1
|
Tedeschi A, Schischlik F, Rocchetti F, Popow J, Ebner F, Gerlach D, Geyer A, Santoro V, Boghossian AS, Rees MG, Ronan MM, Roth JA, Lipp J, Samwer M, Gmachl M, Kraut N, Pearson M, Rudolph D. Pan-KRAS Inhibitors BI-2493 and BI-2865 Display Potent Antitumor Activity in Tumors with KRAS Wild-type Allele Amplification. Mol Cancer Ther 2025; 24:550-562. [PMID: 39711431 PMCID: PMC11962398 DOI: 10.1158/1535-7163.mct-24-0386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
KRASG12C selective inhibitors, such as sotorasib and adagrasib, have raised hopes of targeting other KRAS-mutant alleles in patients with cancer. We report that KRAS wild-type (WT)-amplified tumor models are sensitive to treatment with the small-molecule KRAS inhibitors BI-2493 and BI-2865. These pan-KRAS inhibitors directly target the "OFF" state of KRAS and result in potent antitumor activity in preclinical models of cancers driven by KRAS-mutant proteins. In this study, we used the high-throughput cellular viability Profiling Relative Inhibition Simultaneously in Mixtures assay to assess the antiproliferative activity of BI-2493 in a 900+ cancer cell line panel, expanding on our previous work. KRAS WT-amplified cancer cell lines, with a copy number >7, were identified as the most sensitive, across cell lines with any KRAS alterations, to our pan-KRAS inhibitors. Importantly, our data suggest that a KRAS "OFF" inhibitor is better suited to treat KRAS WT-amplified tumors than a KRAS "ON" inhibitor. KRAS WT amplification is common in patients with gastroesophageal cancers in which it has been shown to act as a unique cancer driver with little overlap to other actionable mutations. The pan-KRAS inhibitors BI-2493 and BI-2865 show potent antitumor activity in vitro and in vivo in KRAS WT-amplified cell lines from this and other tumor types. In conclusion, this is the first study to demonstrate that direct pharmacologic inhibition of KRAS shows antitumor activity in preclinical models of cancer with KRAS WT amplification, suggesting a novel therapeutic concept for patients with cancers bearing this KRAS alteration.
Collapse
Affiliation(s)
| | | | | | | | - Florian Ebner
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Antonia Geyer
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Matthew G. Rees
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | - Jesse Lipp
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Mark Pearson
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | |
Collapse
|
2
|
Wang J, Cheng Y, Xiaoran Y, Chen F, Jie W, Yahui H, Yue W, Dong L, Yumei L, Cheng F, Libo Z, Jun Z. Globular adiponectin induces esophageal adenocarcinoma cell pyroptosis via the miR-378a-3p/UHRF1 axis. ENVIRONMENTAL TOXICOLOGY 2025; 40:429-444. [PMID: 38572808 DOI: 10.1002/tox.24266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Antiapoptosis is a major factor in the resistance of tumor cells to chemotherapy and radiotherapy. Thus, activation of cell pyroptosis may be an effective option to deal with antiapoptotic cancers such as esophageal adenocarcinoma (EAC). METHODS Differential expression of ubiquitin-like versus PHD and ring finger structural domain 1 (UHRF1) in EAC and near normal tissues was analyzed, as well as the prognostic impact on survival in EAC. Also, the same study was done for globular adiponectin (gAD). Simultaneously, the mRNA expression of UHRF1 was observed in different EAC cell lines. Real time cellular analysis (RTCA) was used to detect cell proliferation, and flow cytometry and inverted fluorescence microscopy were used to detect pyroptosis. Biocredit analysis was conducted to observe the correlation between UHRF1 and key pyroptosis proteins. OD values and CCK8 assay were used to determine the effect of miR-378a-3p on EAC cells. Quantitative real-time polymerase chain reaction and Western blot were used to detect the correlation between UHRF1, gAD, and miR-378a-3p in EAC cells. Moreover, in vivo and in vitro experiments were performed to detect the relevant effects on tumor migration and invasion after inhibiting UHRF1 expression. RESULTS UHRF1 was negatively correlated with the survival of patients with EAC, while miR-378a-3p showed the opposite effect. Additionally, gAD promoted EAC cell pyroptosis, upregulated miR-378a-3p, and significantly inhibited the proliferation of EAC cells. gAD directly reduced UHRF1 expression in EAC cells by upregulating miR-378a-3p. In cell migration and invasion assays, inhibition of UHRF1 expression significantly suppressed EAC cell metastasis. In animal experiments, we again demonstrated that gAD induced pyroptosis in EAC cells by inhibiting the expression of UHRF1. CONCLUSION gAD-induced upregulation of miR-378a-3p significantly inhibited the proliferation of EAC by targeting UHRF1. Therefore, gAD may serve as an alternative therapy for chemotherapy- and radiation-refractory EAC or other cancers with the same mechanism of pyroptosis action.
Collapse
Affiliation(s)
- Jun Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Gastroenterology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Yan Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yin Xiaoran
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fengrong Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wu Jie
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huang Yahui
- Department of Gastroenterology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Wang Yue
- Department of Gastroenterology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Liu Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Luo Yumei
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feng Cheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhang Libo
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhang Jun
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Windon A, Al Assaad M, Hadi K, Mendelson N, Hissong E, Deshpande A, Tranquille M, Mclee J, Levine MF, Patel M, Medina-Martínez JS, Chiu K, Manohar J, Sigouros M, Ocean AJ, Sboner A, Jessurun J, Elemento O, Shah M, Mosquera JM. Emerging molecular phenotypes and potential therapeutic targets in esophageal and gastric adenocarcinoma unearthed by whole genome and transcriptome analyses. Pathol Res Pract 2025; 266:155788. [PMID: 39708521 DOI: 10.1016/j.prp.2024.155788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Adenocarcinoma of the esophagus and stomach demands a deeper molecular understanding to advance treatment strategies and improve patient outcomes. Here, we profiled the genome and transcriptome landscape of these cancers, explored molecular characteristics that are undetectable by other sequencing platforms, and analyzed their potential clinical ramifications. METHODS Our study employed state-of-the-art integrative analyses of whole genome and transcriptome sequencing on 51 matched tumor and germline samples from 46 patients. Mutations and rearrangements in clinically relevant cancer genes were investigated and correlated with OncoKB, a knowledge-based precision oncology database, to identify treatment implications. Genome-wide signatures and manually curated molecular profiles were also determined. RESULTS The analyses revealed 90 targetable oncogenic mutations and fusions in 63 % of the patients, including novel NTRK, NRG1, ALK, and MET fusions, and structural variants in cancer genes like RAD51B. Also, molecular signatures associated with mismatch repair and homologous recombination deficiency were elucidated. Notably, we identified CDK12-type genomic instability associated with CDK12 fusions. CONCLUSIONS Our findings support the potential of whole genome and transcriptome sequencing analyses as a comprehensive approach to identify treatment targets in adenocarcinoma of the stomach and the esophagus, and their application in precision oncology.
Collapse
Affiliation(s)
- Annika Windon
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Majd Al Assaad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Nicole Mendelson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Erika Hissong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Marvel Tranquille
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Justin Mclee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Kenrry Chiu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Allyson J Ocean
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - José Jessurun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Manish Shah
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Wang Y, Lei K, Zhao L, Zhang Y. Clinical glycoproteomics: methods and diseases. MedComm (Beijing) 2024; 5:e760. [PMID: 39372389 PMCID: PMC11450256 DOI: 10.1002/mco2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yujia Wang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Kaixin Lei
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Lijun Zhao
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Yong Zhang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
5
|
Morgagni P, Bencivenga M, Carneiro F, Cascinu S, Derks S, Di Bartolomeo M, Donohoe C, Eveno C, Gisbertz S, Grimminger P, Gockel I, Grabsch H, Kassab P, Langer R, Lonardi S, Maltoni M, Markar S, Moehler M, Marrelli D, Mazzei MA, Melisi D, Milandri C, Moenig PS, Mostert B, Mura G, Polkowski W, Reynolds J, Saragoni L, Van Berge Henegouwen MI, Van Hillegersberg R, Vieth M, Verlato G, Torroni L, Wijnhoven B, Tiberio GAM, Yang HK, Roviello F, de Manzoni G. International consensus on the management of metastatic gastric cancer: step by step in the foggy landscape : Bertinoro Workshop, November 2022. Gastric Cancer 2024; 27:649-671. [PMID: 38634954 PMCID: PMC11193703 DOI: 10.1007/s10120-024-01479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/05/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Many gastric cancer patients in Western countries are diagnosed as metastatic with a median overall survival of less than twelve months using standard chemotherapy. Innovative treatments, like targeted therapy or immunotherapy, have recently proved to ameliorate prognosis, but a general agreement on managing oligometastatic disease has yet to be achieved. An international multi-disciplinary workshop was held in Bertinoro, Italy, in November 2022 to verify whether achieving a consensus on at least some topics was possible. METHODS A two-round Delphi process was carried out, where participants were asked to answer 32 multiple-choice questions about CT, laparoscopic staging and biomarkers, systemic treatment for different localization, role and indication of palliative care. Consensus was established with at least a 67% agreement. RESULTS The assembly agreed to define oligometastases as a "dynamic" disease which either regresses or remains stable in response to systemic treatment. In addition, the definition of oligometastases was restricted to the following sites: para-aortic nodal stations, liver, lung, and peritoneum, excluding bones. In detail, the following conditions should be considered as oligometastases: involvement of para-aortic stations, in particular 16a2 or 16b1; up to three technically resectable liver metastases; three unilateral or two bilateral lung metastases; peritoneal carcinomatosis with PCI ≤ 6. No consensus was achieved on how to classify positive cytology, which was considered as oligometastatic by 55% of participants only if converted to negative after chemotherapy. CONCLUSION As assessed at the time of diagnosis, surgical treatment of oligometastases should aim at R0 curativity on the entire disease volume, including both the primary tumor and its metastases. Conversion surgery was defined as surgery on the residual volume of disease, which was initially not resectable for technical and/or oncological reasons but nevertheless responded to first-line treatment.
Collapse
Affiliation(s)
- Paolo Morgagni
- Department of General Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Maria Bencivenga
- General and Upper GI Surgery, Department of Surgery, University Hospital Verona, University of Verona, Verona, Italy.
| | - Fatima Carneiro
- Department of Pathology, Centro Hospitalar de São João, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Stefano Cascinu
- Department of Medical Oncology, Comprehensive Cancer Center, Università Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Sarah Derks
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Maria Di Bartolomeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claire Donohoe
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Clarisse Eveno
- Department of Digestive and Oncologic Surgery, Claude Huriez University Hospital, Centre Hospitalier Universitaire (CHU) Lille, Université de Lille, Lille, France
| | - Suzanne Gisbertz
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Grimminger
- Department of General, Visceral and Transplant Surgery, University Medical Center, University of Mainz, Mainz, Germany
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Heike Grabsch
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Paulo Kassab
- Gastric Surgery Division, BP Gastric Surgery Department, Santa Casa Medical School, São Paulo, Brazil
| | - Rupert Langer
- Institute of Pathology and Microbiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Sara Lonardi
- Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy
| | - Marco Maltoni
- Unit of Palliative Care, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Forlì-Cesena, Italy
| | - Sheraz Markar
- Surgical Interventional Trials Unit, University of Oxford, Oxford, UK
| | - Markus Moehler
- Department of Medicine, Johannes-Gutenberg University Clinic, Mainz, Germany
| | - Daniele Marrelli
- Unit of General Surgery and Surgical Oncology, Department of Medicine Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Maria Antonietta Mazzei
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Radiological Sciences, Azienda Ospedaliero-Universitaria Senese, University of Siena, 53100, Siena, Italy
| | - Davide Melisi
- Medical Oncology at the Department of Medicine, University of Verona, Verona, Italy
| | - Carlo Milandri
- Department of Oncology, San Donato Hospital, 52100, Arezzo, Italy
| | | | - Bianca Mostert
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Gianni Mura
- Department of Surgery, San Donato Hospital, Arezzo, Italy
| | - Wojciech Polkowski
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St, 20-080, Lublin, Poland
| | | | - Luca Saragoni
- Pathology Unit, Santa Maria delle Croci Ravenna Hospital, Ravenna, Italy
| | - Mark I Van Berge Henegouwen
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Giuseppe Verlato
- Department of Diagnostics and Public Health, Section of Epidemiology and Medical Statistics, University of Verona, Verona, Italy
| | - Lorena Torroni
- Department of Diagnostics and Public Health, Section of Epidemiology and Medical Statistics, University of Verona, Verona, Italy
| | - Bas Wijnhoven
- Department of Surgery, Erasmus MC-University Medical Centre Rotterdam, Rotterdam, Netherlands
| | | | - Han-Kwang Yang
- Surgical Department, SNUH National Cancer Center, Seoul, Korea
| | - Franco Roviello
- Unit of General Surgery and Surgical Oncology, Department of Medicine Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Giovanni de Manzoni
- General and Upper GI Surgery, Department of Surgery, University Hospital Verona, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Peng L, Jiang Y, Chen H, Wang Y, Lan Q, Chen S, Huang Z, Zhang J, Tian D, Qiu Y, Cai D, Peng J, Lu D, Yuan X, Yang X, Yin D. Transcription factor EHF interacting with coactivator AJUBA aggravates malignancy and acts as a therapeutic target for gastroesophageal adenocarcinoma. Acta Pharm Sin B 2024; 14:2119-2136. [PMID: 38799645 PMCID: PMC11120281 DOI: 10.1016/j.apsb.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/24/2023] [Accepted: 02/26/2024] [Indexed: 05/29/2024] Open
Abstract
Transcriptional dysregulation of genes is a hallmark of tumors and can serve as targets for cancer drug development. However, it is extremely challenging to develop small-molecule inhibitors to target abnormally expressed transcription factors (TFs) except for the nuclear receptor family of TFs. Little is known about the interaction between TFs and transcription cofactors in gastroesophageal adenocarcinoma (GEA) or the therapeutic effects of targeting TF and transcription cofactor complexes. In this study, we found that ETS homologous factor (EHF) expression is promoted by a core transcriptional regulatory circuitry (CRC), specifically ELF3-KLF5-GATA6, and interference with its expression suppressed the malignant biological behavior of GEA cells. Importantly, we identified Ajuba LIM protein (AJUBA) as a new coactivator of EHF that cooperatively orchestrates transcriptional network activity in GEA. Furthermore, we identified KRAS signaling as a common pathway downstream of EHF and AJUBA. Applicably, dual targeting of EHF and AJUBA by lipid nanoparticles cooperatively attenuated the malignant biological behaviors of GEA in vitro and in vivo. In conclusion, EHF is upregulated by the CRC and promotes GEA malignancy by interacting with AJUBA through the KRAS pathway. Targeting of both EHF and its coactivator AJUBA through lipid nanoparticles is a novel potential therapeutic strategy.
Collapse
Affiliation(s)
- Li Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yanyi Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Hengxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yongqiang Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qiusheng Lan
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shuiqin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhanwang Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jingyuan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Duanqing Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuntan Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Diankui Cai
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Daning Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xianzhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
7
|
Yan J, Fang Z, Shi M, Tu C, Zhang S, Jiang C, Li Q, Shao Y. Clinical Significance of Disulfidptosis-related Genes and Functional Analysis in Gastric Cancer. J Cancer 2024; 15:1053-1066. [PMID: 38230212 PMCID: PMC10788733 DOI: 10.7150/jca.91796] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
Background: Worldwide, gastric cancer (GC) remains intractable due to its poor prognosis and high morbidity and mortality. Disulfidptosis is a novel kind of cell death mediated by abnormal accumulation of intracellular disulphides. The correlation between disulfidptosis and GC is still unknown. Therefore, it is necessary to elucidate the pathogenesis and mechanism of disulfidptosis and GC for clinical diagnosis and intervention. Methods: RNA-sequencing data from several public data portals and clinical samples were collected. We compared the expression levels of four key genes of disulfidptosis, including SLC7A11, SLC3A2, RPN1, and NCKAP1, in GC and selected prognostic genes to build a novel GC prognosis-related nomogram model. The biological functions and immune landscape of the identified prognostic genes were explored. Results: Overexpressed NCKAP1 and SLC7A11 were prognostic disulfidptosis-related genes in GC. We combined these genes and several clinicopathological factors to build a prognostic nomogram model for GC. Meanwhile, the ROC curves showed that NCKAP1 and SLC7A11 were promising biomarkers for GC screening. The biological and cellular functions were focused on actin activities, GTPase and immunoreaction. The tumour immune microenvironment and immune therapy targets were identified. Competing endogenous RNA network was built to explore the downstream regulatory mechanisms. Finally, the elevated NCKAP1 and SLC7A11 expression in GC was validated via qRT-PCR in a cell line and tissue line. Conclusion: In conclusion, NCKAP1 and SLC7A11 are promising prognostic and diagnostic biomarkers for GC that correlate with the activities of actin, energy metabolism of GTPase, immune infiltration and immunotherapy.
Collapse
Affiliation(s)
- Jianing Yan
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Ziyi Fang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Meiqi Shi
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Can Tu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Shengke Zhang
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Chenglu Jiang
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Qier Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Yongfu Shao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| |
Collapse
|
8
|
Wu F, Guo X, Ren Y, Peng Y, Lai Z, Xu J. CircRNA0007766 accelerates cancer progression via miR-34c-5p/cyclin D1 axis in adenocarcinoma of the esophagogastric junction (AEG). Cell Signal 2023; 112:110912. [PMID: 37802173 DOI: 10.1016/j.cellsig.2023.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Growing empirical evidence shows that circular RNAs (circRNAs) are implicated in tumor pathogenesis. However, little is known about the mechanism by which circRNAs contribute to the progression of adenocarcinoma of the esophagogastric junction (AEG). We conducted RNA high-throughput sequencing and bioinformatic analyses on 22 AEG tissues and their matching healthy gastric mucosal tissues and found that circRNA0007766 may act as a tumor promoter in AEG pathogenesis. BaseScope® in situ hybridization revealed that circRNA0007766 was strongly upregulated in AEG. We then constructed co-expression and ceRNA networks to elucidate the relationships among specific circRNAs, microRNAs (miRNAs), and mRNAs. We also demonstrated that circRNA0007766 acted as the sponge of miR-34c-5p, thereby positively regulating cyclin D1. In vivo and in vitro experiments demonstrated the roles of circRNA0007766 in promoting AEG progression and invasion. AEG tissues are characterized by circRNA0007766 upregulation which is correlated with lymph node metastasis and poor survival. To the best of our knowledge, the present study is one of the first to show that the circRNA0007766/miR-34c-5p/cyclin D1 axis is important in AEG progression. Furthermore, the results of this work imply that circRNA0007766 is potentially a novel AEG biomarker.
Collapse
Affiliation(s)
- Feng Wu
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China.
| | - Xin Guo
- Medical ICU, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital,Chinese Academy of Medical Sciences, Taiyuan, Shanxi Province, China
| | - Yifan Ren
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yuting Peng
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan,Shanxi Province, China
| | - Zhiyong Lai
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan,Shanxi Province, China.
| | - Jun Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan,Shanxi Province, China; Institute of Liver Diseases and Organ Transplantation, Shanxi Medical University, Taiyuan,Shanxi Province, China.
| |
Collapse
|
9
|
Jeong YS, Eun YG, Lee SH, Kang SH, Yim SY, Kim EH, Noh JK, Sohn BH, Woo SR, Kong M, Nam DH, Jang HJ, Lee HS, Song S, Oh SC, Lee J, Ajani JA, Lee JS. Clinically conserved genomic subtypes of gastric adenocarcinoma. Mol Cancer 2023; 22:147. [PMID: 37674200 PMCID: PMC10481468 DOI: 10.1186/s12943-023-01796-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/31/2023] [Indexed: 09/08/2023] Open
Abstract
Gastric adenocarcinoma (GAC) is a lethal disease characterized by genomic and clinical heterogeneity. By integrating 8 previously established genomic signatures for GAC subtypes, we identified 6 clinically and molecularly distinct genomic consensus subtypes (CGSs). CGS1 have the poorest prognosis, very high stem cell characteristics, and high IGF1 expression, but low genomic alterations. CGS2 is enriched with canonical epithelial gene expression. CGS3 and CGS4 have high copy number alterations and low immune reactivity. However, CGS3 and CGS4 differ in that CGS3 has high HER2 activation, while CGS4 has high SALL4 and KRAS activation. CGS5 has the high mutation burden and moderately high immune reactivity that are characteristic of microsatellite instable tumors. Most CGS6 tumors are positive for Epstein Barr virus and show extremely high levels of methylation and high immune reactivity. In a systematic analysis of genomic and proteomic data, we estimated the potential response rate of each consensus subtype to standard and experimental treatments such as radiation therapy, targeted therapy, and immunotherapy. Interestingly, CGS3 was significantly associated with a benefit from chemoradiation therapy owing to its high basal level of ferroptosis. In addition, we also identified potential therapeutic targets for each consensus subtype. Thus, the consensus subtypes produced a robust classification and provide for additional characterizations for subtype-based customized interventions.
Collapse
Affiliation(s)
- Yun Seong Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1058, Houston, TX, 77030, USA
| | - Young-Gyu Eun
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Otolaryngology - Head and Neck Surgery, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul, Korea
| | - Sung Hwan Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Division of Hepatobiliary and Pancreas, Department of Surgery, CHA Bundang Medical Center, CHA University, Pocheon, Korea
| | - Sang-Hee Kang
- Department of Surgery, Korea University Guro Hospital, Seoul, Korea
| | - Sun Young Yim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Kyung Noh
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Bo Hwa Sohn
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1058, Houston, TX, 77030, USA
| | - Seon Rang Woo
- Department of Otolaryngology - Head and Neck Surgery, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul, Korea
| | - Moonkyoo Kong
- Department of Radiation Oncology, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul, Korea
| | - Deok Hwa Nam
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1058, Houston, TX, 77030, USA
| | - Hee-Jin Jang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sang Cheul Oh
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1058, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Ravillah D, Kieber-Emmons AL, Singh S, Keerthy K, Blum AE, Guda K. Discovery and Initial Characterization of Long Intergenic Noncoding RNAs Associated With Esophageal Adenocarcinoma. Gastroenterology 2023; 165:505-508.e7. [PMID: 37182784 PMCID: PMC10524377 DOI: 10.1053/j.gastro.2023.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Affiliation(s)
- Durgadevi Ravillah
- Division of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | - Salendra Singh
- Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Komal Keerthy
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Andrew E Blum
- Division of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Division of Gastroenterology, Northeast Ohio Veteran Affairs Healthcare System, Cleveland, Ohio
| | - Kishore Guda
- Division of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| |
Collapse
|
11
|
Petrillo A, Smyth EC, van Laarhoven HWM. Emerging targets in gastroesophageal adenocarcinoma: what the future looks like. Ther Adv Med Oncol 2023; 15:17588359231173177. [PMID: 37197225 PMCID: PMC10184253 DOI: 10.1177/17588359231173177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Gastroesophageal adenocarcinoma (GEA) is a heterogeneous disease with a poor prognosis. Chemotherapy has been the cornerstone in treating metastatic diseases. Recently, the introduction of immunotherapy demonstrated improved survival outcomes in localized and metastatic diseases. Beyond immunotherapy, several attempts were made to improve patient survival by understanding the molecular mechanisms of GEA and several molecular classifications were published. In this narrative review, we will discuss emerging targets in GEA, including fibroblast growth factor receptor and Claudin 18.2, as well as the accompanying drugs. In addition, novel agents directed against well-known targets, such as HER2 and angiogenesis, will be discussed, as well as cellular therapies like CAR-T and SPEAR-T cells.
Collapse
Affiliation(s)
- Angelica Petrillo
- Medical Oncology Unit, Ospedale del Mare, Via E. Russo, Naples 80147, Italy
| | - Elizabeth C. Smyth
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | - Hanneke W. M. van Laarhoven
- Department of Medical Oncology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Li J, Xia Y, Sun B, Zheng N, Li Y, Pang X, Yang F, Zhao X, Ji Z, Yu H, Chen F, Zhang X, Zhao B, Jin J, Yang S, Cheng Z. Neutrophil extracellular traps induced by the hypoxic microenvironment in gastric cancer augment tumour growth. Cell Commun Signal 2023; 21:86. [PMID: 37127629 PMCID: PMC10152773 DOI: 10.1186/s12964-023-01112-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/25/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Inflammation-related predisposition to cancer plays an essential role in cancer progression and is associated with poor prognosis. A hypoxic microenvironment and neutrophil infiltration are commonly present in solid tumours, including gastric cancer (GC). Neutrophil extracellular traps (NETs) have also been demonstrated in the tumour immune microenvironment (TIME), but how NETs affect GC progression remains unknown. Here, we investigated the role of NET formation in the TIME and further explored the underlying mechanism of NETs in GC tumour growth. METHODS Hypoxia-induced factor-1α (HIF-1α), citrulline histone 3 (citH3) and CD66b expression in tumour and adjacent nontumor tissue samples was evaluated by western blotting, immunofluorescence and immunohistochemical staining. The expression of neutrophil-attracting chemokines in GC cells and their hypoxic-CM was measured by qRT‒PCR and ELISA. Neutrophil migration under hypoxic conditions was evaluated by a Transwell assay. Pathway activation in neutrophils in a hypoxic microenvironment were analysed by western blotting. NET formation was measured in vitro by immunofluorescence staining. The protumour effect of NETs on GC cells was identified by Transwell, wound healing and cell proliferation assays. In vivo, an lipopolysaccharide (LPS)-induced NET model and subcutaneous tumour model were established in BALB/c nude mice to explore the mechanism of NETs in tumour growth. RESULTS GC generates a hypoxic microenvironment that recruits neutrophils and induces NET formation. High mobility group box 1 (HMGB1) was translocated to the cytoplasm from the nucleus of GC cells in the hypoxic microenvironment and mediated the formation of NETs via the toll-like receptor 4 (TLR4)/p38 MAPK signalling pathway in neutrophils. HMGB1/TLR4/p38 MAPK pathway inhibition abrogated hypoxia-induced neutrophil activation and NET formation. NETs directly induced GC cell invasion and migration but not proliferation and accelerated the augmentation of GC growth by increasing angiogenesis. This rapid tumour growth was abolished by treatment with the NET inhibitor deoxyribonuclease I (DNase I) or a p38 MAPK signalling pathway inhibitor. CONCLUSIONS Hypoxia triggers an inflammatory response and NET formation in the GC TIME to augment tumour growth. Targeting NETs with DNase I or HMGB1/TLR4/p38 MAPK pathway inhibitors is a potential therapeutic strategy to inhibit GC progression. Video Abstract.
Collapse
Affiliation(s)
- Jiacheng Li
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
- Digestive Disease Center, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
| | - Yu Xia
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
| | - Biying Sun
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
| | - Nanbei Zheng
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
| | - Yang Li
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
| | - Xuehan Pang
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
| | - Fan Yang
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
| | - Xingwang Zhao
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
| | - Zhiwu Ji
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
| | - Haitao Yu
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
| | - Fujun Chen
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
| | - Xuemei Zhang
- Digestive Disease Center, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
- Department of Gastroenterology, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
| | - Bin Zhao
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
- Digestive Disease Center, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150001, China.
| | - Shifeng Yang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150001, China.
| | - Zhuoxin Cheng
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China.
- Digestive Disease Center, The First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi, 154000, China.
| |
Collapse
|
13
|
Yan W, Chen Y, Hu G, Shi T, Liu X, Li J, Sun L, Qian F, Chen W. MiR-200/183 family-mediated module biomarker for gastric cancer progression: an AI-assisted bioinformatics method with experimental functional survey. J Transl Med 2023; 21:163. [PMID: 36864416 PMCID: PMC9983275 DOI: 10.1186/s12967-023-04010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/18/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major cancer burden throughout the world with a high mortality rate. The performance of current predictive and prognostic factors is still limited. Integrated analysis is required for accurate cancer progression predictive biomarker and prognostic biomarkers that help to guide therapy. METHODS An AI-assisted bioinformatics method that combines transcriptomic data and microRNA regulations were used to identify a key miRNA-mediated network module in GC progression. To reveal the module's function, we performed the gene expression analysis in 20 clinical samples by qRT-PCR, prognosis analysis by multi-variable Cox regression model, progression prediction by support vector machine, and in vitro studies to elaborate the roles in GC cells migration and invasion. RESULTS A robust microRNA regulated network module was identified to characterize GC progression, which consisted of seven miR-200/183 family members, five mRNAs and two long non-coding RNAs H19 and CLLU1. Their expression patterns and expression correlation patterns were consistent in public dataset and our cohort. Our findings suggest a two-fold biological potential of the module: GC patients with high-risk score exhibited a poor prognosis (p-value < 0.05) and the model achieved AUCs of 0.90 to predict GC progression in our cohort. In vitro cellular analyses shown that the module could influence the invasion and migration of GC cells. CONCLUSIONS Our strategy which combines AI-assisted bioinformatics method with experimental and clinical validation suggested that the miR-200/183 family-mediated network module as a "pluripotent module", which could be potential marker for GC progression.
Collapse
Affiliation(s)
- Wenying Yan
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China. .,Center for Systems Biology, Soochow University, 199 Renai Road, Suzhou, 215123, China.
| | - Yuqi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Guang Hu
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China.,Center for Systems Biology, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China.,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215021, China
| | - Xingyi Liu
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Juntao Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Linqing Sun
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Fuliang Qian
- Center for Systems Biology, Soochow University, 199 Renai Road, Suzhou, 215123, China. .,Medical Center of Soochow University, Suzhou, 215000, China.
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China. .,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China. .,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China. .,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China. .,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215021, China.
| |
Collapse
|
14
|
Evaristo G, Katz A, Ramírez-GarcíaLuna JL, Issac MSM, Sangwan V, Thai DV, Bertos N, Guiot MC, Camilleri-Broët S, Marcus V, Mueller C, Cools-Lartigue J, Fiset PO, Ferri LE. Relation between mismatch repair status, chemoresponse, survival and anatomic location in gastroesophageal adenocarcinoma. Can J Surg 2023; 66:E79-E87. [PMID: 36792128 PMCID: PMC9943547 DOI: 10.1503/cjs.017021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND It has recently been reported that mismatch repair (MMR) status and microsatellite instability (MSI) status in gastroesophageal carcinomas predict surgical, chemotherapeutic and immunotherapeutic outcomes; however, there is extensive variability in the reported incidence and clinical implications of MMR/MSI status in gastroesophaegal adenocarcinomas. We characterized a Canadian surgical patient cohort with respect to MMR status, clinicopathologic correlates and anatomic tumour location. METHODS We investigated MMR and BRAF V600E status of gastroesophaegal adenocarcinomas in patients who underwent gastrectomy or esophagectomy with extended (D2) lymphadenectomy at a single centre between 2011 and 2019. We correlated patterns of MMR expression in the overall cohort and in anatomic location-defined subgroups with treatment response and overall survival using multivariate analysis. RESULTS In all, 226 cases of gastroesophaegal adenocarcinoma (63 esophageal, 98 gastroesophageal junctional and 65 gastric) were included. The MMR-deficient (dMMR) immunophenotype was found in 28 tumours (12.3%) (15 junctional [15.3%], 13 gastric [20.0%] and none of the esophageal). The majority (25 [89%]) of dMMR cases showed MLH1/PMS2 loss without concurrent BRAF V600E mutation. Two MSH2/ MSH6-deficient gastric tumours and 1 MSH6-deficient junctional tumour were detected. The pathologic response to preoperative chemotherapy was comparable in the dMMR and MMR-proficient (pMMR) cohorts. However, dMMR status was associated with significantly longer median overall survival than pMMR status (5.8 yr v. 2.4 yr, hazard ratio [HR] 1.91, 95% confidence interval [CI] 1.06-3.46), particularly in junctional tumours (4.6 yr v. 1.9 yr, HR 2.97, 95% CI 1.27-6.94). CONCLUSION Our study shows that MMR status has at least prognostic value, which supports the need for biomarker testing in gastroesophageal adenocarcinomas, including junctional adenocarcinomas. This highlights the clinical significance of determining the MMR status in all adenocarcinomas of the upper gastrointestinal tract. Response to induction chemotherapy, however, was not influenced by MMR status.
Collapse
Affiliation(s)
- Gertruda Evaristo
- From the Department of Pathology, McGill University Health Centre, Montréal, Que. (Evaristo, Thai, Guiot, Camilleri-Broët, Marcus, Fiset); the Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Centre, Montréal, Que. (Katz, Ramírez-GarcíaLuna, Sangwan, Mueller, Cools-Lartigue, Ferri); the Research Institute of the McGill University Health Centre, Montréal, Que. (Issac, Bertos); and the Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, McGill University Health Centre, Montreal General Hospital, Montréal, Que. (Sangwan, Mueller, Cools-Lartigue, Ferri)
| | - Amit Katz
- From the Department of Pathology, McGill University Health Centre, Montréal, Que. (Evaristo, Thai, Guiot, Camilleri-Broët, Marcus, Fiset); the Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Centre, Montréal, Que. (Katz, Ramírez-GarcíaLuna, Sangwan, Mueller, Cools-Lartigue, Ferri); the Research Institute of the McGill University Health Centre, Montréal, Que. (Issac, Bertos); and the Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, McGill University Health Centre, Montreal General Hospital, Montréal, Que. (Sangwan, Mueller, Cools-Lartigue, Ferri)
| | - José L Ramírez-GarcíaLuna
- From the Department of Pathology, McGill University Health Centre, Montréal, Que. (Evaristo, Thai, Guiot, Camilleri-Broët, Marcus, Fiset); the Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Centre, Montréal, Que. (Katz, Ramírez-GarcíaLuna, Sangwan, Mueller, Cools-Lartigue, Ferri); the Research Institute of the McGill University Health Centre, Montréal, Que. (Issac, Bertos); and the Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, McGill University Health Centre, Montreal General Hospital, Montréal, Que. (Sangwan, Mueller, Cools-Lartigue, Ferri)
| | - Marianne S M Issac
- From the Department of Pathology, McGill University Health Centre, Montréal, Que. (Evaristo, Thai, Guiot, Camilleri-Broët, Marcus, Fiset); the Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Centre, Montréal, Que. (Katz, Ramírez-GarcíaLuna, Sangwan, Mueller, Cools-Lartigue, Ferri); the Research Institute of the McGill University Health Centre, Montréal, Que. (Issac, Bertos); and the Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, McGill University Health Centre, Montreal General Hospital, Montréal, Que. (Sangwan, Mueller, Cools-Lartigue, Ferri)
| | - Veena Sangwan
- From the Department of Pathology, McGill University Health Centre, Montréal, Que. (Evaristo, Thai, Guiot, Camilleri-Broët, Marcus, Fiset); the Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Centre, Montréal, Que. (Katz, Ramírez-GarcíaLuna, Sangwan, Mueller, Cools-Lartigue, Ferri); the Research Institute of the McGill University Health Centre, Montréal, Que. (Issac, Bertos); and the Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, McGill University Health Centre, Montreal General Hospital, Montréal, Que. (Sangwan, Mueller, Cools-Lartigue, Ferri)
| | - Duc-Vinh Thai
- From the Department of Pathology, McGill University Health Centre, Montréal, Que. (Evaristo, Thai, Guiot, Camilleri-Broët, Marcus, Fiset); the Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Centre, Montréal, Que. (Katz, Ramírez-GarcíaLuna, Sangwan, Mueller, Cools-Lartigue, Ferri); the Research Institute of the McGill University Health Centre, Montréal, Que. (Issac, Bertos); and the Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, McGill University Health Centre, Montreal General Hospital, Montréal, Que. (Sangwan, Mueller, Cools-Lartigue, Ferri)
| | - Nicholas Bertos
- From the Department of Pathology, McGill University Health Centre, Montréal, Que. (Evaristo, Thai, Guiot, Camilleri-Broët, Marcus, Fiset); the Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Centre, Montréal, Que. (Katz, Ramírez-GarcíaLuna, Sangwan, Mueller, Cools-Lartigue, Ferri); the Research Institute of the McGill University Health Centre, Montréal, Que. (Issac, Bertos); and the Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, McGill University Health Centre, Montreal General Hospital, Montréal, Que. (Sangwan, Mueller, Cools-Lartigue, Ferri)
| | - Marie-Christine Guiot
- From the Department of Pathology, McGill University Health Centre, Montréal, Que. (Evaristo, Thai, Guiot, Camilleri-Broët, Marcus, Fiset); the Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Centre, Montréal, Que. (Katz, Ramírez-GarcíaLuna, Sangwan, Mueller, Cools-Lartigue, Ferri); the Research Institute of the McGill University Health Centre, Montréal, Que. (Issac, Bertos); and the Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, McGill University Health Centre, Montreal General Hospital, Montréal, Que. (Sangwan, Mueller, Cools-Lartigue, Ferri)
| | - Sophie Camilleri-Broët
- From the Department of Pathology, McGill University Health Centre, Montréal, Que. (Evaristo, Thai, Guiot, Camilleri-Broët, Marcus, Fiset); the Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Centre, Montréal, Que. (Katz, Ramírez-GarcíaLuna, Sangwan, Mueller, Cools-Lartigue, Ferri); the Research Institute of the McGill University Health Centre, Montréal, Que. (Issac, Bertos); and the Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, McGill University Health Centre, Montreal General Hospital, Montréal, Que. (Sangwan, Mueller, Cools-Lartigue, Ferri)
| | - Victoria Marcus
- From the Department of Pathology, McGill University Health Centre, Montréal, Que. (Evaristo, Thai, Guiot, Camilleri-Broët, Marcus, Fiset); the Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Centre, Montréal, Que. (Katz, Ramírez-GarcíaLuna, Sangwan, Mueller, Cools-Lartigue, Ferri); the Research Institute of the McGill University Health Centre, Montréal, Que. (Issac, Bertos); and the Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, McGill University Health Centre, Montreal General Hospital, Montréal, Que. (Sangwan, Mueller, Cools-Lartigue, Ferri)
| | - Carmen Mueller
- From the Department of Pathology, McGill University Health Centre, Montréal, Que. (Evaristo, Thai, Guiot, Camilleri-Broët, Marcus, Fiset); the Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Centre, Montréal, Que. (Katz, Ramírez-GarcíaLuna, Sangwan, Mueller, Cools-Lartigue, Ferri); the Research Institute of the McGill University Health Centre, Montréal, Que. (Issac, Bertos); and the Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, McGill University Health Centre, Montreal General Hospital, Montréal, Que. (Sangwan, Mueller, Cools-Lartigue, Ferri)
| | - Jonathan Cools-Lartigue
- From the Department of Pathology, McGill University Health Centre, Montréal, Que. (Evaristo, Thai, Guiot, Camilleri-Broët, Marcus, Fiset); the Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Centre, Montréal, Que. (Katz, Ramírez-GarcíaLuna, Sangwan, Mueller, Cools-Lartigue, Ferri); the Research Institute of the McGill University Health Centre, Montréal, Que. (Issac, Bertos); and the Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, McGill University Health Centre, Montreal General Hospital, Montréal, Que. (Sangwan, Mueller, Cools-Lartigue, Ferri)
| | - Pierre O Fiset
- From the Department of Pathology, McGill University Health Centre, Montréal, Que. (Evaristo, Thai, Guiot, Camilleri-Broët, Marcus, Fiset); the Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Centre, Montréal, Que. (Katz, Ramírez-GarcíaLuna, Sangwan, Mueller, Cools-Lartigue, Ferri); the Research Institute of the McGill University Health Centre, Montréal, Que. (Issac, Bertos); and the Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, McGill University Health Centre, Montreal General Hospital, Montréal, Que. (Sangwan, Mueller, Cools-Lartigue, Ferri)
| | - Lorenzo E Ferri
- From the Department of Pathology, McGill University Health Centre, Montréal, Que. (Evaristo, Thai, Guiot, Camilleri-Broët, Marcus, Fiset); the Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Centre, Montréal, Que. (Katz, Ramírez-GarcíaLuna, Sangwan, Mueller, Cools-Lartigue, Ferri); the Research Institute of the McGill University Health Centre, Montréal, Que. (Issac, Bertos); and the Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, McGill University Health Centre, Montreal General Hospital, Montréal, Que. (Sangwan, Mueller, Cools-Lartigue, Ferri)
| |
Collapse
|
15
|
Feng M, Xu H, Zhou W, Pan Y. The BRD4 inhibitor JQ1 augments the antitumor efficacy of abemaciclib in preclinical models of gastric carcinoma. J Exp Clin Cancer Res 2023; 42:44. [PMID: 36755269 PMCID: PMC9909925 DOI: 10.1186/s13046-023-02615-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Advanced gastric cancer (GC) is a lethal malignancy, harboring recurrent alterations in cell cycle pathway, especially the CDKN2A-CDK4/CDK6/CCND1 axis. However, monotherapy of CDK4/6 inhibitors has shown limited antitumor effects for GC, and combination treatments were urgently needed for CDK4/6 inhibitors. METHODS Here, we performed a comprehensive analysis, including drug screening, pan-cancer genomic dependency analysis, and epigenetic sequencing to identify the candidate combination with CDK4/6 inhibitors. Mechanisms were investigated by bulk RNA-sequencing and experimental validation was conducted on diverse in vitro or in vivo preclinical GC models. RESULTS We found that the BRD4 inhibitor JQ1 augments the antitumor efficacy of the CDK4/6 inhibitor abemaciclib (ABE). Diverse in vitro and in vivo preclinical GC models are examined and synergistic benefits from the combination therapy are obtained consistently. Mechanistically, the combination of ABE and JQ1 enhances the cell cycle arrest of GC cells and induces unique characteristics of cellular senescence through the induction of DNA damage, which is revealed by transcriptomic profiling and further validated by substantial in vitro and in vivo GC models. CONCLUSION This study thus proposes a candidate combination therapy of ABE and JQ1 to improve the therapeutic efficacy and worth further investigation in clinical trials for GC.
Collapse
Affiliation(s)
- Mei Feng
- Division of General Surgery, Peking University First Hospital, Peking University, No. 8 Xi Shiku Street, Beijing, 100034, China
| | - Hao Xu
- Division of General Surgery, Peking University First Hospital, Peking University, No. 8 Xi Shiku Street, Beijing, 100034, China
| | - Wenyuan Zhou
- NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yisheng Pan
- Division of General Surgery, Peking University First Hospital, Peking University, No. 8 Xi Shiku Street, Beijing, 100034, China.
| |
Collapse
|
16
|
Lu Z, Zhong A, Liu H, Zhang M, Chen X, Pan X, Wang M, Deng X, Gao L, Zhao L, Wang J, Yang Y, Zhang Q, Wu B, Zheng J, Wang Y, Song X, Liu K, Zhang W, Chen X, Yang K, Chen X, Zhao Y, Zhao C, Wang Y, Chen L, Zhou Z, Hu J, Liu Y, Chen C. Dissecting the genetic and microenvironmental factors of gastric tumorigenesis in mice. Cell Rep 2022; 41:111482. [PMID: 36261019 DOI: 10.1016/j.celrep.2022.111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/21/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022] Open
Abstract
Gastric cancer (GC) is one of the most frequent and lethal malignancies in the world. However, our understanding of the mechanisms underlying its initiation and progression is limited. Here, we generate a series of primary GC models in mice with genome-edited gastric organoids, which elucidate the genetic drivers for sequential transformation from dysplasia to well-differentiated and poorly differentiated GC. Further, we find that the orthotopic GC, but not the subcutaneous GC even with the same genetic drivers, display remote metastasis, suggesting critical roles of the microenvironment in GC metastasis. Through single-cell RNA-seq analyses and functional studies, we show that the interaction between fibronectin 1 on stomach-specific macrophages and integrin a6β4 on GC cells promotes remote metastases. Taken together, our studies propose a strategy to model GC and dissect the genetic and microenvironmental factors driving the full-range gastric tumorigenesis.
Collapse
Affiliation(s)
- Zhenghao Lu
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ailing Zhong
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyu Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengsha Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuelan Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiangyu Pan
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Manli Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xintong Deng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Limin Gao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linyong Zhao
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qi Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Baohong Wu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianan Zheng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yigao Wang
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaohai Song
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kai Liu
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weihan Zhang
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaolong Chen
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kun Yang
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinzu Chen
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - YingLan Zhao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zongguang Zhou
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiankun Hu
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yu Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Chong Chen
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
17
|
Tian R, Sun Y, Han X, Wang J, Gu H, Wang W, Liang L. Identification and validation of prognostic autophagy-related genes associated with immune microenvironment in human gastric cancer. Aging (Albany NY) 2022; 14:7617-7634. [PMID: 36173625 PMCID: PMC9550254 DOI: 10.18632/aging.204313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 09/17/2022] [Indexed: 12/24/2022]
Abstract
Autophagy-related genes (ATGs) play critical roles in tumorigenesis and progression in gastric cancer (GC). The present study aimed to identify immune-based prognostic ATGs and verify their functions in tumor immune microenvironment (TIME) in GC. Macrophage infiltration was found to negatively correlate with prognosis in GC patients. After stratifying by infiltration levels of macrophages, we screened The Cancer Genome Atlas and Human Autophagy Database to identify the differentially expressed ATGs (DE-ATGs). Of 1,433 differentially expressed genes between the two groups, seven genes qualified as DE-ATGs. Of these, CXCR4, DLC1, and MAP1LC3C, exhibited strong prognostic prediction ability in Kaplan-Meier survival–log-rank test. High expression of these genes correlated with increased occurrence of advanced grade 3 tumors and poor prognoses. Furthermore, GSEA indicated that they were significantly associated with oncogenic and immune-related pathways. The comprehensive evaluation of TIME via GEPIA, ESTIMATE, CIBERSORT, and TIMER suggested that the three DE-ATGs were closely associated with immune condition, both in terms of immune cells and immune scores. Thus, the outcome of this study may aid in better understanding of the ATGs and their interaction with the immune microenvironment, which would allow the development of novel inhibitors, personalized treatment, and immunotherapy in gastric cancer.
Collapse
Affiliation(s)
- Ruyue Tian
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China.,Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Ya Sun
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Xuedi Han
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Jiajun Wang
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Hongli Gu
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Wenhai Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Lei Liang
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| |
Collapse
|
18
|
Xi W, Zhou C, Xu F, Sun D, Wang S, Chen Y, Ji J, Ma T, Wu J, Shangguan C, Zhu Z, Zhang J. Molecular evolutionary process of advanced gastric cancer during sequential chemotherapy detected by circulating tumor DNA. Lab Invest 2022; 20:365. [PMID: 35962408 PMCID: PMC9373478 DOI: 10.1186/s12967-022-03567-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Efficacy of conventional sequential chemotherapy paradigm for advanced gastric cancer (AGC) patients has largely plateaued. Dynamic molecular changes during and after sequential chemotherapy have not been fully delineated. We aimed to profile the molecular evolutionary process of AGC patients during sequential chemotherapy by next generation sequencing (NGS) of plasma circulating tumor DNA (ctDNA). METHODS A total of 30 chemo-naïve patients who were diagnosed with unresectable advanced or metastatic stomach adenocarcinoma were enrolled. All patients received sequential chemotherapy regimens following the clinical guideline. One hundred and eight serial peripheral blood samples were collected at baseline, radiographical assessment and disease progression. Plasma ctDNA was isolated and a customized NGS panel was used to detect the genomic features of ctDNA including single nucleotide variants (SNVs) and gene-level copy number variations (CNVs). KEGG pathway enrichment analysis was performed. RESULTS Platinum-based combination chemotherapy was administrated as first-line regimen. Objective response rate was 50% (15/30). Patients with higher baseline values of copy number instability (CNI), CNVs and variant allel frequency (VAF) were more sensitive to platinum-based first-line regimens. Tumor mutation burden (TMB), CNI and CNV burden at partial response and stable disease were significantly lower than those at baseline, where at progressive disease they recovered to baseline levels. Dynamic change of TMB (ΔTMB) was correlated with progression-free survival of first-line treatment. Fluctuating changes of SNVs and gene-level CNVs could be observed during sequential chemotherapy. Under the pressure of conventional chemotherapy, the number of novel gene-level CNVs were found to be higher than that of novel SNVs. Such novel molecular alterations could be enriched into multiple common oncologic signaling pathways, including EGFR tyrosine kinase inhibitor resistance and platinum drug resistance pathways, where their distributions were found to be highly heterogenous among patients. The impact of subsequent regimens, including paclitaxel-based and irinotecan-based regimens, on the molecular changes driven by first-line therapy was subtle. CONCLUSION Baseline and dynamic changes of genomic features of ctDNA could be biomarkers for predicting response of platinum-based first-line chemotherapy in AGC patients. After treatment with standard chemotherapy regimens, convergent oncologic pathway enrichment was identified, which is yet characterized by inter-patient heterogenous gene-level CNVs.
Collapse
Affiliation(s)
- Wenqi Xi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.,Department of Oncology, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No 197 Zhixian Road, Xinwu District, Wuxi, 214028, China
| | - Fei Xu
- Genecast Biotechnology Co., Ltd, Wuxi City, 214104, Jiangsu, China
| | - Debin Sun
- Genecast Biotechnology Co., Ltd, Wuxi City, 214104, Jiangsu, China
| | - Shengzhou Wang
- Genecast Biotechnology Co., Ltd, Wuxi City, 214104, Jiangsu, China
| | - Yawei Chen
- Genecast Biotechnology Co., Ltd, Wuxi City, 214104, Jiangsu, China
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Tao Ma
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Junwei Wu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.,Department of Oncology, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No 197 Zhixian Road, Xinwu District, Wuxi, 214028, China
| | - Chengfang Shangguan
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Zhenggang Zhu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China. .,Department of Oncology, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No 197 Zhixian Road, Xinwu District, Wuxi, 214028, China. .,State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
19
|
Xu W, Wang Z, Zhang Z, Xu J, Jiang Y. PIK3CB promotes oesophageal cancer proliferation through the PI3K/AKT/mTOR signalling axis. Cell Biol Int 2022; 46:1399-1408. [PMID: 35842767 DOI: 10.1002/cbin.11847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
PIK3CB is abnormally expressed in various carcinomas and affects the proliferation, invasion and drug resistance of cancer cells. However, its role in oesophageal squamous cell carcinoma (ESCC) is still unclear. In this study, PIK3CB was found to be highly expressed in ESCC tissues and cells and positively correlated with the poor prognosis of ESCC. Silencing PIK3CB inhibited the proliferation of ESCC cells, arrested the cell cycle, and promoted apoptosis. Mechanistic studies showed that the tumour-promoting effect of PIK3CB was achieved through PI3K/AKT/mTOR signalling pathway activation. Moreover, the high PIK3CB expression level in ESCC may be closely associated with the hypomethylation status of the gene promoter. In conclusion, PIK3CB promotes ESCC by activating the PI3K/AKT/mTOR signalling axis. PIK3CB may be a potential target in ESCC.
Collapse
Affiliation(s)
- Wei Xu
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhiqiang Wang
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhi Zhang
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing, China
| | - Jian Xu
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing, China
| | - Yuequan Jiang
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
20
|
Su PF, Yu JC. Progress in neoadjuvant therapy for gastric cancer (Review). Oncol Lett 2022; 23:172. [PMID: 35497934 PMCID: PMC9019865 DOI: 10.3892/ol.2022.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/28/2022] [Indexed: 02/03/2023] Open
Affiliation(s)
- Peng-Fei Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jian-Chun Yu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
21
|
Peng L, Peng JY, Cai DK, Qiu YT, Lan QS, Luo J, Yang B, Xie HT, Du ZP, Yuan XQ, Liu Y, Yin D. Immune Infiltration and Clinical Outcome of Super-Enhancer-Associated lncRNAs in Stomach Adenocarcinoma. Front Oncol 2022; 12:780493. [PMID: 35311149 PMCID: PMC8927879 DOI: 10.3389/fonc.2022.780493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Super-enhancers (SEs) comprise large clusters of enhancers that highly enhance gene expression. Long non-coding RNAs (lncRNAs) tend to be dysregulated in cases of stomach adenocarcinoma (STAD) and are vital for balancing tumor immunity. However, whether SE-associated lncRNAs play a role in the immune infiltration of STAD remains unknown. In the present study, we identified SE-associated lncRNAs in the H3K27ac ChIP-seq datasets from 11 tumor tissues and two cell lines. We found that the significantly dysregulated SE-associated lncRNAs were strongly correlated with immune cell infiltration through the application of six algorithms (ImmuncellAI, CIBERSORT, EPIC, quantiSeq, TIMER, and xCELL), as well as immunomodulators and chemokines. We found that the expression of SE-associated lncRNA TM4SF1-AS1 was negatively correlated with the proportion of CD8+ T cells present in STAD. TM4SF1-AS1 suppresses T cell-mediated immune killing function and predicts immune response to anti-PD1 therapy. ChIP-seq, Hi-C and luciferase assay results verified that TM4SF1-AS1 was regulated by its super-enhancer. RNA-seq data showed that TM4SF1-AS1 is involved in immune and cancer-related processes or pathways. In conclusion, SE-associated lncRNAs are involved in the tumor immune microenvironment and act as indicators of clinical outcomes in STAD. This study highlights the importance of SE-associated lncRNAs in the immune regulation of STAD.
Collapse
Affiliation(s)
- Li Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiang-Yun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dian-Kui Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun-Tan Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiu-Sheng Lan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Bing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hai-Tao Xie
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ze-Peng Du
- Central Laboratory, Department of Pathology, Shantou Central Hospital, Shantou, China
| | - Xiao-Qing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue Liu
- Institute of Digestive Disease of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Tan D, Zhang Y. Silencing of Nudix type 5 represses proliferation and invasion and enhances chemosensitivity of gastric carcinoma cells by affecting the AKT/GSK-3β/β-catenin pathway. Toxicol Appl Pharmacol 2022; 441:115968. [PMID: 35247377 DOI: 10.1016/j.taap.2022.115968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 01/01/2023]
Abstract
Nudix type 5 (NUDT5) has been recently identified as a new cancer-associated protein that is involved in numerous cancers. To date, the relationship between NUDT5 and gastric carcinoma has not been addressed. In the current research, we focused on exploring the potential relevance of NUDT5 in gastric carcinoma. The initial analysis of NUDT5 expression in gastric carcinoma by TCGA data revealed a clear increase in NUDT5 expression in tumor versus normal tissue. The increased expression of NUDT5 was also validated in the clinical specimens of gastric carcinoma by immunoblotting detection. Moreover, high NUDT5 levels predicted a poorer overall survival in gastric carcinoma patients. A series of cellular functional assays demonstrated that gastric carcinoma cells with silenced NUDT5 exhibited decreased proliferative and invasive ability, increased cell cycle arrest at the G0/G1 phase, and enhanced chemosensitivity. In-depth research showed that the silencing of NUDT5 led to a reduction in the activation of AKT and β-catenin. The reactivation of AKT blocked the repressive effect of NUDT5 silencing on β-catenin activation. The forced expression of β-catenin also reversed NUDT5-silencing-mediated anticancer effects. A Xenograft tumor assay confirmed the anticancer role of NUDT5 in gastric carcinoma in vivo. In short, these findings reveal elevated NUDT5 levels in gastric carcinoma and demonstrate that the inhibition of NUDT5 displays promising anticancer effects by affecting the AKT/β-catenin pathway. Thus, our work unveils a vital role of NUDT5 in gastric carcinoma and indicates it as a viable candidate target for anticancer drug discovery.
Collapse
Affiliation(s)
- Dong Tan
- Department of General Surgery, No. 215 Hospital of Shaanxi Nuclear Industry, No. 52 Weiyang West Road, Xianyang, Shaanxi 712000, PR China
| | - Yafei Zhang
- Department of Endoscopy, No. 215 Hospital of Shaanxi Nuclear Industry, No. 52 Weiyang West Road, Xianyang, Shaanxi 712000, China.
| |
Collapse
|
23
|
Mei Y, Feng X, Feng T, Yan M, Zhu Z, Li T, Zhu Z. Adjuvant Chemotherapy in pT2N0M0 Gastric Cancer: Findings From a Retrospective Study. Front Pharmacol 2022; 13:845261. [PMID: 35250596 PMCID: PMC8891981 DOI: 10.3389/fphar.2022.845261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: There is no global consensus on adjuvant chemotherapy (ACT) for pT2N0M0 gastric cancer. We conducted a retrospective study to reveal the role of ACT in such patients. Methods: Patients with pT2N0M0 gastric cancer who underwent radical resection with D2 lymphadenectomy for primary gastric cancer between January 2012 and May 2016 were included. Kaplan-Meier and Cox regression were used to evaluate overall survival (OS), disease-specific survival (DSS) and predictors of prognosis. Stratified analysis based on high-risk factors was conducted. Results: Of enrolled 307 patients, 111 patients underwent surgery alone and 196 patients received ACT. Surgery alone (HR = 2.913, 95% CI: 1.494-5.682, p = 0.002) and total gastrectomy (HR = 2.445, 95% CI: 1.279-4.675, p = 0.007) were independently associated with decreased OS. With the median follow-up of 73.1 months, the 5-year OS rate was 87.9% and 5-year DSS rate was 91.8%. Patients receiving ACT showed a better 5-year OS rate (92.9 vs. 79.3%, p < 0.001) and DSS rate (96.8 vs. 83.0%, p < 0.001) than patients underwent surgery alone. Patients receiving monotherapy (n = 130) had a relatively poor prognosis compared to patients receiving dual-drug (n = 66) without a significant difference (92.3 vs. 93.9%, p = 0.637). In patients without high-risk factors based on the Chinese Society of Clinical Oncology (CSCO) Guidelines, ACT also provided survival benefit (96.0 vs 82.9%, p = 0.038). Conclusions: ACT was accompanied with higher 5-year OS and DSS rates of patients with pT2N0M0 gastric cancer. Patients with pT2N0M0 gastric cancer, regardless of high-risk factors based on the CSCO guidelines, might be considered candidates for ACT. In regard to the therapy regimen, monotherapy might be the optimal choice, considering the adverse events.
Collapse
Affiliation(s)
- Yu Mei
- Department of General Surgery, Gastrointestinal Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xijia Feng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tienan Feng
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Yan
- Department of General Surgery, Gastrointestinal Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Department of General Surgery, Gastrointestinal Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Zhenglun Zhu
- Department of General Surgery, Gastrointestinal Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. Pioneering genomic studies, focusing largely on primary GCs, revealed driver alterations in genes such as ERBB2, FGFR2, TP53 and ARID1A as well as multiple molecular subtypes. However, clinical efforts targeting these alterations have produced variable results, hampered by complex co-alteration patterns in molecular profiles and intra-patient genomic heterogeneity. In this Review, we highlight foundational and translational advances in dissecting the genomic cartography of GC, including non-coding variants, epigenomic aberrations and transcriptomic alterations, and describe how these alterations interplay with environmental influences, germline factors and the tumour microenvironment. Mapping of these alterations over the GC life cycle in normal gastric tissues, metaplasia, primary carcinoma and distant metastasis will improve our understanding of biological mechanisms driving GC development and promoting cancer hallmarks. On the translational front, integrative genomic approaches are identifying diverse mechanisms of GC therapy resistance and emerging preclinical targets, enabled by technologies such as single-cell sequencing and liquid biopsies. Validating these insights will require specifically designed GC cohorts, converging multi-modal genomic data with longitudinal data on therapeutic challenges and patient outcomes. Genomic findings from these studies will facilitate 'next-generation' clinical initiatives in GC precision oncology and prevention.
Collapse
Affiliation(s)
- Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
| | - Patrick Tan
- Singapore Gastric Cancer Consortium, Singapore, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
25
|
Zhu M, Zhang P, Yu S, Tang C, Wang Y, Shen Z, Chen W, Liu T, Cui Y. Targeting ZFP64/GAL-1 axis promotes therapeutic effect of nab-paclitaxel and reverses immunosuppressive microenvironment in gastric cancer. J Exp Clin Cancer Res 2022; 41:14. [PMID: 34996504 PMCID: PMC8740411 DOI: 10.1186/s13046-021-02224-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/13/2021] [Indexed: 01/03/2023] Open
Abstract
Background Chemoresistance is a main obstacle in gastric cancer (GC) treatment, but its molecular mechanism still needs to be elucidated. Here, we aim to reveal the underlying mechanisms of nanoparticle albumin-bound paclitaxel (nab-paclitaxel) resistance in GC. Methods We performed RNA sequencing (RNA-seq) on samples from patients who were resistant or sensitive to nab-paclitaxel, and identified Zinc Finger Protein 64 (ZFP64) as critical for nab-paclitaxel resistance in GC. CCK8, flow cytometry, TUNEL staining, sphere formation assays were performed to investigate the effects of ZFP64 in vitro, while subcutaneous tumor formation models were established in nude mice or humanized mice to evaluate the biological roles of ZFP64 in vivo. Chromatin immunoprecipitation sequencing (CHIP-seq) and double-luciferase reporter gene assay were conducted to reveal the underlying mechanism of ZFP64. Results ZFP64 overexpression was linked with aggressive phenotypes, nab-paclitaxel resistance and served as an independent prognostic factor in GC. As a transcription factor, ZFP64 directly binds to Galectin-1 (GAL-1) promoter and promoted GAL-1 transcription, thus inducing stem-cell like phenotypes and immunosuppressive microenvironment in GC. Importantly, compared to treatment with nab-paclitaxel alone, nab-paclitaxel plus GAL-1 blockade significantly enhanced the anti-tumor effect in mouse models, particularly in humanized mice. Conclusions Our data support a pivotal role for ZFP64 in GC progression by simultaneously promoting cellular chemotherapy resistance and tumor immunosuppression. Treatment with the combination of nab-paclitaxel and a GAL-1 inhibitor might benefit a subgroup of GC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02224-x.
Collapse
Affiliation(s)
- Mengxuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Center of Evidence-based Medicine, Fudan University, Shanghai, China
| | - Pengfei Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Center of Evidence-based Medicine, Fudan University, Shanghai, China
| | - Shan Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng Tang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhenbin Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weidong Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Center of Evidence-based Medicine, Fudan University, Shanghai, China.
| | - Yuehong Cui
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Center of Evidence-based Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Xu G, Fan L, Zhao S, OuYang C. Neuronal pentraxin II (NPTX2) hypermethylation promotes cell proliferation but inhibits cell cycle arrest and apoptosis in gastric cancer cells by suppressing the p53 signaling pathway. Bioengineered 2021; 12:1311-1323. [PMID: 33896384 PMCID: PMC8806217 DOI: 10.1080/21655979.2021.1915658] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is a considerable health burden worldwide. DNA methylation, a major epigenetic phenomenon, is closely related to the pathogenesis of cancer. Neuronal pentraxin II (NPTX2) has been found to be hypermethylated in several cancers such as glioblastoma and pancreatic cancer. However, the roles of NPTX2 in gastric cancer have not been reported. To explore this issue, NPTX2 expression in gastric cancer cells was assessed by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). The methylation analysis of NPTX2 was performed by qRT-PCR as well as methylation-specific PCR (MS-PCR). The effects of NPTX2 on gastric cancer cell proliferation, apoptosis and cell cycle were detected by colony formation, CCK-8 and flow cytometry assays, respectively. The interaction of NPTX2 with the p53 signaling pathway was evaluated by western blot. Our study found the down-regulated expression of NPTX2 in gastric cancer cells compared with human gastric mucosal cells. In addition, the hypermethylation of NPTX2 was observed in gastric cancer cells, which was correlated with the low expression of NPTX2. Moreover, NPTX2 inhibited gastric cancer cell proliferation, inhibited apoptosis and induced cell cycle arrest. Furthermore, NPTX2 enhanced the protein expression of p53, p21 and PTEN to activate the p53 signaling pathway. Therefore, NPTX2 hypermethylation caused the downregulation of NPTX2 expression, which could promote cell proliferation, inhibit apoptosis and cause cell cycle arrest in gastric cancer cells by suppressing the p53 signaling pathway. Therefore, NPTX2 may be crucial for the progression of gastric cancer.
Collapse
Affiliation(s)
- Guofeng Xu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Linfeng Fan
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Shufeng Zhao
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Canhui OuYang
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| |
Collapse
|
27
|
Pellino A, Brignola S, Riello E, Niero M, Murgioni S, Guido M, Nappo F, Businello G, Sbaraglia M, Bergamo F, Spolverato G, Pucciarelli S, Merigliano S, Pilati P, Cavallin F, Realdon S, Farinati F, Dei Tos AP, Zagonel V, Lonardi S, Loupakis F, Fassan M. Association of CLDN18 Protein Expression with Clinicopathological Features and Prognosis in Advanced Gastric and Gastroesophageal Junction Adenocarcinomas. J Pers Med 2021; 11:1095. [PMID: 34834447 PMCID: PMC8624955 DOI: 10.3390/jpm11111095] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
The tight junction protein claudin-18 (CLDN18), is often expressed in various cancer types including gastric (GC) and gastroesophageal adenocarcinomas (GECs). In the last years, the isoform CLDN18.2 emerged as a potential drug target in metastatic GCs, leading to the development of monoclonal antibodies against this protein. CLDN18.2 is the dominant isoform of CLDN18 in normal gastric and gastric cancer tissues. In this work, we evaluated the immunohistochemical (IHC) profile of CLDN18 and its correlation with clinical and histopathological features including p53, E-cadherin, MSH2, MSH6, MLH1, PMS2, HER2, EBER and PD-L1 combined positive score, in a large real-world and mono-institutional series of advanced GCs (n = 280) and GECs (n = 70). The association of IHC results with survival outcomes was also investigated. High membranous CLDN18 expression (2+ and 3+ intensity ≥75%) was found in 117/350 (33.4%) samples analyzed. CLDN18 expression correlated with age <70 (p = 0.0035), positive EBV status (p = 0.002), high stage (III, IV) at diagnosis (p = 0.003), peritoneal involvement (p < 0.001) and lower incidence of liver metastases (p = 0.013). CLDN18 did not correlate with overall survival. The predictive value of response of CLDN18 to targeted agents is under investigation in several clinical trials and further studies will be needed to select patients who could benefit from these therapies.
Collapse
Affiliation(s)
- Antonio Pellino
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Stefano Brignola
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
- Department of Pathology, Azienda ULSS 2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Erika Riello
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
| | - Monia Niero
- Department of Pathology, Azienda ULSS 2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Sabina Murgioni
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Maria Guido
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
- Department of Pathology, Azienda ULSS 2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Floriana Nappo
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Gianluca Businello
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
| | - Marta Sbaraglia
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
| | - Francesca Bergamo
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Gaya Spolverato
- 1st Surgery Unit, Department of Surgical, Oncological, and Gastroenterological Sciences (DISCOG), University of Padua, 35122 Padua, Italy; (G.S.); (S.P.)
| | - Salvatore Pucciarelli
- 1st Surgery Unit, Department of Surgical, Oncological, and Gastroenterological Sciences (DISCOG), University of Padua, 35122 Padua, Italy; (G.S.); (S.P.)
| | - Stefano Merigliano
- 3rd Surgery Unit, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, 35122 Padua, Italy;
| | - Pierluigi Pilati
- Surgery Unit, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 31033 Castelfranco Veneto, Italy;
| | | | - Stefano Realdon
- Gastroenterology Unit, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy;
| | - Fabio Farinati
- Gastroenterology Unit, Department of Surgical, Oncological, and Gastroenterological Sciences (DISCOG), University of Padua, 35122 Padua, Italy;
| | - Angelo Paolo Dei Tos
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
| | - Vittorina Zagonel
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Sara Lonardi
- Oncology Unit 3, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy;
| | - Fotios Loupakis
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy
| |
Collapse
|
28
|
Klein S, Duda DG. Machine Learning for Future Subtyping of the Tumor Microenvironment of Gastro-Esophageal Adenocarcinomas. Cancers (Basel) 2021; 13:4919. [PMID: 34638408 PMCID: PMC8507866 DOI: 10.3390/cancers13194919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor progression involves an intricate interplay between malignant cells and their surrounding tumor microenvironment (TME) at specific sites. The TME is dynamic and is composed of stromal, parenchymal, and immune cells, which mediate cancer progression and therapy resistance. Evidence from preclinical and clinical studies revealed that TME targeting and reprogramming can be a promising approach to achieve anti-tumor effects in several cancers, including in GEA. Thus, it is of great interest to use modern technology to understand the relevant components of programming the TME. Here, we discuss the approach of machine learning, which recently gained increasing interest recently because of its ability to measure tumor parameters at the cellular level, reveal global features of relevance, and generate prognostic models. In this review, we discuss the relevant stromal composition of the TME in GEAs and discuss how they could be integrated. We also review the current progress in the application of machine learning in different medical disciplines that are relevant for the management and study of GEA.
Collapse
Affiliation(s)
- Sebastian Klein
- Gerhard-Domagk-Institute for Pathology, University Hospital Münster, 48149 Münster, Germany
- Institute for Pathology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Dan G. Duda
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02478, USA
| |
Collapse
|
29
|
Guo H, Li Y, Lin C, Cheng Y, Zhang Z, Wang D, Zhao X, Liu Y, Jing S, Yang P, Tian Y, Liu Y, Wang J, Zhao Q. Efficacy and safety of neoadjuvant chemoradiotherapy plus apatinib for patients with locally advanced, HER2-negative, Siewert's type II-III adenocarcinoma of esophagogastric junction: a single-arm, open-label, phase II trial. Am J Transl Res 2021; 13:9015-9023. [PMID: 34540013 PMCID: PMC8430131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the efficacy and safety of concurrent neoadjuvant chemoradiotherapy (CRT) plus apatinib in treating locally advanced, HER2-negative, Siewert's type II-III adenocarcinoma of esophagogastric junction (AEG) patients. Thirty eligible patients were analyzed in this single-arm, open-label, phase II trial. Patients received neoadjuvant regimen as follows: two cycles of apatinib (orally, 250 mg/day on day 1-28), two cycles of capecitabine (orally, 1,000 mg/m2 twice daily on day 1-14), oxaliplatin (intravenously, 130 mg/m2 on day 1), and concurrent radiotherapy (a total dose of 45 Gy in 25 fractions) started on day 1 of chemotherapy. Then, surgery was performed within 8-12 weeks after the completion of neoadjuvant therapy. This trial was registered on the ClinicalTrials.gov website (access number: NCT03349866). After neoadjuvant CRT plus apatinib treatment, 18 (60.0%) patients achieved objective response, 29 (96.7%) patients achieved disease control, and 20 (66.7%) patients achieved down-staging. Encouragingly, tumor regression grade (TRG) 0, TRG 1, TRG 2 and TRG 3 were observed in 33.3%, 20.0%, 30.0% and 10.0% patients, respectively; the pathological complete response rate was 33.3%, and the R0 resection rate was 93.3%. Regarding survivals, the 1-year and 2-year progression-free survival rates were 96.7% and 88.1%, respectively. Meanwhile, the 1-year and 2-year overall survival rates were 100.0% and 96.6%, respectively. As to safety, the majority of the adverse events were of mild grade, and the post-operative complications were manageable. In conclusion, neoadjuvant CRT plus apatinib exhibits high efficacy and acceptable tolerance in patients with locally advanced, HER2-negative, Siewert's type II-III AEG.
Collapse
Affiliation(s)
- Honghai Guo
- Department of Gastrointestinal Surgery, Fourth Hospital of Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Yong Li
- Department of Gastrointestinal Surgery, Fourth Hospital of Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical CenterOmaha, Nebraska, USA
| | - Yunjie Cheng
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Zhidong Zhang
- Department of Gastrointestinal Surgery, Fourth Hospital of Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Dong Wang
- Department of Gastrointestinal Surgery, Fourth Hospital of Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Xuefeng Zhao
- Department of Gastrointestinal Surgery, Fourth Hospital of Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Yu Liu
- Department of Gastrointestinal Surgery, Fourth Hospital of Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Shaowu Jing
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Peigang Yang
- Department of Gastrointestinal Surgery, Fourth Hospital of Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Fourth Hospital of Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Yang Liu
- Department of Gastrointestinal Surgery, Fourth Hospital of Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Jun Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Qun Zhao
- Department of Gastrointestinal Surgery, Fourth Hospital of Hebei Medical UniversityShijiazhuang, Hebei, China
| |
Collapse
|
30
|
Quaas A, Rehkaemper J, Rueschoff J, Pamuk A, Zander T, Hillmer A, Siemanowski J, Wittig J, Buettner R, Plum P, Popp F, Gebauer F, Bruns CJ, Loeser H, Alakus H, Schoemig-Markiefka B. Occurrence of High Microsatellite-Instability/Mismatch Repair Deficiency in Nearly 2,000 Human Adenocarcinomas of the Gastrointestinal Tract, Pancreas, and Bile Ducts: A Study From a Large German Comprehensive Cancer Center. Front Oncol 2021; 11:569475. [PMID: 34367937 PMCID: PMC8343401 DOI: 10.3389/fonc.2021.569475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/02/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Knowledge of the high microsatellite-instability (MSI-H)/mismatch repair deficiency (MMRd) status is of increasing interest for personalized neoadjuvant or adjuvant therapy planning. Only a few studies are available on MSI-H distribution in the Northern European Caucasian patient population. In this study, we focused on a large cohort of tumors of the upper gastrointestinal tract. MATERIALS AND METHODS Surgical material from a total of 1,965 patients was analyzed for MSI-H/MMRd status (including 1,267 carcinomas of the esophagus or stomach). All tumors were analyzed with an internationally recommended immunohistochemical panel consisting of four antibodies (MLH1, MSH2, PMS2, and MSH6). The results were molecularly objectified. RESULTS Adenocarcinomas with MSI-H/MMRd were detected with the following distribution: esophagus (1.4%), stomach (8.3%), small intestine (18.2%), large intestine (8.5%), intrahepatic bile ducts (1.9%), and pancreas (0%). In case of gastric tumors with MSI-H/MMRd, neoadjuvant therapy did not influence the prognosis of patients (p = 0.94). Within all tumor entities with MSI-H/MMRd, patients with a UICC stage 4 were also represented. In this advanced stage, 11.7% of patients with MSS tumors were diagnosed compared to 0.5% of patients with MSI-H tumors relative to the entire tumor collective. DISCUSSION In this study, the proportion of MSI-H/MMRd tumors in the stomach is smaller than would have been expected in knowledge of the data published by TCGA or AGRC. Negative prognostic effects regarding MSI-H status and neoadjuvant therapy as described by the MAGIC study group were not seen in our cohort. The extent to which the MSI-H/MMRd status should be known for neoadjuvant therapy planning must be clarified in prospective studies in the future. At present, there is no convincing data to dispense the neoadjuvant therapy for gastric carcinoma. Due to the very convincing, positive data regarding the response rates of MSI-H tumors to treatment with PD1/PD-L1 inhibitors, every metastatic carcinoma of the gastrointestinal tract should be tested for its MSI-H status.
Collapse
Affiliation(s)
- Alexander Quaas
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Jan Rehkaemper
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Josef Rueschoff
- Institute of Pathology, Nordhessen and Targos Molecular Pathology GmbH, Kassel, Germany
| | - Aylin Pamuk
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Cologne, Germany
| | - Thomas Zander
- Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany
| | - Axel Hillmer
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Janna Siemanowski
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Jana Wittig
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Reinhard Buettner
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Patrick Plum
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Cologne, Germany
| | - Felix Popp
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Cologne, Germany
| | - Florian Gebauer
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Cologne, Germany
| | | | - Heike Loeser
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Cologne, Germany
| | | |
Collapse
|
31
|
Cheng L, Huang S, Chen L, Dong X, Zhang L, Wu C, Ye K, Shao F, Zhu Z, Thorne RF. Research Progress of DCLK1 Inhibitors as Cancer Therapeutics. Curr Med Chem 2021; 29:2261-2273. [PMID: 34254905 DOI: 10.2174/0929867328666210709110721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/29/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Doublecortin-like kinase 1 (DCLK1) has emerged over the last decade as a unique stem cell marker within gastrointestinal tissues. Evidence from mouse models shows that high Dclk1 expression denotes a population of cells that promote tissue regeneration and serve as potential cancer stem cells. Moreover, since specific DCLK1 isoforms are overexpressed in many cancers and not normal cells, targeting the expression or kinase activity of DCLK1 can inhibit cancer cell growth. Here we review the evidence for DCLK1 as a prospective cancer target, including its isoform-specific expression and mutational status in human cancers. We further discuss the challenges and current progress in the development of small-molecule inhibitors of DCLK1.
Collapse
Affiliation(s)
- Linna Cheng
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Lijuan Chen
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Xiaoyan Dong
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Lei Zhang
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Chengye Wu
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Kaihong Ye
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, No.7, WeiWu Road, Zhengzhou, 450003, Henan, China
| | - Fengmin Shao
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, No.7, WeiWu Road, Zhengzhou, 450003, Henan, China
| | - Zunmin Zhu
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, No.7, WeiWu Road, Zhengzhou, 450003, Henan, China
| |
Collapse
|
32
|
Alvarez-Manceñido F, Jimenez-Fonseca P, Carmona-Bayonas A, Arrazubi V, Hernandez R, Cano JM, Custodio A, Pericay Pijaume C, Aguado G, Martínez Lago N, Sánchez Cánovas M, Cacho Lavin D, Visa L, Martinez-Torron A, Arias-Martinez A, López F, Limón ML, Vidal Tocino R, Fernández Montes A, Alsina M, Pimentel P, Reguera P, Martín Carnicero A, Ramchandani A, Granja M, Azkarate A, Martín Richard M, Serra O, Hernández Pérez C, Hurtado A, Gil-Negrete A, Sauri T, Morales Del Burgo P, Gallego J. Is advanced esophageal adenocarcinoma a distinct entity from intestinal subtype gastric cancer? Data from the AGAMENON-SEOM Registry. Gastric Cancer 2021; 24:926-936. [PMID: 33651195 DOI: 10.1007/s10120-021-01169-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Advanced esophageal adenocarcinoma (EAC) is generally treated similarly to advanced gastroesophageal junction (GEJ-AC) and gastric (GAC) adenocarcinomas, although GAC clinical trials rarely include EAC. This work sought to compare clinical characteristics and treatment outcomes of advanced EAC with those of GEJ-AC and GAC and examine prognostic factors. PATIENTS AND METHODS Participants comprised patients with advanced EAC, intestinal GEJ-AC, and GAC treated with platin and fluoropyrimidine (plus trastuzumab when HER2 status was positive). Overall and progression-free survival were estimated using the Kaplan-Meier method. Cox proportional hazards regression gauged the prognostic value of the AGAMENON model. RESULTS Between 2008 and 2019, 971 participants from the AGAMENON-SEOM registry were recruited at 35 centers. The sample included 67.3% GAC, 13.3% GEJ-AC, and 19.4% EAC. Pulmonary metastases were most common in EAC and peritoneal metastases in GAC. Median PFS and OS were 7.7 (95% CI 7.3-8.0) and 13.9 months (12.9-14.7). There was no difference in PFS or OS between HER2- and HER2+ tumors from the three locations (p > 0.05). Five covariates were found to be prognostic for the entire sample: ECOG-PS, histological grade, number of metastatic sites, NLR, and HER2+ tumors treated with trastuzumab. In EAC, the same variables were prognostic except for grade. The favorable prognosis for HER2+ cancers treated with trastuzumab was homogenous for all three subgroups (p = 0.351) and, after adjusting for the remaining covariates, no evidence supported primary tumor localization as a prognostic factor (p = 0.331). CONCLUSION Our study supports the hypothesis that EAC exhibits clinicopathological characteristics, prognostic factors, and treatment outcomes comparable to intestinal GEJ-AC and GAC.
Collapse
Affiliation(s)
- Felipe Alvarez-Manceñido
- Pharmacy Department, Hospital Universitario Central de Asturias, Avenida Roma s/n, 33011, Oviedo, Spain.
| | - Paula Jimenez-Fonseca
- Medical Oncology Department, Hospital Universitario Central de Asturias, ISPA, Oviedo, Spain
| | - Alberto Carmona-Bayonas
- Hematology and Medical Oncology Department, Hospital Universitario Morales Meseguer, University of Murcia, IMIB, Murcia, Spain
| | - Virginia Arrazubi
- Medical Oncology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Raquel Hernandez
- Medical Oncology Department, Hospital Universitario de Canarias, Tenerife, Spain
| | - Juana M Cano
- Medical Oncology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Ana Custodio
- Medical Oncology Department, Hospital Universitario La Paz, CIBERONC CB16/12/00398, Madrid, Spain
| | | | - Gema Aguado
- Medical Oncology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Nieves Martínez Lago
- Medical Oncology Department, Complejo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | - Manuel Sánchez Cánovas
- Hematology and Medical Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Diego Cacho Lavin
- Medical Oncology Department, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Laura Visa
- Medical Oncology Department, Hospital Universitario El Mar, Barcelona, Spain
| | - Alba Martinez-Torron
- Pharmacy Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Aranzazu Arias-Martinez
- Pharmacy Department, Hospital Universitario Central de Asturias, Avenida Roma s/n, 33011, Oviedo, Spain
| | - Flora López
- Medical Oncology Department, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - M Luisa Limón
- Medical Oncology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Rosario Vidal Tocino
- Medical Oncology Department, Complejo Asistencial Universitario de Salamanca-IBSAL, Salamanca, Spain
| | | | - Maria Alsina
- Medical Oncology Department, Hospital Universitario Vall d'Hebron, Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paola Pimentel
- Medical Oncology Department, Hospital General Universitario Santa Lucía, Cartagena, Spain
| | - Pablo Reguera
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Avinash Ramchandani
- Medical Oncology Department, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mónica Granja
- Medical Oncology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Aitor Azkarate
- Medical Oncology Department, Hospital Universitario Son Espases, Mallorca, Spain
| | - Marta Martín Richard
- Medical Oncology Department, Hospital Universitario Santa Creu i Sant Pau, Barcelona, Spain
| | - Olbia Serra
- Medical Oncology Department, Catalan Institute of Oncology, L'Hospitalet, Spain
| | - Carolina Hernández Pérez
- Medical Oncology Department, Hospital Universitario Nuestra Señora de la Candelaria, Tenerife, Spain
| | - Alicia Hurtado
- Medical Oncology Department, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - Aitziber Gil-Negrete
- Medical Oncology Department, Hospital Universitario Donostia, San Sebastián, Spain
| | - Tamara Sauri
- Medical Oncology Department, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | | | - Javier Gallego
- Medical Oncology Department, Hospital General Universitario de Elche, Elche, Spain
| |
Collapse
|
33
|
Ye ZS, Zheng M, Liu QY, Zeng Y, Wei SH, Wang Y, Lin ZT, Shu C, Zheng QH, Chen LC. Survival-associated alternative splicing events interact with the immune microenvironment in stomach adenocarcinoma. World J Gastroenterol 2021; 27:2871-2894. [PMID: 34135559 PMCID: PMC8173385 DOI: 10.3748/wjg.v27.i21.2871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) increases the diversity of mRNA during transcription; it might play a role in alteration of the immune microenvironment, which could influence the development of immunotherapeutic strategies against cancer.
AIM To obtain the transcriptomic and clinical features and AS events in stomach adenocarcinoma (STAD) from the database. The overall survival data associated with AS events were used to construct a signature prognostic model for STAD.
METHODS Differentially expressed immune-related genes were identified between subtypes on the basis of the prognostic model. In STAD, 2042 overall-survival-related AS events were significantly enriched in various pathways and influenced several cellular functions. Furthermore, the network of splicing factors and overall-survival-associated AS events indicated potential regulatory mechanisms underlying the AS events in STAD.
RESULTS An eleven-AS-signature prognostic model (CD44|14986|ES, PPHLN1|21214|AT, RASSF4|11351|ES, KIAA1147|82046|AP, PPP2R5D|76200|ES, LOH12CR1|20507|ES, CDKN3|27569|AP, UBA52|48486|AD, CADPS|65499|AT, SRSF7| 53276|RI, and WEE1|14328|AP) was constructed and significantly related to STAD overall survival, immune cells, and cancer-related pathways. The differentially expressed immune-related genes between the high- and low-risk score groups were significantly enriched in cancer-related pathways.
CONCLUSION This study provided an AS-related prognostic model, potential mechanisms for AS, and alterations in the immune microenvironment (immune cells, genes, and pathways) for future research in STAD.
Collapse
Affiliation(s)
- Zai-Sheng Ye
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, Fujian Province, China
| | - Miao Zheng
- Department of Clinical Laboratory, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Qin-Ying Liu
- Department of Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, Fujian Province, China
| | - Yi Zeng
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, Fujian Province, China
| | - Sheng-Hong Wei
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, Fujian Province, China
| | - Yi Wang
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, Fujian Province, China
| | - Zhi-Tao Lin
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, Fujian Province, China
| | - Chen Shu
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, Fujian Province, China
| | - Qiu-Hong Zheng
- Department of Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, Fujian Province, China
| | - Lu-Chuan Chen
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, Fujian Province, China
| |
Collapse
|
34
|
Nakamura Y, Shitara K, Lee J. The Right Treatment of the Right Patient: Integrating Genetic Profiling Into Clinical Decision Making in Advanced Gastric Cancer in Asia. Am Soc Clin Oncol Educ Book 2021; 41:1-8. [PMID: 34010049 DOI: 10.1200/edbk_321247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gastric cancer is a major global health burden, especially when patients are diagnosed with recurrent or metastatic gastric cancer. Despite recent advances in treatment options with palliative chemotherapy, the median overall survival of patients with gastric cancer remains within 1 or 2 years after the diagnosis of metastatic disease. Gastric cancer is significantly more prevalent in eastern Asia (e.g., Japan and Korea). Next-generation sequencing (NGS) is rapidly being adopted as part of clinical practice in Korea and Japan, especially in patients with gastric cancer. Approximately 10% to 15% of the patients with gastric cancer who undergo NGS of their tumor specimen are allocated to target-matched clinical trials in Japan and Korea. In Japan and Korea, a cell-free DNA NGS panel is also actively being investigated as an alternative NGS test for patients with gastric cancer, which may reflect the tumor heterogeneity of gastric cancer. In Japan and Korea, multiple biomarkers, such as HER2, mismatch repair, Epstein-Barr virus, PD-L1 (combined positive score), EGFR, FGFR2, and CLDN18.2, are routinely assessed through immunohistochemistry or in situ hybridization before initiation of the first-line treatment in all patients with gastric cancer. Most tertiary cancer centers in Korea routinely perform HER2, mismatch repair, Epstein-Barr virus, and PD-L1 NGS before palliative chemotherapy in patients with gastric cancer. Biomarker evaluation for all patients with metastatic gastric cancer enables clinicians to identify available biomarker-based clinical trials early during the course of treatment, which expands treatment opportunities while patients are medically fit for clinical trials, if available. Comprehensive genomic profiling using a tissue or circulating tumor DNA NGS panel is considered necessary during second-line or subsequent treatment. It is hoped that a comprehensive molecular profiling strategy will facilitate greater use of precision medicine through molecularly targeted therapies for patients with gastric cancer in the near future.
Collapse
Affiliation(s)
- Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.,Translational Research Support Section, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
35
|
Zhang M, Qi C, Wang Z, Chen H, Zhao X, Zhang X, Zhou Y, Gao C, Bai Y, Jia S, Ji J. Molecular characterization of ctDNA from Chinese patients with advanced gastric adenocarcinoma reveals actionable alterations for targeted and immune therapy. J Mol Med (Berl) 2021; 99:1311-1321. [PMID: 34057552 DOI: 10.1007/s00109-021-02093-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
Circulating tumor DNA (ctDNA) is considered an ideal sample type for genotyping patients with advanced unresectable cancer to inform treatment decision. It may better capture tumor heterogeneity, especially in gastric adenocarcinoma (GAC). However, there exists little evidence regarding genomic profiling of Chinese advanced GAC patients from ctDNA. Blood samples were obtained from 200 advanced GAC patients. Next-generation sequencing (NGS) was performed on ctDNA using a validated 150-gene panel. Blood tumor mutation burden (bTMB) was calculated according to the NGS results. Blood microsatellite instability (bMSI) status was determined by targeted sequencing of 100 microsatellite loci. One hundred sixty-nine (84.5%) patients carried at least one genomic alteration and 138 (69%) patients had at least one deleterious or likely deleterious alteration (del-alteration). The clonal fraction of del-alterations was higher than that of non-del-alterations (80.1% vs 54.5%, P < 0.0001). The most frequently altered genes were TP53 (38%), LRP1B (20%), MYC (13.5%), ERBB2 (12.5%), and KRAS (11.5%). The alterations were most enriched in the TP53/cell cycle (52%) and the RTK-Ras-MAPK pathway (51.5%). The median bTMB was two (range 0 to 42). Eight patients were identified to be high bMSI, with higher median bTMB than the blood microsatellite stable (bMSS) patients (15 vs 2, P = 0.0062). Patients harboring del-alterations of the DDR pathway had significantly higher percentages of high bTMB and bMSI-H patients than the wild-type subgroup (61.1% vs 6.5%, P < 0.0001; 33.3% vs 1.7%, P = 0.0002). A total of 45.5% cases harbored at least one potentially actionable alteration and one patient achieved complete response after receiving matched targeted therapy. Our study uncovered the molecular characterization of Chinese patients with advanced GAC from ctDNA, including genomic alteration, bTMB, and bMSI status. The findings suggested that targeted NGS-based ctDNA analysis may help inform the clinical decision in advanced GAC. KEY MESSAGES: We report the molecular profiling of the largest Chinese advance stage GACs cohort using a CLIA-certified ctDNA assay. Potentially actionable genomic alterations were identified in 45.5% of patients, suggesting clinical utility for ctDNA NGS in advance stage GACs. There was evidence of clinical benefit in one GAC patient with MET amplification treated with MET inhibitor.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Molecular Diagnostics, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, China
| | - Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Hui Chen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Xiaochen Zhao
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Xueming Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yifan Zhou
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Chan Gao
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yuezong Bai
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Shuqin Jia
- Department of Molecular Diagnostics, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, China.
| | - Jiafu Ji
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
36
|
Zheng L, Cao J, Liu L, Xu H, Chen L, Kang L, Gao L. Long noncoding RNA LINC00982 upregulates CTSF expression to inhibit gastric cancer progression via the transcription factor HEY1. Am J Physiol Gastrointest Liver Physiol 2021; 320:G816-G828. [PMID: 33236952 DOI: 10.1152/ajpgi.00209.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Upregulating the expression of long noncoding RNA LINC00982 controlled cell proliferation in gastric cancer, but the regulatory molecular mechanisms are yet to be expounded. We here aimed to elaborate how LINC00982 regulated the malignancy of gastric cancer cells. RT-qPCR and Western blot analysis were used to detect the expression of LINC00982 and cathepsin F (CTSF) in gastric cancer tissues and cells. Modulatory effect of LINC00982 on gastric cancer cells was assessed by CCK-8, colony formation, Transwell migration, and invasion assays. The relationship between LINC00982, YRPW motif 1 (HEY1), and CTSF was examined by RNA-binding protein immunoprecipitation, luciferase assay, and chromatin immunoprecipitation, and their interaction in the regulation of gastric cancer cellular functions was analyzed by performing gain-of-function and rescue assays. The nude mouse model of tumor formation was developed to examine the effects of LINC00982 on tumorigenesis. LINC00982 was lowly expressed in gastric cancer tissues, whereas its overexpression impaired the proliferative, migratory, and invasive properties of gastric cancer cells. Furthermore, LINC00982 could bind to transcription factor HEY1 and inhibited its expression. Through blocking the binding of HEY1 to CTSF promoter, LINC00982 promoted the expression of CTSF. Overexpression of HEY1 or inhibition of CTSF could reverse the antitumor effects of LINC00982 on gastric cancer, which were further demonstrated in vivo. All these taken together, LINC00982 acted as a tumor suppressor in gastric cancer, which is therefore suggested to be a potential antitumor target for gastric cancer.NEW & NOTEWORTHY We identified LINC00982 as a promising antitumor target for the treatment of patients with gastric cancer. We also determined a regulatory network involved in the pathophysiology of gastric cancer wherein LINC00982 could bind to HEY1 to impair its binding to cathepsin F (CTSF) promoter and hence promote CTSF expression, which aids in better understanding of molecular mechanisms related to gastric tumorigenesis.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Junlin Cao
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Lijie Liu
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Hongmei Xu
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Lanlan Chen
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Liying Kang
- Department of Oncology, Wuqing People's Hospital, Tianjin, China
| | - Liming Gao
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
37
|
Ricci AD, Rizzo A, Rojas Llimpe FL, Di Fabio F, De Biase D, Rihawi K. Novel HER2-Directed Treatments in Advanced Gastric Carcinoma: AnotHER Paradigm Shift? Cancers (Basel) 2021; 13:1664. [PMID: 33916206 PMCID: PMC8036476 DOI: 10.3390/cancers13071664] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/05/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed and/or amplified in approximately 15-20% of gastric adenocarcinoma (GC) patients. In 2010, the landmark ToGA trial established the combination of trastuzumab plus chemotherapy as the first-line standard of care for HER2-positive GC patients with advanced disease. However, subsequent studies on HER2 targeted therapies in this setting failed to meet their primary endpoints, and not all HER2-positive GC patients benefit from targeted approaches. More recently, novel HER2-directed treatments have been investigated, including trastuzumab deruxtecan (T-Dxd); following the results of the DESTINY-Gastric01 study, T-Dxd received its first U.S. Food and Drug Administration (FDA) approval on 15 January 2021 for the treatment of adults with unresectable, locally advanced, or metastatic GC who have received a prior trastuzumab-based regimen. In this review, we discuss the current HER2-targeted treatments for GC in the advanced disease setting, mainly focusing on emerging new treatments and future research directions.
Collapse
Affiliation(s)
- Angela Dalia Ricci
- Division of Oncology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (A.D.R.); (F.L.R.L.); (F.D.F.); (K.R.)
- Department of Experimental, Diagnostic & Specialty Medicine, Azienda Ospedaliero—Universitaria di Bologna, Via Massarenti 13, 40138 Bologna, Italy
| | - Alessandro Rizzo
- Division of Oncology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (A.D.R.); (F.L.R.L.); (F.D.F.); (K.R.)
- Department of Experimental, Diagnostic & Specialty Medicine, Azienda Ospedaliero—Universitaria di Bologna, Via Massarenti 13, 40138 Bologna, Italy
| | - Fabiola Lorena Rojas Llimpe
- Division of Oncology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (A.D.R.); (F.L.R.L.); (F.D.F.); (K.R.)
| | - Francesca Di Fabio
- Division of Oncology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (A.D.R.); (F.L.R.L.); (F.D.F.); (K.R.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40138 Bologna, Italy;
| | - Karim Rihawi
- Division of Oncology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (A.D.R.); (F.L.R.L.); (F.D.F.); (K.R.)
| |
Collapse
|
38
|
Quaas A, Pamuk A, Klein S, Quantius J, Rehkaemper J, Barutcu AG, Rueschoff J, Zander T, Gebauer F, Hillmer A, Buettner R, Schroeder W, Bruns CJ, Löser H, Schoemig-Markiefka B, Alakus H. Sex-specific prognostic effect of CD66b-positive tumor-infiltrating neutrophils (TANs) in gastric and esophageal adenocarcinoma. Gastric Cancer 2021; 24:1213-1226. [PMID: 34009535 PMCID: PMC8502159 DOI: 10.1007/s10120-021-01197-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumor-associated neutrophils (TANs) have recently been identified as a relevant component of the tumor microenvironment (TME) in solid tumors. Within the TME TANs mediate either tumor-promoting or tumor-inhibiting activities. So far, their prognostic relevance remains to be determined. This study aims to evaluate the prognostic relevance of TANs in different molecular subtypes of gastric and esophageal adenocarcinoma. METHODS We analyzed a total of 1118 Caucasian patients divided into gastric adenocarcinoma (n = 458) and esophageal adenocarcinoma cohort (n = 660) of primarily resected and neoadjuvant-treated individuals. The amount of CD66b + TANs in the tumor stroma was determined using quantitative image analysis and correlated to both molecular, as well as clinical data. RESULTS An accumulation of TANs in the tumor stroma of gastric carcinomas was associated to a significant favorable prognosis (p = 0.026). A subgroup analysis showed that this effect was primarily related to the molecular chromosomal instable subtype (CIN) of gastric carcinomas (p = 0.010). This was only observed in female patients (p = 0.014) but not in male patients (p = 0.315). The same sex-specific effect could be confirmed in adenocarcinomas of the esophagus (p = 0.027), as well as in female individuals after receiving neoadjuvant therapy (p = 0.034). CONCLUSIONS Together, we show a sex-specific prognostic effect of TANs in gastric cancer within a Caucasian cohort. For the first time, we showed that this sex-specific prognostic effect of TANs can also be seen in esophageal cancer.
Collapse
Affiliation(s)
- Alexander Quaas
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Aylin Pamuk
- grid.411097.a0000 0000 8852 305XDepartment of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Sebastian Klein
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Jennifer Quantius
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Jan Rehkaemper
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Atakan G. Barutcu
- grid.411097.a0000 0000 8852 305XDepartment of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Josef Rueschoff
- Institute of Pathology, Nordhessen and Targos Molecular Pathology GmbH, Kassel, Germany
| | - Thomas Zander
- grid.6190.e0000 0000 8580 3777Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Gastrointestinal Cancer Group Cologne GCGC, University of Cologne, Cologne, Germany
| | - Florian Gebauer
- grid.411097.a0000 0000 8852 305XDepartment of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Axel Hillmer
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Reinhard Buettner
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Wolfgang Schroeder
- grid.411097.a0000 0000 8852 305XDepartment of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Christiane J. Bruns
- grid.411097.a0000 0000 8852 305XDepartment of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Heike Löser
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Birgid Schoemig-Markiefka
- grid.411097.a0000 0000 8852 305XInstitute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Hakan Alakus
- grid.411097.a0000 0000 8852 305XDepartment of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
39
|
Precision Medicine to Treat Advanced Gastroesophageal Adenocarcinoma: A Work in Progress. J Clin Med 2020; 9:jcm9093049. [PMID: 32971757 PMCID: PMC7564841 DOI: 10.3390/jcm9093049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Gastroesophageal adenocarcinoma (GEA) represents a heterogeneous disease and, when diagnosed as locally advanced or metastatic, it is characterized by poor prognosis. During the last few years, several molecular classifications have been proposed to try to personalize treatment for those patients diagnosed with advanced disease. Nevertheless, despite the great effort, precision medicine is still far from being a reality. The improvement in the molecular analysis due to the application of high throughput technologies based on DNA and RNA sequencing has opened a novel scenario leading to the personalization of treatment. The possibility to target epidermal growth factor receptor (HER)2, Claudine, Fibroblast Growth Factor Receptors (FGFR), and other alterations with a molecular matched therapy could significantly improve clinical outcomes over advanced gastric cancer patients. On the other hand, the development of immunotherapy could also represent a promising strategy in a selected population. In this review, we sought to describe the novel pathways implicated in GEA progression and the results of the molecular matched therapies.
Collapse
|
40
|
Sugiyama T, Iwaizumi M, Taniguchi T, Suzuki S, Tani S, Yamade M, Hamaya Y, Osawa S, Furuta T, Miyajima H, Ohta T, Baba S, Sugimura H, Maekawa M, Sugimoto K. Microsatellite frameshift variants in SGO1 of gastric cancer are not always associated with MSI status. J Clin Pathol 2020; 74:jclinpath-2020-206934. [PMID: 32817265 DOI: 10.1136/jclinpath-2020-206934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
AIMS Although frameshift variants in the microsatellite area of shugoshin 1 (SGO1) have been reported in the context of microsatellite instability-high (MSI-H)/deficient mismatch repair gastrointestinal cancer, most have been evaluated only in early stage I-III patients, and only two of its five microsatellite regions have been evaluated. Therefore, we investigated the frequency and MSI status of microsatellite frameshift variants in gastric cancer cases, including stage IV. METHODS In a total of 55 cases, 30 gastric cancer resection and 25 non-resection cases, DNA was extracted from both tumour and normal parts and PCR was performed. The variant was confirmed by TA cloning, and MSI was evaluated using GeneMapper software. RESULTS A frameshift variant of c.973delA was observed in 16 of the 45 evaluable cases. Its frequency was 35.6%. Of the 25 cases that could be assessed for MSI status, two cases of MSI-H were associated with the c.973delA SGO1 variant. However, c.973delA SGO1 variant was also observed in four cases of microsatellite stable. CONCLUSION Our study shows that SGO1 frameshift variants are not always associated with MSI status.
Collapse
Affiliation(s)
- Tomohiro Sugiyama
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Moriya Iwaizumi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Terumi Taniguchi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Satoshi Suzuki
- Department of Endoscopic and Photodynamic Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shinya Tani
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Mihoko Yamade
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yasushi Hamaya
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Satoshi Osawa
- Department of Endoscopic and Photodynamic Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takahisa Furuta
- Center for Clinical Research, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroaki Miyajima
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tsutomu Ohta
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Shizuoka, Japan
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ken Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|