1
|
Wei T, Zhong M, Li J, Han J, Chen X, Wang Z. Crystal-storing histiocytosis of multiple myeloma with a novel multi-exon deletion of WRN: A case report and mini review of literature. Pathol Res Pract 2025; 269:155921. [PMID: 40156963 DOI: 10.1016/j.prp.2025.155921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/23/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Crystal-storing histiocytosis (CSH) is a rare condition composed of nonneoplastic histiocytes, which showed the abnormal intra-lysosomal accumulation of immunoglobulin (Ig) as crystals. At the same time, CSH is often associated with lymphoplasmacytic neoplasms. Previous research suggested that crystal deposition was caused by a change in protein activity. However, the reasons for Ig structural alterations are unknown. Only 8 examples of skin lesions associated with a human condition called CSH in the skin have been documented. Now we described a skin condition in the patient caused by CSH. More specifically, we first demonstrated a novel multi-exon deletion of WRN, including exon10-intron13, in this patient. Chr8:g.30941261_30947513del was displayed. It is a novel gross deletion mutation of WRN. WRN protein is a member of the RecQ subfamily of DNA helicase proteins. It is crucial for maintaining the stability of the genome and participating in DNA metabolism. 83 different WRN mutations, the majority of which were point mutations, were identified in earlier research. It is the first report of the novel WRN mutation in our patient. WRN loss of function due to point mutations may result in Werner syndrome, an autosomal recessive disorder. There was no evidence of Werner syndrome in our patient. Our case is a rare CSH in the skin associated with multiple myeloma. Diagnosis of this disorder is challenging. The somatic mutation of WRN was found in the histiocytic lesions of our patient's skin. It would suggest that the WRN gene might be one of the reasons for the accumulation of crystals in the histiocytes. There may be a potential connection between WRN mutation and CSH pathogenesis. It would help us to comprehend why some patients with lymphoplasmacytic neoplasm have CSH.
Collapse
Affiliation(s)
- Tian Wei
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhua Zhong
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Dermatology and Venerology, Foshan Hospital of TCM, Foshan, China
| | - Jinfu Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiande Han
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhuo Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Chauhan R, Damerla RR, Dhyani VS. Synthetic lethality in cancer: a protocol for scoping review of gene interactions from synthetic lethal screens and functional studies. Syst Rev 2025; 14:81. [PMID: 40200332 PMCID: PMC11978169 DOI: 10.1186/s13643-025-02814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Two genes are synthetically lethal if loss of function of either one of the two genes does not result in cell death, whereas loss of function of both genes together results in being detrimental to cell survival. This concept has been the basis for developing personalized, precision treatments, which can selectively damage tumor cells and minimize toxicity to normal tissues. Tumor cells often harbor mutations in genes involved in DNA repair pathways, forcing them to switch to alternative repair pathways, leading to chemotherapeutic resistance. These interactions, if targeted, could be synthetically lethal. We aimed to summarize synthetically lethal gene pairs that could be utilized to selectively target cancer cells and minimize side effects on normal tissues. The objective of this review is to study druggable synthetically lethal gene pairs for targeted cancer therapy that have been identified through various genetic screens and functional studies. METHODS A systematic literature search will be conducted to extract synthetically lethal gene pairs that can be specifically targeted to cancer cells. Owing to the relatively recent research pertaining to this field, the literature search will incorporate data from 1956. The search will be conducted on PubMed, Web of Science, Embase, and Scopus. The narrative approach will guide the analysis and synthesis of the results. DISCUSSION This review highlights scientific articles that report druggable synthetically lethal gene pairs by testing the efficacy of targeted inhibitors in clonogenic assays. These include research studies that identify synthetically lethal gene pairs detected through CRISPR screens by knocking out one or two genes within the same cell and testing the potency of inhibitors to specifically kill malignant cells. SYSTEMATIC REVIEW REGISTRATION https://doi.org/10.17605/OSF.IO/5BCW6 .
Collapse
Affiliation(s)
- Raashi Chauhan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rama Rao Damerla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Vijay Shree Dhyani
- Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Hao S, Liu Z, Lenz HJ, Yu J, Zhang L. Werner helicase as a therapeutic target in mismatch repair deficient colorectal cancer. DNA Repair (Amst) 2025; 149:103831. [PMID: 40203476 DOI: 10.1016/j.dnarep.2025.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/16/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths in the United States. A key driver of CRC development is microsatellite instability (MSI), which is caused by DNA mismatch repair deficiency and characterized by hypermutability of short-tandem repeat sequences. A significant portion of MSI CRCs do not respond to checkpoint immunotherapy treatments, highlighting an unmet need for improved therapies. Recent studies have revealed that MSI cancer cells require Werner (WRN), a RecQ family DNA helicase, for survival. Inhibiting WRN has emerged as a promising approach for targeting MSI CRCs that are insensitive to standard therapies. Several highly potent small-molecule WRN inhibitors have been developed and exhibited striking in vitro and in vivo activities against MSI cancers. Two of these WRN inhibitors, HRO761 and VVD-133214, have recently entered clinical trials. In this review, we summarize recent studies on WRN as a synthetic lethal target in MSI CRC and the development of WRN inhibitors as a new class of anticancer agents.
Collapse
Affiliation(s)
- Suisui Hao
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Zhaojin Liu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Heinz-Josef Lenz
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Jian Yu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Lin Zhang
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA.
| |
Collapse
|
4
|
Khalili S, Mohseninia A, Liu C, Banister CE, Heine P, Khazan M, Morrison SE, Gokare P, Cowley GS, Weir BA, Pocalyko D, Bachman KE, Buckhaults PJ. Comprehensive genomic dependency landscape of a human colon cancer organoid. Commun Biol 2025; 8:436. [PMID: 40082551 PMCID: PMC11906589 DOI: 10.1038/s42003-025-07822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Identifying genetic dependencies in human colon cancer could help identify effective treatment strategies. Genome-wide CRISPR-Cas9 dropout screens have the potential to reveal genetic dependencies, some of which could be exploited as therapeutic targets using existing drugs. In this study, we comprehensively characterized genetic dependencies present in a colon cancer organoid avatar, and validated tumor-specific selectivity of select pharmacologic agents. We conducted a genome-wide CRISPR dropout screen to elucidate the genetic dependencies that interacted with select driver somatic mutations. We found distinct genetic dependencies that interacted with WNT, MAPK, PI3K, TP53, and mismatch repair pathways and validated targets that could be exploited as treatments for this specific subtype of colon cancer. These findings demonstrate the utility of functional genomic screening in the context of personalized medicine.
Collapse
Affiliation(s)
| | | | | | | | - Paige Heine
- University of South Carolina, Columbia, SC, US
| | | | | | - Prashanth Gokare
- Janssen Research and Development, LLC Spring House, Spring House, PA, US
| | - Glenn S Cowley
- Janssen Research and Development, LLC Cambridge, Cambridge, MA, US
| | - Barbara A Weir
- Janssen Research and Development, LLC Cambridge, Cambridge, MA, US
| | - David Pocalyko
- Janssen Research and Development, LLC Spring House, Spring House, PA, US
| | - Kurtis E Bachman
- Janssen Research and Development, LLC Spring House, Spring House, PA, US
| | | |
Collapse
|
5
|
Castro J, Daniels MH, Brennan D, Johnston B, Gotur D, Lee YT, Knockenhauer KE, Lu C, Wu J, Nayak S, Collins C, Bansal R, Buker SM, Case A, Liu J, Yao S, Sparling BA, Sickmier EA, Silver SJ, Blakemore SJ, Boriack-Sjodin PA, Duncan KW, Ribich S, Copeland RA. A Potent, Selective, Small-Molecule Inhibitor of DHX9 Abrogates Proliferation of Microsatellite Instable Cancers with Deficient Mismatch Repair. Cancer Res 2025; 85:758-776. [PMID: 39589774 PMCID: PMC11831107 DOI: 10.1158/0008-5472.can-24-0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
DHX9 is a multifunctional DExH-box RNA helicase with important roles in the regulation of transcription, translation, and maintenance of genome stability. Elevated expression of DHX9 is evident in multiple cancer types, including colorectal cancer. Microsatellite instable-high (MSI-H) tumors with deficient mismatch repair (dMMR) display a strong dependence on DHX9, making this helicase an attractive target for oncology drug discovery. In this report, we show that DHX9 knockdown increased RNA/DNA secondary structures and replication stress, resulting in cell-cycle arrest and the onset of apoptosis in cancer cells with MSI-H/dMMR. ATX968 was identified as a potent and selective inhibitor of DHX9 helicase activity. Chemical inhibition of DHX9 enzymatic activity elicited similar selective effects on cell proliferation as seen with genetic knockdown. In addition, ATX968 induced robust and durable responses in an MSI-H/dMMR xenograft model but not in a microsatellite stable/proficient MMR model. These preclinical data validate DHX9 as a target for the treatment of patients with MSI-H/dMMR. Additionally, this potent and selective inhibitor of DHX9 provides a valuable tool with which to further explore the effects of inhibition of DHX9 enzymatic activity on the proliferation of cancer cells in vitro and in vivo. Significance: DHX9 is required in cancer cells with deficient mismatch repair and can be inhibited by ATX968, providing a promising strategy for the development of precision cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuang Lu
- Accent Therapeutics, Lexington, Massachusetts
| | - Jie Wu
- Accent Therapeutics, Lexington, Massachusetts
| | | | | | | | | | - April Case
- Accent Therapeutics, Lexington, Massachusetts
| | - Julie Liu
- Accent Therapeutics, Lexington, Massachusetts
| | - Shihua Yao
- Accent Therapeutics, Lexington, Massachusetts
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Prindle V, Richardson AE, Sher KR, Kongpachith S, Kentala K, Petiwala S, Cheng D, Widomski D, Le P, Torrent M, Chen A, Walker S, Palczewski MB, Mitra D, Manaves V, Shi X, Lu C, Sandoval S, Dezso Z, Buchanan FG, Verduzco D, Bierie B, Meulbroek JA, Pappano WN, Plotnik JP. Synthetic lethality of mRNA quality control complexes in cancer. Nature 2025; 638:1095-1103. [PMID: 39910291 PMCID: PMC11864970 DOI: 10.1038/s41586-024-08398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/13/2024] [Indexed: 02/07/2025]
Abstract
Synthetic lethality exploits the genetic vulnerabilities of cancer cells to enable a targeted, precision approach to treat cancer1. Over the past 15 years, synthetic lethal cancer target discovery approaches have led to clinical successes of PARP inhibitors2 and ushered several next-generation therapeutic targets such as WRN3, USP14, PKMYT15, POLQ6 and PRMT57 into the clinic. Here we identify, in human cancer, a novel synthetic lethal interaction between the PELO-HBS1L and SKI complexes of the mRNA quality control pathway. In distinct genetic contexts, including 9p21.3-deleted and high microsatellite instability (MSI-H) tumours, we found that phenotypically destabilized SKI complex leads to dependence on the PELO-HBS1L ribosomal rescue complex. PELO-HBS1L and SKI complex synthetic lethality alters the normal cell cycle and drives the unfolded protein response through the activation of IRE1, as well as robust tumour growth inhibition. Our results indicate that PELO and HBS1L represent novel therapeutic targets whose dependence converges upon SKI complex destabilization, a common phenotypic biomarker in diverse genetic contexts representing a significant population of patients with cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anlu Chen
- AbbVie Bay Area, South San Francisco, CA, USA
| | | | | | | | | | - Xu Shi
- AbbVie Bay Area, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Li H, Yu J, Yu G, Cheng S, Wu H, Wei J, You C, Liu K, Wang M, Meng X, Xu G, Luo H, Xu B. Design and synthesis of N-aryl-2-trifluoromethyl-quinazoline-4-amine derivatives as potential Werner-dependent antiproliferative agents. Mol Divers 2025; 29:195-214. [PMID: 38739229 DOI: 10.1007/s11030-024-10844-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 05/14/2024]
Abstract
To discover new Werner (WRN) helicase inhibitors, a series of N-aryl-2-trifluoromethyl-quinazoline-4-amine derivatives were designed and synthesized through a structural optimization strategy, and the anticancer activities of 25 new target compounds against PC3, K562, and HeLa cell lines were evaluated by the MTT assay. Some of these compounds exhibited excellent inhibitory activity against three different cancer cell lines. Compounds 6a, 8i, and 13a showed better antiproliferative activity against K562 cells, with IC50 values of 3871.5, 613.6 and 134.7 nM, respectively, than did paclitaxel (35.6 nM), doxorubicin (2689.0 nM), and NSC 617145 (20.3 nM). To further verify whether the antiproliferative activity of these compounds is dependent on WRN, PC3 cells overexpressing WRN (PC3-WRN) were constructed to further study their antiproliferative potency in vitro, and the inhibition ratio and IC20 values showed that compounds 6a, 8i, and 13a were more sensitive to PC3-WRN than were the control group cells (PC3-NC). The IC20 ratios of compounds 6a, 8i, and 13a to PC3-NC and PC3-WRN were 94.3, 153.4 and 505.5, respectively. According to the docking results, the compounds 6a, 8i, and 13a overlapped well with the binding pocket of 6YHR. Further study demonstrated that among the tested compounds, 13a was the most sensitive to PC3-WRN. In summary, our research identified a series of N-aryl-2-trifluoromethyl-quinazoline-4-amine derivatives as potential WRN-dependent anticancer agents.
Collapse
Affiliation(s)
- Huimin Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Gang Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Hui Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Jiaomei Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Chang You
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Kun Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Menghan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xueling Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Guangcan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| | - Bixue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| |
Collapse
|
8
|
Sui Q, Zhou Y, Li M, Wang D, Cui R, Cai X, Liu J, Wang X, Teng D, Zhou J, Hou H, Zhang S, Zheng M. Design, synthesis, and structure-activity relationship studies of triazolo-pyrimidine derivatives as WRN inhibitors for the treatment of MSI tumors. Eur J Med Chem 2025; 282:117039. [PMID: 39561494 DOI: 10.1016/j.ejmech.2024.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Werner syndrome RecQ helicase (WRN), a member of the RecQ helicase family, has recently been identified as a synthetic lethal target in microsatellite instability (MSI) tumors. The triazolo-pyrimidine compound HRO761 is the first WRN inhibitor to enter clinical trials, but research on this scaffold remains limited. Here, we designed a series of derivatives to systematically study the structure-activity relationship (SAR) of triazolo-pyrimidine scaffolds, leading to the discovery of compound S35. S35 exhibited excellent WRN helicase inhibitory activity (ADP-Glo kinase assay IC50 = 16.1 nM, fluorometric helicase assay IC50 = 23.5 nM). Additionally, S35 exhibited excellent cellular selectivity, with antiproliferative activity against multiple MSI cell lines (GI50 = 36.4-306 nM), while the GI50 values for multiple microsatellite stability (MSS) cell lines were greater than 20,000 nM. Furthermore, we observed that compound S35 induced DNA damage and caused G2/M cell cycle arrest in MSI cells, which did not occur in MSS cells. S35 demonstrated favorable oral pharmacokinetic properties, with oral administration resulting in dose-dependent tumor growth inhibition in the SW48 xenograft model. These findings provide a promising outlook for the development of WRN inhibitors for the treatment of MSI tumors.
Collapse
Affiliation(s)
- Qibang Sui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Yuanyang Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China
| | - Manjia Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dan Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rongrong Cui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Cai
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jia Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaofeng Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Dan Teng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Lingang Laboratory, Shanghai, 200031, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
9
|
Ngoi NYL, Gallo D, Torrado C, Nardo M, Durocher D, Yap TA. Synthetic lethal strategies for the development of cancer therapeutics. Nat Rev Clin Oncol 2025; 22:46-64. [PMID: 39627502 DOI: 10.1038/s41571-024-00966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Synthetic lethality is a genetic phenomenon whereby the simultaneous presence of two different genetic alterations impairs cellular viability. Importantly, targeting synthetic lethal interactions offers potential therapeutic strategies for cancers with alterations in pathways that might otherwise be considered undruggable. High-throughput screening methods based on modern CRISPR-Cas9 technologies have emerged and become crucial for identifying novel synthetic lethal interactions with the potential for translation into biologically rational cancer therapeutic strategies as well as associated predictive biomarkers of response capable of guiding patient selection. Spurred by the clinical success of PARP inhibitors in patients with BRCA-mutant cancers, novel agents targeting multiple synthetic lethal interactions within DNA damage response pathways are in clinical development, and rational strategies targeting synthetic lethal interactions spanning alterations in epigenetic, metabolic and proliferative pathways have also emerged and are in late preclinical and/or early clinical testing. In this Review, we provide a comprehensive overview of established and emerging technologies for synthetic lethal drug discovery and development and discuss promising therapeutic strategies targeting such interactions.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Gallo
- Repare Therapeutics, Inc., Montreal, Quebec, Canada
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Takemon Y, Pleasance ED, Gagliardi A, Hughes CS, Csizmok V, Wee K, Trinh DL, Huff RD, Mungall AJ, Moore RA, Chuah E, Mungall KL, Lewis E, Nelson J, Lim HJ, Renouf DJ, Jones SJ, Laskin J, Marra MA. Mapping in silico genetic networks of the KMT2D tumour suppressor gene to uncover novel functional associations and cancer cell vulnerabilities. Genome Med 2024; 16:136. [PMID: 39578878 PMCID: PMC11583415 DOI: 10.1186/s13073-024-01401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Loss-of-function (LOF) alterations in tumour suppressor genes cannot be directly targeted. Approaches characterising gene function and vulnerabilities conferred by such mutations are required. METHODS Here, we computationally map genetic networks of KMT2D, a tumour suppressor gene frequently mutated in several cancer types. Using KMT2D loss-of-function (KMT2DLOF) mutations as a model, we illustrate the utility of in silico genetic networks in uncovering novel functional associations and vulnerabilities in cancer cells with LOF alterations affecting tumour suppressor genes. RESULTS We revealed genetic interactors with functions in histone modification, metabolism, and immune response and synthetic lethal (SL) candidates, including some encoding existing therapeutic targets. Notably, we predicted WRN as a novel SL interactor and, using recently available WRN inhibitor (HRO761 and VVD-133214) treatment response data, we observed that KMT2D mutational status significantly distinguishes treatment-sensitive MSI cell lines from treatment-insensitive MSI cell lines. CONCLUSIONS Our study thus illustrates how tumour suppressor gene LOF alterations can be exploited to reveal potentially targetable cancer cell vulnerabilities.
Collapse
Affiliation(s)
- Yuka Takemon
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Erin D Pleasance
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Alessia Gagliardi
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | | | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Kathleen Wee
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Diane L Trinh
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Eleanor Lewis
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Jessica Nelson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Howard J Lim
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Daniel J Renouf
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
- Pancreas Centre BC, Vancouver, BC, Canada
| | - Steven Jm Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
11
|
Tang Y, Fan Y. Combined KRAS and TP53 mutation in patients with colorectal cancer enhance chemoresistance to promote postoperative recurrence and metastasis. BMC Cancer 2024; 24:1155. [PMID: 39289671 PMCID: PMC11409552 DOI: 10.1186/s12885-024-12776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
The response of patients with colorectal cancer to chemotherapy is tightly correlated with their genomic variation. Among these, APC, TP53, KRAS, PIK3CA are the most frequently mutated genes in advanced colorectal cancer patients. However, the precise correlation between these mutations and the therapeutic effects of chemotherapy remains elusive. Here, we conducted genome sequencing to identify commonly mutated genes in colorectal cancer patients and comprehensively assessed their sensitivity to chemotherapy drugs by monitoring computer tomography (CT) scans and carcinoembryonic antigen (CEA) levels. Surprisingly, we discovered that the objective response rate to the standard first-line chemotherapy among patients harboring combined KRAS and TP53 mutations is dismal, and these patients are predisposed to recurrence and metastasis. Furthermore, advanced-stage patients with concurrent KRAS and TP53 mutations are susceptible to developing cancer-associated cachexia due to chemotherapy resistance or forced cessation of treatment. Our findings underscore the urgent need for the development of innovative and novel chemotherapeutic strategies to effectively manage colorectal cancer patients harboring combined KRAS and TP53 mutations.
Collapse
Affiliation(s)
- YiMeng Tang
- Department of General Surgery, The Third Hospital of MianYang, Sichuan Mental Health Center, MianYang, 621000, China
| | - Yao Fan
- Department of General Surgery, The Third Hospital of MianYang, Sichuan Mental Health Center, MianYang, 621000, China.
| |
Collapse
|
12
|
Fan WX, Su F, Zhang Y, Zhang XL, Du YY, Gao YJ, Li WL, Hu WQ, Zhao J. Oncological characteristics, treatments and prognostic outcomes in MMR-deficient colorectal cancer. Biomark Res 2024; 12:89. [PMID: 39183366 PMCID: PMC11346251 DOI: 10.1186/s40364-024-00640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally. It's recognized that the molecular subtype of CRC, characterized by mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H), plays a critical role in determining appropriate treatment strategies. This review examines the current molecular classifications, focusing on dMMR/MSI-H CRC and its subtypes: Lynch syndrome (LS), Lynch-like syndrome (LLS), and sporadic cases. Despite advances in understanding of these genetic backgrounds, clinical trials have not conclusively differentiated the efficacy of immune checkpoint inhibitors among these subgroups. Therefore, while this review details the molecular characteristics and their general implications for treatment and prognosis, it also highlights the limitations and the need for more refined clinical studies to ascertain tailored therapeutic strategies for each subtype. Furthermore, this review summarizes completed and ongoing clinical studies, emphasizing the importance of developing treatments aligned more closely with molecular profiles. By discussing these aspects, the review seeks to provide a comprehensive analysis of oncological characteristics, presenting a detailed understanding of their implications for treatment and prognosis in dMMR/MSI-H CRC.
Collapse
Affiliation(s)
- Wen-Xuan Fan
- Graduate School of Shanxi Medical University, Taiyuan, Shanxi, 030607, China
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Fei Su
- Graduate School of Shanxi Medical University, Taiyuan, Shanxi, 030607, China
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yan Zhang
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
- Graduate School of Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Xiao-Ling Zhang
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yun-Yi Du
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yang-Jun Gao
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Wei-Ling Li
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
- Graduate School of Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Wen-Qing Hu
- Department of Gastrointestinal Surgery, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Jun Zhao
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China.
| |
Collapse
|
13
|
He L, Tian Y, Liu Q, Bao J, Ding RB. Antidepressant Sertraline Synergistically Enhances Paclitaxel Efficacy by Inducing Autophagy in Colorectal Cancer Cells. Molecules 2024; 29:3733. [PMID: 39202813 PMCID: PMC11357241 DOI: 10.3390/molecules29163733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. It is important to discover new therapeutic regimens for treating CRC. Depression is known to be an important complication of cancer diseases. Repurposing antidepressants into anticancer drugs and exploring the combinational efficacy of antidepressants and chemotherapy are potentially good options for developing CRC treatment regimens. In this study, sertraline, an antidepressant drug, and paclitaxel, an anticancer drug, were chosen to study their antitumor effects in the treatment of colorectal cancer, alone or in combination, and to explore their underlying mechanisms. The data showed that sertraline exerted a dose-dependent cytotoxic effect on MC38 and CT26 colorectal cancer cell lines with IC50 values of 10.53 μM and 7.47 μM, respectively. Furthermore, sertraline synergistically sensitized chemotherapeutic agent paclitaxel efficacy in CRC cells with combination index (CI) values at various concentrations consistently lower than 1. Sertraline remarkably augmented paclitaxel-induced autophagy by increasing autophagosome formation indicated by elevated LC3-II/I ratio and promoting autophagic flux by degrading autophagy cargo receptor SQSTM1/p62, which may explain the synergistically cytotoxic effect of sertraline and paclitaxel combination therapy on CRC cells. This study provides important evidence to support repurposing sertraline as an anticancer agent and suggests a novel combinational regimen for effectively treating CRC as well as in the simultaneous treatment of CRC and depression.
Collapse
Affiliation(s)
- Leping He
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.T.); (Q.L.); (J.B.)
| | - Yuxi Tian
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.T.); (Q.L.); (J.B.)
| | - Qingqing Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.T.); (Q.L.); (J.B.)
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.T.); (Q.L.); (J.B.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.T.); (Q.L.); (J.B.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
14
|
Picco G, Rao Y, Al Saedi A, Lee Y, Vieira SF, Bhosle S, May K, Herranz-Ors C, Walker SJ, Shenje R, Dincer C, Gibson F, Banerjee R, Hewitson Z, Werner T, Cottom JE, Peng Y, Deng N, Zhang Y, Nartey E, Nickels L, Landis P, Conticelli D, McCarten K, Bush J, Sharma M, Lightfoot H, House D, Milford E, Grant EK, Glogowski MP, Wagner CD, Bantscheff M, Rutkowska-Klute A, Zappacosta F, Pettinger J, Barthorpe S, Eberl HC, Jones BT, Schneck JL, Murphy DJ, Voest EE, Taygerly JP, DeMartino MP, Coelho MA, Houseley J, Sharma G, Schwartz B, Garnett MJ. Novel WRN Helicase Inhibitors Selectively Target Microsatellite-Unstable Cancer Cells. Cancer Discov 2024; 14:1457-1475. [PMID: 38587317 PMCID: PMC7616858 DOI: 10.1158/2159-8290.cd-24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Microsatellite-unstable (MSI) cancers require WRN helicase to resolve replication stress due to expanded DNA (TA)n dinucleotide repeats. WRN is a promising synthetic lethal target for MSI tumors, and WRN inhibitors are in development. In this study, we used CRISPR-Cas9 base editing to map WRN residues critical for MSI cells, validating the helicase domain as the primary drug target. Fragment-based screening led to the development of potent and highly selective WRN helicase covalent inhibitors. These compounds selectively suppressed MSI model growth in vitro and in vivo by mimicking WRN loss, inducing DNA double-strand breaks at expanded TA repeats and DNA damage. Assessment of biomarkers in preclinical models linked TA-repeat expansions and mismatch repair alterations to compound activity. Efficacy was confirmed in immunotherapy-resistant organoids and patient-derived xenograft models. The discovery of potent, selective covalent WRN inhibitors provides proof of concept for synthetic lethal targeting of WRN in MSI cancer and tools to dissect WRN biology. Significance: We report the discovery and characterization of potent, selective WRN helicase inhibitors for MSI cancer treatment, with biomarker analysis and evaluation of efficacy in vivo and in immunotherapy-refractory preclinical models. These findings pave the way to translate WRN inhibition into MSI cancer therapies and provide tools to investigate WRN biology. See related commentary by Wainberg, p. 1369.
Collapse
Affiliation(s)
| | | | | | - Yang Lee
- GSK, Upper Providence, PA, US 19426
| | | | | | - Kieron May
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cell Model Network UK Group
- Wellcome Sanger Institute, Cambridge, UK
- GSK, Upper Providence, PA, US 19426
- GSK, Stevenage, UK, SG1 2NY
- GSK, 69117 Heidelberg, Germany
- GSK, Cambridge, MA, US 02139
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Candiolo Cancer Institute, Italy
- IDEAYA Biosciences, South San Francisco, CA 94080
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | - Emile E. Voest
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wainberg ZA. WRN Helicase: Is There More to MSI-H than Immunotherapy? Cancer Discov 2024; 14:1369-1371. [PMID: 39091203 DOI: 10.1158/2159-8290.cd-24-0771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
In this issue, Picco and colleagues provide further evidence that WRN inhibitors are synthetically lethal in microsatellite instability-high (MSI-H) cancers and function by blocking the helicase domain of select WRN residues. They demonstrate that WRN inhibitors may be even more effective in a subset of MSI-high tumors with (TA)n repeat expansions, which represents a possible strategy in clinical development. See related article by Picco et al., p. 1457 (1).
Collapse
Affiliation(s)
- Zev A Wainberg
- Division of Hematology/Oncology, Early Phase Clinical Research Program, Jonsson Comprehensive Cancer at UCLA, David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
16
|
Tang X, Wu J, Chen Y, Wang D, Wang T, Weng Y, Zhu Z, Peng R, Wang Y, Yan F. Evaluation of 5'-tRF-His-GTG As a Molecular Biomarker in Breast Cancer Diagnoses and Prognosis. Cancer Biother Radiopharm 2024; 39:441-450. [PMID: 38527246 DOI: 10.1089/cbr.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Background: Breast cancer (BC) is the most prevalent cancer among women worldwide. Although advances have been made in the identification of predictive biomarkers, current options for early diagnosis and prognostic analysis are still suboptimal. Recently, transfer-RNA-derived RNA fragments (tRFs) have emerged as a class of small noncoding RNAs that play a role in the cancer progression. The authors aimed to identify a specific class of tRFs as a molecular marker for BC diagnosis and prognosis in clinical management. Methods: The levels of 5'-tRF-His-GTG were quantified in BC tissue (n = 101) and inflammatory normal breast tissue (n = 22) using in situ hybridization. Clinicopathological parameters were obtained, including age, tumor node metastasis stage, hormone receptor status, histopathological grade, lymphovascular invasion, and recurrence. The correlation between the expression of 5'-tRF-His-GTG and these parameters in different BC subtypes was analyzed. Patient death and cancer progression were regarded as clinical endpoints in the survival analysis. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were also performed to predict the involvement in pivotal biological process. Results: The expression of 5'-tRF-His-GTG was significantly downregulated in BC tissues and was in connection with T stage in human epidermal growth factor 2-positive and basal-like BC, as well as N stage and histopathological grade in luminal BC. Patients with low expression of 5'-tRF-His-GTG had a poor overall survival rate. Statistics of GO and KEGG pathway revealed that cation channel activity, protein catabolic process, response to temperature stimulus, cell cycle, focal adhesion, and glycerophospholipid metabolism were significantly enriched. Conclusions: This study suggests that the assessment of 5'-tRF-His-GTG expression could serve as a novel biomarker for individual diagnosis and prognosis in BC.
Collapse
Affiliation(s)
- Xun Tang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Department of Division of Anatomy and Histo-embryology, Medical School of Nanjing University, Nanjing, China
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jun Wu
- Department of Clinical Laboratory, The Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Pathology, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Daojuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Department of Division of Anatomy and Histo-embryology, Medical School of Nanjing University, Nanjing, China
| | - Tingyu Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Department of Division of Anatomy and Histo-embryology, Medical School of Nanjing University, Nanjing, China
| | - Yajing Weng
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Department of Division of Anatomy and Histo-embryology, Medical School of Nanjing University, Nanjing, China
| | - Zhengquan Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Department of Division of Anatomy and Histo-embryology, Medical School of Nanjing University, Nanjing, China
| | - Rui Peng
- Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Department of Division of Anatomy and Histo-embryology, Medical School of Nanjing University, Nanjing, China
- Nanjing University (Suzhou) High-tech Institute, Suzhou Industrial Park, Nanjing University, Nanjing, China
| | - Feng Yan
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
17
|
Shang J, Xia Q, Sun Y, Wang H, Chen J, Li Y, Gao F, Yin P, Yuan Z. Bufalin-Loaded Multifunctional Photothermal Nanoparticles Inhibit the Anaerobic Glycolysis by Targeting SRC-3/HIF-1α Pathway for Improved Mild Photothermal Therapy in CRC. Int J Nanomedicine 2024; 19:7831-7850. [PMID: 39105099 PMCID: PMC11299722 DOI: 10.2147/ijn.s470005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Purpose Compared with traditional photothermal therapy (PTT, >50°C), mild PTT (≤45°C) is a promising strategy for tumor therapy with fewer adverse effects. Unfortunately, its anti-tumor efficacy is hampered by thermoresistance induced by overexpression of heat shock proteins (HSPs). In our previous study, we found bufalin (BU) is a glycolysis inhibitor that depletes HSPs, which is expected to overcome thermotolerance of tumor cells. In this study, BU-loaded multifunctional nanoparticles (NPs) were developed for enhancing the mild PTT of colorectal cancer (CRC). Methods Fe3O4 NPs coated with the polydopamine (PDA) shell modified with polyethylene glycol (PEG) and cyclic arginine-glycyl-aspartic peptide (cRGD) for loading BU (Fe3O4@PDA-PEG-cRGD/BU NPs) were developed. The thermal variations in Fe3O4@PDA-PEG-cRGD/BU NPs solution under different conditions were measured. Glycolysis inhibition was evaluated by measuring the glucose uptake, extracellular lactate, and intracellular adenosine triphosphate (ATP) levels. The cellular cytotoxicity of Fe3O4@PDA-PEG-cRGD/BU NPs was analyzed using a cell counting kit-8 assay, Calcein-AM/PI double staining, and flow cytometry in HCT116 cells. The magnetic resonance imaging (MRI) performance and anti-tumor therapeutic efficacy of Fe3O4@PDA-PEG-cRGD/BU NPs were evaluated in HCT116-tumor bearing mice. Results Fe3O4@PDA-PEG-cRGD/BU NPs had an average diameter of 260.4±3.5 nm, the zeta potential of -23.8±1.6 mV, the drug loading rate of 1.1%, which had good thermal stability, photothermal conversion efficiencies and MRI performance. In addition, the released BU not only killed tumor cells but also interfered with glycolysis by targeting the steroid receptor coactivator 3 (SRC-3)/HIF-1α pathway, preventing intracellular ATP synthesis, and combating HSP-dependent tumor thermoresistance, ultimately strengthening the thermal sensitivity toward mild PTT both in vitro and in vivo. Conclusion This study provides a highly effective strategy for enhancing the therapeutic effects of mild PTT toward tumors.
Collapse
Affiliation(s)
- Jing Shang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Qi Xia
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Yuji Sun
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Hongtao Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Jia Chen
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Yue Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Feng Gao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, People’s Republic of China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, People’s Republic of China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
18
|
Rodríguez Pérez F, Natwick D, Schiff L, McSwiggen D, Heckert A, Huey M, Morrison H, Loo M, Miranda RG, Filbin J, Ortega J, Van Buren K, Murnock D, Tao A, Butler R, Cheng K, Tarvestad W, Zhang Z, Gonzalez E, Miller RM, Kelly M, Tang Y, Ho J, Anderson D, Bashore C, Basham S. WRN inhibition leads to its chromatin-associated degradation via the PIAS4-RNF4-p97/VCP axis. Nat Commun 2024; 15:6059. [PMID: 39025847 PMCID: PMC11258360 DOI: 10.1038/s41467-024-50178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Synthetic lethality provides an attractive strategy for developing targeted cancer therapies. For example, cancer cells with high levels of microsatellite instability (MSI-H) are dependent on the Werner (WRN) helicase for survival. However, the mechanisms that regulate WRN spatiotemporal dynamics remain poorly understood. Here, we used single-molecule tracking (SMT) in combination with a WRN inhibitor to examine WRN dynamics within the nuclei of living cancer cells. WRN inhibition traps the helicase on chromatin, requiring p97/VCP for extraction and proteasomal degradation in a MSI-H dependent manner. Using a phenotypic screen, we identify the PIAS4-RNF4 axis as the pathway responsible for WRN degradation. Finally, we show that co-inhibition of WRN and SUMOylation has an additive toxic effect in MSI-H cells and confirm the in vivo activity of WRN inhibition using an MSI-H mouse xenograft model. This work elucidates a regulatory mechanism for WRN that may facilitate identification of new therapeutic modalities, and highlights the use of SMT as a tool for drug discovery and mechanism-of-action studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mandy Loo
- Eikon Therapeutics, Hayward, CA, 94545, USA
| | | | | | | | | | | | - Arnold Tao
- Eikon Therapeutics, Hayward, CA, 94545, USA
| | | | | | | | | | | | | | | | | | - Jaclyn Ho
- Eikon Therapeutics, Hayward, CA, 94545, USA
| | | | | | | |
Collapse
|
19
|
Monnat RJ. James German and the Quest to Understand Human RECQ Helicase Deficiencies. Cells 2024; 13:1077. [PMID: 38994931 PMCID: PMC11240319 DOI: 10.3390/cells13131077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/10/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
James German's work to establish the natural history and cancer risk associated with Bloom syndrome (BS) has had a strong influence on the generation of scientists and clinicians working to understand other RECQ deficiencies and heritable cancer predisposition syndromes. I summarize work by us and others below, inspired by James German's precedents with BS, to understand and compare BS with the other heritable RECQ deficiency syndromes with a focus on Werner syndrome (WS). What we know, unanswered questions and new opportunities are discussed, as are potential ways to treat or modify WS-associated disease mechanisms and pathways.
Collapse
Affiliation(s)
- Raymond J Monnat
- Departments of Laboratory Medicine/Pathology and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Baltgalvis KA, Lamb KN, Symons KT, Wu CC, Hoffman MA, Snead AN, Song X, Glaza T, Kikuchi S, Green JC, Rogness DC, Lam B, Rodriguez-Aguirre ME, Woody DR, Eissler CL, Rodiles S, Negron SM, Bernard SM, Tran E, Pollock J, Tabatabaei A, Contreras V, Williams HN, Pastuszka MK, Sigler JJ, Pettazzoni P, Rudolph MG, Classen M, Brugger D, Claiborne C, Plancher JM, Cuartas I, Seoane J, Burgess LE, Abraham RT, Weinstein DS, Simon GM, Patricelli MP, Kinsella TM. Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase. Nature 2024; 629:435-442. [PMID: 38658751 DOI: 10.1038/s41586-024-07318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
WRN helicase is a promising target for treatment of cancers with microsatellite instability (MSI) due to its essential role in resolving deleterious non-canonical DNA structures that accumulate in cells with faulty mismatch repair mechanisms1-5. Currently there are no approved drugs directly targeting human DNA or RNA helicases, in part owing to the challenging nature of developing potent and selective compounds to this class of proteins. Here we describe the chemoproteomics-enabled discovery of a clinical-stage, covalent allosteric inhibitor of WRN, VVD-133214. This compound selectively engages a cysteine (C727) located in a region of the helicase domain subject to interdomain movement during DNA unwinding. VVD-133214 binds WRN protein cooperatively with nucleotide and stabilizes compact conformations lacking the dynamic flexibility necessary for proper helicase function, resulting in widespread double-stranded DNA breaks, nuclear swelling and cell death in MSI-high (MSI-H), but not in microsatellite-stable, cells. The compound was well tolerated in mice and led to robust tumour regression in multiple MSI-H colorectal cancer cell lines and patient-derived xenograft models. Our work shows an allosteric approach for inhibition of WRN function that circumvents competition from an endogenous ATP cofactor in cancer cells, and designates VVD-133214 as a promising drug candidate for patients with MSI-H cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Betty Lam
- Vividion Therapeutics, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Piergiorgio Pettazzoni
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Markus G Rudolph
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Moritz Classen
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Doris Brugger
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Christopher Claiborne
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Jean-Marc Plancher
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Isabel Cuartas
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | | | - Robert T Abraham
- Vividion Therapeutics, San Diego, CA, USA
- Odyssey Therapeutics, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
21
|
Zhang Y, Sun H, Ji Y, Nie F, Wang R, Han W. Effects of aspirin on colon cancer using quantitative proteomic analysis. CANCER PATHOGENESIS AND THERAPY 2024; 2:121-131. [PMID: 38601481 PMCID: PMC11002747 DOI: 10.1016/j.cpt.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 04/12/2024]
Abstract
Background Colon cancer is one of the most prevalent digestive cancers worldwide. Results of epidemiological, experimental, and clinical studies suggest that aspirin inhibits the development of colon cancer. This study aimed to systematically elucidate the molecular mechanisms by which aspirin prevents colon carcinogenesis. Methods We determined the global protein expression profiles of colorectal cancer and aspirin-treated cells using quantitative proteomic analysis. We analyzed the proteomic results using bioinformatics (including differential proteins, protein annotation, Kyoto Encyclopedia of Genes and Genomes [KEGG] pathways, and protein-protein interaction [PPI] network). The viability of the colon cancer cell line and HT29 cells treated with aspirin was determined using the cell counting kit-8 assay. The differentially expressed proteins, such as p53 and cyclin-dependent kinase 1 (CDK1), were quantified using real-time polymerase chain reaction (PCR) and Western blotting. We measured cell cycle distribution and apoptosis in HT29 cells exposed to aspirin using fluorescence-activated cell sorting (FACS). Results We found that 552 proteins were significantly dysregulated, of which 208 and 334 were upregulated and downregulated, respectively, in colon cancer cells exposed to 10 mmol/L of aspirin (95% confidence interval [CI]: -1.269 to -0.106, P < 0.05). Further gene enrichment analysis revealed that cell cycle-related proteins, such as p53 and CDK1, were significantly differentially expressed. Proteomic analysis showed that after 24 h of aspirin exposure, the level of p53 increased by 2.52-fold and CDK1 was downregulated to half that of the controls in HT29 cells (95% CI: -0.619 to -0.364, P < 0.05). Real-time PCR and Western blotting results showed that p53 was upregulated (95%CI: -3.088 to -1.912, P < 0.001) and CDK1 was significantly downregulated after aspirin exposure in colon cancer cells (95% CI: 0.576 to 1.045, P < 0.05). We observed that aspirin promoted G1/S cell cycle arrest in HT29 cells. We confirmed that aspirin induces apoptosis in human HT29 colon cancer cells in a concentration-dependent manner. Conclusions These results indicate that aspirin induces G1 arrest and apoptosis in colorectal cancer cells via the p53-CDK1 pathway. Aspirin may be a promising drug candidate for colon cancer prevention.
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Haitao Sun
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Yu Ji
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Fang Nie
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Rong Wang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Han
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
22
|
Du D, Yang Y, Zhang Y, Wang G, Chen L, Guan X, Rasmussen LJ, Liu D. MRE11A: a novel negative regulator of human DNA mismatch repair. Cell Mol Biol Lett 2024; 29:37. [PMID: 38486171 PMCID: PMC10938699 DOI: 10.1186/s11658-024-00547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND DNA mismatch repair (MMR) is a highly conserved pathway that corrects DNA replication errors, the loss of which is attributed to the development of various types of cancers. Although well characterized, MMR factors remain to be identified. As a 3'-5' exonuclease and endonuclease, meiotic recombination 11 homolog A (MRE11A) is implicated in multiple DNA repair pathways. However, the role of MRE11A in MMR is unclear. METHODS Initially, short-term and long-term survival assays were used to measure the cells' sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Meanwhile, the level of apoptosis was also determined by flow cytometry after MNNG treatment. Western blotting and immunofluorescence assays were used to evaluate the DNA damage within one cell cycle after MNNG treatment. Next, a GFP-heteroduplex repair assay and microsatellite stability test were used to measure the MMR activities in cells. To investigate the mechanisms, western blotting, the GFP-heteroduplex repair assay, and chromatin immunoprecipitation were used. RESULTS We show that knockdown of MRE11A increased the sensitivity of HeLa cells to MNNG treatment, as well as the MNNG-induced DNA damage and apoptosis, implying a potential role of MRE11 in MMR. Moreover, we found that MRE11A was largely recruited to chromatin and negatively regulated the DNA damage signals within the first cell cycle after MNNG treatment. We also showed that knockdown of MRE11A increased, while overexpressing MRE11A decreased, MMR activity in HeLa cells, suggesting that MRE11A negatively regulates MMR activity. Furthermore, we show that recruitment of MRE11A to chromatin requires MLH1 and that MRE11A competes with PMS2 for binding to MLH1. This decreases PMS2 levels in whole cells and on chromatin, and consequently comprises MMR activity. CONCLUSIONS Our findings reveal that MRE11A is a negative regulator of human MMR.
Collapse
Affiliation(s)
- Demin Du
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yueyan Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guanxiong Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liying Chen
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
23
|
Szczepanski JM, Rudolf MA, Shi J. Clinical Evaluation of the Pancreatic Cancer Microenvironment: Opportunities and Challenges. Cancers (Basel) 2024; 16:794. [PMID: 38398185 PMCID: PMC10887250 DOI: 10.3390/cancers16040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Advances in our understanding of pancreatic ductal adenocarcinoma (PDAC) and its tumor microenvironment (TME) have the potential to transform treatment for the hundreds of thousands of patients who are diagnosed each year. Whereas the clinical assessment of cancer cell genetics has grown increasingly sophisticated and personalized, current protocols to evaluate the TME have lagged, despite evidence that the TME can be heterogeneous within and between patients. Here, we outline current protocols for PDAC diagnosis and management, review novel biomarkers, and highlight potential opportunities and challenges when evaluating the PDAC TME as we prepare to translate emerging TME-directed therapies to the clinic.
Collapse
Affiliation(s)
| | | | - Jiaqi Shi
- Department of Pathology and Clinical Labs, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.S.); (M.A.R.)
| |
Collapse
|
24
|
Sannigrahi MK, Cao AC, Rajagopalan P, Sun L, Brody RM, Raghav L, Gimotty PA, Basu D. A novel pipeline for prioritizing cancer type-specific therapeutic vulnerabilities using DepMap identifies PAK2 as a target in head and neck squamous cell carcinomas. Mol Oncol 2024; 18:336-349. [PMID: 37997254 PMCID: PMC10850805 DOI: 10.1002/1878-0261.13558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023] Open
Abstract
There is limited guidance on exploiting the genome-wide loss-of-function CRISPR screens in cancer Dependency Map (DepMap) to identify new targets for individual cancer types. This study integrated multiple tools to filter these data in order to seek new therapeutic targets specific to head and neck squamous cell carcinoma (HNSCC). The resulting pipeline prioritized 143 targetable dependencies that represented both well-studied targets and emerging target classes like mitochondrial carriers and RNA-binding proteins. In total, 14 targets had clinical inhibitors used for other cancers or nonmalignant diseases that hold near-term potential to repurpose for HNSCC therapy. Comparing inhibitor response data that were publicly available for 13 prioritized targets between the cell lines with high vs. low dependency on each target uncovered novel therapeutic potential for the PAK2 serine/threonine kinase. PAK2 gene dependency was found to be associated with wild-type p53, low PAK2 mRNA, and diploid status of the 3q amplicon containing PAK2. These findings establish a generalizable pipeline to prioritize clinically relevant targets for individual cancer types using DepMap. Its application to HNSCC highlights novel relevance for PAK2 inhibition and identifies biomarkers of PAK2 inhibitor response.
Collapse
Affiliation(s)
- Malay K. Sannigrahi
- Department of Otorhinolaryngology‐Head and Neck SurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Austin C. Cao
- Department of Otorhinolaryngology‐Head and Neck SurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Pavithra Rajagopalan
- Department of Otorhinolaryngology‐Head and Neck SurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Lova Sun
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Robert M. Brody
- Department of Otorhinolaryngology‐Head and Neck SurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Lovely Raghav
- Department of Otorhinolaryngology‐Head and Neck SurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Devraj Basu
- Department of Otorhinolaryngology‐Head and Neck SurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
- Ellen and Ronald Caplan Cancer CenterThe Wistar InstitutePhiladelphiaPAUSA
| |
Collapse
|
25
|
Zhu HX, Zheng WC, Chen H, Chen JY, Lin F, Chen SH, Xue XY, Zheng QS, Liang M, Xu N, Chen DN, Sun XL. Exploring Novel Genome Instability-associated lncRNAs and their Potential Function in Pan-Renal Cell Carcinoma. Comb Chem High Throughput Screen 2024; 27:1788-1807. [PMID: 37957851 DOI: 10.2174/0113862073258779231020052115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE Genomic instability can drive clonal evolution, continuous modification of tumor genomes, and tumor genomic heterogeneity. The molecular mechanism of genomic instability still needs further investigation. This study aims to identify novel genome instabilityassociated lncRNAs (GI-lncRNAs) and investigate the role of genome instability in pan-Renal cell carcinoma (RCC). MATERIALS AND METHODS A mutator hypothesis was employed, combining the TCGA database of somatic mutation (SM) information, to identify GI-lncRNAs. Subsequently, a training cohort (n = 442) and a testing cohort (n = 439) were formed by randomly dividing all RCC patients. Based on the training cohort dataset, a multivariate Cox regression analysis lncRNAs risk model was created. Further validations were performed in the testing cohort, TCGA cohort, and different RCC subtypes. To confirm the relative expression levels of lncRNAs in HK-2, 786-O, and 769-P cells, qPCR was carried out. Functional pathway enrichment analyses were performed for further investigation. RESULTS A total of 170 novel GI-lncRNAs were identified. The lncRNA prognostic risk model was constructed based on LINC00460, AC073218.1, AC010789.1, and COLCA1. This risk model successfully differentiated patients into distinct risk groups with significantly different clinical outcomes. The model was further validated in multiple independent patient cohorts. Additionally, functional and pathway enrichment analyses revealed that GI-lncRNAs play a crucial role in GI. Furthermore, the assessments of immune response, drug sensitivity, and cancer stemness revealed a significant relationship between GI-lncRNAs and tumor microenvironment infiltration, mutational burden, microsatellite instability, and drug resistance. CONCLUSIONS In this study, we discovered four novel GI-lncRNAs and developed a novel signature that effectively predicted clinical outcomes in pan-RCC. The findings provide valuable insights for pan-RCC immunotherapy and shed light on potential underlying mechanisms.
Collapse
Affiliation(s)
- Hui-Xin Zhu
- Department of Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Wen-Cai Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Hang Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jia-Yin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Min Liang
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Dong-Ning Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiong-Lin Sun
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| |
Collapse
|
26
|
Wang M, Ran X, Leung W, Kawale A, Saxena S, Ouyang J, Patel PS, Dong Y, Yin T, Shu J, Manguso RT, Lan L, Wang XF, Lawrence MS, Zou L. ATR inhibition induces synthetic lethality in mismatch repair-deficient cells and augments immunotherapy. Genes Dev 2023; 37:929-943. [PMID: 37932012 PMCID: PMC10691477 DOI: 10.1101/gad.351084.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
The mismatch repair (MMR) deficiency of cancer cells drives mutagenesis and offers a useful biomarker for immunotherapy. However, many MMR-deficient (MMR-d) tumors do not respond to immunotherapy, highlighting the need for alternative approaches to target MMR-d cancer cells. Here, we show that inhibition of the ATR kinase preferentially kills MMR-d cancer cells. Mechanistically, ATR inhibitor (ATRi) imposes synthetic lethality on MMR-d cells by inducing DNA damage in a replication- and MUS81 nuclease-dependent manner. The DNA damage induced by ATRi is colocalized with both MSH2 and PCNA, suggesting that it arises from DNA structures recognized by MMR proteins during replication. In syngeneic mouse models, ATRi effectively reduces the growth of MMR-d tumors. Interestingly, the antitumor effects of ATRi are partially due to CD8+ T cells. In MMR-d cells, ATRi stimulates the accumulation of nascent DNA fragments in the cytoplasm, activating the cGAS-mediated interferon response. The combination of ATRi and anti-PD-1 antibody reduces the growth of MMR-d tumors more efficiently than ATRi or anti-PD-1 alone, showing the ability of ATRi to augment the immunotherapy of MMR-d tumors. Thus, ATRi selectively targets MMR-d tumor cells by inducing synthetic lethality and enhancing antitumor immunity, providing a promising strategy to complement and augment MMR deficiency-guided immunotherapy.
Collapse
Affiliation(s)
- Mingchao Wang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Xiaojuan Ran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Wendy Leung
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Ajinkya Kawale
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Parasvi S Patel
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Yuting Dong
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Jian Shu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Robert T Manguso
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA;
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
27
|
Bhamidipati D, Subbiah V. Tumor-agnostic drug development in dMMR/MSI-H solid tumors. Trends Cancer 2023; 9:828-839. [PMID: 37517955 DOI: 10.1016/j.trecan.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H) represents a distinct phenotype among solid tumors characterized by frequent frameshift mutations resulting in the generation of neoantigens that are highly immunogenic. Seminal studies identified that dMMR/MSI-H tumors are exquisitely sensitive to immune checkpoint inhibitors, which has dramatically improved outcomes for patients harboring dMMR/MSI-H tumors. Nevertheless, many patients develop resistance to single-agent immune checkpoint blockade, prompting the need for improved therapeutic options for this patient population. In this review, we highlight key studies examining the efficacy of PD1 inhibitors in the metastatic and neoadjuvant setting for patients with dMMR/MSI-H tumors, describe resistance mechanisms to immune checkpoint blockade, and discuss novel treatment approaches that are currently under investigation for dMMR/MSI-H tumors.
Collapse
Affiliation(s)
- Deepak Bhamidipati
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Sarah Cannon Research Institute, Nashville, TN, USA.
| |
Collapse
|
28
|
Zong D, Koussa NC, Cornwell JA, Pankajam AV, Kruhlak MJ, Wong N, Chari R, Cappell SD, Nussenzweig A. Comprehensive mapping of cell fates in microsatellite unstable cancer cells supports dual targeting of WRN and ATR. Genes Dev 2023; 37:913-928. [PMID: 37932011 PMCID: PMC10691471 DOI: 10.1101/gad.351085.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Addiction to the WRN helicase is a unique vulnerability of human cancers with high levels of microsatellite instability (MSI-H). However, while prolonged loss of WRN ultimately leads to cell death, little is known about how MSI-H cancers initially respond to acute loss of WRN-knowledge that would be helpful for informing clinical development of WRN targeting therapy, predicting possible resistance mechanisms, and identifying useful biomarkers of successful WRN inhibition. Here, we report the construction of an inducible ligand-mediated degradation system in which the stability of endogenous WRN protein can be rapidly and specifically tuned, enabling us to track the complete sequence of cellular events elicited by acute loss of WRN function. We found that WRN degradation leads to immediate accrual of DNA damage in a replication-dependent manner that curiously did not robustly engage checkpoint mechanisms to halt DNA synthesis. As a result, WRN-degraded MSI-H cancer cells accumulate DNA damage across multiple replicative cycles and undergo successive rounds of increasingly aberrant mitoses, ultimately triggering cell death. Of potential therapeutic importance, we found no evidence of any generalized mechanism by which MSI-H cancers could adapt to near-complete loss of WRN. However, under conditions of partial WRN degradation, addition of low-dose ATR inhibitor significantly increased their combined efficacy to levels approaching full inactivation of WRN. Overall, our results provide the first comprehensive view of molecular events linking upstream inhibition of WRN to subsequent cell death and suggest that dual targeting of WRN and ATR might be a useful strategy for treating MSI-H cancers.
Collapse
Affiliation(s)
- Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Natasha C Koussa
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James A Cornwell
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ajith V Pankajam
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Steven D Cappell
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
29
|
Hu S, Xia K, Huang X, Zhao Y, Zhang Q, Huang D, Xu W, Chen Z, Wang C, Zhang Z. Multifunctional CaCO 3@Cur@QTX125@HA nanoparticles for effectively inhibiting growth of colorectal cancer cells. J Nanobiotechnology 2023; 21:353. [PMID: 37773145 PMCID: PMC10543835 DOI: 10.1186/s12951-023-02104-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related deaths in humans, and effective treatments are still needed in clinical practice. Despite significant developments in anticancer drugs and inhibitors, their poor stability, water solubility, and cellular membrane permeability limit their therapeutic efficacy. To address these issues, multifunctional CaCO3 nanoparticles loaded with Curcumin (Cur) and protein deacetylase (HDAC) inhibitor QTX125, and coated with hyaluronic acid (HA) (CaCO3@Cur@QTX125@HA), were prepared through a one-step gas diffusion strategy. Dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) showed that CaCO3@Cur@QTX125@HA nanoparticles have uniform spherical morphology and elemental distribution, with diameters around 450 nm and a Zeta potential of - 8.11 mV. The controlled release of Cur from the nanoparticles was observed over time periods of 48 h. Cellular uptake showed that CaCO3@Cur@QTX125@HA nanoparticles were efficiently taken up by cancer cells and significantly inhibited their growth. Importantly, CaCO3@Cur@QTX125@HA nanoparticles showed specific inhibitory effects on CRC cell growth. Encouragingly, CaCO3@Cur@QTX125@HA nanoparticles successfully internalized into CRC patient-derived organoid (PDO) models and induced apoptosis of tumor cells. The multifunctional CaCO3@Cur@QTX125@HA nanoparticles hold promise for the treatment of CRC.
Collapse
Affiliation(s)
- Shengyun Hu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kunkun Xia
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ye Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qingqing Zhang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dongdong Huang
- Pooling Medical Research Institutes of 100Biotech, Beijing, 100006, China
| | - Weiyi Xu
- Department of Dermatology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Zhengju Chen
- Pooling Medical Research Institutes of 100Biotech, Beijing, 100006, China.
| | - Chenfei Wang
- Department of Dermatology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Zhiyong Zhang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
30
|
Wei M, Huang X, Liao L, Tian Y, Zheng X. SENP1 Decreases RNF168 Phase Separation to Promote DNA Damage Repair and Drug Resistance in Colon Cancer. Cancer Res 2023; 83:2908-2923. [PMID: 37350666 DOI: 10.1158/0008-5472.can-22-4017] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/26/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
The DNA damage response (DDR) is essential for the maintenance of genomic stability. Protein posttranslational modifications play pivotal roles in regulating the DDR process. Here, we found that SUMOylated RNF168 undergoes liquid-liquid phase separation (LLPS), which restricts the recruitment of RNF168 to DNA damage sites, reduces RNF168-catalyzed H2A ubiquitination, restrains 53BP1 in nuclear condensates, and ultimately impairs nonhomologous DNA end joining repair efficiency. Sentrin/SUMO-specific protease 1 (SENP1) was identified as a specific deSUMOylase of RNF168, and it was highly expressed in colorectal adenocarcinoma. In response to DNA damage, SENP1 decreased RNF168 SUMOylation and prevented RNF168 from forming nuclear condensates, thus promoting damage repair efficiency and cancer cell resistance to DNA damaging agents. Moreover, high SENP1 expression correlated with poor prognosis in patients with cancer, and SENP1 depletion sensitized cancer cells to chemotherapy. In summary, these findings reveal DDR is suppressed by SUMOylation-induced LLPS of RNF168 and suggest that SENP1 is a potential target for cancer therapy. SIGNIFICANCE Sentrin/SUMO-specific protease 1 decreases RNF168 SUMOylation and liquid-liquid phase separation to promote DNA damage repair, safeguarding genomic integrity and driving chemotherapy resistance.
Collapse
Affiliation(s)
- Min Wei
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Xinping Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Liming Liao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yonglu Tian
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
31
|
Zhou Y, Huang X, Wang L, Luo Y. The Expression Characteristics and Function of the RECQ Family in Pan-Cancer. Biomedicines 2023; 11:2318. [PMID: 37626815 PMCID: PMC10452384 DOI: 10.3390/biomedicines11082318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The genes of the RECQ DNA helicase family play a part in preserving the stability of the genome and controlling different disease mechanisms. However, the expression features of RECQs in relation to pan-cancer, their correlation with the immune microenvironment of tumors, and the landscape of prognostic power are still undisclosed. METHODS Various sequence and clinical data extracted from 33 cancers were utilized to generate a comprehensive overview of RECQs in the landscape. Afterward, we discovered variations in gene expression, potential enrichment of functions, genetic alterations, and analysis related to the immune response in tumors. Additionally, we explored the clinical characteristics and diagnostic significance of RECQs. And the important association of RECQL4 with liver hepatocellular carcinoma (LIHC) was investigated. RESULTS RECQs exhibited extensive mutations in different types of cancers. The expression of RECQ may be influenced by an oncogenic mutation in certain types of cancer, resulting in the observed genomic and epigenetic changes in diverse tumor formations. Furthermore, RECQs originating from tumors exhibited a significant association with the immune microenvironment of the tumor, indicating their potential as promising targets for therapy. Patient prognosis was significantly associated with the majority of genes in the RECQ family. In LIHC, RECQL4 eventually emerged as a separate prognostic determinant. CONCLUSIONS To summarize, RECQs are essential for the regulation of the immune system in tumors, and RECQL4 serves as a prognostic indicator in LIHC. The results of our study offer fresh perspectives on RECQs from a bioinformatics perspective and emphasize the importance of RECQs in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (Y.Z.); (L.W.)
| | - Xucheng Huang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China;
| | - Liya Wang
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (Y.Z.); (L.W.)
| | - Yujia Luo
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
32
|
Zong D, Koussa NC, Cornwell JA, Pankajam AV, Kruhlak MJ, Wong N, Chari R, Cappell SD, Nussenzweig A. Comprehensive mapping of cell fates in microsatellite unstable cancer cells support dual targe6ng of WRN and ATR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550976. [PMID: 37662356 PMCID: PMC10473727 DOI: 10.1101/2023.07.28.550976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Addiction to the WRN helicase is a unique vulnerability of human cancers with high levels of microsatellite instability (MSI-H). However, while prolonged loss of WRN ultimately leads to cell death, little is known about how MSI-H cancers initially respond to acute loss of WRN, knowledge that would be helpful for informing clinical development of WRN-targeting therapy, predicting possible resistance mechanisms, and identifying useful biomarkers of successful WRN inhibition. Here, we report the construction of an inducible ligand-mediated degradation system wherein the stability of endogenous WRN protein can be rapidly and specifically tuned, enabling us to track the complete sequence of cellular events elicited by acute loss of WRN function. We find that WRN degradation leads to immediate accrual of DNA damage in a replication-dependent manner that curiously did not robustly engage checkpoint mechanisms to halt DNA synthesis. As a result, WRN-degraded MSI-H cancer cells accumulate DNA damage across multiple replicative cycles and undergo successive rounds of increasingly aberrant mitoses, ultimately triggering cell death. Of potential therapeutic importance, we find no evidence of any generalized mechanism by which MSI-H cancers could adapt to near-complete loss of WRN. However, under conditions of partial WRN degradation, addition of low dose ATR inhibitor significantly increased their combined efficacy to levels approaching full inactivation of WRN. Overall, our results provided the first comprehensive view of molecular events linking upstream inhibition of WRN to subsequent cell death and suggested a potential therapeutical rationale for dual targeting of WRN and ATR.
Collapse
Affiliation(s)
- Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Natasha C. Koussa
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James A. Cornwell
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ajith V. Pankajam
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael J. Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Steven D. Cappell
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Huang H, Du J, Meng X, Wu D, Yu Y, Wang S, Wang L, Wang W, Tang Y, Li N. Growing research and development of targeted anticancer drugs in China. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:129-134. [PMID: 39035724 PMCID: PMC11256715 DOI: 10.1016/j.jncc.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 01/22/2024] Open
Abstract
Objective To deliver a comprehensive picture of the landscape and changing trend of trials and approvals on targeted anticancer drugs in China from 2012 to 2021. Methods Trials, investigated products, and listed drugs were acquired from national databases. The status quo, changing trend of absolute number, and proportion of targeted trials, products, and drugs, as well as the corresponding difference between domestic and foreign companies were analyzed. Results A total of 2,632 trials on 1,167 targeted antitumor drugs were identified, accounting for 81.5% of all registered trials. The number and proportion of trials on targeted drugs increased steadily, with an average growth rate of 36.0% and 6.2%, respectively. A similar growth trend was observed in the number (33.7%) and proportion (13.8%) of targeted drugs. Targeted drugs and trials owned by domestic companies accounted for a higher proportion than that by foreign companies (80.5% vs. 19.5%; 83.2% vs. 16.8%, respectively), and the growing trend for both targeted drugs (13.8% vs. 5.7%) and trials (13.8% vs. 33.7%) owned by domestic companies was faster. The proportion of targeted drug trials (80.5% vs. 85.6%) and multicenter trials (6.0% vs. 69.9%) initiated by domestic companies was lower than that by foreign companies, with the gap gradually narrowing. Among the identified 18 targets of the 126 immune drugs under development, only one globally new target was found. Conclusions Research and development of targeted antitumor drugs in China are booming and advancing rapidly, and domestic enterprises have become the pillar. Encouraging genomics activities and establishing incentives and public-private collaboration frameworks are crucial for innovation-oriented drug development in China.
Collapse
Affiliation(s)
- Huiyao Huang
- Clinical Trials Center, National Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingting Du
- Clinical Trials Center, National Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Meng
- School of Population and Global Health, the University of Melbourne, Victoria, Australia
| | - Dawei Wu
- Clinical Trials Center, National Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Yu
- Clinical Trials Center, National Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuhang Wang
- Clinical Trials Center, National Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Wang
- Beijing Genomics Institute, Beijing, China
| | | | - Yu Tang
- Clinical Trials Center, National Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Li
- Clinical Trials Center, National Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Lobbes LA, Schütze MA, Droeser R, Arndt M, Pozios I, Lauscher JC, Hering NA, Weixler B. Muscarinic Acetylcholine Receptor M3 Expression and Survival in Human Colorectal Carcinoma-An Unexpected Correlation to Guide Future Treatment? Int J Mol Sci 2023; 24:ijms24098198. [PMID: 37175905 PMCID: PMC10179005 DOI: 10.3390/ijms24098198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Muscarinic acetylcholine receptor M3 (M3R) has repeatedly been shown to be prominently expressed in human colorectal cancer (CRC), playing roles in proliferation and cell invasion. Its therapeutic targetability has been suggested in vitro and in animal models. We aimed to investigate the clinical role of MR3 expression in CRC for human survival. Surgical tissue samples from 754 CRC patients were analyzed for high or low immunohistochemical M3R expression on a clinically annotated tissue microarray (TMA). Immunohistochemical analysis was performed for established immune cell markers (CD8, TIA-1, FOXP3, IL 17, CD16 and OX 40). We used Kaplan-Meier curves to evaluate patients' survival and multivariate Cox regression analysis to evaluate prognostic significance. High M3R expression was associated with increased survival in multivariate (hazard ratio (HR) = 0.52; 95% CI = 0.35-0.78; p = 0.001) analysis, as was TIA-1 expression (HR = 0.99; 95% CI = 0.94-0.99; p = 0.014). Tumors with high M3R expression were significantly more likely to be grade 2 compared to tumors with low M3R expression (85.7% vs. 67.1%, p = 0.002). The 5-year survival analysis showed a trend of a higher survival rate in patients with high M3R expression (46%) than patients with low M3R expression CRC (42%) (p = 0.073). In contrast to previous in vitro and animal model findings, this study demonstrates an increased survival for CRC patients with high M3R expression. This evidence is highly relevant for translation of basic research findings into clinically efficient treatments.
Collapse
Affiliation(s)
- Leonard A Lobbes
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Marcel A Schütze
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Raoul Droeser
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, CH-4058 Basel, Switzerland
| | - Marco Arndt
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ioannis Pozios
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Johannes C Lauscher
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nina A Hering
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Benjamin Weixler
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
35
|
Patterson A, Elbasir A, Tian B, Auslander N. Computational Methods Summarizing Mutational Patterns in Cancer: Promise and Limitations for Clinical Applications. Cancers (Basel) 2023; 15:1958. [PMID: 37046619 PMCID: PMC10093138 DOI: 10.3390/cancers15071958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Since the rise of next-generation sequencing technologies, the catalogue of mutations in cancer has been continuously expanding. To address the complexity of the cancer-genomic landscape and extract meaningful insights, numerous computational approaches have been developed over the last two decades. In this review, we survey the current leading computational methods to derive intricate mutational patterns in the context of clinical relevance. We begin with mutation signatures, explaining first how mutation signatures were developed and then examining the utility of studies using mutation signatures to correlate environmental effects on the cancer genome. Next, we examine current clinical research that employs mutation signatures and discuss the potential use cases and challenges of mutation signatures in clinical decision-making. We then examine computational studies developing tools to investigate complex patterns of mutations beyond the context of mutational signatures. We survey methods to identify cancer-driver genes, from single-driver studies to pathway and network analyses. In addition, we review methods inferring complex combinations of mutations for clinical tasks and using mutations integrated with multi-omics data to better predict cancer phenotypes. We examine the use of these tools for either discovery or prediction, including prediction of tumor origin, treatment outcomes, prognosis, and cancer typing. We further discuss the main limitations preventing widespread clinical integration of computational tools for the diagnosis and treatment of cancer. We end by proposing solutions to address these challenges using recent advances in machine learning.
Collapse
Affiliation(s)
- Andrew Patterson
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Bin Tian
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Noam Auslander
- The Wistar Institute, Philadelphia, PA 19104, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Jiang Z, Yan L, Deng S, Gu J, Qin L, Mao F, Xue Y, Cai W, Nie X, Liu H, Shang F, Tao K, Wang J, Wu K, Cao Y, Cai K. Development and Interpretation of a Clinicopathological-Based Model for the Identification of Microsatellite Instability in Colorectal Cancer. DISEASE MARKERS 2023; 2023:5178750. [PMID: 36860582 PMCID: PMC9969972 DOI: 10.1155/2023/5178750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/05/2023] [Accepted: 01/28/2023] [Indexed: 02/20/2023]
Abstract
Chemotherapy is not recommended for patients with deficient mismatch repair (dMMR) in colorectal cancer (CRC); therefore, assessing the status of MMR is crucial for the selection of subsequent treatment. This study is aimed at building predictive models to accurately and rapidly identify dMMR. A retrospective analysis was performed at Wuhan Union Hospital between May 2017 and December 2019 based on the clinicopathological data of patients with CRC. The variables were subjected to collinearity, least absolute shrinkage and selection operator (LASSO) regression, and random forest (RF) feature screening analyses. Four sets of machine learning models (extreme gradient boosting (XGBoost), support vector machine (SVM), naive Bayes (NB), and RF) and a conventional logistic regression (LR) model were built for model training and testing. Receiver operating characteristic (ROC) curves were plotted to evaluate the predictive performance of the developed models. In total, 2279 patients were included in the study and were randomly divided into either the training or test group. Twelve clinicopathological features were incorporated into the development of the predictive models. The area under curve (AUC) values of the five predictive models were 0.8055 for XGBoost, 0.8174 for SVM, 0.7424 for NB, 8584 for RF, and 0.7835 for LR (Delong test, P value < 0.05). The results showed that the RF model exhibited the best recognition ability and outperformed the conventional LR method in identifying dMMR and proficient MMR (pMMR). Our predictive models based on routine clinicopathological data can significantly improve the diagnostic performance of dMMR and pMMR. The four machine learning models outperformed the conventional LR model.
Collapse
Affiliation(s)
- Zhenxing Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Junnan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Le Qin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yifan Xue
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wentai Cai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fumei Shang
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, Henan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ke Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yinghao Cao
- Department of Digestive Surgical Oncology, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
37
|
Fu J, Jin X, Chen W, Chen Z, Wu P, Xiao W, Liu Y, Deng S. Identification of the molecular characteristics associated with microsatellite status of colorectal cancer patients for the clinical application of immunotherapy. Front Pharmacol 2023; 14:1083449. [PMID: 36814498 PMCID: PMC9939640 DOI: 10.3389/fphar.2023.1083449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Background: Mismatch repair-proficient (pMMR) microsatellite stability (MSS) in colorectal cancer (CRC) indicates an unfavorable therapeutic response to immunotherapy with immune checkpoint inhibitors (ICIs). However, the molecular characteristics of CRC patients with pMMR MSS remain largely unknown. Methods: Heterogeneities between mismatch repair-deficient (dMMR) microsatellite instability (MSI) and pMMR MSS CRC patients were investigated at the single-cell level. Next, an MSS-related risk score was constructed by single-sample gene set enrichment analysis (ssGSEA). The differences in immune and functional characteristics between the high- and low-score groups were systematically analyzed. Results: Based on the single-cell RNA (scRNA) atlas, an MSS-specific cancer cell subpopulation was identified. By taking the intersection of the significant differentially expressed genes (DEGs) between different cancer cell subtypes of the single-cell training and validation cohorts, 29 MSS-specific cancer cell marker genes were screened out for the construction of the MSS-related risk score. This risk score signature could efficiently separate pMMR MSS CRC patients into two subtypes with significantly different immune characteristics. The interactions among the different cell types were stronger in the MSS group than in the MSI group, especially for the outgoing signals of the cancer cells. In addition, functional differences between the high- and low-score groups were preliminarily investigated. Conclusion: In this study, we constructed an effective risk model to classify pMMR MSS CRC patients into two completely different groups based on the specific genes identified by single-cell analysis to identify potential CRC patients sensitive to immunotherapy and screen effective synergistic targets.
Collapse
|
38
|
Mengoli V, Ceppi I, Sanchez A, Cannavo E, Halder S, Scaglione S, Gaillard P, McHugh PJ, Riesen N, Pettazzoni P, Cejka P. WRN helicase and mismatch repair complexes independently and synergistically disrupt cruciform DNA structures. EMBO J 2023; 42:e111998. [PMID: 36541070 PMCID: PMC9890227 DOI: 10.15252/embj.2022111998] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The Werner Syndrome helicase, WRN, is a promising therapeutic target in cancers with microsatellite instability (MSI). Long-term MSI leads to the expansion of TA nucleotide repeats proposed to form cruciform DNA structures, which in turn cause DNA breaks and cell lethality upon WRN downregulation. Here we employed biochemical assays to show that WRN helicase can efficiently and directly unfold cruciform structures, thereby preventing their cleavage by the SLX1-SLX4 structure-specific endonuclease. TA repeats are particularly prone to form cruciform structures, explaining why these DNA sequences are preferentially broken in MSI cells upon WRN downregulation. We further demonstrate that the activity of the DNA mismatch repair (MMR) complexes MutSα (MSH2-MSH6), MutSβ (MSH2-MSH3), and MutLα (MLH1-PMS2) similarly decreases the level of DNA cruciforms, although the mechanism is different from that employed by WRN. When combined, WRN and MutLα exhibited higher than additive effects in in vitro cruciform processing, suggesting that WRN and the MMR proteins may cooperate. Our data explain how WRN and MMR defects cause genome instability in MSI cells with expanded TA repeats, and provide a mechanistic basis for their recently discovered synthetic-lethal interaction with promising applications in precision cancer therapy.
Collapse
Affiliation(s)
- Valentina Mengoli
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Ilaria Ceppi
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Aurore Sanchez
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Elda Cannavo
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Swagata Halder
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Sarah Scaglione
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix‐Marseille Université, Institut Paoli‐CalmettesMarseilleFrance
| | - Pierre‐Henri Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix‐Marseille Université, Institut Paoli‐CalmettesMarseilleFrance
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Nathalie Riesen
- Roche Pharma Research & Early Development pREDRoche Innovation CenterBaselSwitzerland
| | | | - Petr Cejka
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
- Department of Biology, Institute of BiochemistryEidgenössische Technische Hochschule (ETH)ZürichSwitzerland
| |
Collapse
|
39
|
Chan EM, Foster KJ, Bass AJ. WRN Is a Promising Synthetic Lethal Target for Cancers with Microsatellite Instability (MSI). Cancer Treat Res 2023; 186:313-328. [PMID: 37978143 DOI: 10.1007/978-3-031-30065-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Microsatellite instability (MSI), a type of genetic hypermutability arising from impaired DNA mismatch repair (MMR), is observed in approximately 3% of all cancers. Preclinical work has identified the RecQ helicase WRN as a promising synthetic lethal target for patients with MSI cancers. WRN depletion substantially impairs the viability of MSI, but not microsatellite stable (MSS), cells. Experimental evidence suggests that this synthetic lethal phenotype is driven by numerous TA dinucleotide repeats that undergo expansion mutations in the setting of long-standing MMR deficiency. The lengthening of TA repeats increases their propensity to form secondary DNA structures that require WRN to resolve. In the absence of WRN helicase activity, these unresolved DNA secondary structures stall DNA replication forks and induce catastrophic DNA damage.
Collapse
Affiliation(s)
- Edmond M Chan
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, USA.
- Broad Institute of MIT and Harvard, Cambridge, USA.
- New York Genome Center, New York, USA.
| | | | - Adam J Bass
- Novartis Institutes for BioMedical Research, Cambridge, USA
| |
Collapse
|
40
|
Morales-Juarez DA, Jackson SP. Clinical prospects of WRN inhibition as a treatment for MSI tumours. NPJ Precis Oncol 2022; 6:85. [PMID: 36379964 PMCID: PMC9666358 DOI: 10.1038/s41698-022-00319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of synthetic lethal interactions with genetic deficiencies in cancers has highlighted several candidate targets for drug development, with variable clinical success. Recent work has unveiled a promising synthetic lethal interaction between inactivation/inhibition of the WRN DNA helicase and tumours with microsatellite instability, a phenotype that arises from DNA mismatch repair deficiency. While these and further studies have highlighted the therapeutic potential of WRN inhibitors, compounds with properties suitable for clinical exploitation remain to be described. Furthermore, the complexities of MSI development and its relationship to cancer evolution pose challenges for clinical prospects. Here, we discuss possible paths of MSI tumour development, the viability of WRN inhibition as a strategy in different scenarios, and the necessary conditions to create a roadmap towards successful implementation of WRN inhibitors in the clinic.
Collapse
Affiliation(s)
- David A Morales-Juarez
- Wellcome and Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Stephen P Jackson
- Wellcome and Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
41
|
Zhang C, Zeng C, Xiong S, Zhao Z, Wu G. A mitophagy-related gene signature associated with prognosis and immune microenvironment in colorectal cancer. Sci Rep 2022; 12:18688. [PMID: 36333388 PMCID: PMC9636133 DOI: 10.1038/s41598-022-23463-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease and one of the most prevalent malignancies worldwide. Previous research has demonstrated that mitophagy is crucial to developing colorectal cancer. This study aims to examine the association between mitophagy-related genes and the prognosis of CRC patients. Gene expression profiles and clinical information of CRC patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) regression analysis were applied to establish a prognostic signature using mitophagy related genes. Kaplan-Meier and receiver operating characteristic (ROC) curves were used to analyze patient survival and predictive accuracy. Meanwhile, we also used the Genomics of Drug Sensitivity in Cancer (GDSC) database and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to estimate the sensitivity of chemotherapy, targeted therapy and immunotherapy. ATG14 overexpression plasmid was used to regulate the ATG14 expression level in HCT116 and SW480 cell lines, and cell counting kit-8, colony formation and transwell migration assay were performed to validate the function of ATG14 in CRC cells. A total of 22 mitophagy-driven genes connected with CRC survival were identified, and then a novel prognostic signature was established based on 10 of them (AMBRA1, ATG14, MAP1LC3A, MAP1LC3B, OPTN, VDAC1, ATG5, CSNK2A2, MFN1, TOMM22). Patients were divided into high-risk and low-risk groups based on the median risk score, and the survival of patients in the high-risk group was significantly shorter in both the training cohort and two independent cohorts. ROC curve showed that the area under the curves (AUC) of 1-, 3- and 5-year survival were 0.66, 0.66 and 0.64, respectively. Multivariate Cox regression analysis confirmed the independent prognostic value of the signature. Then we constructed a Nomogram combining the risk score, age and M stage, which had a concordance index of survival prediction of 0.77 (95% CI 0.71-0.83) and more robust predictive accuracy. Results showed that CD8+ T cells, regulatory T cells and activated NK cells were significantly more enriched in the high-risk group. Furthermore, patients in the high-risk group are more sensitive to targeted therapy or chemotherapy, including bosutinib, elesclomol, lenalidomide, midostaurin, pazopanib and sunitinib, while the low-risk group is more likely to benefit from immunotherapy. Finally, in vitro study confirmed the oncogenic significance of ATG14 in both HCT116 and SW480 cells, whose overexpression increased CRC cell proliferation, colony formation, and migration. In conclusion, we developed a novel mitophagy-related gene signature that can be utilized not only as an independent predictive biomarker but also as a tool for tailoring personalizing treatment for CRC patients, and we confirmed ATG14 as a novel oncogene in CRC.
Collapse
Affiliation(s)
- Cong Zhang
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Cailing Zeng
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Shaoquan Xiong
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Zewei Zhao
- grid.411304.30000 0001 0376 205XChengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Guoyu Wu
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| |
Collapse
|
42
|
Wilson J, Loizou JI. Exploring the genetic space of the DNA damage response for cancer therapy through CRISPR-based screens. Mol Oncol 2022; 16:3778-3791. [PMID: 35708734 PMCID: PMC9627789 DOI: 10.1002/1878-0261.13272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
The concepts of synthetic lethality and viability have emerged as powerful approaches to identify vulnerabilities and resistances within the DNA damage response for the treatment of cancer. Historically, interactions between two genes have had a longstanding presence in genetics and have been identified through forward genetic screens that rely on the molecular basis of the characterized phenotypes, typically caused by mutations in single genes. While such complex genetic interactions between genes have been studied extensively in model organisms, they have only recently been prioritized as therapeutic strategies due to technological advancements in genetic screens. Here, we discuss synthetic lethal and viable interactions within the DNA damage response and present how CRISPR-based genetic screens and chemical compounds have allowed for the systematic identification and targeting of such interactions for the treatment of cancer.
Collapse
Affiliation(s)
- Jordan Wilson
- Center for Cancer Research, Comprehensive Cancer CentreMedical University of ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Joanna I. Loizou
- Center for Cancer Research, Comprehensive Cancer CentreMedical University of ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
43
|
Baxter JS, Zatreanu D, Pettitt SJ, Lord CJ. Resistance to DNA repair inhibitors in cancer. Mol Oncol 2022; 16:3811-3827. [PMID: 35567571 PMCID: PMC9627783 DOI: 10.1002/1878-0261.13224] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
The DNA damage response (DDR) represents a complex network of proteins which detect and repair DNA damage, thereby maintaining the integrity of the genome and preventing the transmission of mutations and rearranged chromosomes to daughter cells. Faults in the DDR are a known driver and hallmark of cancer. Furthermore, inhibition of DDR enzymes can be used to treat the disease. This is exemplified by PARP inhibitors (PARPi) used to treat cancers with defects in the homologous recombination DDR pathway. A series of novel DDR targets are now also under pre-clinical or clinical investigation, including inhibitors of ATR kinase, WRN helicase or the DNA polymerase/helicase Polθ (Pol-Theta). Drug resistance is a common phenomenon that impairs the overall effectiveness of cancer treatments and there is already some understanding of how resistance to PARPi occurs. Here, we discuss how an understanding of PARPi resistance could inform how resistance to new drugs targeting the DDR emerges. We also discuss potential strategies that could limit the impact of these therapy resistance mechanisms in cancer.
Collapse
Affiliation(s)
- Joseph S. Baxter
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Diana Zatreanu
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
44
|
Thada V, Greenberg RA. Unpaved roads: How the DNA damage response navigates endogenous genotoxins. DNA Repair (Amst) 2022; 118:103383. [PMID: 35939975 PMCID: PMC9703833 DOI: 10.1016/j.dnarep.2022.103383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/03/2023]
Abstract
Accurate DNA repair is essential for cellular and organismal homeostasis, and DNA repair defects result in genetic diseases and cancer predisposition. Several environmental factors, such as ultraviolet light, damage DNA, but many other molecules with DNA damaging potential are byproducts of normal cellular processes. In this review, we highlight some of the prominent sources of endogenous DNA damage as well as their mechanisms of repair, with a special focus on repair by the homologous recombination and Fanconi anemia pathways. We also discuss how modulating DNA damage caused by endogenous factors may augment current approaches used to treat BRCA-deficient cancers. Finally, we describe how synthetic lethal interactions may be exploited to exacerbate DNA repair deficiencies and cause selective toxicity in additional types of cancers.
Collapse
|
45
|
Caruso FP, D'Andrea MR, Coppola L, Landriscina M, Condelli V, Cerulo L, Giordano G, Porras A, Pancione M. Lymphocyte antigen 6G6D-mediated modulation through p38α MAPK and DNA methylation in colorectal cancer. Cancer Cell Int 2022; 22:253. [PMID: 35953834 PMCID: PMC9373545 DOI: 10.1186/s12935-022-02672-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
In addition to being novel biomarkers for poor cancer prognosis, members of Lymphocyte antigen-6 (Ly6) gene family also play a crucial role in avoiding immune responses to tumors. However, it has not been possible to identify the underlying mechanism of how Ly6 gene regulation operates in human cancers. Transcriptome, epigenome and proteomic data from independent cancer databases were analyzed in silico and validated independently in 334 colorectal cancer tissues (CRC). RNA mediated gene silencing of regulatory genes, and treatment with MEK and p38 MAPK inhibitors were also tested in vitro. We report here that the Lymphocyte antigen 6G6D is universally downregulated in mucinous CRC, while its activation progresses through the classical adenoma-carcinoma sequence. The DNA methylation changes in LY6G6D promoter are intimately related to its transcript regulation, epigenomic and histological subtypes. Depletion of DNA methyltransferase 1 (DNMT1), which maintains DNA methylation, results in the derepression of LY6G6D expression. RNA-mediated gene silencing of p38α MAPK or its selective chemical inhibition, however, reduces LY6G6D expression, reducing trametinib’s anti-inflammatory effects. Patients treated with FOLFOX-based first-line therapy experienced decreased survival due to hypermethylation of the LY6G6D promoter and decreased p38α MAPK signaling. We found that cancer-specific immunodominant epitopes are controlled by p38α MAPKs signaling and suppressed by DNA methylation in histological variants with Mucinous differentiation. This work provides a promising prospective for clinical application in diagnosis and personalized therapeutic strategies of colorectal cancer.
Collapse
Affiliation(s)
| | | | - Luigi Coppola
- UOC Anatomia ed Istologia Patologica e Citologia Diagnostica, Dipartimento dei Servizi Diagnostici e della Farmaceutica, Ospedale Sandro Pertini, ASL Roma 2, 00157, Rome, Italy
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture, Potenza, Italy
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture, Potenza, Italy
| | - Luigi Cerulo
- Bioinformatics Laboratory, BIOGEM scrl, Ariano Irpino, Avellino, Italy
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122, Foggia, Italy.
| | - Almudena Porras
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University Madrid, 28040, Madrid, Spain. .,Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.
| |
Collapse
|
46
|
Jiao Y, Li S, Wang X, Yi M, Wei H, Rong S, Zheng K, Zhang L. A genomic instability-related lncRNA model for predicting prognosis and immune checkpoint inhibitor efficacy in breast cancer. Front Immunol 2022; 13:929846. [PMID: 35990656 PMCID: PMC9389369 DOI: 10.3389/fimmu.2022.929846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has overtaken lung cancer as the most frequently diagnosed cancer type and is the leading cause of death for women worldwide. It has been demonstrated in published studies that long non-coding RNAs (lncRNAs) involved in genomic stability are closely associated with the progression of breast cancer, and remarkably, genomic stability has been shown to predict the response to immune checkpoint inhibitors (ICIs) in cancer therapy, especially colorectal cancer. Therefore, it is of interest to explore somatic mutator-derived lncRNAs in predicting the prognosis and ICI efficacy in breast cancer patients. In this study, the lncRNA expression data and somatic mutation data of breast cancer patients from The Cancer Genome Atlas (TCGA) were downloaded and analyzed thoroughly. Univariate and multivariate Cox proportional hazards analyses were used to generate the genomic instability-related lncRNAs in a training set, which was subsequently used to analyze a testing set and combination of the two sets. The qRT-PCR was conducted in both normal mammary and breast cancer cell lines. Furthermore, the Kaplan–Meier and receiver operating characteristic (ROC) curves were applied to validate the predictive effect in the three sets. Finally, the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to evaluate the association between genomic instability-related lncRNAs and immune checkpoints. As a result, a six-genomic instability-related lncRNA signature (U62317.4, MAPT-AS1, AC115837.2, EGOT, SEMA3B-AS1, and HOTAIR) was identified as the independent prognostic risk model for breast cancer patients. Compared with the normal mammary cells, the qRT-PCR showed that HOTAIR was upregulated while MAPT-AS1, EGOT, and SEMA3B-AS1 were downregulated in breast cancer cells. The areas under the ROC curves at 3 and 5 years were 0.711 and 0.723, respectively. Moreover, the patients classified in the high-risk group by the prognostic model had abundant negative immune checkpoint molecules. In summary, this study suggested that the prognostic model comprising six genomic instability-related lncRNAs may provide survival prediction. It is necessary to identify patients who are suitable for ICIs to avoid severe immune-related adverse effects, especially autoimmune diseases. This model may predict the ICI efficacy, facilitating the identification of patients who may benefit from ICIs.
Collapse
Affiliation(s)
- Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqu Wei
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanjie Rong
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Kun Zheng
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Li Zhang,
| |
Collapse
|
47
|
Long-Read Nanopore Sequencing Identifies Mismatch Repair-Deficient Related Genes with Alternative Splicing in Colorectal Cancer. DISEASE MARKERS 2022; 2022:4433270. [PMID: 35909892 PMCID: PMC9334049 DOI: 10.1155/2022/4433270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
Background Alternative splicing (AS) plays a crucial role in regulating the progression of colorectal cancer (CRC), but its distribution remains to be explored. Here, we aim to investigate the genes edited by AS which show differential expression in patients with mismatch repair deficiency (dMMR)/microsatellite instability (MSI). Materials and Methods We applied long-read nanopore sequencing to determine the mRNA profiles and screen AS genes using Oxford Nanopore Technologies (ONT) method in ten paired CRC tissues. CRC tissue and plasma samples were used to validate the differential genes with AS using real-time fluorescent quantitative PCR, immunohistochemistry, and enzyme-linked immunosorbent assay. Results ONT sequencing identified 404 genes were downregulated, and 348 genes were upregulated in MSI cancer tissues compared with microsatellite stability (MSS) cancer tissues. In total, 6,200 AS events were identified in 2,728 mRNA transcripts. WGCNA revealed dMMR/MSI-correlated gene modules, including INHBA and RPL22L1, which were upregulated; conversely, HMGCS2 was downregulated in MSI cancer. Overexpression of RPL22L1, INHBA, and CAPZA1 was further confirmed in CRC tissues. INHBA was found to be associated with tumor lymphatic metastasis. Importantly, the levels of INHBA in CRC plasma were significantly increased compared with those in noncancer plasma. INHBA showed a higher level in dMMR/MSI CRC than in MSS CRC, indicating that INHBA is a useful biomarker. Conclusion Our results showed that ONT-identified genes provide a pool to explore AS-associated markers for dMMR/MSI CRC. We demonstrated INHBA as a promising signature for clinical application in predicting tumor lymphatic metastasis and screening dMMR/MSI candidates.
Collapse
|
48
|
Thakkar MK, Lee J, Meyer S, Chang VY. RecQ Helicase Somatic Alterations in Cancer. Front Mol Biosci 2022; 9:887758. [PMID: 35782872 PMCID: PMC9240438 DOI: 10.3389/fmolb.2022.887758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Named the “caretakers” of the genome, RecQ helicases function in several pathways to maintain genomic stability and repair DNA. This highly conserved family of enzymes consist of five different proteins in humans: RECQL1, BLM, WRN, RECQL4, and RECQL5. Biallelic germline mutations in BLM, WRN, and RECQL4 have been linked to rare cancer-predisposing syndromes. Emerging research has also implicated somatic alterations in RecQ helicases in a variety of cancers, including hematological malignancies, breast cancer, osteosarcoma, amongst others. These alterations in RecQ helicases, particularly overexpression, may lead to increased resistance of cancer cells to conventional chemotherapy. Downregulation of these proteins may allow for increased sensitivity to chemotherapy, and, therefore, may be important therapeutic targets. Here we provide a comprehensive review of our current understanding of the role of RecQ DNA helicases in cancer and discuss the potential therapeutic opportunities in targeting these helicases.
Collapse
Affiliation(s)
- Megha K. Thakkar
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jamie Lee
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stefan Meyer
- Division of Cancer Studies, University of Manchester, Manchester, United Kingdom
- Department of Pediatric Hematology Oncology, Royal Manchester Children’s Hospital and Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Vivian Y. Chang
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Childrens Discovery and Innovation Institute, UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, United States
- *Correspondence: Vivian Y. Chang,
| |
Collapse
|
49
|
Abstract
Over the past decade, CRISPR has become as much a verb as it is an acronym, transforming biomedical research and providing entirely new approaches for dissecting all facets of cell biology. In cancer research, CRISPR and related tools have offered a window into previously intractable problems in our understanding of cancer genetics, the noncoding genome and tumour heterogeneity, and provided new insights into therapeutic vulnerabilities. Here, we review the progress made in the development of CRISPR systems as a tool to study cancer, and the emerging adaptation of these technologies to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Alyna Katti
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Bianca J Diaz
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Christina M Caragine
- Department of Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Neville E Sanjana
- Department of Biology, New York University, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | - Lukas E Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
50
|
Targeting IL8 as a sequential therapy strategy to overcome chemotherapy resistance in advanced gastric cancer. Cell Death Dis 2022; 8:235. [PMID: 35487914 PMCID: PMC9055054 DOI: 10.1038/s41420-022-01033-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022]
Abstract
Systemic chemotherapy with multiple drug regimens is the main therapy option for advanced gastric cancer (GC) patients. However, many patients develop relapse soon. Here, we evaluated the therapeutic potential of targeting interleukin-8 (IL8) to overcome resistance to chemotherapy in advanced GC. RNA sequencing revealed crucial molecular changes after chemotherapy resistance, in which the expression of IL8 was significantly activated with the increase in drug resistance. Subsequently, the clinical significance of IL8 expression was determined in GC population specimens. IL8-targeted by RNA interference or reparixin reversed chemotherapy resistance with limited toxicity in vivo and vitro experiments. Sequential treatment with first-line, second-line chemotherapy and reparixin inhibited GC growth, reduced toxicity and prolonged survival. Collectively, our study provides a therapeutic strategy that targeting IL8 as a sequential therapy after chemotherapy resistance in advanced GC.
Collapse
|