1
|
Zhang L, Yang Y, Yu X, Li G, Zhang P, Ren X, Luo S, Li L, Munyurangabo G, Jia Y, Song L, He A, Kong G. Arachidonic acid promotes myeloid differentiation of splenic CD45- Ter119+ cells in myeloproliferative neoplasm. J Cancer 2025; 16:2289-2297. [PMID: 40302792 PMCID: PMC12036098 DOI: 10.7150/jca.110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/06/2025] [Indexed: 05/02/2025] Open
Abstract
Although splenic CD45-Ter119+ cells promote cancer progression by secreting artemin, it remains unclear whether these cells play an important role in myeloproliferative neoplasm (MPN). Here, using a KrasG12D/+-induced mouse model of MPN, we demonstrated that the number and cycling of CD45-Ter119+ cells increased in the spleens of MPN mice. Moreover, these cells could differentiate into myeloid cells upon stimulation with GM-CSF and mIL-6. Through RNA sequencing, we further revealed that myeloid genes, such as Hoxa9, Mpo and Ms4a3, were highly expressed in CD45-Ter119+ cells. Mechanistically, we showed that the arachidonic acid content was significantly elevated in splenic CD45-Ter119+ cells, and exogenous arachidonic acid mediated the differentiation of splenic CD45-Ter119+ cells into myeloid cells. Our results revealed that splenic CD45-Ter119+ cells play a crucial role in myeloid leukemia and that arachidonic acid could be a potential therapeutic target for MPN treatment.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yi Yang
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xiao Yu
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Guodong Li
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Peihua Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xiaomin Ren
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Siyu Luo
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Lin Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Gustave Munyurangabo
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yachun Jia
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Lingqin Song
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Guangyao Kong
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
2
|
Yuan Z, Lv G, Liu X, Xiao Y, Tan Y, Zhu Y. Machine learning selection of basement membrane-associated genes and development of a predictive model for kidney fibrosis. Sci Rep 2025; 15:6567. [PMID: 39994219 PMCID: PMC11850825 DOI: 10.1038/s41598-025-89733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
This study investigates the role of basement membrane-related genes in kidney fibrosis, a significant factor in the progression of chronic kidney disease that can lead to end-stage renal failure. The authors aim to develop a predictive model using machine learning techniques due to the limitations of existing diagnostic methods, which often lack sensitivity and specificity. Utilizing gene expression data from the GEO database, the researchers applied LASSO, Random Forest, and SVM-RFE methods to identify five pivotal genes: ARID4B, EOMES, KCNJ3, LIF, and STAT1. These genes were analyzed across training and validation datasets, resulting in the development of a Nomogram prediction model. Performance metrics, including the area under the ROC curve (AUC), calibration curves, and decision curve analysis, indicated excellent predictive capabilities with an AUC of 0.923. Experimental validation through qRT-PCR in clinical samples and TGF-β-treated HK-2 cells corroborated the expression patterns identified in silico, showing upregulation of ARID4B, EOMES, LIF, and STAT1, and downregulation of KCNJ3. The findings emphasize the importance of basement membrane-related genes in kidney fibrosis and pave the way for enhanced early diagnosis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ziwei Yuan
- Department of Laboratory Medicine, The Third People's Hospital of Ganzhou, 341000, Ganzhou, China
| | - Guangjia Lv
- College of Life Sciences, Northeast Forestry University, Harbin, 150004, China
| | - Xinyan Liu
- Zhanggong District Maternal and Child Health Hospital, Ganzhou, 341000, China.
| | - Yanyi Xiao
- Department of Thyroid and Breast Surgery, Wenzhou Central Hospital, Wenzhou, 325000, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yuanfang Tan
- Department of Laboratory Medicine, The Third People's Hospital of Ganzhou, 341000, Ganzhou, China.
| | - Youyou Zhu
- Department of pathology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China.
| |
Collapse
|
3
|
Wang Y, Huang L, Zhu J, Zhang W, Tang Y, Yang C, Lin Y, Wang Y, Xiang H. LIPG-mediated regulation of lipid deposition and proliferation in goat intramuscular preadipocytes involves the PPARα signaling pathway. PLoS One 2025; 20:e0317953. [PMID: 39946436 PMCID: PMC11825097 DOI: 10.1371/journal.pone.0317953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/07/2025] [Indexed: 02/17/2025] Open
Abstract
Endothelial lipase (LIPG), a member of the triglyceride lipase family, plays an essential role in human diseases and lipid metabolism. However, its function in goat intramuscular fat (IMF) deposition remains unclear. In this study, we investigated the role of the LIPG gene in IMF deposition by knocking down and overexpressing it in goat intramuscular preadipocytes. We successfully cloned the full-length LIPG gene, which spans 2,131 bp, including a 94 bp 5' untranslated region (5'UTR), a 1,503 bp coding sequence (CDS), and a 534 bp 3' untranslated region (3'UTR). Tissue expression profiles showed that LIPG is expressed in the heart, liver, spleen, Kidney, longest dorsal muscle, and small intestine tissues of goats. LIPG knockdown significantly inhibited both the proliferation of intramuscular preadipocytes and lipid deposition. Moreover, LIPG knockdown markedly decreased mRNA expression of FASN, LPL, CPT1A, CPT1B, FABP3, while increasing the mRNA expression of ATGL, ACOX1, FADS1, and ELOVL6. These findings were further corroborated through LIPG overexpression experiments. Using RNA sequencing (RNA-seq), we identified 1695 differentially expressed genes (DEGs) between the negative control (NC) and LIPG knockdown (Si-LIPG) groups, with KEGG pathway analysis revealing significant enrichment in the PPAR signaling pathway. Additionally, LIPG knockdown significantly upregulated the expression of both mRNA and protein levels of PPARα. The PPARα agonist WY14643 was able to reverse the enhanced lipid deposition induced by LIPG overexpression. In conclusion, our study highlights a key role for LIPG in the regulation of goat intramuscular preadipocyte proliferation and lipid deposition, potentially through the PPARα signaling pathway. These findings provide new insights into the regulatory mechanisms governing IMF deposition and suggest potential strategies for improving goat meat quality.
Collapse
Affiliation(s)
- Yinggui Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Lian Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - JiangJiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
| | - Wenyang Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
| | - Yinmei Tang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Changheng Yang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
| | - Yong Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
| | - Hua Xiang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
| |
Collapse
|
4
|
Minhajuddin M, Winters A, Ye H, Pei S, Stevens B, Gillen A, Engel K, Gipson S, Ransom M, Amaya M, Inguva A, Gasparetto M, Althoff MJ, Miller R, Shelton I, Tolison H, Krug A, Culp-Hill R, D'Alessandro A, Sherbenou DW, Pollyea DA, Smith C, Jordan CT. Lysosomal acid lipase A modulates leukemia stem cell response to venetoclax/tyrosine kinase inhibitor combination therapy in blast phase chronic myeloid leukemia. Haematologica 2025; 110:103-116. [PMID: 38934082 PMCID: PMC11694110 DOI: 10.3324/haematol.2023.284716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
The treatment of blast phase chronic myeloid leukemia (bpCML) remains a challenge due, at least in part, to drug resistance of leukemia stem cells (LSC). Recent clinical evidence suggests that the BCL-2 inhibitor venetoclax in combination with ABL-targeting tyrosine kinase inhibitors can eradicate bpCML LSC. In this study, we employed preclinical models of bpCML to investigate the efficacy and underlying mechanism of LSC-targeting with combinations of venetoclax/tyrosine kinase inhibitors. Transcriptional analysis of LSC exposed to venetoclax and dasatinib revealed upregulation of genes involved in lysosomal biology, in particular lysosomal acid lipase A (LIPA), a regulator of free fatty acids. Metabolomic analysis confirmed increased levels of free fatty acids in response to treatment with venetoclax/dasatinib. Pretreatment of leukemia cells with bafilomycin, a specific lysosome inhibitor, or genetic perturbation of LIPA, resulted in increased sensitivity of leukemia cells to venetoclax/dasatinib, implicating LIPA in treatment resistance. Importantly, venetoclax/dasatinib treatment did not affect normal stem cell function, suggesting a leukemia-specific response. These results demonstrate that venetoclax/dasatinib is a LSC-selective regimen in bpCML and that disrupting LIPA and fatty acid transport enhances the response to venetoclax/ dasatinib when targeting LSC, providing a rationale for exploring lysosomal disruption as an adjunctive therapeutic strategy to prolong disease remission.
Collapse
MESH Headings
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Humans
- Sulfonamides/pharmacology
- Sulfonamides/administration & dosage
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/administration & dosage
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Mice
- Blast Crisis/drug therapy
- Blast Crisis/pathology
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Tyrosine Kinase Inhibitors
Collapse
Affiliation(s)
- Mohd Minhajuddin
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO.
| | - Amanda Winters
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Haobin Ye
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghaii
| | - Shanshan Pei
- Liangzhu Laboratory, Zhejiang University Medical Center, Zhejiang
| | - Brett Stevens
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Austin Gillen
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Krysta Engel
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Stephanie Gipson
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Monica Ransom
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Maria Amaya
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Anagha Inguva
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Maura Gasparetto
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Mark J Althoff
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Regan Miller
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Ian Shelton
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Hunter Tolison
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Anna Krug
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel W Sherbenou
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Daniel A Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Clayton Smith
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Craig T Jordan
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
5
|
Man CH, Li C, Xu X, Zhao M. Metabolic regulation in normal and leukemic stem cells. Trends Pharmacol Sci 2024; 45:919-930. [PMID: 39306527 DOI: 10.1016/j.tips.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) are crucial for ensuring hematopoietic homeostasis and driving leukemia progression, respectively. Recent research has revealed that metabolic adaptations significantly regulate the function and survival of these stem cells. In this review, we provide an overview of how metabolic pathways regulate oxidative and proteostatic stresses in HSCs during homeostasis and aging. Furthermore, we highlight targetable metabolic pathways and explore their interactions with epigenetics and the microenvironment in addressing the chemoresistance and immune evasion capacities of LSCs. The metabolic differences between HSCs and LSCs have profound implications for therapeutic strategies.
Collapse
Affiliation(s)
- Cheuk-Him Man
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Changzheng Li
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xi Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510030, China
| | - Meng Zhao
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
6
|
Bao Y, Qiao J, Gong W, Zhang R, Zhou Y, Xie Y, Xie Y, He J, Yin T. Spatial metabolomics highlights metabolic reprogramming in acute myeloid leukemia mice through creatine pathway. Acta Pharm Sin B 2024; 14:4461-4477. [PMID: 39525575 PMCID: PMC11544190 DOI: 10.1016/j.apsb.2024.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 11/16/2024] Open
Abstract
Acute myeloid leukemia (AML) is recognized as an aggressive cancer that is characterized by significant metabolic reprogramming. Here, we applied spatial metabolomics to achieve high-throughput, in situ identification of metabolites within the liver metastases of AML mice. Alterations at metabolite and protein levels were further mapped out and validated by integrating untargeted metabolomics and proteomics. This study showed a downregulation in arginine's contribution to polyamine biosynthesis and urea cycle, coupled with an upregulation of the creatine metabolism. The upregulation of creatine synthetases Gatm and Gamt, as well as the creatine transporter Slc6a8, resulted in a marked accumulation of creatine within tumor foci. This process further enhances oxidative phosphorylation and glycolysis of leukemia cells, thereby boosting ATP production to foster proliferation and infiltration. Importantly, we discovered that inhibiting Slc6a8 can counter these detrimental effects, offering a new strategy for treating AML by targeting metabolic pathways.
Collapse
Affiliation(s)
- Yucheng Bao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Qiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenjie Gong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruihong Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanting Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuan Xie
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
7
|
Farge T, Nakhle J, Lagarde D, Cognet G, Polley N, Castellano R, Nicolau ML, Bosc C, Sabatier M, Sahal A, Saland E, Jeanson Y, Guiraud N, Boet E, Bergoglio C, Gotanègre M, Mouchel PL, Stuani L, Larrue C, Sallese M, De Mas V, Moro C, Dray C, Collette Y, Raymond-Letron I, Ader I, Récher C, Sarry JE, Cabon F, Vergez F, Carrière A. CD36 Drives Metastasis and Relapse in Acute Myeloid Leukemia. Cancer Res 2023; 83:2824-2838. [PMID: 37327406 PMCID: PMC10472106 DOI: 10.1158/0008-5472.can-22-3682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Identifying mechanisms underlying relapse is a major clinical issue for effective cancer treatment. The emerging understanding of the importance of metastasis in hematologic malignancies suggests that it could also play a role in drug resistance and relapse in acute myeloid leukemia (AML). In a cohort of 1,273 AML patients, we uncovered that the multifunctional scavenger receptor CD36 was positively associated with extramedullary dissemination of leukemic blasts, increased risk of relapse after intensive chemotherapy, and reduced event-free and overall survival. CD36 was dispensable for lipid uptake but fostered blast migration through its binding with thrombospondin-1. CD36-expressing blasts, which were largely enriched after chemotherapy, exhibited a senescent-like phenotype while maintaining their migratory ability. In xenograft mouse models, CD36 inhibition reduced metastasis of blasts and prolonged survival of chemotherapy-treated mice. These results pave the way for the development of CD36 as an independent marker of poor prognosis in AML patients and a promising actionable target to improve the outcome of patients. SIGNIFICANCE CD36 promotes blast migration and extramedullary disease in acute myeloid leukemia and represents a critical target that can be exploited for clinical prognosis and patient treatment.
Collapse
Affiliation(s)
- Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, Team CERAMIC, INSERM, Paul Sabatier University, UMR1297, Toulouse, France
- Institut Fédératif de Biologie (IFB), CHU Toulouse, Toulouse, France
- RESTORE Research Center, Université Toulouse Paul Sabatier, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Jean Nakhle
- RESTORE Research Center, Université Toulouse Paul Sabatier, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Damien Lagarde
- RESTORE Research Center, Université Toulouse Paul Sabatier, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
- McGill University, Rosalind and Morris Goodman Cancer Institute, Montréal, Québec, Canada
- McGill University, Department of Biochemistry, Montréal, Québec, Canada
| | - Guillaume Cognet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Nathaniel Polley
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Rémy Castellano
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Marie-Laure Nicolau
- University of Toulouse, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Claudie Bosc
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Ambrine Sahal
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Yannick Jeanson
- RESTORE Research Center, Université Toulouse Paul Sabatier, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Nathan Guiraud
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Camille Bergoglio
- Institute of Metabolic and Cardiovascular Diseases, Team MetaDiab, INSERM, Paul Sabatier University, UMR1297, Toulouse, France
| | - Mathilde Gotanègre
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Pierre-Luc Mouchel
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
- University of Toulouse, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Clément Larrue
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Marie Sallese
- RESTORE Research Center, Université Toulouse Paul Sabatier, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Véronique De Mas
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
- University of Toulouse, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, Team MetaDiab, INSERM, Paul Sabatier University, UMR1297, Toulouse, France
| | - Cédric Dray
- RESTORE Research Center, Université Toulouse Paul Sabatier, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Yves Collette
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Isabelle Raymond-Letron
- RESTORE Research Center, Université Toulouse Paul Sabatier, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
- LabHPEC, Université de Toulouse, ENVT, Toulouse, France
| | - Isabelle Ader
- RESTORE Research Center, Université Toulouse Paul Sabatier, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Christian Récher
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
- University of Toulouse, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Florence Cabon
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - François Vergez
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
- University of Toulouse, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Service d'Hématologie, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Audrey Carrière
- RESTORE Research Center, Université Toulouse Paul Sabatier, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| |
Collapse
|
8
|
Chen M, Tao Y, Yue P, Guo F, Yan X. Construction and validation of a fatty acid metabolism risk signature for predicting prognosis in acute myeloid leukemia. BMC Genom Data 2022; 23:85. [PMID: 36550404 PMCID: PMC9784255 DOI: 10.1186/s12863-022-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Fatty acid metabolism has been reported to play important roles in the development of acute myeloid leukemia (AML), but there are no prognostic signatures composed of fatty acid metabolism-related genes. As the current prognostic evaluation system has limitations due to the heterogeneity of AML patients, it is necessary to develop a new signature based on fatty acid metabolism to better guide prognosis prediction and treatment selection. METHODS We analyzed the RNA sequencing and clinical data of The Cancer Genome Atlas (TCGA) and Vizome cohorts. The analyses were performed with GraphPad 7, the R language and SPSS. RESULTS We selected nine significant genes in the fatty acid metabolism gene set through univariate Cox analysis and the log-rank test. Then, a fatty acid metabolism signature was established based on these genes. We found that the signature was as an independent unfavourable prognostic factor and increased the precision of prediction when combined with classic factors in a nomogram. Gene Ontology (GO) and gene set enrichment analysis (GSEA) showed that the risk signature was closely associated with mitochondrial metabolism and that the high-risk group had an enhanced immune response. CONCLUSION The fatty acid metabolism signature is a new independent factor for predicting the clinical outcomes of AML patients.
Collapse
Affiliation(s)
- Miao Chen
- grid.412636.40000 0004 1757 9485Department of Hematology, The First Affiliated Hospital of China Medical University, Liaoning 110001 Shenyang, China
| | - Yuan Tao
- grid.412636.40000 0004 1757 9485Department of Hematology, The First Affiliated Hospital of China Medical University, Liaoning 110001 Shenyang, China
| | - Pengjie Yue
- grid.412636.40000 0004 1757 9485Department of Hematology, The First Affiliated Hospital of China Medical University, Liaoning 110001 Shenyang, China
| | - Feng Guo
- grid.412449.e0000 0000 9678 1884Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122 China
| | - Xiaojing Yan
- grid.412636.40000 0004 1757 9485Department of Hematology, The First Affiliated Hospital of China Medical University, Liaoning 110001 Shenyang, China
| |
Collapse
|
9
|
Bae KH, Lai F, Mong J, Niibori-Nambu A, Chan KH, Her Z, Osato M, Tan MH, Chen Q, Kurisawa M. Bone marrow-targetable Green Tea Catechin-Based Micellar Nanocomplex for synergistic therapy of Acute myeloid leukemia. J Nanobiotechnology 2022; 20:481. [PMID: 36384529 PMCID: PMC9670631 DOI: 10.1186/s12951-022-01683-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Currently available anti-leukemia drugs have shown limited success in the treatment of acute myeloid leukemia (AML) due to their poor access to bone marrow niche supporting leukemic cell proliferation. Results Herein, we report a bone marrow-targetable green tea catechin-based micellar nanocomplex for synergistic AML therapy. The nanocomplex was found to synergistically amplify the anti-leukemic potency of sorafenib via selective disruption of pro-survival mTOR signaling. In vivo biodistribution study demonstrated about 11-fold greater bone marrow accumulation of the nanocomplex compared to free sorafenib. In AML patient-derived xenograft (AML-PDX) mouse model, administration of the nanocomplex effectively eradicated bone marrow-residing leukemic blasts and improved survival rates without noticeable off-target toxicity. Conclusion This study may provide insights into the rational design of nanomedicine platforms enabling bone marrow-targeted delivery of therapeutic agents for the treatment of AML and other bone marrow diseases. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01683-4.
Collapse
|
10
|
Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, Benitah SA. The role of lipids in cancer progression and metastasis. Cell Metab 2022; 34:1675-1699. [PMID: 36261043 DOI: 10.1016/j.cmet.2022.09.023] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lipids have essential biological functions in the body (e.g., providing energy storage, acting as a signaling molecule, and being a structural component of membranes); however, an excess of lipids can promote tumorigenesis, colonization, and metastatic capacity of tumor cells. To metastasize, a tumor cell goes through different stages that require lipid-related metabolic and structural adaptations. These adaptations include altering the lipid membrane composition for invading other niches and overcoming cell death mechanisms and promoting lipid catabolism and anabolism for energy and oxidative stress protective purposes. Cancer cells also harness lipid metabolism to modulate the activity of stromal and immune cells to their advantage and to resist therapy and promote relapse. All this is especially worrying given the high fat intake in Western diets. Thus, metabolic interventions aiming to reduce lipid availability to cancer cells or to exacerbate their metabolic vulnerabilities provide promising therapeutic opportunities to prevent cancer progression and treat metastasis.
Collapse
Affiliation(s)
- Miguel Martin-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, 08028 Barcelona, Spain.
| | - Uxue Urdiroz-Urricelqui
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Claudia Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
11
|
Lee MH, Menezes TCF, Reisz JA, Ferreira EVM, Graham BB, Oliveira RKF. Exercise metabolomics in pulmonary arterial hypertension: Where pulmonary vascular metabolism meets exercise physiology. Front Physiol 2022; 13:963881. [PMID: 36171971 PMCID: PMC9510894 DOI: 10.3389/fphys.2022.963881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023] Open
Abstract
Pulmonary arterial hypertension is an incurable disease marked by dysregulated metabolism, both at the cellular level in the pulmonary vasculature, and at the whole-body level characterized by impaired exercise oxygen consumption. Though both altered pulmonary vascular metabolism and abnormal exercise physiology are key markers of disease severity and pulmonary arterial remodeling, their precise interactions are relatively unknown. Herein we review normal pulmonary vascular physiology and the current understanding of pulmonary vascular cell metabolism and cardiopulmonary response to exercise in Pulmonary arterial hypertension. We additionally introduce a newly developed international collaborative effort aimed at quantifying exercise-induced changes in pulmonary vascular metabolism, which will inform about underlying pathophysiology and clinical management. We support our investigative approach by presenting preliminary data and discuss potential future applications of our research platform.
Collapse
Affiliation(s)
- Michael H. Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Thaís C. F. Menezes
- Division of Respiratory Diseases, Department of Medicine, Federal University of SP, São Paulo, Brazil
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eloara V. M. Ferreira
- Division of Respiratory Diseases, Department of Medicine, Federal University of SP, São Paulo, Brazil
| | - Brian B. Graham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Rudolf K. F. Oliveira
- Division of Respiratory Diseases, Department of Medicine, Federal University of SP, São Paulo, Brazil,*Correspondence: Rudolf K. F. Oliveira,
| |
Collapse
|
12
|
A Proof-of-Concept Inhibitor of Endothelial Lipase Suppresses Triple-Negative Breast Cancer Cells by Hijacking the Mitochondrial Function. Cancers (Basel) 2022; 14:cancers14153763. [PMID: 35954428 PMCID: PMC9367514 DOI: 10.3390/cancers14153763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Endothelial lipase (EL/LIPG) is a key regulator of tumor cell metabolism. In triple-negative breast cancer (TNBC) cells, we find that the expression of LIPG is associated with long non-coding RNA DANCR and positively correlates with gene signatures of mitochondrial metabolism-oxidative phosphorylation (OXPHOS). DANCR binds to LIPG, which enables tumor cells to maintain the expression. Importantly, LIPG knockdown inhibits OXPHOS and TNBC tumor formation. Finally, our study identifies a natural compound, the LIPG inhibitor cynaroside, which provides a new therapeutic strategy against TNBC. Abstract Triple-negative breast cancer (TNBC) cells reprogram their metabolism to provide metabolic flexibility for tumor cell growth and survival in the tumor microenvironment. While our previous findings indicated that endothelial lipase (EL/LIPG) is a hallmark of TNBC, the precise mechanism through which LIPG instigates TNBC metabolism remains undefined. Here, we report that the expression of LIPG is associated with long non-coding RNA DANCR and positively correlates with gene signatures of mitochondrial metabolism-oxidative phosphorylation (OXPHOS). DANCR binds to LIPG, enabling tumor cells to maintain LIPG protein stability and OXPHOS. As one mechanism of LIPG in the regulation of tumor cell oxidative metabolism, LIPG mediates histone deacetylase 6 (HDAC6) and histone acetylation, which contribute to changes in IL-6 and fatty acid synthesis gene expression. Finally, aided by a relaxed docking approach, we discovered a new LIPG inhibitor, cynaroside, that effectively suppressed the enzyme activity and DANCR in TNBC cells. Treatment with cynaroside inhibited the OXPHOS phenotype of TNBC cells, which severely impaired tumor formation. Taken together, our study provides mechanistic insights into the LIPG modulation of mitochondrial metabolism in TNBC and a proof-of-concept that targeting LIPG is a promising new therapeutic strategy for the treatment of TNBC.
Collapse
|
13
|
Kansal R. Fructose Metabolism and Acute Myeloid Leukemia. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2022; 7:25-38. [DOI: 10.14218/erhm.2021.00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Sharma ND, Keewan E, Matlawska-Wasowska K. Metabolic Reprogramming and Cell Adhesion in Acute Leukemia Adaptation to the CNS Niche. Front Cell Dev Biol 2021; 9:767510. [PMID: 34957100 PMCID: PMC8703109 DOI: 10.3389/fcell.2021.767510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Involvement of the Central Nervous System (CNS) in acute leukemia confers poor prognosis and lower overall survival. Existing CNS-directed therapies are associated with a significant risk of short- or long-term toxicities. Leukemic cells can metabolically adapt and survive in the microenvironment of the CNS. The supporting role of the CNS microenvironment in leukemia progression and dissemination has not received sufficient attention. Understanding the mechanism by which leukemic cells survive in the nutrient-poor and oxygen-deprived CNS microenvironment will lead to the development of more specific and less toxic therapies. Here, we review the current literature regarding the roles of metabolic reprogramming in leukemic cell adhesion and survival in the CNS.
Collapse
Affiliation(s)
- Nitesh D Sharma
- Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, United States
| | - Esra'a Keewan
- Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, United States
| | - Ksenia Matlawska-Wasowska
- Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
15
|
Bolandi SM, Pakjoo M, Beigi P, Kiani M, Allahgholipour A, Goudarzi N, Khorashad JS, Eiring AM. A Role for the Bone Marrow Microenvironment in Drug Resistance of Acute Myeloid Leukemia. Cells 2021; 10:2833. [PMID: 34831055 PMCID: PMC8616250 DOI: 10.3390/cells10112833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis and remarkable resistance to chemotherapeutic agents. Understanding resistance mechanisms against currently available drugs helps to recognize the therapeutic obstacles. Various mechanisms of resistance to chemotherapy or targeted inhibitors have been described for AML cells, including a role for the bone marrow niche in both the initiation and persistence of the disease, and in drug resistance of the leukemic stem cell (LSC) population. The BM niche supports LSC survival through direct and indirect interactions among the stromal cells, hematopoietic stem/progenitor cells, and leukemic cells. Additionally, the BM niche mediates changes in metabolic and signal pathway activation due to the acquisition of new mutations or selection and expansion of a minor clone. This review briefly discusses the role of the BM microenvironment and metabolic pathways in resistance to therapy, as discovered through AML clinical studies or cell line and animal models.
Collapse
Affiliation(s)
- Seyed Mohammadreza Bolandi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Peyman Beigi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Mohammad Kiani
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Ali Allahgholipour
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Negar Goudarzi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
| | - Jamshid S. Khorashad
- Centre for Haematology, Hammersmith Hospital, Imperial College London, London W12 0HS, UK;
| | - Anna M. Eiring
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| |
Collapse
|
16
|
Joshi SK, Nechiporuk T, Bottomly D, Piehowski PD, Reisz JA, Pittsenbarger J, Kaempf A, Gosline SJC, Wang YT, Hansen JR, Gritsenko MA, Hutchinson C, Weitz KK, Moon J, Cendali F, Fillmore TL, Tsai CF, Schepmoes AA, Shi T, Arshad OA, McDermott JE, Babur O, Watanabe-Smith K, Demir E, D'Alessandro A, Liu T, Tognon CE, Tyner JW, McWeeney SK, Rodland KD, Druker BJ, Traer E. The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance. Cancer Cell 2021; 39:999-1014.e8. [PMID: 34171263 PMCID: PMC8686208 DOI: 10.1016/j.ccell.2021.06.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/22/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022]
Abstract
Our study details the stepwise evolution of gilteritinib resistance in FLT3-mutated acute myeloid leukemia (AML). Early resistance is mediated by the bone marrow microenvironment, which protects residual leukemia cells. Over time, leukemia cells evolve intrinsic mechanisms of resistance, or late resistance. We mechanistically define both early and late resistance by integrating whole-exome sequencing, CRISPR-Cas9, metabolomics, proteomics, and pharmacologic approaches. Early resistant cells undergo metabolic reprogramming, grow more slowly, and are dependent upon Aurora kinase B (AURKB). Late resistant cells are characterized by expansion of pre-existing NRAS mutant subclones and continued metabolic reprogramming. Our model closely mirrors the timing and mutations of AML patients treated with gilteritinib. Pharmacological inhibition of AURKB resensitizes both early resistant cell cultures and primary leukemia cells from gilteritinib-treated AML patients. These findings support a combinatorial strategy to target early resistant AML cells with AURKB inhibitors and gilteritinib before the expansion of pre-existing resistance mutations occurs.
Collapse
MESH Headings
- Aniline Compounds/pharmacology
- Aurora Kinase B/genetics
- Aurora Kinase B/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Drug Resistance, Neoplasm
- Exome
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Metabolome
- Protein Kinase Inhibitors/pharmacology
- Proteome
- Pyrazines/pharmacology
- Tumor Cells, Cultured
- Tumor Microenvironment
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Department of Physiology & Pharmacology, School of Medicine, Oregon Health & Science University, Portland, OR, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Tamilla Nechiporuk
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Paul D Piehowski
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Janét Pittsenbarger
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Andy Kaempf
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Sara J C Gosline
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Joshua R Hansen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chelsea Hutchinson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas L Fillmore
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Osama A Arshad
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ozgun Babur
- Department of Computer Science, University of Massachusetts, Boston, MA, USA
| | - Kevin Watanabe-Smith
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
| | - Emek Demir
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA; Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
17
|
Thomas T, Cendali F, Fu X, Gamboni F, Morrison EJ, Beirne J, Nemkov T, Antonelou MH, Kriebardis A, Welsby I, Hay A, Dziewulska KH, Busch MP, Kleinman S, Buehler PW, Spitalnik SL, Zimring JC, D'Alessandro A. Fatty acid desaturase activity in mature red blood cells and implications for blood storage quality. Transfusion 2021; 61:1867-1883. [PMID: 33904180 DOI: 10.1111/trf.16402] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Increases in the red blood cell (RBC) degree of fatty acid desaturation are reported in response to exercise, aging, or diseases associated with systemic oxidant stress. However, no studies have focused on the presence and activity of fatty acid desaturases (FADS) in the mature RBC. STUDY DESIGN AND METHODS Steady state metabolomics and isotope-labeled tracing experiments, immunofluorescence approaches, and pharmacological interventions were used to determine the degree of fatty acid unsaturation, FADS activity as a function of storage, oxidant stress, and G6PD deficiency in human and mouse RBCs. RESULTS In 250 blood units from the REDS III RBC Omics recalled donor population, we report a storage-dependent accumulation of free mono-, poly-(PUFAs), and highly unsaturated fatty acids (HUFAs), which occur at a faster rate than saturated fatty acid accumulation. Through a combination of immunofluorescence, pharmacological inhibition, tracing experiments with stable isotope-labeled fatty acids, and oxidant challenge with hydrogen peroxide, we demonstrate the presence and redox-sensitive activity of FADS2, FADS1, and FADS5 in the mature RBC. Increases in PUFAs and HUFAs in human and mouse RBCs correlate negatively with storage hemolysis and positively with posttransfusion recovery. Inhibition of these enzymes decreases accumulation of free PUFAs and HUFAs in stored RBCs, concomitant to increases in pyruvate/lactate ratios. Alterations of this ratio in G6PD deficient patients or units supplemented with pyruvate-rich rejuvenation solutions corresponded to decreased PUFA and HUFA accumulation. CONCLUSION Fatty acid desaturases are present and active in mature RBCs. Their activity is sensitive to oxidant stress, storage duration, and alterations of the pyruvate/lactate ratio.
Collapse
Affiliation(s)
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington, USA
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan Beirne
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Ian Welsby
- Duke University, Durham, North Carolina, USA
| | - Ariel Hay
- Department of Pathology, University of Virginia, Charloteseville, Virginia, USA
| | | | | | | | | | | | - James C Zimring
- Department of Pathology, University of Virginia, Charloteseville, Virginia, USA
| | | |
Collapse
|
18
|
Jones CL, Inguva A, Jordan CT. Targeting Energy Metabolism in Cancer Stem Cells: Progress and Challenges in Leukemia and Solid Tumors. Cell Stem Cell 2021; 28:378-393. [PMID: 33667359 PMCID: PMC7951949 DOI: 10.1016/j.stem.2021.02.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malignant stem cells have long been considered a key therapeutic target in leukemia. Therapeutic strategies designed to target the fundamental biology of leukemia stem cells while sparing normal hematopoietic cells may provide better outcomes for leukemia patients. One process in leukemia stem cell biology that has intriguing therapeutic potential is energy metabolism. In this article we discuss the metabolic properties of leukemia stem cells and how targeting energy metabolism may provide more effective therapeutic regimens for leukemia patients. In addition, we highlight the similarities and differences in energy metabolism between leukemia stem cells and malignant stem cells from solid tumors.
Collapse
Affiliation(s)
- Courtney L Jones
- Princess Margaret Cancer Centre, 101 College St. Toronto, ON M5G 1L7, Canada
| | - Anagha Inguva
- Division of Hematology, University of Colorado, 12700 East 19th Ave., Aurora, CO 80045, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado, 12700 East 19th Ave., Aurora, CO 80045, USA.
| |
Collapse
|