1
|
Tauch S, Kast B, Lohr S, Kemm L, Sator‐Schmitt M, Gengenbacher N, Augustin HG, Angel P. CAF Specific Expression of Podoplanin May Be Dispensable for the Malignancy of Malignant Melanoma. Mol Carcinog 2025; 64:215-220. [PMID: 39513649 PMCID: PMC11731424 DOI: 10.1002/mc.23841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Within the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) were shown to be an active and pivotal cell population, supporting many protumorigenic mechanisms. Podoplanin (PDPN)-positive CAFs are of special interest since their abundance correlated with a worse prognosis for patients of different cancer entities, including malignant melanoma. In this study, we applied a loss-of-function approach in an in vivo mouse melanoma model to evaluate the contribution of CAF-specific PDPN expression to melanoma formation and progression. Surprisingly, despite its prominent expression in CAFs deletion of PDPN in this cell type did neither affect the onset, nor growth of MM tumors. These data imply that PDPN expression in CAFs represents a biomarker for poor prognosis but does not serve as a useful target for stroma-directed therapy of malignant melanoma.
Collapse
Affiliation(s)
- Saskia Tauch
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Bettina Kast
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Sabrina Lohr
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Lowis Kemm
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Melanie Sator‐Schmitt
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Nicolas Gengenbacher
- Division of Vascular Oncology and MetastasisGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
- European Center for Angioscience (ECAS), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- DKFZ‐Hector Cancer InstituteUniversity Medical Centre MannheimMannheimGermany
| | - Hellmut G. Augustin
- Division of Vascular Oncology and MetastasisGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
- European Center for Angioscience (ECAS), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- DKFZ‐Hector Cancer InstituteUniversity Medical Centre MannheimMannheimGermany
| | - Peter Angel
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| |
Collapse
|
2
|
Li HX, Che L, Li Y, Wang TH, Min FD, Xu L, Wang M, Zheng ZX, Qu SN, Wang F, Tang W, Wei SJ, Sun YL, Zheng H, Yan T. Correlations between primary tumour location, biomarkers of inflammation and lung injury, and postoperative pulmonary complications in patients underwent laparoscopic colorectomy: a propensity score matched analysis of 300 patients. Front Immunol 2025; 16:1546167. [PMID: 39949769 PMCID: PMC11821553 DOI: 10.3389/fimmu.2025.1546167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction The impact of distinct primary colorectal cancer (CRC) sites on lung injury and complications remains largely unexplored, despite the palpable differences in surgical positions, procedures, and the resulting mechanically induced respiratory pressures at each site. Materials and methods This study employed a forwards-looking approach utilising the propensity score matching (PSM) method; 300 patients with pathological CRC after laparoscopic surgery from April 2019 to May 2023 were enrolled. Two categories were bifurcated based on their surgical locations: the rectosigmoid colon (RSC) group and the descending/ascending colon (DAC) group, with a 2:1 ratio. The occurrence of postoperative pulmonary complications (PPCs) within a 30-day postoperative period was meticulously evaluated. Additionally, assessments have been performed for plasma biomarkers of immune response dynamics and lung injury (plasma soluble advanced glycation end-product receptor [sRAGE], angiopoietin-2 [ANG-2], interleukin-1β/6 [IL-1β/IL-6]) and other parameters. Results Although the increase in postoperative lung epithelial damage, as indicated by the plasma sRAGE levels, was significant in the RSC group (DAC vs. RSC; 1029.6 [576.8-1365.2] vs. 1271.6 [896.3-1587.6]; odds ratio=0.999; 95% CI: 0.998 to 1.000; P=0.007), a significantly increased percentage of PPCs was observed in the DAC group (DAC vs. RSC; hazard ratio=1.669; 95% CI, 1.141 to 2.439; P=0.008). A univariate Cox proportional hazards model revealed that sRAGE, ANG-2, IL-1β, and IL-6 levels were not correlated with the incidence of time-to-PPCs across the two cohorts (P>0.05). Propensity score-weighted Cox regression and causal mediation analysis further demonstrated that the DAC site directly affected the incidence of PPCs, regardless of the other baseline confounders and clinical covariates related to the tumour site and PPCs. Conclusion The primary site of CRC is an independent predictor of the development of PPCs. Despite the steep Trendelenburg position of the RSC group inciting more pulmonary stress, inflammation and lung epithelial injury, as indicated by higher sRAGE, it demonstrated a lower PPCs occurrence relative to its DAC counterpart, with a slightly inclined or reversed Trendelenburg position. None of the plasma biomarkers of inflammation or lung injury indicated sufficient prognostic value for PPCs.
Collapse
Affiliation(s)
- Hui-xian Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Che
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Yuan Li
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tai-hang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang-di Min
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhao-xu Zheng
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shi-ning Qu
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Wang
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Tang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shi-jing Wei
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-lin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Zhou X, LeBleu VS, Fletcher-Sananikone E, Kim J, Dai J, Li B, Wu CC, Sugimoto H, Miyake T, Becker LM, Volpert OV, Lawson E, Espinosa Da Silva C, Patel SI, Kizu A, Ehsanipour EA, Sha D, Karam JA, McAndrews KM, Kalluri R. Vascular heterogeneity of tight junction Claudins guides organotropic metastasis. NATURE CANCER 2024; 5:1371-1389. [PMID: 39289595 PMCID: PMC11987010 DOI: 10.1038/s43018-024-00813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/23/2024] [Indexed: 09/19/2024]
Abstract
Carcinomas are associated with metastasis to specific organs while sparing others. Breast cancer presents with lung metastasis but rarely kidney metastasis. Using this difference as an example, we queried the mechanism(s) behind the proclivity for organ-specific metastasis. We used spontaneous and implant models of metastatic mammary carcinoma coupled with inflammatory tissue fibrosis, single-cell sequencing analyses and functional studies to unravel the causal determinants of organ-specific metastasis. Here we show that lung metastasis is facilitated by angiopoietin 2 (Ang2)-mediated suppression of lung-specific endothelial tight junction protein Claudin 5, which is augmented by the inflammatory fibrotic microenvironment and prevented by anti-Ang2 blocking antibodies, while kidney metastasis is prevented by non-Ang2-responsive Claudins 2 and 10. Suppression of Claudins 2 and 10 was sufficient to induce the emergence of kidney metastasis. This study illustrates the influence of organ-specific vascular heterogeneity in determining organotropic metastasis, independent of cancer cell-intrinsic mechanisms.
Collapse
Affiliation(s)
- Xunian Zhou
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerie S LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Eliot Fletcher-Sananikone
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiha Kim
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianli Dai
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingrui Li
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Toru Miyake
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa M Becker
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olga V Volpert
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erica Lawson
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Espinosa Da Silva
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah I Patel
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akane Kizu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ehsan A Ehsanipour
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Di Sha
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jose Antonio Karam
- Department of Urology, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Kuo HY, Khan KA, Kerbel RS. Antiangiogenic-immune-checkpoint inhibitor combinations: lessons from phase III clinical trials. Nat Rev Clin Oncol 2024; 21:468-482. [PMID: 38600370 DOI: 10.1038/s41571-024-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Antiangiogenic agents, generally antibodies or tyrosine-kinase inhibitors that target the VEGF-VEGFR pathway, are currently among the few combination partners clinically proven to improve the efficacy of immune-checkpoint inhibitors (ICIs). This benefit has been demonstrated in pivotal phase III trials across different cancer types, some with practice-changing results; however, numerous phase III trials have also had negative results. The rationale for using antiangiogenic drugs as partners for ICIs relies primarily on blocking the multiple immunosuppressive effects of VEGF and inducing several different vascular-modulating effects that can stimulate immunity, such as vascular normalization leading to increased intratumoural blood perfusion and flow, and inhibition of pro-apoptotic effects of endothelial cells on T cells, among others. Conversely, VEGF blockade can also cause changes that suppress antitumour immunity, such as increased tumour hypoxia, and reduced intratumoural ingress of co-administered ICIs. As a result, the net clinical benefits from antiangiogenic-ICI combinations will be determined by the balance between the opposing effects of VEGF signalling and its inhibition on the antitumour immune response. In this Perspective, we summarize the results from the currently completed phase III trials evaluating antiangiogenic agent-ICI combinations. We also discuss strategies to improve the efficacy of these combinations, focusing on aspects that include the deleterious functions of VEGF-VEGFR inhibition on antitumour immunity, vessel co-option as a driver of non-angiogenic tumour growth, clinical trial design, or the rationale for drug selection, dosing and scheduling.
Collapse
Affiliation(s)
- Hung-Yang Kuo
- Department of Oncology, National Taiwan University Hospital, and Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Karakousi T, Mudianto T, Lund AW. Lymphatic vessels in the age of cancer immunotherapy. Nat Rev Cancer 2024; 24:363-381. [PMID: 38605228 DOI: 10.1038/s41568-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Lymphatic transport maintains homeostatic health and is necessary for immune surveillance, and yet lymphatic growth is often associated with solid tumour development and dissemination. Although tumour-associated lymphatic remodelling and growth were initially presumed to simply expand a passive route for regional metastasis, emerging research puts lymphatic vessels and their active transport at the interface of metastasis, tumour-associated inflammation and systemic immune surveillance. Here, we discuss active mechanisms through which lymphatic vessels shape their transport function to influence peripheral tissue immunity and the current understanding of how tumour-associated lymphatic vessels may both augment and disrupt antitumour immune surveillance. We end by looking forward to emerging areas of interest in the field of cancer immunotherapy in which lymphatic vessels and their transport function are likely key players: the formation of tertiary lymphoid structures, immune surveillance in the central nervous system, the microbiome, obesity and ageing. The lessons learnt support a working framework that defines the lymphatic system as a key determinant of both local and systemic inflammatory networks and thereby a crucial player in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Triantafyllia Karakousi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
6
|
Meder L, Orschel CI, Otto CJ, Koker M, Brägelmann J, Ercanoglu MS, Dähling S, Compes A, Selenz C, Nill M, Dietlein F, Florin A, Eich ML, Borchmann S, Odenthal M, Blazquez R, Hilberg F, Klein F, Hallek M, Büttner R, Reinhardt HC, Ullrich RT. Blocking the angiopoietin-2-dependent integrin β-1 signaling axis abrogates small cell lung cancer invasion and metastasis. JCI Insight 2024; 9:e166402. [PMID: 38775153 PMCID: PMC11141935 DOI: 10.1172/jci.insight.166402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/05/2024] [Indexed: 06/02/2024] Open
Abstract
Small cell lung cancer (SCLC) is the most aggressive lung cancer entity with an extremely limited therapeutic outcome. Most patients are diagnosed at an extensive stage. However, the molecular mechanisms driving SCLC invasion and metastasis remain largely elusive. We used an autochthonous SCLC mouse model and matched samples from patients with primary and metastatic SCLC to investigate the molecular characteristics of tumor metastasis. We demonstrate that tumor cell invasion and liver metastasis in SCLC are triggered by an Angiopoietin-2 (ANG-2)/Integrin β-1-dependent pathway in tumor cells, mediated by focal adhesion kinase/Src kinase signaling. Strikingly, CRISPR-Cas9 KO of Integrin β-1 or blocking Integrin β-1 signaling by an anti-ANG-2 treatment abrogates liver metastasis formation in vivo. Interestingly, analysis of a unique collection of matched samples from patients with primary and metastatic SCLC confirmed a strong increase of Integrin β-1 in liver metastasis in comparison with the primary tumor. We further show that ANG-2 blockade combined with PD-1-targeted by anti-PD-1 treatment displays synergistic treatment effects in SCLC. Together, our data demonstrate a fundamental role of ANG-2/Integrin β-1 signaling in SCLC cells for tumor cell invasion and liver metastasis and provide a potentially new effective treatment strategy for patients with SCLC.
Collapse
Affiliation(s)
- Lydia Meder
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Faculty of Medicine, Department of Experimental Medicine 1, Erlangen, Germany
- Mildred Scheel School of Oncology and
| | - Charlotte Isabelle Orschel
- Mildred Scheel School of Oncology and
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Christoph Julius Otto
- Mildred Scheel School of Oncology and
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Mirjam Koker
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Johannes Brägelmann
- Mildred Scheel School of Oncology and
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of Translational Genomics and
| | - Meryem S. Ercanoglu
- Institute of Virology, Laboratory of Experimental Immunology, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
| | - Sabrina Dähling
- Institute of Virology, Laboratory of Experimental Immunology, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
| | - Anik Compes
- Mildred Scheel School of Oncology and
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Carolin Selenz
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marieke Nill
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Felix Dietlein
- Department of Medical Oncology, Dana-Faber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alexandra Florin
- Institute for Pathology, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
| | - Marie-Lisa Eich
- Institute for Pathology, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
| | - Sven Borchmann
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
- Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, Cologne, Germany
- German Hodgkin Study Group, Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute for Pathology, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
| | - Raquel Blazquez
- University Hospital Regensburg, Department of Internal Medicine III, Hematology and Medical Oncology, Regensburg, Germany
| | - Frank Hilberg
- Department of Pharmacology, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Florian Klein
- Institute of Virology, Laboratory of Experimental Immunology, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
| | - Reinhard Büttner
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute for Pathology, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
| | - H. Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, German Cancer Consortium (DKTK), Essen, Germany
| | - Roland T. Ullrich
- Mildred Scheel School of Oncology and
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine at the University Hospital Cologne, Cologne, Germany
| |
Collapse
|
7
|
Park HR, Shiva A, Cummings P, Kim S, Kim S, Lee E, Leong A, Chowdhury S, Shawber C, Carvajal R, Thurston G, An JY, Lund AW, Yang HW, Kim M. Angiopoietin-2-Dependent Spatial Vascular Destabilization Promotes T-cell Exclusion and Limits Immunotherapy in Melanoma. Cancer Res 2023; 83:1968-1983. [PMID: 37093870 PMCID: PMC10267677 DOI: 10.1158/0008-5472.can-22-2838] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
T-cell position in the tumor microenvironment determines the probability of target encounter and tumor killing. CD8+ T-cell exclusion from the tumor parenchyma is associated with poor response to immunotherapy, and yet the biology that underpins this distinct pattern remains unclear. Here we show that the vascular destabilizing factor angiopoietin-2 (ANGPT2) causes compromised vascular integrity in the tumor periphery, leading to impaired T-cell infiltration to the tumor core. The spatial regulation of ANGPT2 in whole tumor cross-sections was analyzed in conjunction with T-cell distribution, vascular integrity, and response to immunotherapy in syngeneic murine melanoma models. T-cell exclusion was associated with ANGPT2 upregulation and elevated vascular leakage at the periphery of human and murine melanomas. Both pharmacologic and genetic blockade of ANGPT2 promoted CD8+ T-cell infiltration into the tumor core, exerting antitumor effects. Importantly, the reversal of T-cell exclusion following ANGPT2 blockade not only enhanced response to anti-PD-1 immune checkpoint blockade therapy in immunogenic, therapy-responsive mouse melanomas, but it also rendered nonresponsive tumors susceptible to immunotherapy. Therapeutic response after ANGPT2 blockade, driven by improved CD8+ T-cell infiltration to the tumor core, coincided with spatial TIE2 signaling activation and increased vascular integrity at the tumor periphery where endothelial expression of adhesion molecules was reduced. These data highlight ANGPT2/TIE2 signaling as a key mediator of T-cell exclusion and a promising target to potentiate immune checkpoint blockade efficacy in melanoma. SIGNIFICANCE ANGPT2 limits the efficacy of immunotherapy by inducing vascular destabilization at the tumor periphery to promote T-cell exclusion.
Collapse
Affiliation(s)
- Ha-Ram Park
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Anahita Shiva
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Portia Cummings
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Seoyeon Kim
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Eunhyeong Lee
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Alessandra Leong
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Subrata Chowdhury
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Carrie Shawber
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - Richard Carvajal
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | | - Joon-Yong An
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Minah Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
8
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Korhonen EA, Murtomäki A, Jha SK, Anisimov A, Pink A, Zhang Y, Stritt S, Liaqat I, Stanczuk L, Alderfer L, Sun Z, Kapiainen E, Singh A, Sultan I, Lantta A, Leppänen VM, Eklund L, He Y, Augustin HG, Vaahtomeri K, Saharinen P, Mäkinen T, Alitalo K. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell surface expression. J Clin Invest 2022; 132:155478. [PMID: 35763346 PMCID: PMC9337826 DOI: 10.1172/jci155478] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular endothelial growth factor C (VEGF-C) induces lymphangiogenesis via VEGF receptor 3 (VEGFR3), which is encoded by the most frequently mutated gene in human primary lymphedema. Angiopoietins (Angs) and their Tie receptors regulate lymphatic vessel development, and mutations of the ANGPT2 gene were recently found in human primary lymphedema. However, the mechanistic basis of Ang2 activity in lymphangiogenesis is not fully understood. Here, we used gene deletion, blocking Abs, transgene induction, and gene transfer to study how Ang2, its Tie2 receptor, and Tie1 regulate lymphatic vessels. We discovered that VEGF-C–induced Ang2 secretion from lymphatic endothelial cells (LECs) was involved in full Akt activation downstream of phosphoinositide 3 kinase (PI3K). Neonatal deletion of genes encoding the Tie receptors or Ang2 in LECs, or administration of an Ang2-blocking Ab decreased VEGFR3 presentation on LECs and inhibited lymphangiogenesis. A similar effect was observed in LECs upon deletion of the PI3K catalytic p110α subunit or with small-molecule inhibition of a constitutively active PI3K located downstream of Ang2. Deletion of Tie receptors or blockade of Ang2 decreased VEGF-C–induced lymphangiogenesis also in adult mice. Our results reveal an important crosstalk between the VEGF-C and Ang signaling pathways and suggest new avenues for therapeutic manipulation of lymphangiogenesis by targeting Ang2/Tie/PI3K signaling.
Collapse
Affiliation(s)
- Emilia A Korhonen
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Aino Murtomäki
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Sawan Kumar Jha
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Andrey Anisimov
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Anne Pink
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Yan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Inam Liaqat
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Lukas Stanczuk
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Laura Alderfer
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Zhiliang Sun
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Emmi Kapiainen
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular, University of Oulu, Oulu, Finland
| | - Abhishek Singh
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular, University of Oulu, Oulu, Finland
| | - Ibrahim Sultan
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Anni Lantta
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Leppänen
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Lauri Eklund
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular, University of Oulu, Oulu, Finland
| | - Yulong He
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg, Germany
| | - Kari Vaahtomeri
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Pipsa Saharinen
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Jakab M, Rostalski T, Lee KH, Mogler C, Augustin HG. Tie2 Receptor in Tumor-Infiltrating Macrophages Is Dispensable for Tumor Angiogenesis and Tumor Relapse after Chemotherapy. Cancer Res 2022; 82:1353-1364. [PMID: 35373291 PMCID: PMC9762345 DOI: 10.1158/0008-5472.can-21-3181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/05/2021] [Accepted: 01/18/2022] [Indexed: 01/07/2023]
Abstract
Tumor relapse after chemotherapy relies on the reconstruction of damaged tumor vasculature. In this context, proangiogenic Tie2-expressing macrophages have been suggested to serve as crucial instructors of tumor revascularization by secreting angiogenic factors while being closely associated with the vessel wall. Although the proangiogenic nature of Tie2+ macrophages is well described, the functional contribution of macrophage Tie2 expression remains elusive. Here, we employed a Cre-loxP system to specifically delete Tie2 in macrophages. In multiple syngeneic solid tumor models and two distinct chemotherapeutic treatment regimens, macrophage-expressed Tie2 did not contribute to primary tumor growth, tumor revascularization after chemotherapy, tumor recurrence, or metastasis. Exposing cultured murine macrophage cell lines and bone marrow-derived macrophages to hypoxia or stimulating them with Ang2 did not induce expression of Tie2 at the RNA or protein level. Furthermore, a comprehensive meta-analysis of publicly available single cell RNA sequencing datasets of human and murine tumor-infiltrating CD11b+ myeloid cells did not reveal a transcriptionally distinct macrophage population marked by the expression of Tie2. Collectively, these data question the previously reported critical role of Tie2-expressing macrophages for tumor angiogenesis and tumor relapse after chemotherapy. Moreover, lack of Tie2 inducibility and absence of Tie2-positive macrophages in multiple recently published tumor studies refute a possible prognostic value of macrophage-expressed Tie2. SIGNIFICANCE Multiple preclinical tumor models, cell stimulation experiments, and meta-analysis of published tumor single cell RNA sequencing data challenge the reported role of Tie2-positive macrophages for tumor angiogenesis, metastasis, and relapse after chemotherapy. See related commentary by Zhang and Brekken, p. 1172.
Collapse
Affiliation(s)
- Moritz Jakab
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Till Rostalski
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Ki Hong Lee
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Munich, Germany
| | - Hellmut G. Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| |
Collapse
|
11
|
Jo G, Bae J, Hong HJ, Han AR, Kim DK, Hong SP, Kim JA, Lee S, Koh GY, Kim HM. Structural insights into the clustering and activation of Tie2 receptor mediated by Tie2 agonistic antibody. Nat Commun 2021; 12:6287. [PMID: 34725372 PMCID: PMC8560823 DOI: 10.1038/s41467-021-26620-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 10/15/2021] [Indexed: 01/09/2023] Open
Abstract
Angiopoietin (Angpt)-Tie receptor 2 (Tie2) plays key roles in vascular development and homeostasis as well as pathological vascular remodeling. Therefore, Tie2-agonistic antibody and engineered Angpt1 variants have been developed as potential therapeutics for ischemic and inflammatory vascular diseases. However, their underlying mechanisms for Tie2 clustering and activation remain elusive and the poor manufacturability and stability of Angpt1 variants limit their clinical application. Here, we develop a human Tie2-agonistic antibody (hTAAB), which targets the membrane proximal fibronectin type III domain of Tie2 distinct from the Angpt-binding site. Our Tie2/hTAAB complex structures reveal that hTAAB tethers the preformed Tie2 homodimers into polygonal assemblies through specific binding to Tie2 Fn3 domain. Notably, the polygonal Tie2 clustering induced by hTAAB is critical for Tie2 activation and are resistant to antagonism by Angpt2. Our results provide insight into the molecular mechanism of Tie2 clustering and activation mediated by hTAAB, and the structure-based humanization of hTAAB creates a potential clinical application.
Collapse
Affiliation(s)
- Gyunghee Jo
- grid.37172.300000 0001 2292 0500Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea ,grid.410720.00000 0004 1784 4496Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126 Republic of Korea
| | - Jeomil Bae
- grid.410720.00000 0004 1784 4496Center for Vascular Research, IBS, Daejeon, 34141 Republic of Korea
| | - Ho Jeong Hong
- grid.410720.00000 0004 1784 4496Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126 Republic of Korea
| | - Ah-reum Han
- grid.410720.00000 0004 1784 4496Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126 Republic of Korea
| | - Do-Kyun Kim
- grid.410720.00000 0004 1784 4496Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126 Republic of Korea
| | - Seon Pyo Hong
- grid.410720.00000 0004 1784 4496Center for Vascular Research, IBS, Daejeon, 34141 Republic of Korea
| | - Jung A Kim
- grid.37172.300000 0001 2292 0500Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Sangkyu Lee
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, IBS, Daejeon, 34126 Republic of Korea
| | - Gou Young Koh
- grid.37172.300000 0001 2292 0500Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea ,grid.410720.00000 0004 1784 4496Center for Vascular Research, IBS, Daejeon, 34141 Republic of Korea
| | - Ho Min Kim
- grid.37172.300000 0001 2292 0500Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea ,grid.410720.00000 0004 1784 4496Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126 Republic of Korea
| |
Collapse
|
12
|
Akwii RG, Mikelis CM. Targeting the Angiopoietin/Tie Pathway: Prospects for Treatment of Retinal and Respiratory Disorders. Drugs 2021; 81:1731-1749. [PMID: 34586603 PMCID: PMC8479497 DOI: 10.1007/s40265-021-01605-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 12/21/2022]
Abstract
Anti-angiogenic approaches have significantly advanced the treatment of vascular-related pathologies. The ephemeral outcome and known side effects of the current vascular endothelial growth factor (VEGF)-based anti-angiogenic treatments have intensified research on other growth factors. The angiopoietin/Tie (Ang/Tie) family has an established role in vascular physiology and regulates angiogenesis, vascular permeability, and inflammatory responses. The Ang/Tie family consists of angiopoietins 1-4, their receptors, tie1 and 2 and the vascular endothelial-protein tyrosine phosphatase (VE-PTP). Modulation of Tie2 activation has provided a promising outcome in preclinical models and has led to clinical trials of Ang/Tie-targeting drug candidates for retinal disorders. Although less is known about the role of Ang/Tie in pulmonary disorders, several studies have revealed great potential of the Ang/Tie family members as drug targets for pulmonary vascular disorders as well. In this review, we summarize the functions of the Ang/Tie pathway in retinal and pulmonary vascular physiology and relevant disorders and highlight promising drug candidates targeting this pathway currently being or expected to be under clinical evaluation for retinal and pulmonary vascular disorders.
Collapse
Affiliation(s)
- Racheal Grace Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter St., Amarillo, TX, 79106, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter St., Amarillo, TX, 79106, USA.
| |
Collapse
|
13
|
Fujimoto N, Dieterich LC. Mechanisms and Clinical Significance of Tumor Lymphatic Invasion. Cells 2021; 10:cells10102585. [PMID: 34685565 PMCID: PMC8533989 DOI: 10.3390/cells10102585] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor-associated lymphatic vessels play an important role in tumor progression, mediating lymphatic dissemination of malignant cells to tumor-draining lymph nodes and regulating tumor immunity. An early, necessary step in the lymphatic metastasis cascade is the invasion of lymphatic vessels by tumor cell clusters or single tumor cells. In this review, we discuss our current understanding of the underlying cellular and molecular mechanisms, which include tumor-specific as well as normal, developmental and immunological processes “hijacked” by tumor cells to gain access to the lymphatic system. Furthermore, we summarize the prognostic value of lymphatic invasion, discuss its relationship with local recurrence, lymph node and distant metastasis, and highlight potential therapeutic options and challenges.
Collapse
Affiliation(s)
- Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Otsu 520-2192, Japan;
| | - Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
14
|
Yang H, Zhang M, Mao XY, Chang H, Perez-Losada J, Mao JH. Distinct Clinical Impact and Biological Function of Angiopoietin and Angiopoietin-like Proteins in Human Breast Cancer. Cells 2021; 10:2590. [PMID: 34685578 PMCID: PMC8534176 DOI: 10.3390/cells10102590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/16/2022] Open
Abstract
Secreted angiopoietin/angiopoietin-like (ANGPT/ANGPTL) proteins are involved in many biological processes. However, the role of these proteins in human breast cancers (BCs) remains largely unclear. Here, we conducted integrated omics analyses to evaluate the clinical impact of ANGPT/ANGPTL proteins and to elucidate their biological functions. In BCs, we identified rare mutations in ANGPT/ANGPTL genes, frequent gains of ANGPT1, ANGPT4, and ANGPTL1, and frequent losses of ANGPT2, ANGPTL5, and ANGPTL7, but observed that ANGPTL1, 2, and 4 were robustly downregulated in multiple datasets. The expression levels of ANGPTL1, 5, and 8 were positively correlated with overall survival (OS), while the expression levels of ANGPTL4 were negatively correlated with OS. Additionally, the expression levels of ANGPTL1 and 7 were positively correlated with distant metastasis-free survival (DMFS), while the expression levels of ANGPT2 and ANGPTL4 were negatively correlated with DMFS. The prognostic impacts of ANGPT/ANGPTL genes depended on the molecular subtypes and on clinical factors. We discovered that various ANGPT/ANGPTL genes were co-expressed with various genes involved in different pathways. Finally, with the exception of ANGPTL3, the remaining genes showed significant correlations with cancer-associated fibroblasts, endothelial cells, and microenvironment score, whereas only ANGPTL6 was significantly correlated with immune score. Our findings provide strong evidence for the distinct clinical impact and biological function of ANGPT/ANGPTL proteins, but the question of whether some of them could be potential therapeutic targets still needs further investigation in BCs.
Collapse
Affiliation(s)
- Hui Yang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (H.Y.); (M.Z.); (X.-Y.M.); (H.C.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Centre, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Melody Zhang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (H.Y.); (M.Z.); (X.-Y.M.); (H.C.)
- Undergraduate Program at Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xuan-Yu Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (H.Y.); (M.Z.); (X.-Y.M.); (H.C.)
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (H.Y.); (M.Z.); (X.-Y.M.); (H.C.)
| | - Jesus Perez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (H.Y.); (M.Z.); (X.-Y.M.); (H.C.)
| |
Collapse
|
15
|
Singhal M, Gengenbacher N, Pari AAA, Kamiyama M, Hai L, Kuhn BJ, Kallenberg DM, Kulkarni SR, Camilli C, Preuß SF, Leuchs B, Mogler C, Espinet E, Besemfelder E, Heide D, Heikenwalder M, Sprick MR, Trumpp A, Krijgsveld J, Schlesner M, Hu J, Moss SE, Greenwood J, Augustin HG. Temporal multi-omics identifies LRG1 as a vascular niche instructor of metastasis. Sci Transl Med 2021; 13:eabe6805. [PMID: 34516824 PMCID: PMC7614902 DOI: 10.1126/scitranslmed.abe6805] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metastasis is the primary cause of cancer-related mortality. Tumor cell interactions with cells of the vessel wall are decisive and potentially rate-limiting for metastasis. The molecular nature of this cross-talk is, beyond candidate gene approaches, hitherto poorly understood. Using endothelial cell (EC) bulk and single-cell transcriptomics in combination with serum proteomics, we traced the evolution of the metastatic vascular niche in surgical models of lung metastasis. Temporal multiomics revealed that primary tumors systemically reprogram the body’s vascular endothelium to perturb homeostasis and to precondition the vascular niche for metastatic growth. The vasculature with its enormous surface thereby serves as amplifier of tumor-induced instructive signals. Comparative analysis of lung EC gene expression and secretome identified the transforming growth factor–β (TGFβ) pathway specifier LRG1, leucine-rich alpha-2-glycoprotein 1, as an early instructor of metastasis. In the presence of a primary tumor, ECs systemically up-regulated LRG1 in a signal transducer and activator of transcription 3 (STAT3)–dependent manner. A meta-analysis of retrospective clinical studies revealed a corresponding up-regulation of LRG1 concentrations in the serum of patients with cancer. Functionally, systemic up-regulation of LRG1 promoted metastasis in mice by increasing the number of prometastatic neural/glial antigen 2 (NG2)+ perivascular cells. In turn, genetic deletion of Lrg1 hampered growth of lung metastasis. Postsurgical adjuvant administration of an LRG1-neutralizing antibody delayed metastatic growth and increased overall survival. This study has established a systems map of early primary tumor-induced vascular changes and identified LRG1 as a therapeutic target for metastasis.
Collapse
Affiliation(s)
- Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Nicolas Gengenbacher
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Ashik Ahmed Abdul Pari
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Miki Kamiyama
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Ling Hai
- Junior Group Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Bianca J. Kuhn
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Divison of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David M. Kallenberg
- Department of Cell Biology, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Shubhada R. Kulkarni
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Carlotta Camilli
- Department of Cell Biology, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Stephanie F. Preuß
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Barbara Leuchs
- Vector Development & Production Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, 81675 Munich, Germany
| | - Elisa Espinet
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Divison of Stem Cells and Cancer, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Eva Besemfelder
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martin R. Sprick
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Divison of Stem Cells and Cancer, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Divison of Stem Cells and Cancer, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- German Cancer Consortium, 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Divison of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Schlesner
- Junior Group Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Biomedical Informatics, Data Mining and Data Analytics, Augsburg University, 86159 Augsburg, Germany
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Stephen E. Moss
- Department of Cell Biology, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - John Greenwood
- Department of Cell Biology, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Hellmut G. Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Cancer Consortium, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Martinez-Usatorre A, Kadioglu E, Boivin G, Cianciaruso C, Guichard A, Torchia B, Zangger N, Nassiri S, Keklikoglou I, Schmittnaegel M, Ries CH, Meylan E, De Palma M. Overcoming microenvironmental resistance to PD-1 blockade in genetically engineered lung cancer models. Sci Transl Med 2021; 13:13/606/eabd1616. [PMID: 34380768 DOI: 10.1126/scitranslmed.abd1616] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Immune checkpoint blockade (ICB) with PD-1 or PD-L1 antibodies has been approved for the treatment of non-small cell lung cancer (NSCLC). However, only a minority of patients respond, and sustained remissions are rare. Both chemotherapy and antiangiogenic drugs may improve the efficacy of ICB in mouse tumor models and patients with cancer. Here, we used genetically engineered mouse models of Kras G12D/+;p53 -/- NSCLC, including a mismatch repair-deficient variant (Kras G12D/+;p53 -/-;Msh2 -/-) with higher mutational burden, and longitudinal imaging to study tumor response and resistance to combinations of ICB, antiangiogenic therapy, and chemotherapy. Antiangiogenic blockade of vascular endothelial growth factor A and angiopoietin-2 markedly slowed progression of autochthonous lung tumors, but contrary to findings in other cancer types, addition of a PD-1 or PD-L1 antibody was not beneficial and even accelerated progression of a fraction of the tumors. We found that antiangiogenic treatment facilitated tumor infiltration by PD-1+ regulatory T cells (Tregs), which were more efficiently targeted by the PD-1 antibody than CD8+ T cells. Both tumor-associated macrophages (TAMs) of monocyte origin, which are colony-stimulating factor 1 receptor (CSF1R) dependent, and TAMs of alveolar origin, which are sensitive to cisplatin, contributed to establish a transforming growth factor-β-rich tumor microenvironment that supported PD-1+ Tregs Dual TAM targeting with a combination of a CSF1R inhibitor and cisplatin abated Tregs, redirected the PD-1 antibody to CD8+ T cells, and improved the efficacy of antiangiogenic immunotherapy, achieving regression of most tumors.
Collapse
Affiliation(s)
- Amaia Martinez-Usatorre
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Ece Kadioglu
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gael Boivin
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Chiara Cianciaruso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Alan Guichard
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Bruno Torchia
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Nadine Zangger
- Bioinformatics Core Facility (BCF), SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Sina Nassiri
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Agora Cancer Research Center, 1011 Lausanne, Switzerland.,Bioinformatics Core Facility (BCF), SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Ioanna Keklikoglou
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Martina Schmittnaegel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Roche Innovation Center Munich, Oncology Discovery, Pharma Research and Early Development, 82377 Penzberg, Germany
| | - Carola H Ries
- Roche Innovation Center Munich, Oncology Discovery, Pharma Research and Early Development, 82377 Penzberg, Germany
| | - Etienne Meylan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland. .,Agora Cancer Research Center, 1011 Lausanne, Switzerland
| |
Collapse
|
17
|
Khan KA, Wu FTH, Cruz‐Munoz W, Kerbel RS. Ang2 inhibitors and Tie2 activators: potential therapeutics in perioperative treatment of early stage cancer. EMBO Mol Med 2021; 13:e08253. [PMID: 34125494 PMCID: PMC8261516 DOI: 10.15252/emmm.201708253] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Anti-angiogenic drugs targeting the VEGF pathway are most effective in advanced metastatic disease settings of certain types of cancers, whereas they have been unsuccessful as adjuvant therapies of micrometastatic disease in numerous phase III trials involving early-stage (resectable) cancers. Newer investigational anti-angiogenic drugs have been designed to inhibit the Angiopoietin (Ang)-Tie pathway. Acting through Tie2 receptors, the Ang1 ligand is a gatekeeper of endothelial quiescence. Ang2 is a dynamically expressed pro-angiogenic destabilizer of endothelium, and its upregulation is associated with poor prognosis in cancer. Besides using Ang2 blockers as inhibitors of tumor angiogenesis, little attention has been paid to their use as stabilizers of blood vessels to suppress tumor cell extravasation and metastasis. In clinical trials, Ang2 blockers have shown limited efficacy in advanced metastatic disease settings. This review summarizes preclinical evidence suggesting the potential utility of Ang2 inhibitors or Tie2 activators as neoadjuvant or adjuvant therapies in the prevention or treatment of early-stage micrometastatic disease. We further discuss the rationale and potential of combining these strategies with immunotherapy, including immune checkpoint targeting antibodies.
Collapse
Affiliation(s)
- Kabir A Khan
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - Florence TH Wu
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - William Cruz‐Munoz
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - Robert S Kerbel
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| |
Collapse
|
18
|
Control of Tumor Progression by Angiocrine Factors. Cancers (Basel) 2021; 13:cancers13112610. [PMID: 34073394 PMCID: PMC8198241 DOI: 10.3390/cancers13112610] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor progression, therapy resistance and metastasis are profoundly controlled by the tumor microenvironment. The contribution of endothelial cells to tumor progression was initially only attributed to the formation of new blood vessels (angiogenesis). Research in the last decade has revealed however that endothelial cells control their microenvironment through the expression of membrane-bound and secreted factors. Such angiocrine functions are frequently hijacked by cancer cells, which deregulate the signaling pathways controlling the expression of angiocrine factors. Here, we review the crosstalk between cancer cells and endothelial cells and how this contributes to the cancer stem cell phenotype, epithelial to mesenchymal transition, immunosuppression, remodeling of the extracellular matrix and intravasation of cancer cells into the bloodstream. We also address the long-distance crosstalk of a primary tumor with endothelial cells at the pre-metastatic niche and how this contributes to metastasis.
Collapse
|
19
|
Progression of Metastasis through Lymphatic System. Cells 2021; 10:cells10030627. [PMID: 33808959 PMCID: PMC7999434 DOI: 10.3390/cells10030627] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Lymph nodes are the most common sites of metastasis in cancer patients. Nodal disease status provides great prognostic power, but how lymph node metastases should be treated is under debate. Thus, it is important to understand the mechanisms by which lymph node metastases progress and how they can be targeted to provide therapeutic benefits. In this review, we focus on delineating the process of cancer cell migration to and through lymphatic vessels, survival in draining lymph nodes and further spread to other distant organs. In addition, emerging molecular targets and potential strategies to inhibit lymph node metastasis are discussed.
Collapse
|
20
|
Wang G, Dai Y, Li K, Cheng M, Xiong G, Wang X, Chen S, Chen Z, Chen J, Xu X, Ling RS, Peng L, Chen D. Deficiency of Mettl3 in Bladder Cancer Stem Cells Inhibits Bladder Cancer Progression and Angiogenesis. Front Cell Dev Biol 2021; 9:627706. [PMID: 33681207 PMCID: PMC7930389 DOI: 10.3389/fcell.2021.627706] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
RNA N6-methyladenosine is a key step of posttranscriptional modulation that is involved in governing gene expression. The m6A modification catalyzed by Mettl3 has been widely recognized as a critical epigenetic regulation process for tumorigenic properties in various cancer cell lines, including bladder cancer. However, the in vivo function of Mettl3 in bladder cancer remains largely unknown. In our study, we found that ablation of Mettl3 in bladder urothelial attenuates the oncogenesis and tumor angiogenesis of bladder cancer using transgenic mouse model. In addition, conditional knockout of Mettl3 in K14+ bladder cancer stem cell population leads to inhibition of bladder cancer progression. Coupled with the global transcriptome sequencing and methylated RNA immunoprecipitation sequencing results, we showed that deletion of Mettl3 leads to the suppression of tyrosine kinase endothelial (TEK) and vascular endothelial growth factor A (VEGF-A) through reduced abundance of m6A peaks on a specific region. In addition, the depletion of Mettl3 results in the decrease in both messenger RNA (mRNA) and protein levels of TEK and VEGF-A in vitro. Taken together, Mettl3-mediated m6A modification is required for the activation of TEK–VEGF-A-mediated tumor progression and angiogenesis. Our findings may provide theoretical basis for bladder cancer treatment targeting Mettl3.
Collapse
Affiliation(s)
- Ganping Wang
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yarong Dai
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Kang Li
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maosheng Cheng
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gan Xiong
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaochen Wang
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianwen Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuyun Xu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Rong-Song Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Liang Peng
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Demeng Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Groth C, Arpinati L, Shaul ME, Winkler N, Diester K, Gengenbacher N, Weber R, Arkhypov I, Lasser S, Petrova V, Augustin HG, Altevogt P, Utikal J, Fridlender ZG, Umansky V. Blocking Migration of Polymorphonuclear Myeloid-Derived Suppressor Cells Inhibits Mouse Melanoma Progression. Cancers (Basel) 2021; 13:cancers13040726. [PMID: 33578808 PMCID: PMC7916588 DOI: 10.3390/cancers13040726] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Myeloid-derived suppressor cells (MDSC) represent a heterogeneous myeloid cell population that is expanded in tumor bearing hosts and substantially contributes to immunosuppression, representing thereby a valuable therapeutic target. Our study analyzes polymorphonuclear (PMN) and monocytic (M) MDSC subsets regarding their immunosuppressive capacity and recruitment mechanisms in murine melanoma. The immunosuppressive activity of both subsets was comparable. We identified the C-X-C Motif Chemokine Receptor (CXCR) 2/chemokine C-X-C motif ligand (CXCL) 1 axis as an important mediator of PMN-MDSC recruitment. Inhibition of CXCR2 resulted in a decreased infiltration of tumors with PMN-MDSC and increased survival of melanoma bearing mice. Furthermore, adjuvant treatment of mice with resected tumors reduced the infiltration of pre-metastatic sites with PMN-MDSC and the occurrence of distant metastasis. The decrease in PMN-MDSC infiltration was accompanied by an increase in natural killer (NK) cell frequency, suggesting an important role of PMN-MDSC in suppressing the NK cell-mediated anti-tumor response. Abstract Background: Despite recent improvement in the treatment of malignant melanoma by immune-checkpoint inhibitors, the disease can progress due to an immunosuppressive tumor microenvironment (TME) mainly represented by myeloid-derived suppressor cells (MDSC). However, the relative contribution of the polymorphonuclear (PMN) and monocytic (M) MDSC subsets to melanoma progression is not clear. Here, we compared both subsets regarding their immunosuppressive capacity and recruitment mechanisms. Furthermore, we inhibited PMN-MDSC migration in vivo to determine its effect on tumor progression. Methods: Using the RET transgenic melanoma mouse model, we investigated the immunosuppressive function of MDSC subsets and chemokine receptor expression on these cells. The effect of CXCR2 inhibition on PMN-MDSC migration and tumor progression was studied in RET transgenic mice and in C57BL/6 mice after surgical resection of primary melanomas. Results: Immunosuppressive capacity of intratumoral M- and PMN-MDSC was comparable in melanoma bearing mice. Anti-CXCR2 therapy prolonged survival of these mice and decreased the occurrence of distant metastasis. Furthermore, this therapy reduced the infiltration of melanoma lesions and pre-metastatic sites with PMN-MDSC that was associated with the accumulation of natural killer (NK) cells. Conclusions: We provide evidence for the tumor−promoting properties of PMN-MDSC as well as for the anti-tumor effects upon their targeting in melanoma bearing mice.
Collapse
Affiliation(s)
- Christopher Groth
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Ludovica Arpinati
- Institute of Pulmonary Medicine, Hebrew University Hadassah Medical Center, POB 12000, Jerusalem 9112001, Israel; (L.A.); (M.E.S.); (Z.G.F.)
| | - Merav E. Shaul
- Institute of Pulmonary Medicine, Hebrew University Hadassah Medical Center, POB 12000, Jerusalem 9112001, Israel; (L.A.); (M.E.S.); (Z.G.F.)
| | - Nina Winkler
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
| | - Klara Diester
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
| | - Nicolas Gengenbacher
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.G.); (H.G.A.)
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rebekka Weber
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Ihor Arkhypov
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Samantha Lasser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
| | - Vera Petrova
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Hellmut G. Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.G.); (H.G.A.)
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Zvi G. Fridlender
- Institute of Pulmonary Medicine, Hebrew University Hadassah Medical Center, POB 12000, Jerusalem 9112001, Israel; (L.A.); (M.E.S.); (Z.G.F.)
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Correspondence: ; Tel.: +49-621-3833773
| |
Collapse
|
22
|
Abdul Pari AA, Singhal M, Augustin HG. Emerging paradigms in metastasis research. J Exp Med 2021; 218:e20190218. [PMID: 33601416 PMCID: PMC7754674 DOI: 10.1084/jem.20190218] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/17/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Historically, therapy of metastatic disease has essentially been limited to using strategies that were identified and established to shrink primary tumors. The limited efficacy of such treatments on overall patient survival stems from diverging intrinsic and extrinsic characteristics of a primary tumor and metastases originating therefrom. To develop better therapeutic strategies to treat metastatic disease, there is an urgent need to shift the paradigm in preclinical metastasis research by conceptualizing metastatic dissemination, colonization, and growth as spatiotemporally dynamic processes and identifying rate-limiting vulnerabilities of the metastatic cascade. Clinically, while metastatic colonization remains the most attractive therapeutic avenue, comprehensive understanding of earlier steps may unravel novel metastasis-restricting therapies for presurgical neoadjuvant application. Moving beyond a primary tumor-centric view, this review adopts a holistic approach to understanding the spatial and temporal progression of metastasis. After reviewing recent developments in metastasis research, we highlight some of the grand challenges and propose a framework to expedite mechanism-based discovery research feeding the translational pipeline.
Collapse
Affiliation(s)
- Ashik Ahmed Abdul Pari
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hellmut G. Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|