1
|
Gonzalez Castro LN, Gavish A, Bussema L, Mount CW, Neftel C, Nomura M, Chiocca EA, Bi WL, Arnaout O, Barker FG, Brown JM, Jordan JT, Batchelor TT, Stemmer-Rachamimov A, Plotkin SR, Tirosh I, Suvà ML. A single-cell atlas of Schwannoma across genetic backgrounds and anatomic locations. Genome Med 2025; 17:37. [PMID: 40217315 PMCID: PMC11992879 DOI: 10.1186/s13073-025-01462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Schwannomas are nerve sheath tumors arising at cranial and peripheral nerves, either sporadically or in patients with a schwannomatosis-predisposition syndrome. There is limited understanding of the transcriptional heterogeneity of schwannomas across genetic backgrounds and anatomic locations. METHODS Here, we prospectively profile by single-cell full-length transcriptomics tumors from 22 patients with NF2-related schwannomatosis, non-NF2-related schwannomatosis, and sporadic schwannomas, resected from cranial and peripheral nerves. We profiled 11,373 cells (after QC), including neoplastic cells, fibroblasts, T cells, endothelial cells, myeloid cells, and pericytes. RESULTS We characterize the intra-tumoral genetic and transcriptional heterogeneity of schwannoma, identifying six distinct transcriptional metaprograms, with gene signatures related to stress, myelin production, antigen presentation, interferon signaling, glycolysis, and extracellular matrix. We demonstrate the robustness of our findings with analysis of an independent cohort. CONCLUSIONS Overall, our atlas describes the spectrum of gene expression across schwannoma entities at the single-cell level and will serve as an important resource for the community.
Collapse
Affiliation(s)
- L Nicolas Gonzalez Castro
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Lillian Bussema
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Cyril Neftel
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Masashi Nomura
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - E Antonio Chiocca
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Wenya Linda Bi
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Omar Arnaout
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Fred G Barker
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Justin M Brown
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Justin T Jordan
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Tracy T Batchelor
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anat Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Scott R Plotkin
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Itay Tirosh
- Weizmann Institute of Science, Rehovot, Israel.
| | - Mario L Suvà
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Monette A, Aguilar-Mahecha A, Altinmakas E, Angelos MG, Assad N, Batist G, Bommareddy PK, Bonilla DL, Borchers CH, Church SE, Ciliberto G, Cogdill AP, Fattore L, Hacohen N, Haris M, Lacasse V, Lie WR, Mehta A, Ruella M, Sater HA, Spatz A, Taouli B, Tarhoni I, Gonzalez-Kozlova E, Tirosh I, Wang X, Gnjatic S. The Society for Immunotherapy of Cancer Perspective on Tissue-Based Technologies for Immuno-Oncology Biomarker Discovery and Application. Clin Cancer Res 2025; 31:439-456. [PMID: 39625818 DOI: 10.1158/1078-0432.ccr-24-2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025]
Abstract
With immuno-oncology becoming the standard of care for a variety of cancers, identifying biomarkers that reliably classify patient response, resistance, or toxicity becomes the next critical barrier toward improving care. Multiparametric, multi-omics, and computational platforms generating an unprecedented depth of data are poised to usher in the discovery of increasingly robust biomarkers for enhanced patient selection and personalized treatment approaches. Deciding which developing technologies to implement in clinical settings ultimately, applied either alone or in combination, relies on weighing pros and cons, from minimizing patient sampling to maximizing data outputs, and assessing the reproducibility and representativeness of findings, while lessening data fragmentation toward harmonization. These factors are all assessed while taking into consideration the shortest turnaround time. The Society for Immunotherapy of Cancer Biomarkers Committee convened to identify important advances in biomarker technologies and to address advances in biomarker discovery using multiplexed IHC and immunofluorescence, their coupling to single-cell transcriptomics, along with mass spectrometry-based quantitative and spatially resolved proteomics imaging technologies. We summarize key metrics obtained, ease of interpretation, limitations and dependencies, technical improvements, and outward comparisons of these technologies. By highlighting the most interesting recent data contributed by these technologies and by providing ways to improve their outputs, we hope to guide correlative research directions and assist in their evolution toward becoming clinically useful in immuno-oncology.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Adriana Aguilar-Mahecha
- Lady Davis Institute for Medical Research, The Segal Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada
| | - Emre Altinmakas
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Radiology, Koç University School of Medicine, Istanbul, Turkey
| | - Mathew G Angelos
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nima Assad
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gerald Batist
- McGill Centre for Translational Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | - Christoph H Borchers
- Gerald Bronfman Department of Oncology, Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | | | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Mohammad Haris
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Vincent Lacasse
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Arnav Mehta
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Marco Ruella
- Division of Hematology-Oncology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Alan Spatz
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Imad Tarhoni
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | | | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
3
|
da Silva-Filho PPP, Buttros DAB, Buttros LAB, Esperança G, Gubolino PLF, Carvalho-Pessoa E, Vespoli HDL, Nahas EAP. High Risk of Metabolic Dysfunction in Nonobese Breast Cancer Survivors. Clin Breast Cancer 2025:S1526-8209(25)00019-9. [PMID: 39924383 DOI: 10.1016/j.clbc.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND The aim of this study was to evaluate the metabolic profile of non-obese postmenopausal women with breast cancer (BC) compared to non-obese women without breast cancer. METHODS In this case-control study, 130 women with BC, aged 45-75years, body mass index < 30kg/m2 and without established cardiovascular disease were included. The control group consisted of 130 women with the same inclusion criteria, but without BC. The groups were matched by age and time since menopause. Clinical, anthropometric, and biochemical data were collected. Women who presented three or more diagnostic criteria were considered to have metabolic syndrome (MetS): waist circunference > 88cm; triglycerides ≥ 150mg/dL; HDL-cholesterol < 50mg/dL; blood pressure (BP) ≥ 130/85mmHg; glucose ≥ 100mg/dL. RESULTS Women with BC had a higher occurrence of MetS and elevated BP compared to the control (30.8% vs. 20.0% and 25.4% vs. 14.6%, respectively) (P < 0.05). A higher percentage of women with BC had values above the desirable range for total cholesterol and glucose compared to the control (56.2% vs. 43.1% and 29.2% vs. 15.4%, respectively) (P < 0.05). In the risk analysis of the metabolic profile, adjusted for age and menopausal status, women with BC had a significantly higher risk for MetS (OR =%2.76, 95% CI 1.48-5.15), elevated glucose (OR = 2.69, 95% CI 1.46-4.96), and hypertension (OR = 3.03, 95% CI 1.51-6.10). CONCLUSION Non-obese women with BC had a higher risk for MetS, hypertension, and diabetes, with a worse metabolic profile compared to non-obese women without BC. Prospective studies are needed to validate our results.
Collapse
Affiliation(s)
- Pedro Paulo P da Silva-Filho
- Graduate Program in Tocogynecology, Botucatu Medical School, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Daniel A B Buttros
- Graduate Program in Tocogynecology, Botucatu Medical School, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Luciana A B Buttros
- Graduate Program in Tocogynecology, Botucatu Medical School, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Giulliano Esperança
- Graduate Program in Tocogynecology, Botucatu Medical School, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Pedro Luiz F Gubolino
- Graduate Program in Tocogynecology, Botucatu Medical School, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Eduardo Carvalho-Pessoa
- Graduate Program in Tocogynecology, Botucatu Medical School, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil; Department of Gynecology and Obstetrics, Botucatu Medical School, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Heloisa D L Vespoli
- Graduate Program in Tocogynecology, Botucatu Medical School, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil; Department of Gynecology and Obstetrics, Botucatu Medical School, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Eliana A P Nahas
- Graduate Program in Tocogynecology, Botucatu Medical School, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil; Department of Gynecology and Obstetrics, Botucatu Medical School, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Giotti B, Dolasia K, Zhao W, Cai P, Sweeney R, Merritt E, Kiner E, Kim GS, Bhagwat A, Nguyen T, Hegde S, Fitzgerald BG, Shroff S, Dawson T, Garcia-Barros M, Abdul-Ghafar J, Chen R, Gnjatic S, Soto A, Brody R, Kim-Schulze S, Chen Z, Beaumont KG, Merad M, Flores RM, Sebra RP, Horowitz A, Marron TU, Tocheva A, Wolf A, Tsankov AM. Single-Cell View of Tumor Microenvironment Gradients in Pleural Mesothelioma. Cancer Discov 2024; 14:2262-2278. [PMID: 38959428 DOI: 10.1158/2159-8290.cd-23-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/24/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapies have shown great promise in pleural mesothelioma (PM), yet most patients still do not achieve significant clinical response, highlighting the importance of improving the understanding of the tumor microenvironment (TME). Here, we utilized high-throughput, single-cell RNA sequencing (scRNA-seq) to de novo identify 54 expression programs and construct a comprehensive cellular catalog of the PM TME. We found four cancer-intrinsic programs associated with poor disease outcome and a novel fetal-like, endothelial cell population that likely responds to VEGF signaling and promotes angiogenesis. Across cellular compartments, we observe substantial difference in the TME associated with a cancer-intrinsic sarcomatoid signature, including enrichment in fetal-like endothelial cells, CXCL9+ macrophages, and cytotoxic, exhausted, and regulatory T cells, which we validated using imaging and bulk deconvolution analyses on independent cohorts. Finally, we show, both computationally and experimentally, that NKG2A:HLA-E interaction between NK and tumor cells represents an important new therapeutic axis in PM, especially for epithelioid cases. Significance: This manuscript presents the first single-cell RNA sequencing atlas of PM tumor microenvironment. Findings of translational relevance, validated experimentally and using independent bulk cohorts, include identification of gene programs predictive of survival, a fetal-like endothelial cell population, and NKG2A blockade as a promising new immunotherapeutic intervention in PM.
Collapse
Affiliation(s)
- Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Komal Dolasia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - William Zhao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peiwen Cai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert Sweeney
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elliot Merritt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Grace S Kim
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Atharva Bhagwat
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Thinh Nguyen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samarth Hegde
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bailey G Fitzgerald
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sanjana Shroff
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Travis Dawson
- The Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Monica Garcia-Barros
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jamshid Abdul-Ghafar
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Chen
- The Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sacha Gnjatic
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alan Soto
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Brody
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Seunghee Kim-Schulze
- The Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhihong Chen
- The Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Miriam Merad
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Raja M Flores
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amir Horowitz
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Thomas U Marron
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anna Tocheva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrea Wolf
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Luo X, Zeng W, Tang J, Liu W, Yang J, Chen H, Jiang L, Zhou X, Huang J, Zhang S, Du L, Shen X, Chi H, Wang H. Multi-modal transcriptomic analysis reveals metabolic dysregulation and immune responses in chronic obstructive pulmonary disease. Sci Rep 2024; 14:22699. [PMID: 39349929 PMCID: PMC11442962 DOI: 10.1038/s41598-024-71773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a progressive inflammatory condition of the airways, emerges from the complex interplay between genetic predisposition and environmental factors. Notably, its incidence is on the rise, particularly among the elderly demographic. Current research increasingly highlights cellular senescence as a key driver in chronic lung pathologies. Despite this, the detailed mechanisms linking COPD with senescent genomic alterations remain elusive. To address this gap, there is a pressing need for comprehensive bioinformatics methodologies that can elucidate the molecular intricacies of this link. This approach is crucial for advancing our understanding of COPD and its association with cellular aging processes. Utilizing a spectrum of advanced bioinformatics techniques, this research delved into the potential mechanisms linking COPD with aging-related genes, identifying four key genes (EP300, MTOR, NFE2L1, TXN) through machine learning and weighted gene co-expression network analysis (WGCNA) analyses. Subsequently, a precise diagnostic model leveraging an artificial neural network was developed. The study further employed single-cell analysis and molecular docking to investigate senescence-related cell types in COPD tissues, particularly focusing on the interactions between COPD and NFE2L1, thereby enhancing the understanding of COPD's molecular underpinnings. Leveraging artificial neural networks, we developed a robust classification model centered on four genes-EP300, MTOR, NFE2L1, TXN-exhibiting significant predictive capability for COPD and offering novel avenues for its early diagnosis. Furthermore, employing various single-cell analysis techniques, the study intricately unraveled the characteristics of senescence-related cell types in COPD tissues, enriching our understanding of the disease's cellular landscape. This research anticipates offering novel biomarkers and therapeutic targets for early COPD intervention, potentially alleviating the disease's impact on individuals and healthcare systems, and contributing to a reduction in global COPD-related mortality. These findings carry significant clinical and public health ramifications, bolstering the foundation for future research and clinical strategies in managing and understanding COPD.
Collapse
Affiliation(s)
- Xiufang Luo
- Geriatric Department, Dazhou Central Hospital, Dazhou, 635000, China
| | - Wei Zeng
- Oncology Department, Second People's Hospital of Yaan City, Yaan, 625000, China
| | - Jingyi Tang
- Department of Clinical Medicine, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Wang Liu
- Department of General Surgery, Cheng Fei Hospital, Chengdu, 610000, China
| | - Jinyan Yang
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Haiqing Chen
- Department of Clinical Medicine, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Lai Jiang
- Department of Clinical Medicine, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Xuancheng Zhou
- Department of Clinical Medicine, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Jinbang Huang
- Department of Clinical Medicine, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Shengke Zhang
- Department of Clinical Medicine, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Linjuan Du
- Oncology Department, Dazhou Central Hospital, Dazhou, 635000, China
| | - Xiang Shen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Hao Chi
- Department of Clinical Medicine, Clinical Medical College, Southwest Medical University, Luzhou, 646000, China.
| | - Huachuan Wang
- Department of Thoracic Surgery, Dazhou Central Hospital, Dazhou, 635000, China.
| |
Collapse
|
6
|
Jha RM, Rajasundaram D, Sneiderman C, Schlegel BT, O'Brien C, Xiong Z, Janesko-Feldman K, Trivedi R, Vagni V, Zusman BE, Catapano JS, Eberle A, Desai SM, Jadhav AP, Mihaljevic S, Miller M, Raikwar S, Rani A, Rulney J, Shahjouie S, Raphael I, Kumar A, Phuah CL, Winkler EA, Simon DW, Kochanek PM, Kohanbash G. A single-cell atlas deconstructs heterogeneity across multiple models in murine traumatic brain injury and identifies novel cell-specific targets. Neuron 2024; 112:3069-3088.e4. [PMID: 39019041 DOI: 10.1016/j.neuron.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Traumatic brain injury (TBI) heterogeneity remains a critical barrier to translating therapies. Identifying final common pathways/molecular signatures that integrate this heterogeneity informs biomarker and therapeutic-target development. We present the first large-scale murine single-cell atlas of the transcriptomic response to TBI (334,376 cells) across clinically relevant models, sex, brain region, and time as a foundational step in molecularly deconstructing TBI heterogeneity. Results were unique to cell populations, injury models, sex, brain regions, and time, highlighting the importance of cell-level resolution. We identify cell-specific targets and previously unrecognized roles for microglial and ependymal subtypes. Ependymal-4 was a hub of neuroinflammatory signaling. A distinct microglial lineage shared features with disease-associated microglia at 24 h, with persistent gene-expression changes in microglia-4 even 6 months after contusional TBI, contrasting all other cell types that mostly returned to naive levels. Regional and sexual dimorphism were noted. CEREBRI, our searchable atlas (https://shiny.crc.pitt.edu/cerebri/), identifies previously unrecognized cell subtypes/molecular targets and is a leverageable platform for future efforts in TBI and other diseases with overlapping pathophysiology.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Chaim Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Casey O'Brien
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Ria Trivedi
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vincent Vagni
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Benjamin E Zusman
- Department of Neurology, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Adam Eberle
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | - Ashutosh P Jadhav
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Margaux Miller
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jarrod Rulney
- University of Arizona School of Medicine, Tucson, AZ 85724, USA
| | - Shima Shahjouie
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurology, Pennsylvania State University, Hershey, PA 17033, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aditya Kumar
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Chia-Ling Phuah
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Ethan A Winkler
- Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dennis W Simon
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Winkler J, Tan W, Diadhiou CM, McGinnis CS, Abbasi A, Hasnain S, Durney S, Atamaniuc E, Superville D, Awni L, Lee JV, Hinrichs JH, Wagner PS, Singh N, Hein MY, Borja M, Detweiler AM, Liu SY, Nanjaraj A, Sitarama V, Rugo HS, Neff N, Gartner ZJ, Oliveira Pisco A, Goga A, Darmanis S, Werb Z. Single-cell analysis of breast cancer metastasis reveals epithelial-mesenchymal plasticity signatures associated with poor outcomes. J Clin Invest 2024; 134:e164227. [PMID: 39225101 PMCID: PMC11364385 DOI: 10.1172/jci164227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
Metastasis is the leading cause of cancer-related deaths. It is unclear how intratumor heterogeneity (ITH) contributes to metastasis and how metastatic cells adapt to distant tissue environments. The study of these adaptations is challenged by the limited access to patient material and a lack of experimental models that appropriately recapitulate ITH. To investigate metastatic cell adaptations and the contribution of ITH to metastasis, we analyzed single-cell transcriptomes of matched primary tumors and metastases from patient-derived xenograft models of breast cancer. We found profound transcriptional differences between the primary tumor and metastatic cells. Primary tumors upregulated several metabolic genes, whereas motility pathway genes were upregulated in micrometastases, and stress response signaling was upregulated during progression. Additionally, we identified primary tumor gene signatures that were associated with increased metastatic potential and correlated with patient outcomes. Immune-regulatory control pathways were enriched in poorly metastatic primary tumors, whereas genes involved in epithelial-mesenchymal transition were upregulated in highly metastatic tumors. We found that ITH was dominated by epithelial-mesenchymal plasticity (EMP), which presented as a dynamic continuum with intermediate EMP cell states characterized by specific genes such as CRYAB and S100A2. Elevated expression of an intermediate EMP signature correlated with worse patient outcomes. Our findings identified inhibition of the intermediate EMP cell state as a potential therapeutic target to block metastasis.
Collapse
Affiliation(s)
- Juliane Winkler
- Department of Anatomy and
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Weilun Tan
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| | | | | | | | | | - Sophia Durney
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Elena Atamaniuc
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Daphne Superville
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | | | - Joyce V. Lee
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Johanna H. Hinrichs
- Department of Anatomy and
- Institute of Internal Medicine D, Medical Cell Biology, University Hospital Münster, Münster, Germany
| | - Patrick S. Wagner
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Namrata Singh
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Marco Y. Hein
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Vienna, Austria
| | - Michael Borja
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| | | | | | | | | | - Hope S. Rugo
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Norma Neff
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub Investigator, San Francisco, California, USA
| | | | - Andrei Goga
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Spyros Darmanis
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
- Genentech, South San Francisco, California, USA
| | | |
Collapse
|
8
|
Casotti MC, Meira DD, Zetum ASS, Campanharo CV, da Silva DRC, Giacinti GM, da Silva IM, Moura JAD, Barbosa KRM, Altoé LSC, Mauricio LSR, Góes LSBDB, Alves LNR, Linhares SSG, Ventorim VDP, Guaitolini YM, dos Santos EDVW, Errera FIV, Groisman S, de Carvalho EF, de Paula F, de Sousa MVP, Fechine PBA, Louro ID. Integrating frontiers: a holistic, quantum and evolutionary approach to conquering cancer through systems biology and multidisciplinary synergy. Front Oncol 2024; 14:1419599. [PMID: 39224803 PMCID: PMC11367711 DOI: 10.3389/fonc.2024.1419599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer therapy is facing increasingly significant challenges, marked by a wide range of techniques and research efforts centered around somatic mutations, precision oncology, and the vast amount of big data. Despite this abundance of information, the quest to cure cancer often seems more elusive, with the "war on cancer" yet to deliver a definitive victory. A particularly pressing issue is the development of tumor treatment resistance, highlighting the urgent need for innovative approaches. Evolutionary, Quantum Biology and System Biology offer a promising framework for advancing experimental cancer research. By integrating theoretical studies, translational methods, and flexible multidisciplinary clinical research, there's potential to enhance current treatment strategies and improve outcomes for cancer patients. Establishing stronger links between evolutionary, quantum, entropy and chaos principles and oncology could lead to more effective treatments that leverage an understanding of the tumor's evolutionary dynamics, paving the way for novel methods to control and mitigate cancer. Achieving these objectives necessitates a commitment to multidisciplinary and interprofessional collaboration at the heart of both research and clinical endeavors in oncology. This entails dismantling silos between disciplines, encouraging open communication and data sharing, and integrating diverse viewpoints and expertise from the outset of research projects. Being receptive to new scientific discoveries and responsive to how patients react to treatments is also crucial. Such strategies are key to keeping the field of oncology at the forefront of effective cancer management, ensuring patients receive the most personalized and effective care. Ultimately, this approach aims to push the boundaries of cancer understanding, treating it as a manageable chronic condition, aiming to extend life expectancy and enhance patient quality of life.
Collapse
Affiliation(s)
- Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | | | - Giulia Maria Giacinti
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Iris Moreira da Silva
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - João Augusto Diniz Moura
- Laboratório de Oncologia Clínica e Experimental, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Karen Ruth Michio Barbosa
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | - Vinícius do Prado Ventorim
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Yasmin Moreto Guaitolini
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | - Sonia Groisman
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Flavia de Paula
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | - Pierre Basílio Almeida Fechine
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Iuri Drumond Louro
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| |
Collapse
|
9
|
Izumi M, Fujii M, Kobayashi IS, Ho V, Kashima Y, Udagawa H, Costa DB, Kobayashi SS. Integrative single-cell RNA-seq and spatial transcriptomics analyses reveal diverse apoptosis-related gene expression profiles in EGFR-mutated lung cancer. Cell Death Dis 2024; 15:580. [PMID: 39122703 PMCID: PMC11316060 DOI: 10.1038/s41419-024-06940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
In EGFR-mutated lung cancer, the duration of response to tyrosine kinase inhibitors (TKIs) is limited by the development of acquired drug resistance. Despite the crucial role played by apoptosis-related genes in tumor cell survival, how their expression changes as resistance to EGFR-TKIs emerges remains unclear. Here, we conduct a comprehensive analysis of apoptosis-related genes, including BCL-2 and IAP family members, using single-cell RNA sequence (scRNA-seq) and spatial transcriptomics (ST). scRNA-seq of EGFR-mutated lung cancer cell lines captures changes in apoptosis-related gene expression following EGFR-TKI treatment, most notably BCL2L1 upregulation. scRNA-seq of EGFR-mutated lung cancer patient samples also reveals high BCL2L1 expression, specifically in tumor cells, while MCL1 expression is lower in tumors compared to non-tumor cells. ST analysis of specimens from transgenic mice with EGFR-driven lung cancer indicates spatial heterogeneity of tumors and corroborates scRNA-seq findings. Genetic ablation and pharmacological inhibition of BCL2L1/BCL-XL overcome or delay EGFR-TKI resistance. Overall, our findings indicate that BCL2L1/BCL-XL expression is important for tumor cell survival as EGFR-TKI resistance emerges.
Collapse
Affiliation(s)
- Motohiro Izumi
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Masanori Fujii
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ikei S Kobayashi
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Vivian Ho
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yukie Kashima
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, 277-8577, Japan
| | - Hibiki Udagawa
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, 277-8577, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, 277-8577, Japan
| | - Daniel B Costa
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Susumu S Kobayashi
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, 277-8577, Japan.
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, 113-8431, Japan.
| |
Collapse
|
10
|
Wang J, Wu Z, Zhu M, Zhao Y, Xie J. ROS induced pyroptosis in inflammatory disease and cancer. Front Immunol 2024; 15:1378990. [PMID: 39011036 PMCID: PMC11246884 DOI: 10.3389/fimmu.2024.1378990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Pyroptosis, a form of caspase-1-dependent cell death, also known as inflammation-dependent death, plays a crucial role in diseases such as stroke, heart disease, or tumors. Since its elucidation, pyroptosis has attracted widespread attention from various sectors. Reactive oxygen species (ROS) can regulate numerous cellular signaling pathways. Through further research on ROS and pyroptosis, the level of ROS has been revealed to be pivotal for the occurrence of pyroptosis, establishing a close relationship between the two. This review primarily focuses on the molecular mechanisms of ROS and pyroptosis in tumors and inflammatory diseases, exploring key proteins that may serve as drug targets linking ROS and pyroptosis and emerging fields targeting pyroptosis. Additionally, the potential future development of compounds and proteins that influence ROS-regulated cell pyroptosis is anticipated, aiming to provide insights for the development of anti-tumor and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jingsong Wang
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Ziyong Wu
- Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Min Zhu
- Department of Pharmacy, Xuchang Central Hospital, Xuchang, Henan, China
| | - Yang Zhao
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Jingwen Xie
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
- Department of Health, Chongqing Industry & Trade Polytechnic, Chongqing, China
| |
Collapse
|
11
|
Sinha S, Vegesna R, Mukherjee S, Kammula AV, Dhruba SR, Wu W, Kerr DL, Nair NU, Jones MG, Yosef N, Stroganov OV, Grishagin I, Aldape KD, Blakely CM, Jiang P, Thomas CJ, Benes CH, Bivona TG, Schäffer AA, Ruppin E. PERCEPTION predicts patient response and resistance to treatment using single-cell transcriptomics of their tumors. NATURE CANCER 2024; 5:938-952. [PMID: 38637658 DOI: 10.1038/s43018-024-00756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/08/2024] [Indexed: 04/20/2024]
Abstract
Tailoring optimal treatment for individual cancer patients remains a significant challenge. To address this issue, we developed PERCEPTION (PERsonalized Single-Cell Expression-Based Planning for Treatments In ONcology), a precision oncology computational pipeline. Our approach uses publicly available matched bulk and single-cell (sc) expression profiles from large-scale cell-line drug screens. These profiles help build treatment response models based on patients' sc-tumor transcriptomics. PERCEPTION demonstrates success in predicting responses to targeted therapies in cultured and patient-tumor-derived primary cells, as well as in two clinical trials for multiple myeloma and breast cancer. It also captures the resistance development in patients with lung cancer treated with tyrosine kinase inhibitors. PERCEPTION outperforms published state-of-the-art sc-based and bulk-based predictors in all clinical cohorts. PERCEPTION is accessible at https://github.com/ruppinlab/PERCEPTION . Our work, showcasing patient stratification using sc-expression profiles of their tumors, will encourage the adoption of sc-omics profiling in clinical settings, enhancing precision oncology tools based on sc-omics.
Collapse
Affiliation(s)
- Sanju Sinha
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA.
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA.
| | - Rahulsimham Vegesna
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sumit Mukherjee
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Ashwin V Kammula
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
- University of Maryland, College Park, MD, USA
| | | | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - D Lucas Kerr
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nishanth Ulhas Nair
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Matthew G Jones
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA
- Integrative Program in Quantitative Biology, University of California, San Francisco, San Francisco, CA, USA
- Whitehead Institute, Cambridge, MA, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA
| | | | - Ivan Grishagin
- Rancho BioSciences, San Diego, CA, USA
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Peng Jiang
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cyril H Benes
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub Investigator, San Francisco, CA, USA
| | | | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
12
|
Deng Y, Xia L, Zhang J, Deng S, Wang M, Wei S, Li K, Lai H, Yang Y, Bai Y, Liu Y, Luo L, Yang Z, Chen Y, Kang R, Gan F, Pu Q, Mei J, Ma L, Lin F, Guo C, Liao H, Zhu Y, Liu Z, Liu C, Hu Y, Yuan Y, Zha Z, Yuan G, Zhang G, Chen L, Cheng Q, Shen S, Liu L. Multicellular ecotypes shape progression of lung adenocarcinoma from ground-glass opacity toward advanced stages. Cell Rep Med 2024; 5:101489. [PMID: 38554705 PMCID: PMC11031428 DOI: 10.1016/j.xcrm.2024.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/26/2024] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Lung adenocarcinoma is a type of cancer that exhibits a wide range of clinical radiological manifestations, from ground-glass opacity (GGO) to pure solid nodules, which vary greatly in terms of their biological characteristics. Our current understanding of this heterogeneity is limited. To address this gap, we analyze 58 lung adenocarcinoma patients via machine learning, single-cell RNA sequencing (scRNA-seq), and whole-exome sequencing, and we identify six lung multicellular ecotypes (LMEs) correlating with distinct radiological patterns and cancer cell states. Notably, GGO-associated neoantigens in early-stage cancers are recognized by CD8+ T cells, indicating an immune-active environment, while solid nodules feature an immune-suppressive LME with exhausted CD8+ T cells, driven by specific stromal cells such as CTHCR1+ fibroblasts. This study also highlights EGFR(L858R) neoantigens in GGO samples, suggesting potential CD8+ T cell activation. Our findings offer valuable insights into lung adenocarcinoma heterogeneity, suggesting avenues for targeted therapies in early-stage disease.
Collapse
Affiliation(s)
- Yulan Deng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Liang Xia
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Jian Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Senyi Deng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Mengyao Wang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China; Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong, China
| | - Shiyou Wei
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Kaixiu Li
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China; Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong, China
| | - Hongjin Lai
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yunhao Yang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yuquan Bai
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yongcheng Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Lanzhi Luo
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Zhenyu Yang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yaohui Chen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Ran Kang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Fanyi Gan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Qiang Pu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Jiandong Mei
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Lin Ma
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Feng Lin
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Chenglin Guo
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Hu Liao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yunke Zhu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Zheng Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Chengwu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yang Hu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Zhengyu Zha
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Gang Yuan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Qing Cheng
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Shensi Shen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China.
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Chen E, Ling AL, Reardon DA, Chiocca EA. Lessons learned from phase 3 trials of immunotherapy for glioblastoma: Time for longitudinal sampling? Neuro Oncol 2024; 26:211-225. [PMID: 37995317 PMCID: PMC10836778 DOI: 10.1093/neuonc/noad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
Glioblastoma (GBM)'s median overall survival is almost 21 months. Six phase 3 immunotherapy clinical trials have recently been published, yet 5/6 did not meet approval by regulatory bodies. For the sixth, approval is uncertain. Trial failures result from multiple factors, ranging from intrinsic tumor biology to clinical trial design. Understanding the clinical and basic science of these 6 trials is compelled by other immunotherapies reaching the point of advanced phase 3 clinical trial testing. We need to understand more of the science in human GBMs in early trials: the "window of opportunity" design may not be best to understand complex changes brought about by immunotherapeutic perturbations of the GBM microenvironment. The convergence of increased safety of image-guided biopsies with "multi-omics" of small cell numbers now permits longitudinal sampling of tumor and biofluids to dissect the complex temporal changes in the GBM microenvironment as a function of the immunotherapy.
Collapse
Affiliation(s)
- Ethan Chen
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Alexander L Ling
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Liu J, Jiang P, Lu Z, Yu Z, Qian P. Decoding leukemia at the single-cell level: clonal architecture, classification, microenvironment, and drug resistance. Exp Hematol Oncol 2024; 13:12. [PMID: 38291542 PMCID: PMC10826069 DOI: 10.1186/s40164-024-00479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Leukemias are refractory hematological malignancies, characterized by marked intrinsic heterogeneity which poses significant obstacles to effective treatment. However, traditional bulk sequencing techniques have not been able to effectively unravel the heterogeneity among individual tumor cells. With the emergence of single-cell sequencing technology, it has bestowed upon us an unprecedented resolution to comprehend the mechanisms underlying leukemogenesis and drug resistance across various levels, including the genome, epigenome, transcriptome and proteome. Here, we provide an overview of the currently prevalent single-cell sequencing technologies and a detailed summary of single-cell studies conducted on leukemia, with a specific focus on four key aspects: (1) leukemia's clonal architecture, (2) frameworks to determine leukemia subtypes, (3) tumor microenvironment (TME) and (4) the drug-resistant mechanisms of leukemia. This review provides a comprehensive summary of current single-cell studies on leukemia and highlights the markers and mechanisms that show promising clinical implications for the diagnosis and treatment of leukemia.
Collapse
Affiliation(s)
- Jianche Liu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- International Campus, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China
| | - Zezhen Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- International Campus, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Zebin Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Galadima M, Teles M, Pastor J, Hernández-Losa J, Rodríguez-Gil JE, Rivera del Alamo MM. Programmed Death-Ligand (PD-L1), Epidermal Growth Factor (EGF), Relaxin, and Matrix Metalloproteinase-3 (MMP3): Potential Biomarkers of Malignancy in Canine Mammary Neoplasia. Int J Mol Sci 2024; 25:1170. [PMID: 38256245 PMCID: PMC10816983 DOI: 10.3390/ijms25021170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Gene expression has been suggested as a putative tool for prognosis and diagnosis in canine mammary neoplasia (CMNs). In the present study, 58 formalin-fixed paraffin-embedded (FFPE) paraffined canine mammary neoplasias from 27 different bitches were included. Thirty-seven tumours were classified as benign, whereas thirty-one were classified as different types of canine carcinoma. In addition, mammary samples from three healthy bitches were also included. The gene expression for vascular endothelial growth factor-α (VEGFα), CD20, progesterone receptor (PGR), hyaluronidase-1 (HYAL-1), programmed death-ligand 1 (PD-L1), epidermal growth factor (EGF), relaxin (RLN2), and matrix metalloproteinase-3 (MMP3) was assessed through RT-qPCR. All the assessed genes yielded a higher expression in neoplastic mammary tissue than in healthy tissue. All the evaluated genes were overexpressed in neoplastic mammary tissue, suggesting a role in the process of tumorigenesis. Moreover, PD-L1, EGF, relaxin, and MMP3 were significantly overexpressed in malignant CMNs compared to benign CMNs, suggesting they may be useful as malignancy biomarkers.
Collapse
Affiliation(s)
- Makchit Galadima
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.G.); (J.P.); (J.E.R.-G.)
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Josep Pastor
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.G.); (J.P.); (J.E.R.-G.)
| | - Javier Hernández-Losa
- Department of Pathology, Hospital Universitari Vall d’Hebron, VHIR, 08035 Barcelona, Spain;
| | - Joan Enric Rodríguez-Gil
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.G.); (J.P.); (J.E.R.-G.)
| | - Maria Montserrat Rivera del Alamo
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.G.); (J.P.); (J.E.R.-G.)
| |
Collapse
|
16
|
Li J, Song Z, Chen Z, Gu J, Cai Y, Zhang L, Wang Z. Association Between Diverse Cell Death Patterns Related Gene Signature and Prognosis, Drug Sensitivity, and Immune Microenvironment in Glioblastoma. J Mol Neurosci 2024; 74:10. [PMID: 38214842 PMCID: PMC10787010 DOI: 10.1007/s12031-023-02181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024]
Abstract
Glioblastoma (GBM) is the most invasive type of glioma and is difficult to treat. Diverse programmed cell death (PCD) patterns have a significant association with tumor initiation and progression. A novel prognostic model based on PCD genes may serve as an effective tool to predict the prognosis of GBM. The study incorporated 11 PCD patterns, namely apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis, and oxeiptosis, to develop the model. To construct and validate the model, both bulk and single-cell transcriptome data, along with corresponding clinical data from GBM cases, were obtained from the TCGA-GBM, REMBRANDT, CGGA, and GSE162631 datasets. A cell death-related signature containing 14 genes was constructed with the TCGA-GBM cohort and validated in the REMBRANDT and CGGA datasets. GBM patients with a higher cell death index (CDI) were significantly associated with poorer survival outcomes. Two separate clusters associated with clinical outcomes emerged from unsupervised analysis. A multivariate Cox regression analysis was conducted to examine the association of CDI with clinical characteristics, and a prognostic nomogram was developed. Drug sensitivity analysis revealed high-CDI GBM patients might be resistant to carmustine while sensitive to 5-fluorouracil. Less abundance of natural killer cells was found in GBM cases with high CDI and bulk transcriptome data. A cell death-related prognostic model that could predict the prognosis of GBM patients with good performance was established, which could discriminate between the prognosis and drug sensitivity of GBM.
Collapse
Affiliation(s)
- Jian Li
- Department of Neurosurgery, Zhangjiagang Hospital affiliated to Soochow University/ The First Peoples' Hospital of Zhangjiagang City, Suzhou, China
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhaoming Song
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhouqing Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jingyu Gu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yifan Cai
- Department of Neurosurgery, Zhangjiagang Hospital affiliated to Soochow University/ The First Peoples' Hospital of Zhangjiagang City, Suzhou, China
| | - Li Zhang
- Department of Neurosurgery, Zhangjiagang Hospital affiliated to Soochow University/ The First Peoples' Hospital of Zhangjiagang City, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
17
|
Logotheti S, Papadaki E, Zolota V, Logothetis C, Vrahatis AG, Soundararajan R, Tzelepi V. Lineage Plasticity and Stemness Phenotypes in Prostate Cancer: Harnessing the Power of Integrated "Omics" Approaches to Explore Measurable Metrics. Cancers (Basel) 2023; 15:4357. [PMID: 37686633 PMCID: PMC10486655 DOI: 10.3390/cancers15174357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching between developmental cell states. What remains to be elucidated is how to identify measurements of lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how to classify patients and inform therapeutic strategies in the clinic. Recent research has highlighted the crucial role of next-generation sequencing technologies in identifying potential biomarkers associated with lineage plasticity. Here, we review the genomic, transcriptomic, and epigenetic events that have been described in PCa and highlight those with significance for lineage plasticity. We further focus on their relevance in PCa research and their benefits in PCa patient classification. Finally, we explore ways in which bioinformatic analyses can be used to determine lineage plasticity based on large omics analyses and algorithms that can shed light on upstream and downstream events. Most importantly, an integrated multiomics approach may soon allow for the identification of a lineage plasticity signature, which would revolutionize the molecular classification of PCa patients.
Collapse
Affiliation(s)
- Souzana Logotheti
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Eugenia Papadaki
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
- Department of Informatics, Ionian University, 49100 Corfu, Greece;
| | - Vasiliki Zolota
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vasiliki Tzelepi
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| |
Collapse
|
18
|
Wang Q, Sun K, Liu R, Song Y, Lv Y, Bi P, Yang F, Li S, Zhao J, Li X, Chen D, Mei J, Yang R, Chen K, Liu D, Tang S. Single-cell transcriptome sequencing of B-cell heterogeneity and tertiary lymphoid structure predicts breast cancer prognosis and neoadjuvant therapy efficacy. Clin Transl Med 2023; 13:e1346. [PMID: 37525587 PMCID: PMC10390819 DOI: 10.1002/ctm2.1346] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is a highly heterogeneous disease, and although immunotherapy has recently increased patient survival in a number of solid and hematologic malignancies, most BC subtypes respond poorly to immune checkpoint blockade therapy (ICB). B cells, particularly those that congregate in tertiary lymphoid structures (TLS), play a significant role in antitumour immunity. However, B-cell heterogeneity at single-cell resolution and its clinical significance with TLS in BC need to be explored further. METHODS Primary tumour lesions and surrounding normal tissues were taken from 14 BC patients, totaling 124,587 cells, for single-cell transcriptome sequencing and bioinformatics analysis. RESULTS Based on the usual markers, the single-cell transcriptome profiles were classified into various clusters. A thorough single-cell study was conducted with a focus on tumour-infiltrating B cells (TIL-B) and tumour-associated neutrophils (TAN). TIL-B was divided into five clusters, and unusual cell types, such as follicular B cells, which are strongly related to immunotherapy efficacy, were identified. In BC, TAN and TIL-B infiltration are positively correlated, and at the same time, compared with TLS-high, TAN and TIL-B in TLS-low group are significantly positively correlated. CONCLUSIONS In conclusion, our study highlights the heterogeneity of B cells in BC, explains how B cells and TLS contribute significantly to antitumour immunity at both the single-cell and clinical level, and offers a straightforward marker for TLS called CD23. These results will offer more pertinent information on the applicability and effectiveness of tumour immunotherapy for BC.
Collapse
Affiliation(s)
- Qing Wang
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Ke Sun
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Rui Liu
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Ying Song
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Yafeng Lv
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Pingping Bi
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Fuying Yang
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Sijia Li
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Jiawen Zhao
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Xiuqin Li
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Dong Chen
- Department of UltrasoundCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Jialin Mei
- Department of Cardiothoracic SurgeryBaoshan People's HospitalBaoshanChina
| | - Rirong Yang
- Center for Genomic and Personalized MedicineGuangxi Medical UniversityNanningChina
- Department of ImmunologySchool of Basic Medical SciencesGuangxi Medical UniversityNanningChina
| | - Kai Chen
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Dequan Liu
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Shichong Tang
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| |
Collapse
|
19
|
Geiger T. Tackling tumor complexity with single-cell proteomics. Nat Methods 2023; 20:324-326. [PMID: 36899159 DOI: 10.1038/s41592-023-01784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Tamar Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
20
|
Master kinases extracted from proteogenomic networks in glioblastoma drive cancer subtypes. NATURE CANCER 2023; 4:159-160. [PMID: 36732637 DOI: 10.1038/s43018-022-00511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Iacobucci I, Witkowski MT, Mullighan CG. Single-cell analysis of acute lymphoblastic and lineage-ambiguous leukemia: approaches and molecular insights. Blood 2023; 141:356-368. [PMID: 35926109 PMCID: PMC10023733 DOI: 10.1182/blood.2022016954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023] Open
Abstract
Despite recent progress in identifying the genetic drivers of acute lymphoblastic leukemia (ALL), prognosis remains poor for those individuals who experience disease recurrence. Moreover, acute leukemias of ambiguous lineage lack a biologically informed framework to guide classification and therapy. These needs have driven the adoption of multiple complementary single-cell sequencing approaches to explore key issues in the biology of these leukemias, including cell of origin, developmental hierarchy and ontogeny, and the molecular heterogeneity driving pathogenesis, progression, and therapeutic responsiveness. There are multiple single-cell techniques for profiling a specific modality, including RNA, DNA, chromatin accessibility and methylation; and an expanding range of approaches for simultaneous analysis of multiple modalities. Single-cell sequencing approaches have also enabled characterization of cell-intrinsic and -extrinsic features of ALL biology. In this review we describe these approaches and highlight the extensive heterogeneity that underpins ALL gene expression, cellular differentiation, and clonal architecture throughout disease pathogenesis and treatment resistance. In addition, we discuss the importance of the dynamic interactions that occur between leukemia cells and the nonleukemia microenvironment. We discuss potential opportunities and limitations of single-cell sequencing for the study of ALL biology and treatment responsiveness.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN
| | - Matthew T. Witkowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Charles G. Mullighan
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN
- Hematological Malignancies Program, St Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
22
|
Bassiouni R, Idowu MO, Gibbs LD, Robila V, Grizzard PJ, Webb MG, Song J, Noriega A, Craig DW, Carpten JD. Spatial Transcriptomic Analysis of a Diverse Patient Cohort Reveals a Conserved Architecture in Triple-Negative Breast Cancer. Cancer Res 2023; 83:34-48. [PMID: 36283023 PMCID: PMC9812886 DOI: 10.1158/0008-5472.can-22-2682] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 02/03/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease that disproportionately affects African American (AA) women. Limited targeted therapeutic options exist for patients with TNBC. Here, we employ spatial transcriptomics to interrogate tissue from a racially diverse TNBC cohort to comprehensively annotate the transcriptional states of spatially resolved cellular populations. A total of 38,706 spatial features from a cohort of 28 sections from 14 patients were analyzed. Intratumoral analysis of spatial features from individual sections revealed heterogeneous transcriptional substructures. However, integrated analysis of all samples resulted in nine transcriptionally distinct clusters that mapped across all individual sections. Furthermore, novel use of join count analysis demonstrated nonrandom directional spatial dependencies of the transcriptionally defined shared clusters, supporting a conserved spatio-transcriptional architecture in TNBC. These findings were substantiated in an independent validation cohort comprising 17,861 spatial features representing 15 samples from 8 patients. Stratification of samples by race revealed race-associated differences in hypoxic tumor content and regions of immune-rich infiltrate. Overall, this study combined spatial and functional molecular analyses to define the tumor architecture of TNBC, with potential implications in understanding TNBC disparities. SIGNIFICANCE Spatial transcriptomics profiling of a diverse cohort of triple-negative breast cancers and innovative informatics approaches reveal a conserved cellular architecture across cancers and identify proportional differences in tumor cell composition by race.
Collapse
Affiliation(s)
- Rania Bassiouni
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - Michael O. Idowu
- Department of Pathology, Virginia Commonwealth University; Richmond, VA
| | - Lee D. Gibbs
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - Valentina Robila
- Department of Pathology, Virginia Commonwealth University; Richmond, VA
| | | | - Michelle G. Webb
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - Jiarong Song
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - Ashley Noriega
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
| | - David W. Craig
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
- Translational and Clinical Sciences Program, Norris Comprehensive Cancer Center, University of Southern California; Los Angeles, CA
| | - John D. Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California; Los Angeles, CA
- Translational and Clinical Sciences Program, Norris Comprehensive Cancer Center, University of Southern California; Los Angeles, CA
| |
Collapse
|
23
|
Kumar S. Perfusion-Based Fluorescent Dye Labeling to Sort Cancer Cells Based on Their Distance from Blood Vessels. Methods Mol Biol 2023; 2572:55-66. [PMID: 36161407 DOI: 10.1007/978-1-0716-2703-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tumor vasculature is the major extrinsic factor that shapes Intra-tumoral heterogeneity (ITH). Non-uniform exposure of microenvironmental cues greatly impacts cancer cell phenotypes leading to ITH, which exacerbates therapy resistance. This raises a need to study the influence of non-uniform perfusion patterns and the resulting heterogeneity that persists within the tumor microenvironment (TME). A method was developed to identify cancer cells based on their proximity to functional blood vessels (BVs) called perfusion-based fluorescent dye labeling of cells (PFDLC). PFDLC works on the principle of perfusion, where a freely diffusible nuclear binding fluorescent dye (Hoechst 33342) is injected intravenously (i.v.) through a tail vein into atumor-bearing mice. The tumors are retrieved post dye perfusion, dissociated into single cells, and sorted based on their dye uptake proportional to their distance from the nearest blood capillary. This method is amenable to multi-omics as well as functional assays.
Collapse
Affiliation(s)
- Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
24
|
Bikfalvi A, da Costa CA, Avril T, Barnier JV, Bauchet L, Brisson L, Cartron PF, Castel H, Chevet E, Chneiweiss H, Clavreul A, Constantin B, Coronas V, Daubon T, Dontenwill M, Ducray F, Enz-Werle N, Figarella-Branger D, Fournier I, Frenel JS, Gabut M, Galli T, Gavard J, Huberfeld G, Hugnot JP, Idbaih A, Junier MP, Mathivet T, Menei P, Meyronet D, Mirjolet C, Morin F, Mosser J, Moyal ECJ, Rousseau V, Salzet M, Sanson M, Seano G, Tabouret E, Tchoghandjian A, Turchi L, Vallette FM, Vats S, Verreault M, Virolle T. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer 2023; 9:9-27. [PMID: 36400694 DOI: 10.1016/j.trecan.2022.09.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular components involved in the GBM TME and their interactions for the development of more efficient therapies. In this review, we provide a comprehensive report of the GBM TME, which assembles the contributions of physicians and translational researchers working on brain tumor pathology and therapy in France. We propose a holistic view of the subject by delineating the specific features of the GBM TME at the cellular, molecular, and therapeutic levels.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France.
| | - Cristine Alves da Costa
- Côte d'Azur University, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Team "Laboratory of Excellence (LABEX) Distalz", F-06560 Nice, France
| | - Tony Avril
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Jean-Vianney Barnier
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Luc Bauchet
- Montpellier University Medical Center, Department of Neurosurgery, INSERM U1191, F-34090 Montpellier, France
| | - Lucie Brisson
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | | | - Hélène Castel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Eric Chevet
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Hervé Chneiweiss
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Anne Clavreul
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - Bruno Constantin
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Valérie Coronas
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Thomas Daubon
- Bordeaux University, CNRS, IBGC, UMR 5095, F-33 077 Bordeaux, France
| | - Monique Dontenwill
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Francois Ducray
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Natacha Enz-Werle
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Dominique Figarella-Branger
- Aix-Marseille University, Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, F-13385 Marseille, France
| | - Isabelle Fournier
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Jean-Sébastien Frenel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Mathieu Gabut
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Julie Gavard
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Gilles Huberfeld
- College de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Université PSL, Paris 75005, France
| | - Jean-Philippe Hugnot
- Montpellier University, Institut de Génomique Fonctionnelle, CNRS, INSERM, F-34094 Montpellier, France
| | - Ahmed Idbaih
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Marie-Pierre Junier
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Thomas Mathivet
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | - Philippe Menei
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - David Meyronet
- Institute of Neuropathology, Hospices Civils de Lyon, F-69008, Lyon, France
| | - Céline Mirjolet
- Centre Georges-François Leclerc, UNICANCER, Dijon, France. Inserm U1231, Equipe Cadir, F-21000 Dijon, France
| | - Fabrice Morin
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Jean Mosser
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Elisabeth Cohen-Jonathan Moyal
- Institut Claudius Regaud, NSERM 1037, CRCT Team RADOPT, Département de Radiothérapie, IUCT-Oncopole, F-31100 Toulouse, France
| | - Véronique Rousseau
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Michel Salzet
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Marc Sanson
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Giorgio Seano
- Curie Institute Research Center, Tumor Microenvironment Laboratory, PSL Research University, Inserm U1021, CNRS UMR3347, F-91898 Orsay, France
| | - Emeline Tabouret
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Aurélie Tchoghandjian
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Laurent Turchi
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| | - Francois M Vallette
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Somya Vats
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Maité Verreault
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Thierry Virolle
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| |
Collapse
|
25
|
Kim N, Jeong D, Jo A, Eum HH, Lee HO. Prescreening of tumor samples for tumor-centric transcriptome analyses of lung adenocarcinoma. BMC Cancer 2022; 22:1186. [DOI: 10.1186/s12885-022-10317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Single-cell RNA sequencing (scRNA-seq) enables the systemic assessment of intratumoral heterogeneity within tumor cell populations and in diverse stromal cells of the tumor microenvironment. Gain of treatment resistance during tumor progression or drug treatment are important subjects of tumor-centric scRNA-seq analyses, which are hampered by scarce tumor cell portions. To guarantee the inclusion of tumor cells in the data analysis, we developed a prescreening strategy for lung adenocarcinoma.
Methods
We obtained candidate genes that were differentially expressed between normal and tumor cells, excluding stromal cells, from the scRNA-seq data. Tumor cell-specific expression of the candidate genes was assessed via real-time reverse transcription-polymerase chain reaction (RT-PCR) using lung cancer cell lines, normal vs. lung cancer tissues, and lymph node biopsy samples with or without metastasis.
Results
We found that CEA cell adhesion molecule 5 (CEACAM5) and high mobility group box 3 (HMGB3) were reliable markers for RT-PCR-based prescreening of tumor cells in lung adenocarcinoma.
Conclusions
The prescreening strategy using CEACAM5 and HMGB3 expression facilitates tumor-centric scRNA-seq analyses of lung adenocarcinoma.
Collapse
|
26
|
Gonzalez Castro LN, Liu I, Filbin M. Characterizing the biology of primary brain tumors and their microenvironment via single-cell profiling methods. Neuro Oncol 2022; 25:234-247. [PMID: 36197833 PMCID: PMC9925698 DOI: 10.1093/neuonc/noac211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic and transcriptional heterogeneity is prevalent among the most common and aggressive primary brain tumors in children and adults. Over the past 20 years, advances in bioengineering, biochemistry and bioinformatics have enabled the development of an array of techniques to study tumor biology at single-cell resolution. The application of these techniques to study primary brain tumors has helped advance our understanding of their intra-tumoral heterogeneity and uncover new insights regarding their co-option of developmental programs and signaling from their microenvironment to promote tumor proliferation and invasion. These insights are currently being harnessed to develop new therapeutic approaches. Here we provide an overview of current single-cell techniques and discuss relevant biology and therapeutic insights uncovered by their application to primary brain tumors in children and adults.
Collapse
Affiliation(s)
- L Nicolas Gonzalez Castro
- Corresponding Author: L. Nicolas Gonzalez Castro, MD, PhD, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA ()
| | | | - Mariella Filbin
- Pediatric Neuro-Oncology Program, Dana-Farber/Boston Children’s and Blood Disorders Center, Boston, MA, USA
| |
Collapse
|
27
|
Madhi H, Lee J, Choi YE, Li Y, Kim MH, Choi Y, Goh S. FOXM1 Inhibition Enhances the Therapeutic Outcome of Lung Cancer Immunotherapy by Modulating PD-L1 Expression and Cell Proliferation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202702. [PMID: 35975458 PMCID: PMC9561767 DOI: 10.1002/advs.202202702] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/14/2022] [Indexed: 05/31/2023]
Abstract
Programmed death-ligand 1 (PD-L1) is a major target to cancer immunotherapy, and anti-PD-L1 and anti-PD-1 antibody-mediated immunotherapy are being increasingly used. However, immune checkpoint inhibitors (ICIs) are ineffective in treating large tumors and cause various immune-related adverse events in nontarget organs, including life-threatening cardiotoxicity. Therefore, the development of new therapeutic strategies to overcome these limitations is crucial. The focus of this study is the forkhead box protein M1 (FOXM1), which is identified as a potential therapeutic target for cancer immunotherapy and is associated with the modulation of PD-L1 expression. Selective small interfering RNA knockdown of FOXM1 or treatment with thiostrepton (TST) significantly reduces PD-L1 expression in non-small-cell lung cancer (NSCLC) cells and inhibits proliferation. Chromatin immunoprecipitation-PCR reveals that FOXM1 selectively upregulates PD-L1 expression by binding directly to the PD-L1 promoter. In vivo animal studies have shown that TST treatment significantly downregulates PD-L1 expression in human NSCLC tumors, while greatly reducing tumor size without side effects on normal tissues. Combined treatment with TST and anti-4-1BB antibody in the LLC-1 syngeneic tumor model induces synergistic therapeutic outcomes against immune resistant lung tumors as well as 2.72-folds higher CD3+ T cells in tumor tissues compared to that in the anti-4-1BB antibody treatment group.
Collapse
Affiliation(s)
- Hamadi Madhi
- Research InstituteNational Cancer Center323 Ilsan‐ro, GoyangGyeonggi‐Do10408Republic of Korea
- Department of AnatomyGraduate School of Medical SciencesYonsei University College of MedicineSeoul03722Republic of Korea
| | - Jeon‐Soo Lee
- Research InstituteNational Cancer Center323 Ilsan‐ro, GoyangGyeonggi‐Do10408Republic of Korea
| | - Young Eun Choi
- Research InstituteNational Cancer Center323 Ilsan‐ro, GoyangGyeonggi‐Do10408Republic of Korea
| | - Yan Li
- Research InstituteNational Cancer Center323 Ilsan‐ro, GoyangGyeonggi‐Do10408Republic of Korea
| | - Myoung Hee Kim
- Department of AnatomyGraduate School of Medical SciencesYonsei University College of MedicineSeoul03722Republic of Korea
| | - Yongdoo Choi
- Research InstituteNational Cancer Center323 Ilsan‐ro, GoyangGyeonggi‐Do10408Republic of Korea
| | - Sung‐Ho Goh
- Research InstituteNational Cancer Center323 Ilsan‐ro, GoyangGyeonggi‐Do10408Republic of Korea
| |
Collapse
|
28
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
29
|
Napoli GC, Figg WD, Chau CH. Functional Drug Screening in the Era of Precision Medicine. Front Med (Lausanne) 2022; 9:912641. [PMID: 35879922 PMCID: PMC9307928 DOI: 10.3389/fmed.2022.912641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The focus of precision medicine is providing the right treatment to each unique patient. This scientific movement has incited monumental advances in oncology including the approval of effective, targeted agnostic therapies. Yet, precision oncology has focused largely on genomics in the treatment decision making process, and several recent clinical trials demonstrate that genomics is not the only variable to be considered. Drug screening in three dimensional (3D) models, including patient derived organoids, organs on a chip, xenografts, and 3D-bioprinted models provide a functional medicine perspective and necessary complement to genomic testing. In this review, we discuss the practicality of various 3D drug screening models and each model's ability to capture the patient's tumor microenvironment. We highlight the potential for enhancing precision medicine that personalized functional drug testing holds in combination with genomic testing and emerging mathematical models.
Collapse
Affiliation(s)
| | | | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
30
|
Koh L, Novera W, Lim SW, Chong YK, Pang QY, Low D, Ang BT, Tang C. Integrative multi-omics approach to targeted therapy for glioblastoma. Pharmacol Res 2022; 182:106308. [PMID: 35714825 DOI: 10.1016/j.phrs.2022.106308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
This review describes recent technological advances applied to glioblastoma (GBM), a brain tumor with dismal prognosis. International consortial efforts suggest the presence of molecular subtypes within histologically identical GBM tumors. This emphasizes that future treatment decisions should no longer be made based solely on morphological analyses, but must now take into consideration such molecular and cellular heterogeneity. The use of single-cell technologies has advanced our understanding and assignation of functional subtypes revealing therapeutic vulnerabilities. Our team has developed stratification approaches in the past few years, and we have been able to identify patient cohorts enriched for various signaling pathways. Importantly, our Glioportal brain tumor resource has been established under the National Neuroscience Institute Tissue Bank in 2021. This resource offers preclinical capability to validate working hypotheses established from patient clinical datasets. This review highlights recent developments with the ultimate goal of assigning functional meaning to molecular subtypes, revealing therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Lynnette Koh
- Department of Research, National Neuroscience Institute, Singapore.
| | - Wisna Novera
- Department of Research, National Neuroscience Institute, Singapore
| | - See Wee Lim
- Department of Research, National Neuroscience Institute, Singapore
| | - Yuk Kien Chong
- Department of Research, National Neuroscience Institute, Singapore
| | - Qing You Pang
- Department of Research, National Neuroscience Institute, Singapore
| | - David Low
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore
| | - Beng Ti Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore
| | - Carol Tang
- Department of Research, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
31
|
Valecha M, Posada D. Somatic variant calling from single-cell DNA sequencing data. Comput Struct Biotechnol J 2022; 20:2978-2985. [PMID: 35782734 PMCID: PMC9218383 DOI: 10.1016/j.csbj.2022.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/03/2022] Open
Abstract
Single-cell sequencing has gained popularity in recent years. Despite its numerous applications, single-cell DNA sequencing data is highly error-prone due to technical biases arising from uneven sequencing coverage, allelic dropout, and amplification error. With these artifacts, the identification of somatic genomic variants becomes a challenging task, and over the years, several methods have been developed explicitly for this type of data. Single-cell variant callers implement distinct strategies, make different use of the data, and typically result in many discordant calls when applied to real data. Here, we review current approaches for single-cell variant calling, emphasizing single nucleotide variants. We highlight their potential benefits and shortcomings to help users choose a suitable tool for their data at hand.
Collapse
Key Words
- ADO, allelic dropout
- Allele dropout
- Amplification error
- CNV, copy number variant
- Indel, short insertion or deletion
- LDO, locus dropout
- SNV, single nucleotide variant
- SV, structural variant
- Single-cell genomics
- Somatic variants
- VAF, variant allele frequency
- Variant calling
- hSNP, heterozygous single-nucleotide polymorphism
- scATAC-seq, single-cell sequencing assay for transposase-accessible chromatin
- scDNA-seq, single-cell DNA sequencing
- scHi-C, single-cell Hi-C sequencing
- scMethyl-seq, single-cell Methylation sequencing
- scRNA-seq, single-cell RNA sequencing
- scWGA, single-cell whole-genome amplification
Collapse
Affiliation(s)
- Monica Valecha
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
32
|
Abstract
Distilling biologically meaningful information from cancer genome sequencing data requires comprehensive identification of somatic alterations using rigorous computational methods. As the amount and complexity of sequencing data have increased, so has the number of tools for analysing them. Here, we describe the main steps involved in the bioinformatic analysis of cancer genomes, review key algorithmic developments and highlight popular tools and emerging technologies. These tools include those that identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes. We also discuss issues in experimental design, the strengths and limitations of sequencing modalities and methodological challenges for the future.
Collapse
|
33
|
LaFave LM, Savage RE, Buenrostro JD. Single-Cell Epigenomics Reveals Mechanisms of Cancer Progression. ANNUAL REVIEW OF CANCER BIOLOGY 2022. [DOI: 10.1146/annurev-cancerbio-070620-094453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer initiation is driven by the cooperation between genetic and epigenetic aberrations that disrupt gene regulatory programs critical to maintaining specialized cellular functions. After initiation, cells acquire additional genetic and epigenetic alterations influenced by tumor-intrinsic and -extrinsic mechanisms, which increase intratumoral heterogeneity, reshape the cell's underlying gene regulatory networks and promote cancer evolution. Furthermore, environmental or therapeutic insults drive the selection of heterogeneous cell states, with implications for cancer initiation, maintenance, and drug resistance. The advancement of single-cell genomics has begun to uncover the full repertoire of chromatin and gene expression states (cell states) that exist within individual tumors. These single-cell analyses suggest that cells diversify in their regulatory states upon transformation by co-opting damage-induced and nonlineage regulatory programs that can lead to epigenomic plasticity. Here, we review these recent studies related to regulatory state changes in cancer progression and highlight the growing single-cell epigenomics toolkit poised to address unresolved questions in the field.
Collapse
Affiliation(s)
- Lindsay M. LaFave
- Department of Cell Biology and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, USA
| | - Rachel E. Savage
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jason D. Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
34
|
Single-Cell Molecular Characterization to Partition the Human Glioblastoma Tumor Microenvironment Genetic Background. Cells 2022; 11:cells11071127. [PMID: 35406690 PMCID: PMC8998055 DOI: 10.3390/cells11071127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Glioblastoma (GB) is a devastating primary brain malignancy. The recurrence of GB is inevitable despite the standard treatment of surgery, chemotherapy, and radiation, and the median survival is limited to around 15 months. The barriers to treatment include the complex interactions among the different cellular components inhabiting the tumor microenvironment. The complex heterogeneous nature of GB cells is helped by the local inflammatory tumor microenvironment, which mostly induces tumor aggressiveness and drug resistance. Methods: By using fluorescent multiple labeling and a DEPArray cell separator, we recovered several single cells or groups of single cells from populations of different origins from IDH-WT GB samples. From each GB sample, we collected astrocytes-like (GFAP+), microglia-like (IBA1+), stem-like cells (CD133+), and endothelial-like cells (CD105+) and performed Copy Number Aberration (CNA) analysis with a low sequencing depth. The same tumors were subjected to a bulk CNA analysis. Results: The tumor partition in its single components allowed single-cell molecular subtyping which revealed new aspects of the GB altered genetic background. Conclusions: Nowadays, single-cell approaches are leading to a new understanding of GB physiology and disease. Moreover, single-cell CNAs resource will permit new insights into genome heterogeneity, mutational processes, and clonal evolution in malignant tissues.
Collapse
|
35
|
Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers (Basel) 2022; 14:cancers14020443. [PMID: 35053605 PMCID: PMC8773542 DOI: 10.3390/cancers14020443] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, defined by its highly aggressive nature. Despite the advances in diagnostic and surgical techniques, and the development of novel therapies in the last decade, the prognosis for glioblastoma is still extremely poor. One major factor for the failure of existing therapeutic approaches is the highly invasive nature of glioblastomas. The extreme infiltrating capacity of tumor cells into the brain parenchyma makes complete surgical removal difficult; glioblastomas almost inevitably recur in a more therapy-resistant state, sometimes at distant sites in the brain. Therefore, there are major efforts to understand the molecular mechanisms underpinning glioblastoma invasion; however, there is no approved therapy directed against the invasive phenotype as of now. Here, we review the major molecular mechanisms of glioblastoma cell invasion, including the routes followed by glioblastoma cells, the interaction of tumor cells within the brain environment and the extracellular matrix components, and the roles of tumor cell adhesion and extracellular matrix remodeling. We also include a perspective of high-throughput approaches utilized to discover novel players for invasion and clinical targeting of invasive glioblastoma cells.
Collapse
|
36
|
Kopylov AM, Antipova OA, Pavlova GV. [Molecular markers of neuro-oncogenesis in patients with glioblastoma]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:99-105. [PMID: 36534630 DOI: 10.17116/neiro20228606199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The problem of current treatment approaches to brain gliomas is short-term life expectancy in these patients. Apparently, it is required to change treatment approach via analysis of glioma stem cells rather cells with overexpression of marker genes. This review is devoted to similarities and differences between neurogenesis and neuro-oncogenesis characterized with molecular markers (CD133 as an example). The role of tumor stem cells and their relationship with neural stem cells are considered regarding development of glioma. The authors analyzed CD133 as a marker of glioma stem cells. In the future, stem cells will be important target for eradication during target therapy. A single molecular marker cannot characterize tumor stem cells as supported by CD133 studies. A set of molecular markers specific for certain cell type is required, and their combination will provide more accurate establishment of tumor stem cells.
Collapse
Affiliation(s)
- A M Kopylov
- Lomonosov Moscow State University, Moscow, Russia
| | - O A Antipova
- Lomonosov Moscow State University, Moscow, Russia
| | - G V Pavlova
- Burdenko Neurosurgical Center, Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
37
|
Lenz G, Onzi GR, Lenz LS, Buss JH, Santos JAF, Begnini KR. The Origins of Phenotypic Heterogeneity in Cancer. Cancer Res 2021; 82:3-11. [PMID: 34785576 DOI: 10.1158/0008-5472.can-21-1940] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
Heterogeneity is a pervasive feature of cancer, and understanding the sources and regulatory mechanisms underlying heterogeneity could provide key insights to help improve the diagnosis and treatment of cancer. In this review, we discuss the origin of heterogeneity in the phenotype of individual cancer cells. Genotype-phenotype (G-P) maps are widely used in evolutionary biology to represent the complex interactions of genes and the environment that lead to phenotypes that impact fitness. Here, we present the rationale of an extended G-P (eG-P) map with a cone structure in cancer. The eG-P cone is formed by cells that are similar at the genome layer but gradually increase variability in the epigenome, transcriptome, proteome, metabolome and signalome layers to produce large variability at the phenome layer. Experimental evidence from single-cell -omics analyses supporting the cancer eG-P cone concept is presented, and the impact of epimutations and the interaction of cancer and tumor microenvironmental eG-P cones are integrated with the current understanding of cancer biology. The eG-P cone concept uncovers potential therapeutic strategies to reduce cancer evolution and improve cancer treatment. More methods to study phenotypes in single cells will be key to better understand cancer cell fitness in tumor biology and therapeutics.
Collapse
|
38
|
Li J, Yu N, Li X, Cui M, Guo Q. The Single-Cell Sequencing: A Dazzling Light Shining on the Dark Corner of Cancer. Front Oncol 2021; 11:759894. [PMID: 34745998 PMCID: PMC8566994 DOI: 10.3389/fonc.2021.759894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
Tumorigenesis refers to the process of clonal dysplasia that occurs due to the collapse of normal growth regulation in cells caused by the action of various carcinogenic factors. These “successful” tumor cells pass on the genetic templates to their generations in evolutionary terms, but they also constantly adapt to ever-changing host environments. A unique peculiarity known as intratumor heterogeneity (ITH) is extensively involved in tumor development, metastasis, chemoresistance, and immune escape. An understanding of ITH is urgently required to identify the diversity and complexity of the tumor microenvironment (TME), but achieving this understanding has been a challenge. Single-cell sequencing (SCS) is a powerful tool that can gauge the distribution of genomic sequences in a single cell and the genetic variability among tumor cells, which can improve the understanding of ITH. SCS provides fundamental ideas about existing diversity in specific TMEs, thus improving cancer diagnosis and prognosis prediction, as well as improving the monitoring of therapeutic response. Herein, we will discuss advances in SCS and review SCS application in tumors based on current evidence.
Collapse
Affiliation(s)
- Jing Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Yu
- Department of Pharmacy, Qingdao Eighth People's Hospital, Qingdao, China
| | - Xin Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengna Cui
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Andersson A, Larsson L, Stenbeck L, Salmén F, Ehinger A, Wu SZ, Al-Eryani G, Roden D, Swarbrick A, Borg Å, Frisén J, Engblom C, Lundeberg J. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat Commun 2021; 12:6012. [PMID: 34650042 PMCID: PMC8516894 DOI: 10.1038/s41467-021-26271-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
In the past decades, transcriptomic studies have revolutionized cancer treatment and diagnosis. However, tumor sequencing strategies typically result in loss of spatial information, critical to understand cell interactions and their functional relevance. To address this, we investigate spatial gene expression in HER2-positive breast tumors using Spatial Transcriptomics technology. We show that expression-based clustering enables data-driven tumor annotation and assessment of intra- and interpatient heterogeneity; from which we discover shared gene signatures for immune and tumor processes. By integration with single cell data, we spatially map tumor-associated cell types to find tertiary lymphoid-like structures, and a type I interferon response overlapping with regions of T-cell and macrophage subset colocalization. We construct a predictive model to infer presence of tertiary lymphoid-like structures, applicable across tissue types and technical platforms. Taken together, we combine different data modalities to define a high resolution map of cellular interactions in tumors and provide tools generalizing across tissues and diseases.
Collapse
Affiliation(s)
- Alma Andersson
- Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ludvig Larsson
- Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Linnea Stenbeck
- Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Salmén
- Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, the Netherlands
| | - Anna Ehinger
- Department of Genetics and Pathology, Laboratory Medicine Region Skåne, Lund, Sweden
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Sunny Z Wu
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, Sydney, Australia
| | - Ghamdan Al-Eryani
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, Sydney, Australia
| | - Daniel Roden
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, Sydney, Australia
| | - Alex Swarbrick
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, Sydney, Australia
| | - Åke Borg
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Engblom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
40
|
Kim N, Eum HH, Lee HO. Clinical Perspectives of Single-Cell RNA Sequencing. Biomolecules 2021; 11:biom11081161. [PMID: 34439827 PMCID: PMC8394304 DOI: 10.3390/biom11081161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
The ability of single-cell genomics to resolve cellular heterogeneity is highly appreciated in cancer and is being exploited for precision medicine. In the recent decade, we have witnessed the incorporation of cancer genomics into the clinical decision-making process for molecular-targeted therapies. Compared with conventional genomics, which primarily focuses on the specific and sensitive detection of the molecular targets, single-cell genomics addresses intratumoral heterogeneity and the microenvironmental components impacting the treatment response and resistance. As an exploratory tool, single-cell genomics provides an unprecedented opportunity to improve the diagnosis, monitoring, and treatment of cancer. The results obtained upon employing bulk cancer genomics indicate that single-cell genomics is at an early stage with respect to exploration of clinical relevance and requires further innovations to become a widely utilized technology in the clinic.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (N.K.); (H.H.E.)
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Hye Hyeon Eum
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (N.K.); (H.H.E.)
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Hae-Ock Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (N.K.); (H.H.E.)
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-8155
| |
Collapse
|
41
|
Liu J, Qu S, Zhang T, Gao Y, Shi H, Song K, Chen W, Yin W. Applications of Single-Cell Omics in Tumor Immunology. Front Immunol 2021; 12:697412. [PMID: 34177965 PMCID: PMC8221107 DOI: 10.3389/fimmu.2021.697412] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) is an ecosystem that contains various cell types, including cancer cells, immune cells, stromal cells, and many others. In the TME, cancer cells aggressively proliferate, evolve, transmigrate to the circulation system and other organs, and frequently communicate with adjacent immune cells to suppress local tumor immunity. It is essential to delineate this ecosystem's complex cellular compositions and their dynamic intercellular interactions to understand cancer biology and tumor immunology and to benefit tumor immunotherapy. But technically, this is extremely challenging due to the high complexities of the TME. The rapid developments of single-cell techniques provide us powerful means to systemically profile the multiple omics status of the TME at a single-cell resolution, shedding light on the pathogenic mechanisms of cancers and dysfunctions of tumor immunity in an unprecedently resolution. Furthermore, more advanced techniques have been developed to simultaneously characterize multi-omics and even spatial information at the single-cell level, helping us reveal the phenotypes and functionalities of disease-specific cell populations more comprehensively. Meanwhile, the connections between single-cell data and clinical characteristics are also intensively interrogated to achieve better clinical diagnosis and prognosis. In this review, we summarize recent progress in single-cell techniques, discuss their technical advantages, limitations, and applications, particularly in tumor biology and immunology, aiming to promote the research of cancer pathogenesis, clinically relevant cancer diagnosis, prognosis, and immunotherapy design with the help of single-cell techniques.
Collapse
Affiliation(s)
- Junwei Liu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Saisi Qu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Tongtong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yufei Gao
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Hongyu Shi
- Department of Biological Testing, Zhejiang Puluoting Health Technology Co., Ltd., Hangzhou, China
| | - Kaichen Song
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Weiwei Yin
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Mohan A, Raj Rajan R, Mohan G, Kollenchery Puthenveettil P, Maliekal TT. Markers and Reporters to Reveal the Hierarchy in Heterogeneous Cancer Stem Cells. Front Cell Dev Biol 2021; 9:668851. [PMID: 34150761 PMCID: PMC8209516 DOI: 10.3389/fcell.2021.668851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
A subpopulation within cancer, known as cancer stem cells (CSCs), regulates tumor initiation, chemoresistance, and metastasis. At a closer look, CSCs show functional heterogeneity and hierarchical organization. The present review is an attempt to assign marker profiles to define the functional heterogeneity and hierarchical organization of CSCs, based on a series of single-cell analyses. The evidences show that analogous to stem cell hierarchy, self-renewing Quiescent CSCs give rise to the Progenitor CSCs with limited proliferative capacity, and later to a Progenitor-like CSCs, which differentiates to Proliferating non-CSCs. Functionally, the CSCs can be tumor-initiating cells (TICs), drug-resistant CSCs, or metastasis initiating cells (MICs). Although there are certain marker profiles used to identify CSCs of different cancers, molecules like CD44, CD133, ALDH1A1, ABCG2, and pluripotency markers [Octamer binding transcriptional factor 4 (OCT4), SOX2, and NANOG] are used to mark CSCs of a wide range of cancers, ranging from hematological malignancies to solid tumors. Our analysis of the recent reports showed that a combination of these markers can demarcate the heterogeneous CSCs in solid tumors. Reporter constructs are widely used for easy identification and quantification of marker molecules. In this review, we discuss the suitability of reporters for the widely used CSC markers that can define the heterogeneous CSCs. Since the CSC-specific functions of CD44 and CD133 are regulated at the post-translational level, we do not recommend the reporters for these molecules for the detection of CSCs. A promoter-based reporter for ABCG2 may also be not relevant in CSCs, as the expression of the molecule in cancer is mainly regulated by promoter demethylation. In this context, a dual reporter consisting of one of the pluripotency markers and ALDH1A1 will be useful in marking the heterogeneous CSCs. This system can be easily adapted to high-throughput platforms to screen drugs for eliminating CSCs.
Collapse
Affiliation(s)
- Amrutha Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Reshma Raj Rajan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Gayathri Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | |
Collapse
|