics/epigenomics has been shown to be involved in carcinogenesis. However, how the epigenome would be altered in the transgenic adenocarcinoma of the mouse prostate (TRAMP) cancer model and the effect of cancer chemopreventive phytochemical phenethyl isothiocyanate (PEITC) on the epigenome in TRAMP mice are not known. PEITC has been reported to reduce the risk of many cancers including prostate cancer (PCa). In this study, male TRAMP mice were fed a control diet or diet containing 0.05% PEITC from 8 weeks to 16 weeks. The tumor incidence was reduced in the PEITC diet (0/6) as compared with the control diet (6/7). RNA-sequencing (RNA-seq) analyses on nontumor and tumor prostatic tissues revealed several pathways like cell cycle/Cdc42 signaling, inflammation, and cancer-related signaling, were activated in prostate tissues of TRAMP mice but were reversed or attenuated in TRAMP mice fed with PEITC diet. DNA CpG methyl-seq analyses showed that global methylation patterns of prostate samples from TRAMP mice were hugely different from those of wild-type mice. Dietary PEITC partially reversed the global methylation changes during prostatic carcinogenesis. Integration of RNA-seq and DNA methyl-seq analyses identified a list of genes, including Adgrb1 and Ebf4, with an inverse regulatory relationship between their RNA expression and CpG methylation. In summary, our current study demonstrates that alteration of the global epigenome in TRAMP prostate tumor and PEITC administration suppresses PCa carcinogenesis, impacts global CpG epigenome and transcriptome, and attenuates carcinogenic pathways like cell cycle arrest and inflammation. These results may provide insights and epigenetic markers/targets for PCa prevention and treatment in human PCa patients.
Collapse
Affiliation(s)
- Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hsiao-Chen Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xia Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
A Narrative Review on Therapeutic Potentials of Watercress in Human Disorders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5516450. [PMID: 34055006 PMCID: PMC8123986 DOI: 10.1155/2021/5516450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022]
Abstract
Watercress (WC) is an aquatic vegetable that belongs to the Brassicaceae family, and it often grows near water. In traditional medicine, WC is a known remedy for hypercholesterolemia, hyperglycemia, hypertension, arthritis, bronchitis, diuresis, odontalgia, and scurvy. It also acts as an antiestrogenic and can be used as a nutritional supplement. It has been reported that these therapeutic effects are due to primary metabolites such as isothiocyanates, glucosinolates, polyphenols (flavonoids, phenolic acids, and proanthocyanidins), vitamins (B1, B2, B3, B6, E, and C), terpenes (including carotenoids), and bioelements which exist in this plant. Many pharmacological studies confirm the antioxidant, antibacterial, anticancer, antipsoriatic, anti-inflammatory, cardioprotective, renoprotective, hepatoprotective, and antigenotoxicity effects of WC. The consumption of WC extract can be useful in reducing the complications of hypercholesterolemia and hyperglycemia. Furthermore, the extract of WC could markedly augment the antioxidant enzymes such as superoxide dismutase and catalase activity. Interestingly, consumption of food rich in polyphenols such as WC extract can help reduce oxidative stress, DNA damage, and cancer susceptibility. Several studies also showed that WC extract significantly reduced liver injury as a result of cholestatic hepatic injury, gamma radiation, arsenic, and acetaminophen-induced hepatotoxicity. In this review, the researchers focus on the phytochemical and biochemical characterizations of WC and its therapeutic effects in the treatment of human diseases.
Collapse
|
4
|
Zhang Z, Garzotto M, Davis EW, Mori M, Stoller WA, Farris PE, Wong CP, Beaver LM, Thomas GV, Williams DE, Dashwood RH, Hendrix DA, Ho E, Shannon J. Sulforaphane Bioavailability and Chemopreventive Activity in Men Presenting for Biopsy of the Prostate Gland: A Randomized Controlled Trial. Nutr Cancer 2019; 72:74-87. [PMID: 31155953 DOI: 10.1080/01635581.2019.1619783] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous studies suggest compounds such as sulforaphane (SFN) derived from cruciferous vegetables may prevent prostate cancer development and progression. This study evaluated the effect of broccoli sprout extract (BSE) supplementation on blood histone deacetylase (HDAC) activity, prostate RNA gene expression, and tissue biomarkers (histone H3 lysine 18 acetylation (H3K18ac), HDAC3, HDAC6, Ki67, and p21). A total of 98 men scheduled for prostate biopsy were allocated into either BSE (200 µmol daily) or a placebo in our double-blind, randomized controlled trial. We used nonparametric tests to evaluate the differences of blood HDAC activity and prostate tissue immunohistochemistry biomarkers between treatment groups. Further, we performed RNA-Seq analysis on the prostate biopsies and identified 40 differentially expressed genes correlated with BSE treatment, including downregulation of two genes previously implicated in prostate cancer development, AMACR and ARLNC1. Although urine and plasma SFN isothiocyanates and individual SFN metabolites were statistically higher in the treatment group, our results did not show a significant difference in HDAC activity or prostate tissue biomarkers. This study indicates BSE supplementation correlates with changes in gene expression but not with several other prostate cancer biomarkers. More research is required to fully understand the chemopreventive effects of BSE supplementation on prostate cancer.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Mark Garzotto
- Department of Urology, Portland Veterans Administration Medical Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Edward W Davis
- School of Biological and Population Health Science, Oregon State University, Corvallis, Oregon, USA
| | - Motomi Mori
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Wesley A Stoller
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Paige E Farris
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Carmen P Wong
- School of Biological and Population Health Science, Oregon State University, Corvallis, Oregon, USA
| | - Laura M Beaver
- School of Biological and Population Health Science, Oregon State University, Corvallis, Oregon, USA.,Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - George V Thomas
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.,Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA.,Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Roderick H Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, Texas, USA
| | - David A Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA.,The School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Emily Ho
- School of Biological and Population Health Science, Oregon State University, Corvallis, Oregon, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.,Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA.,Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, Oregon State University, Corvallis, Oregon, USA
| | - Jackilen Shannon
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
5
|
Zambon JP, Patel M, Hemal A, Badlani G, Andersson KE, Magalhaes RS, Lankford S, Dean A, Williams JK. Nonhuman primate model of persistent erectile and urinary dysfunction following radical prostatectomy: Feasibility of minimally invasive therapy. Neurourol Urodyn 2018; 37:2141-2150. [PMID: 30168617 DOI: 10.1002/nau.23536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/23/2018] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Persistent urinary incontinence (UI) and/or erectile dysfunction (ED) occur in 30-50% of post-radical prostatectomy patients regardless of nerve sparing approaches. Identification of potential treatment options for these patients will require testing in an animal model that develops these chronic conditions. The objective was to characterize a nonhuman primate (NHP) model of persistent post-prostatectomy ED and UI and then test the feasibility of periurethral injection of the chemokine CXCL-12. METHODS Ten adult male cynomolgus monkeys were used. Two were used for study of normal male nonhuman primate genitourinary anatomy. Five were used for measures of sexual behavior, peak intra-corporal pressure (ICP), abdominal leak point pressures (ALPP) 3 and 6-months post open radical prostatectomy (ORP). Three additional ORP animals received ultrasound-guided peri-urethral injection of chemokine CXCL12 6 weeks after ORP, and UI/ED evaluated for up to 3 months. RESULTS The anatomy, innervation, and vascular supply to the prostate and surrounding tissues of these male NHPs are substantially similar to those of human beings. ORP resulted in complete removal of the prostate gland along with both neurovascular bundles and seminal vesicles while permitting stable restoration of vesico-urethral patency. ORP produced sustained (6 months) decreases in ALPP, ICP's, and sexual function. Transurethral injection of chemokine CXCL12 was feasible and had beneficial effects on erectile and urinary function. CONCLUSIONS ORP in NHPs produced persistent erectile and urinary tract dysfunction. Periurethral injection of CXCL-12 was feasible and improved both urinary incontinence and erectile dysfunction and suggests that this model can be used to test new approaches for both conditions.
Collapse
Affiliation(s)
- Joao P Zambon
- Department of Urology, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina.,Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Manish Patel
- Department of Urology, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina
| | - Ashok Hemal
- Department of Urology, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina.,Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Gopal Badlani
- Department of Urology, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina
| | - Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Renata S Magalhaes
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Shannon Lankford
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Ashley Dean
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - James Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| |
Collapse
|
6
|
Beaver LM, Lӧhr CV, Clarke JD, Glasser ST, Watson GW, Wong CP, Zhang Z, Williams DE, Dashwood RH, Shannon J, Thuillier P, Ho E. Broccoli Sprouts Delay Prostate Cancer Formation and Decrease Prostate Cancer Severity with a Concurrent Decrease in HDAC3 Protein Expression in Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) Mice. Curr Dev Nutr 2018; 2:nzy002. [PMID: 30019025 PMCID: PMC6041877 DOI: 10.1093/cdn/nzy002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cruciferous vegetables have been associated with the chemoprevention of cancer. Epigenetic regulators have been identified as important targets for prostate cancer chemoprevention. Treatment of human prostate cancer cells with sulforaphane (SFN), a chemical from broccoli and broccoli sprouts, inhibits epigenetic regulators such as histone deacetylase (HDAC) enzymes, but it is not known whether consumption of a diet high in broccoli sprouts impacts epigenetic mechanisms in an in vivo model of prostate cancer. OBJECTIVE In the transgenic adenocarcinoma of the mouse prostate (TRAMP) model, we tested the hypothesis that a broccoli sprout diet suppresses prostate cancer, inhibits HDAC expression, alters histone modifications, and changes the expression of genes regulated by HDACs. METHODS TRAMP mice were fed a 15% broccoli sprout or control AIN93G diet; tissue samples were collected at 12 and 28 wk of age. RESULTS Mice fed broccoli sprouts had detectable amounts of SFN metabolites in liver, kidney, colon, and prostate tissues. Broccoli sprouts reduced prostate cancer incidence and progression to invasive cancer by 11- and 2.4-fold at 12 and 28 wk of age, respectively. There was a significant decline in HDAC3 protein expression in the epithelial cells of prostate ventral and anterior lobes at age 12 wk. Broccoli sprout consumption also decreased histone H3 lysine 9 trimethylation in the ventral lobe (age 12 wk), and decreased histone H3 lysine 18 acetylation in all prostate lobes (age 28 wk). A decline in p16 mRNA levels, a gene regulated by HDAC3, was associated with broccoli sprout consumption, but no significant changes were noted at the protein level. CONCLUSIONS Broccoli sprout intake was associated with a decline in prostate cancer occurrence and HDAC3 protein expression in the prostate, extending prior work that implicated loss of HDAC3/ corepressor interactions as a key preventive mechanism by SFN in vivo.
Collapse
Affiliation(s)
- Laura M Beaver
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR
- Linus Pauling Institute, Oregon State University, Corvallis, OR
| | - Christiane V Lӧhr
- Linus Pauling Institute, Oregon State University, Corvallis, OR
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - John D Clarke
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR
- Linus Pauling Institute, Oregon State University, Corvallis, OR
| | - Sarah T Glasser
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR
| | - Greg W Watson
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR
- Linus Pauling Institute, Oregon State University, Corvallis, OR
| | - Carmen P Wong
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR
- Linus Pauling Institute, Oregon State University, Corvallis, OR
| | - Zhenzhen Zhang
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR
| | - Roderick H Dashwood
- Linus Pauling Institute, Oregon State University, Corvallis, OR
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR
| | - Jackilen Shannon
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR
| | - Philippe Thuillier
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR
- Department of Dermatology, Oregon Health & Science University, Portland, OR
| | - Emily Ho
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR
- Linus Pauling Institute, Oregon State University, Corvallis, OR
- Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, Oregon State University, Corvallis, OR
| |
Collapse
|
7
|
Wang J, Li W, Wang B, Hu B, Jiang H, Lai B, Li N, Cheng M. In Silicon Approach for Discovery of Chemopreventive Agents. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40495-017-0094-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Ma X, Shang F, Zhu W, Lin Q. CXCR4 expression varies significantly among different subtypes of glioblastoma multiforme (GBM) and its low expression or hypermethylation might predict favorable overall survival. Expert Rev Neurother 2017; 17:941-946. [PMID: 28685624 DOI: 10.1080/14737175.2017.1351299] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND CXCR4 is an oncogene in glioblastoma multiforme (GBM) but the mechanism of its dysregulation and its prognostic value in GBM have not been fully understood. RESEARCH DESIGN AND METHODS Bioinformatic analysis was performed by using R2 and the UCSC Xena browser based on data from GSE16011 in GEO datasets and in GBM cohort in TCGA database (TCGA-GBM). Kaplan Meier curves of overall survival (OS) were generated to assess the association between CXCR4 expression/methylation and OS in patients with GBM. RESULTS GBM patients with high CXCR4 expression had significantly worse 5 and 10 yrs OS (p < 0.05). Across different GBM subtypes, there was an inverse relationship between overall DNA methylation and CXCR4 expression. CXCR4 expression was significantly lower in CpG island methylation phenotype (CIMP) group than in non CIMP group. Log rank test results showed that patients with high CXCR4 methylation (first tertile) had significantly better 5 yrs OS (p = 0.038). CONCLUSION CXCR4 expression is regulated by DNA methylation in GBM and its low expression or hypermethylation might indicate favorable OS in GBM patients.
Collapse
Affiliation(s)
- Xinlong Ma
- a Department of Neurosurgery, Yuquan Hospital , Tsinghua University , Beijing , China
| | - Feng Shang
- b Department of Neurosurgery, Xuanwu Hospital , Capital Medical University , Beijing , China
| | - Weidong Zhu
- c Department of Neurosurgery , Beijing Tongzhou District Chinese Medicine Hospital , Beijing , China
| | - Qingtang Lin
- b Department of Neurosurgery, Xuanwu Hospital , Capital Medical University , Beijing , China
| |
Collapse
|
9
|
Saha A, Ahn S, Blando J, Su F, Kolonin MG, DiGiovanni J. Proinflammatory CXCL12-CXCR4/CXCR7 Signaling Axis Drives Myc-Induced Prostate Cancer in Obese Mice. Cancer Res 2017; 77:5158-5168. [PMID: 28687617 DOI: 10.1158/0008-5472.can-17-0284] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/07/2017] [Accepted: 07/03/2017] [Indexed: 01/11/2023]
Abstract
Obesity is a prognostic risk factor in the progression of prostate cancer; however, the molecular mechanisms involved are unclear. In this study, we provide preclinical proof of concept for the role of a proinflammatory CXCL12-CXCR4/CXCR7 signaling axis in an obesity-driven mouse model of myc-induced prostate cancer. Analysis of the stromal vascular fraction from periprostatic white adipose tissue from obese HiMyc mice at 6 months of age revealed a dramatic increase in mRNAs encoding various chemokines, cytokines, growth factors, and angiogenesis mediators, with CXCL12 among the most significantly upregulated genes. Immunofluorescence staining of ventral prostate tissue from obese HiMyc mice revealed high levels of CXCL12 in the stromal compartment as well as high staining for CXCR4 and CXCR7 in the epithelial compartment of tumors. Prostate cancer cell lines derived from HiMyc tumors (HMVP2 and derivative cell lines) displayed increased protein expression of both CXCR4 and CXCR7 compared with protein lysates from a nontumorigenic prostate epithelial cell line (NMVP cells). CXCL12 treatment stimulated migration and invasion of HMVP2 cells but not NMVP cells. These effects of CXCL12 on HMVP2 cells were inhibited by the CXCR4 antagonist AMD3100 as well as knockdown of either CXCR4 or CXCR7. CXCL12 treatment also produced rapid activation of STAT3, NFκB, and MAPK signaling in HMVP2 cells, which was again attenuated by either AMD3100 or knockdown of CXCR4 or CXCR7. Collectively, these data suggest that CXCL12 secreted by stromal cells activates invasiveness of prostate cancer cells and may play a role in driving tumor progression in obesity. Targeting the CXCL12-CXCR4/CXCR7 axis could lead to novel approaches for offsetting the effects of obesity on prostate cancer progression. Cancer Res; 77(18); 5158-68. ©2017 AACR.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Songyeon Ahn
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Jorge Blando
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Fei Su
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
10
|
Zhu M, Li W, Dong X, Chen Y, Lu Y, Lin B, Guo J, Li M. Benzyl-isothiocyanate Induces Apoptosis and Inhibits Migration and Invasion of Hepatocellular Carcinoma Cells in vitro. J Cancer 2017; 8:240-248. [PMID: 28243328 PMCID: PMC5327373 DOI: 10.7150/jca.16402] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/29/2016] [Indexed: 12/11/2022] Open
Abstract
Despite consideration of benzyl isothiocyanate(BITC) is applied to prevention and therapeutic of cancer, the role of BITC in inducing apoptosis, and inhibiting migration and invasion of hepatocellular carcinoma(HCC) cells is still unclear. In this study, we aim to explore the effects of BITC on the growth, migration and invasion of HCC cells in vitro. When human HCC cell lines, Bel 7402 and HLE, were treated with an optimal concentration of BITC for 48 hours, the results indicated that BITC inhibits growth and promotes apoptosis of HCC cells; BITC has a significant inhibitory effect on the migration and invasion of HCC cells. BITC stimulated expression of caspase-3/8 and PARP-1, and suppressed expression of survivin, MMP2/9 and CXCR4. BITC also inhibited the enzymatic activities of MMP2 and MMP9. Altogether, BITC was able to induce apoptosis and suppress the invasive and migratory abilities of Bel 7402 and HLE cells. The role mechanism of BITC might involve an up-regulating the expression of apoptosis-related proteins and down-regulating the expression of metastasis-related proteins. BITC may be applied as a novel chemotherapy for HCC patients.
Collapse
Affiliation(s)
- Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, PR. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, PR. China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, PR. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, PR. China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, PR. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, PR. China
| | - Yi Chen
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, PR. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, PR. China
| | - Yan Lu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, PR. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, PR. China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, PR. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, PR. China
| | - Junli Guo
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, PR. China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, PR. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, PR. China
- Institution of Tumor, Hainan Medical College, Haikou 570102, Hainan Province, PR. China
| |
Collapse
|
11
|
Zhu M, Li W, Guo J, Lu Y, Dong X, Lin B, Chen Y, Zhang X, Li M. Alpha fetoprotein antagonises benzyl isothiocyanate inhibition of the malignant behaviors of hepatocellular carcinoma cells. Oncotarget 2016; 7:75749-75762. [PMID: 27716619 PMCID: PMC5342775 DOI: 10.18632/oncotarget.12407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022] Open
Abstract
Benzyl isothiocyanate (BITC) is a dietary isothiocyanate derived from cruciferous vegetables. Recent studies showed that BITC inhibited the growth of many cancer cells, including hepatocellular carcinoma (HCC) cells. Alpha-fetoprotein (AFP) is a important molecule for promoting progression of HCC, in the present investigation, we explore the influence of AFP on the role of BITC in the malignant behaviours of HCC cells, and the potential underlying mechanisms. We found thatBITC inhibited viability, migration, invasion and induced apoptosis of human liver cancer cell lines, Bel 7402(AFP producer) and HLE(non-AFP producer) cells in vitro. The role of BITC involve in promoting actived-caspase-3 and PARP-1 expression, and enhancing caspase-3 activity but decreasing MMP-2/9, survivin and CXCR4 expression. AFP antagonized the effect of BITC. This study suggests that BITC induced significant reductions in the viability of HCC cell lines. BITC may activate caspase-3 signal and inhibit the expression of growth- and metastasis-related proteins; AFP is an pivotal molecule for the HCC chemo-resistance of BITC.
Collapse
Affiliation(s)
- Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Junli Guo
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
| | - Yan Lu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Yi Chen
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Xueer Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Undergraduate Student of Clinical Medicine, Hainan Medical College, Haikou 571199, P.R. China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
- Institution of Tumour, Hainan Medical College, Haikou 570102, Hainan Province, P.R. China
| |
Collapse
|
12
|
Novío S, Cartea ME, Soengas P, Freire-Garabal M, Núñez-Iglesias MJ. Effects of Brassicaceae Isothiocyanates on Prostate Cancer. Molecules 2016; 21:E626. [PMID: 27187332 PMCID: PMC6272898 DOI: 10.3390/molecules21050626] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/13/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022] Open
Abstract
Despite the major progress made in the field of cancer biology, cancer is still one of the leading causes of mortality, and prostate cancer (PCa) is one of the most encountered malignancies among men. The effective management of this disease requires developing better anticancer agents with greater efficacy and fewer side effects. Nature is a large source for the development of chemotherapeutic agents, with more than 50% of current anticancer drugs being of natural origin. Isothiocyanates (ITCs) are degradation products from glucosinolates that are present in members of the family Brassicaceae. Although they are known for a variety of therapeutic effects, including antioxidant, immunostimulatory, anti-inflammatory, antiviral and antibacterial properties, nowadays, cell line and animal studies have additionally indicated the chemopreventive action without causing toxic side effects of ITCs. In this way, they can induce cell cycle arrest, activate apoptosis pathways, increase the sensitivity of resistant PCa to available chemodrugs, modulate epigenetic changes and downregulate activated signaling pathways, resulting in the inhibition of cell proliferation, progression and invasion-metastasis. The present review summarizes the chemopreventive role of ITCs with a particular emphasis on specific molecular targets and epigenetic alterations in in vitro and in vivo cancer animal models.
Collapse
Affiliation(s)
- Silvia Novío
- Lennart Levi Stress and Neuroimmunology Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, 15782 Santiago de Compostela, A Coruña, Spain.
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (CSIC) Aptdo. 28, 36080 Pontevedra, Spain.
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (CSIC) Aptdo. 28, 36080 Pontevedra, Spain.
| | - Manuel Freire-Garabal
- Lennart Levi Stress and Neuroimmunology Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, 15782 Santiago de Compostela, A Coruña, Spain.
| | - María Jesús Núñez-Iglesias
- Lennart Levi Stress and Neuroimmunology Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, 15782 Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
13
|
Ranjan A, Fofaria NM, Kim SH, Srivastava SK. Modulation of signal transduction pathways by natural compounds in cancer. Chin J Nat Med 2015; 13:730-742. [PMID: 26481373 DOI: 10.1016/s1875-5364(15)30073-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 02/07/2023]
Abstract
Cancer is generally regarded as the result of abnormal growth of cells. According to World Health Organization, cancer is the leading cause of mortality worldwide. Mother nature provides a large source of bioactive compounds with excellent therapeutic efficacy. Numerous phytochemicals from nature have been investigated for anticancer properties. In this review article, we discuss several natural compounds, which have shown anti-cancer activity. Natural compounds induce cell cycle arrest, activate intrinsic and extrinsic apoptosis pathways, generate Reactive Oxygen Species (ROS), and down-regulate activated signaling pathways, resulting in inhibition of cell proliferation, progression and metastasis of cancer. Several preclinical studies have suggested that natural compounds can also increase the sensitivity of resistant cancers to available chemotherapy agents. Furthermore, combining FDA approved anti-cancer drugs with natural compounds results in improved efficacy. On the basis of these exciting outcomes of natural compounds against several cancer types, several agents have already advanced to clinical trials. In conclusion, preclinical results and clinical outcomes against cancer suggest promising anticancer efficacy of agents from natural sources.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Neel M Fofaria
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Seoul 131-701, South Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Seoul 131-701, South Korea.
| |
Collapse
|