1
|
Wei WJ, Hong YL, Deng Y, Wang GL, Qiu JT, Pan F. Research progress on the development of hepatocyte growth factor/c-Met signaling pathway in gastric cancer: A review. World J Gastrointest Oncol 2024; 16:3397-3409. [PMID: 39171189 PMCID: PMC11334049 DOI: 10.4251/wjgo.v16.i8.3397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 08/07/2024] Open
Abstract
Hepatocyte growth factor (HGF) and its receptor, c-Met, play important roles in the occurrence, development, and treatment of gastric cancer (GC). This review explored the function of the HGF/c-Met signaling pathway in GC and its potential targeted therapeutic mechanisms. As one of the most common malignant tumors worldwide, GC has a complex pathogenesis and limited therapeutic options. Therefore, a thorough understanding of the molecular mechanism of GC is very important for the development of new therapeutic methods. The HGF/c-Met signaling pathway plays an important role in the proliferation, migration, and invasion of GC cells and has become a new therapeutic target. This review summarizes the current research progress on the role of HGF/c-Met in GC and discusses targeted therapeutic strategies targeting this signaling pathway, providing new ideas and directions for the treatment of GC.
Collapse
Affiliation(s)
- Wu-Jie Wei
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Ya-Li Hong
- Department of Cardiovascular, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Yi Deng
- Intensive Care Unit, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Guan-Liang Wang
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Jiang-Tao Qiu
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, Beijing 100084, China
| | - Fang Pan
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| |
Collapse
|
2
|
Wang LM, Zhang WW, Qiu YY, Wang F. Ferroptosis regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer. World J Gastrointest Oncol 2024; 16:2781-2792. [PMID: 38994139 PMCID: PMC11236228 DOI: 10.4251/wjgo.v16.i6.2781] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumors in the world, and its occurrence and development involve complex biological processes. Iron death, as a new cell death mode, has attracted wide attention in recent years. However, the regulatory mechanism of iron death in gastric cancer and its effect on lipid peroxidation metabolism remain unclear. AIM To explore the role of iron death in the development of gastric cancer, reveal its relationship with lipid peroxidation, and provide a new theoretical basis for revealing the molecular mechanism of the occurrence and development of gastric cancer. METHODS The process of iron death in gastric cancer cells was simulated by cell culture model, and the occurrence of iron death was detected by fluorescence microscopy and flow cytometry. The changes of gene expression related to iron death and lipid peroxidation metabolism were analyzed by high-throughput sequencing technology. In addition, a mouse model of gastric cancer was established, and the role of iron death in vivo was studied by histology and immunohistochemistry, and the level of lipid peroxidation was detected. These methods comprehensively and deeply reveal the regulatory mechanism of iron death on lipid peroxidation metabolism in the occurrence and development of gastric cancer. RESULTS Iron death was significantly activated in gastric cancer cells, and at the same time, associated lipid peroxidation levels increased significantly. Through high-throughput sequencing analysis, it was found that iron death regulated the expression of several genes related to lipid metabolism. In vivo experiments demonstrated that increased iron death in gastric cancer mice was accompanied by a significant increase in lipid peroxidation. CONCLUSION This study confirmed the important role of iron death in regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer. The activation of iron death significantly increased lipid peroxidation levels, revealing its regulatory mechanism inside the cell.
Collapse
Affiliation(s)
- Lan-Mei Wang
- Department of Clinical Laboratory, Anqiu People's Hospital, Weifang 262123, Shandong Province, China
| | - Wei-Wei Zhang
- Department of Gastroenterology, Feicheng People's Hospital, Tai’an 271600, Shandong Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Fang Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| |
Collapse
|
3
|
Vafaei R, Khaki Z, Salehi M, Jalili N, Esmailinejad MR, Muhammadnajad A, Nassiri SM, Vajhi A, Kalbolandi SM, Mirzaei R, Farahmand L. Development of a MET-targeted single-chain antibody fragment as an anti-oncogene targeted therapy for breast cancer. Invest New Drugs 2023; 41:226-239. [PMID: 37004643 DOI: 10.1007/s10637-023-01354-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
The usage of monoclonal antibodies (mAbs) and antibody fragments, as a matter associated with the biopharmaceutical industry, is increasingly growing. Harmonious with this concept, we designed an exclusive modeled single-chain variable fragment (scFv) against mesenchymal-epithelial transition (MET) oncoprotein. This scFv was newly developed from Onartuzumab sequence by gene cloning, and expression using bacterial host. Herein, we examined its preclinical efficacy for the reduction of tumor growth, invasiveness and angiogenesis in vitro and in vivo. Expressed anti-MET scFv demonstrated high binding capacity (48.8%) toward MET-overexpressing cancer cells. The IC50 value of anti-MET scFv against MET-positive human breast cancer cell line (MDA-MB-435) was 8.4 µg/ml whereas this value was measured as 47.8 µg/ml in MET-negative cell line BT-483. Similar concentrations could also effectively induce apoptosis in MDA-MB-435 cancer cells. Moreover, this antibody fragment could reduce migration and invasion in MDA-MB-435 cells. Grafted breast tumors in Balb/c mice showed significant tumor growth suppression as well as reduction of blood-supply in response to recombinant anti-MET treatment. Histopathology and immunohistochemical assessments revealed higher rate of response to therapy. In our study, we designed and synthetized a novel anti-MET scFv which could effectively suppress MET-overexpressing breast cancer tumors.
Collapse
Affiliation(s)
- Rana Vafaei
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zohreh Khaki
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Neda Jalili
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Reza Esmailinejad
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Shahid Bahonar University of Kerman, Department of Clinical Sciences, Faculty of Veterinary Medicine, Kerman, Iran
| | - Ahad Muhammadnajad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Vajhi
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shima Moradi Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Roya Mirzaei
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
Kim S, Ahn JM, Bae WJ, Han JH, Lee D. Quantitation of ligand is critical for ligand-dependent MET signalling activation and determines MET-targeted therapeutic response in gastric cancer. Gastric Cancer 2021; 24:577-588. [PMID: 33164142 DOI: 10.1007/s10120-020-01139-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite the promising preclinical antitumor activity of MET-targeting therapies, most clinical trials have failed. We introduced a new concept of quantitation of stroma-induced hepatocyte growth factor (HGF) to assess the actual MET signalling activity in gastric cancer (GC). METHODS We treated serially diluted HGF and conditioned media (CM) from cancer-associated fibroblasts (CAFs) on low MET-expressing cancer cells and investigated the phenotypical and signalling changes. Stromal proportion and MET expression in GC samples were assessed, and gene set enrichment analysis (GSEA) from the public database was performed. The antitumor effect of anti-MET treatment was examined, especially when cancer cells were activated in a ligand-dependent manner. RESULTS Relatively high doses of HGF or high-concentrated CM fully activated MET signalling cascades and promoted cell proliferation/invasion. High stromal proportion denoted worse patient survival in MET-positive GCs than in MET-negative ones. GSEA showed that the gene sets regarding proliferation, migration, and CAF as well as MET pathway signature were enriched in simultaneously MET- and HGF-positive samples. Sufficient ligand-dependent MET signalling activation increased the sensitivity to crizotinib. CONCLUSIONS We conclude that patients whose tumours have a high stromal proportion and at least low MET expression may benefit more from MET-targeted therapies.
Collapse
Affiliation(s)
- Seokhwi Kim
- Department of Pathology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Ji Mi Ahn
- Department of Pathology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Won Jung Bae
- Department of Pathology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Jae Ho Han
- Department of Pathology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| |
Collapse
|
5
|
MET targeting: time for a rematch. Oncogene 2020; 39:2845-2862. [PMID: 32034310 DOI: 10.1038/s41388-020-1193-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
MET, the receptor tyrosine kinase (RTK) for hepatocyte growth factor, is a proto-oncogene involved in embryonic development and throughout life in homeostasis and tissue regeneration. Deregulation of MET signaling has been reported in numerous malignancies, prompting great interest in MET targeting for cancer therapy. The present review offers a summary of the biology of MET and its known functions in normal physiology and carcinogenesis, followed by an overview of the most relevant MET-targeting strategies and corresponding clinical trials, highlighting both past setbacks and promising future prospects. By placing their efforts on a more precise stratification strategy through the genetic analysis of tumors, modern trials such as the NCI-MATCH trial could revive the past enthusiasm for MET-targeted therapy.
Collapse
|
6
|
|
7
|
Stella GM, Gentile A, Baderacchi A, Meloni F, Milan M, Benvenuti S. Ockham's razor for the MET-driven invasive growth linking idiopathic pulmonary fibrosis and cancer. J Transl Med 2016; 14:256. [PMID: 27590450 PMCID: PMC5010719 DOI: 10.1186/s12967-016-1008-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) identifies a specific lung disorder characterized by chronic, progressive fibrosing interstitial pneumonia of unknown etiology, which lacks effective treatment. According to the current pathogenic perspective, the aberrant proliferative events in IPF resemble those occurring during malignant transformation. MAIN BODY Receptor tyrosine kinases (RTK) are known to be key players in cancer onset and progression. It has been demonstrated that RTK expression is sometimes also altered and even druggable in IPF. One example of an RTK-the MET proto-oncogene-is a key regulator of invasive growth. This physiological genetic program supports embryonic development and post-natal organ regeneration, as well as cooperating in the evolution of cancer metastasis when aberrantly activated. Growing evidence sustains that MET activation may collaborate in maintaining tissue plasticity and the regenerative potential that characterizes IPF. CONCLUSION The present work aims to elucidate-by applying the logic of simplicity-the bio-molecular mechanisms involved in MET activation in IPF. This clarification is crucial to accurately design MET blockade strategies within a fully personalized approach to IPF.
Collapse
Affiliation(s)
- Giulia M. Stella
- Pneumology Unit, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Piazzale Golgi 19, 27100 Pavia, Italy
- Investigational Clinical Oncology (INCO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Alessandra Gentile
- Experimental Clinical Molecular Oncology (ECMO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Alice Baderacchi
- Investigational Clinical Oncology (INCO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Federica Meloni
- Pneumology Unit, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Piazzale Golgi 19, 27100 Pavia, Italy
| | - Melissa Milan
- Experimental Clinical Molecular Oncology (ECMO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Silvia Benvenuti
- Experimental Clinical Molecular Oncology (ECMO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| |
Collapse
|
8
|
Francica P, Nisa L, Aebersold DM, Langer R, Bladt F, Blaukat A, Stroka D, Martínez MR, Zimmer Y, Medová M. Depletion of FOXM1 via MET Targeting Underlies Establishment of a DNA Damage-Induced Senescence Program in Gastric Cancer. Clin Cancer Res 2016; 22:5322-5336. [PMID: 27185371 DOI: 10.1158/1078-0432.ccr-15-2987] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/20/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Deregulated signaling via the MET receptor tyrosine kinase is abundant in gastric tumors, with up to 80% of cases displaying aberrant MET expression. A growing body of evidence suggests MET as a potential target for tumor radiosensitization. EXPERIMENTAL DESIGN Cellular proliferation and DNA damage-induced senescence were studied in a panel of MET-overexpressing human gastric cancer cell lines as well as in xenograft models after MET inhibition and/or ionizing radiation. Pathways activation and protein expression were assessed by immunoblotting and immunohistochemistry. Tumor tissue microarrays (91 gastric cancer patients) were generated and copy number alteration (178 patients) and gene expression (373 patients) data available at The Cancer Genome Atlas were analyzed to assess the coalterations of MET and FOXM1. RESULTS MET targeting administered before ionizing radiation instigates DNA damage-induced senescence (∼80%, P < 0.001) rather than cell death. MET inhibition-associated senescence is linked to the blockade of MAPK pathway, correlates with downregulation of FOXM1, and can be abrogated (11.8% vs. 95.3%, P < 0.001) by ectopic expression of FOXM1 in the corresponding gastric tumor cells. Cells with ectopic FOXM1 expression demonstrate considerable (∼20%, P < 0.001) growth advantage despite MET targeting, suggesting a novel clinically relevant resistance mechanism to MET inhibition as the copresence of both MET and FOXM1 protein (33%) and mRNA (30%) overexpression as well as gene amplification (24,7%) are common in patients with gastric cancer. CONCLUSIONS FOXM1, a negative regulator of senescence, has been identified as a key downstream effector and potential clinical biomarker that mediates MET signaling following infliction of DNA damage in gastric tumors. Clin Cancer Res; 22(21); 5322-36. ©2016 AACR.
Collapse
Affiliation(s)
- Paola Francica
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Lluís Nisa
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Rupert Langer
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Friedhelm Bladt
- Merck Serono Research & Development, Merck KGaA, Darmstadt, Germany
| | - Andree Blaukat
- Merck Serono Research & Development, Merck KGaA, Darmstadt, Germany
| | - Deborah Stroka
- Department of Clinical Research, University of Bern, Bern, Switzerland.,Department of Visceral Surgery, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | | | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. .,Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Ma PC. MET receptor juxtamembrane exon 14 alternative spliced variant: novel cancer genomic predictive biomarker. Cancer Discov 2016; 5:802-5. [PMID: 26243862 DOI: 10.1158/2159-8290.cd-15-0769] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clinical studies on MET-targeting cancer therapeutics have yielded mixed results in recent years, and MET-relevant predictive biomarkers remain elusive. New studies now reveal METex14 alternative splicing aberrations to represent potential predictive cancer genomic biomarker, hence renewing optimism and directions in the quest for optimized MET-targeting personalized cancer therapy.
Collapse
Affiliation(s)
- Patrick C Ma
- Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia. West Virginia Clinical and Translational Science Institute, Morgantown, West Virginia.
| |
Collapse
|
10
|
Ye P, Zhang M, Fan S, Zhang T, Fu H, Su X, Gavine PR, Liu Q, Yin X. Intra-Tumoral Heterogeneity of HER2, FGFR2, cMET and ATM in Gastric Cancer: Optimizing Personalized Healthcare through Innovative Pathological and Statistical Analysis. PLoS One 2015; 10:e0143207. [PMID: 26587992 PMCID: PMC4654477 DOI: 10.1371/journal.pone.0143207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/02/2015] [Indexed: 11/18/2022] Open
Abstract
Current drug development efforts on gastric cancer are directed against several molecular targets driving the growth of this neoplasm. Intra-tumoral biomarker heterogeneity however, commonly observed in gastric cancer, could lead to biased selection of patients. MET, ATM, FGFR2, and HER2 were profiled on gastric cancer biopsy samples. An innovative pathological assessment was performed through scoring of individual biopsies against whole biopsies from a single patient to enable heterogeneity evaluation. Following this, false negative risks for each biomarker were estimated in silico. 166 gastric cancer cases with multiple biopsies from single patients were collected from Shanghai Renji Hospital. Following pre-set criteria, 56 ~ 78% cases showed low, 15 ~ 35% showed medium and 0 ~ 11% showed high heterogeneity within the biomarkers profiled. If 3 biopsies were collected from a single patient, the false negative risk for detection of the biomarkers was close to 5% (exception for FGFR2: 12.2%). When 6 biopsies were collected, the false negative risk approached 0%. Our study demonstrates the benefit of multiple biopsy sampling when considering personalized healthcare biomarker strategy, and provides an example to address the challenge of intra-tumoral biomarker heterogeneity using alternative pathological assessment and statistical methods.
Collapse
Affiliation(s)
- Peng Ye
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, China
| | - Meizhuo Zhang
- Research & Development Information, AstraZeneca R&D, Shanghai, China
| | - Shuqiong Fan
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, China
| | - Tianwei Zhang
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, China
| | - Haihua Fu
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, China
| | - Xinying Su
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, China
| | - Paul R. Gavine
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, China
| | - Qiang Liu
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (XY); (QL)
| | - Xiaolu Yin
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, China
- * E-mail: (XY); (QL)
| |
Collapse
|
11
|
Park JH, Ryu MH, Park YS, Park SR, Na YS, Rhoo BY, Kang YK. Successful control of heavily pretreated metastatic gastric cancer with the mTOR inhibitor everolimus (RAD001) in a patient with PIK3CA mutation and pS6 overexpression. BMC Cancer 2015; 15:119. [PMID: 25886409 PMCID: PMC4374284 DOI: 10.1186/s12885-015-1139-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 02/26/2015] [Indexed: 12/20/2022] Open
Abstract
Background Everolimus (RAD001) is an orally administered mTOR inhibitor that is well known for its antitumor efficacy and that has been approved for the treatment of several solid tumors, including renal cell carcinoma. In gastric cancer (GC), despite previous preclinical and phase I/II studies suggesting the promising efficacy of everolimus in previously treated AGC, more recent trials revealed that only certain subsets of patients might benefit from treatment with everolimus. Case presentation A 26-year-old man with metastatic gastric cancer with multiple liver lesions was treated with everolimus after failure of 1st-line and 2nd-line chemotherapy. A durable partial response was achieved for over 2 years. After progression from initial everolimus treatment, sequential cytotoxic chemotherapies were tried but failed rapidly. Everolimus was re-tried as salvage chemotherapy (re-treatment), and the patient achieved stable disease for 1 year until his death. Subsequent mutational analysis and immunohistochemical (IHC) staining with the tumor tissues just before re-treatment with everolimus revealed a PIK3CA hotspot mutation and pS6 overexpression in the primary tumor. After two cycles of everolimus re-treatment, the overexpression of pS6 became nearly absent in follow-up IHC staining. Conclusions Everolimus monotherapy was satisfactory in a patient with refractory metastatic GC harboring PIK3CA and pS6 aberrations. These molecular alterations might be potential biomarkers that can predict the treatment response of everolimus, particularly in the terms of durable disease control. This case suggests and emphasizes that close evaluation of biomarkers in tumor tissue may be essential for identifying highly favorable groups among various subpopulations with AGC.
Collapse
Affiliation(s)
- Ji Hyun Park
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| | - Min-Hee Ryu
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| | - Sook Ryun Park
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| | - Young-Soon Na
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| | - Baek-Yeol Rhoo
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| | - Yoon-Koo Kang
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| |
Collapse
|
12
|
Hack SP, Bruey JM, Koeppen H. HGF/MET-directed therapeutics in gastroesophageal cancer: a review of clinical and biomarker development. Oncotarget 2015; 5:2866-80. [PMID: 24930887 PMCID: PMC4102777 DOI: 10.18632/oncotarget.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aberrant activation of the HGF/MET signaling axis has been strongly implicated in the malignant transformation and progression of gastroesophageal cancer (GEC). MET receptor overexpression in tumor samples from GEC patients has been consistently correlated with an aggressive metastatic phenotype and poor prognosis. In preclinical GEC models, abrogation of HGF/MET signaling has been shown to induce tumor regression as well as inhibition of metastatic dissemination. Promising clinical results in patient subsets in which MET is overexpressed have spurned several randomized studies of HGF/MET-directed agents, including two pivotal global Phase III trials. Available data highlight the need for predictive biomarkers in order to select patients most likely to benefit from HGF/MET inhibition. In this review, we discuss the current knowledge of mechanisms of MET activation in GEC, the current status of the clinical evaluation of MET-targeted therapies in GEC, characteristics of ongoing randomized GEC trials and the associated efforts to identify and validate biomarkers. We also discuss the considerations and challenges for HGF/MET inhibitor drug development in the GEC setting.
Collapse
Affiliation(s)
- Stephen P Hack
- Product Development, Genentech Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|
13
|
Understanding the role of cross-arm binding efficiency in the activity of monoclonal and multispecific therapeutic antibodies. Methods 2014; 65:95-104. [DOI: 10.1016/j.ymeth.2013.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 01/09/2023] Open
|
14
|
Tseng HH, He B. Molecular markers as therapeutic targets in lung cancer. CHINESE JOURNAL OF CANCER 2013; 32:59-62. [PMID: 23369726 PMCID: PMC3845617 DOI: 10.5732/cjc.013.10011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lung cancer is responsible for 29% of cancer deaths in the United States and has very low 5-year survival rates of approximately 11% in men and 15% in women. Although the early diagnosis of lung cancer may increase the survival rate with adequate treatment, advanced lung cancers are often metastasized and receive limited benefit from therapeutic regimens. As conventional treatments for lung cancer reach their limitations, researchers have attempted to discover novel drug therapies aimed at specific targets contributing to the progression of tumorigenesis. Recent advances in systems biology have enabled the molecular biology of lung carcinogenesis to be elucidated. Our understanding of the physiologic processes of tumor development provide a means to design more effective and specific drugs with less toxicity, thereby accelerating the delivery of new drug therapies to the patient's bedside.
Collapse
Affiliation(s)
- Hsin-Hui Tseng
- Thoracic Oncology Program. Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA
| | | |
Collapse
|
15
|
Tunceroglu A, Jabbour SK. Gastric cancer: past accomplishments, present approaches and future aspirations. CLINICAL PRACTICE 2013; 10:47-77. [DOI: 10.2217/cpr.12.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Feng Y, Ma PC. MET targeted therapy for lung cancer: clinical development and future directions. LUNG CANCER-TARGETS AND THERAPY 2012; 3:53-67. [PMID: 28210125 DOI: 10.2147/lctt.s23423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MET, the receptor for hepatocyte growth factor, has been identified as a novel promising target in various human malignancies, including lung cancer. Research studies have demonstrated that MET signaling plays important physiologic roles in embryogenesis and early development, whereas its deregulation from an otherwise quiescent signaling state in mature adult tissues can lead to upregulated cell proliferation, survival, scattering, motility and migration, angiogenesis, invasion, and metastasis in tumorigenesis and tumor progression. The MET pathway can be activated through ligand (hepatocyte growth factor, HGF) or MET receptor overexpression, genomic amplification, MET mutations, and alternative splicing. A number of novel therapeutic agents that target the MET/hepatocyte growth factor pathway have been tested in early-phase clinical studies with promising results. Phase III studies of MET targeting agents have recently been initiated. This paper will review the MET signaling pathway and biology in lung cancer, and the recent clinical development and advances of MET/hepatocyte growth factor targeting agents. Emphasis will be placed on discussing various unanswered issues and key strategies needed to optimize further clinical development of MET targeting personalized lung cancer therapy.
Collapse
Affiliation(s)
- Yan Feng
- Translational Hematology and Oncology Research; Solid Tumor Oncology
| | - Patrick C Ma
- Translational Hematology and Oncology Research; Solid Tumor Oncology; Aerodigestive Oncology Translational Research, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| |
Collapse
|