1
|
Lopez D, Tyson DR, Hong T. Intercellular signaling reinforces single-cell level phenotypic transitions and facilitates robust re-equilibrium of heterogeneous cancer cell populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631250. [PMID: 39803530 PMCID: PMC11722408 DOI: 10.1101/2025.01.03.631250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Background Cancer cells within tumors exhibit a wide range of phenotypic states driven by non-genetic mechanisms in addition to extensively studied genetic alterations. Conversions among cancer cell states can result in intratumoral heterogeneity which contributes to metastasis and development of drug resistance. However, mechanisms underlying the initiation and/or maintenance of such phenotypic plasticity are poorly understood. In particular, the role of intercellular communications in phenotypic plasticity remains elusive. Methods In this study, we employ a multiscale inference-based approach using single-cell RNA sequencing (scRNA-seq) data to explore how intercellular interactions influence phenotypic dynamics of cancer cells, particularly cancers undergoing epithelial-mesenchymal transition. In addition, we use mathematical models based on our data-driven findings to interrogate the roles of intercellular communications at the cell populations from the viewpoint of dynamical systems. Results Our inference approach reveals that signaling interactions between cancerous cells in small cell lung cancer (SCLC) result in the reinforcement of the phenotypic transition in single cells and the maintenance of population-level intratumoral heterogeneity. Additionally, we find a recurring signaling pattern across multiple types of cancer in which the mesenchymal-like subtypes utilize signals from other subtypes to support its new phenotype, further promoting the intratumoral heterogeneity. Our models show that inter-subtype communication both accelerates the development of heterogeneous tumor populations and confers robustness to their steady state phenotypic compositions. Conclusions Our work highlights the critical role of intercellular signaling in sustaining intratumoral heterogeneity, and our approach of computational analysis of scRNA-seq data can infer inter- and intra-cellular signaling networks in a holistic manner.
Collapse
Affiliation(s)
- Daniel Lopez
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville. Knoxville, Tennessee 37916, USA
| | - Darren R Tyson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Tian Hong
- Department of Biological Sciences, The University of Texas at Dallas. Richardson, Texas 75080, USA
| |
Collapse
|
2
|
Tufail M, Jiang CH, Li N. Tumor dormancy and relapse: understanding the molecular mechanisms of cancer recurrence. Mil Med Res 2025; 12:7. [PMID: 39934876 PMCID: PMC11812268 DOI: 10.1186/s40779-025-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Cancer recurrence, driven by the phenomenon of tumor dormancy, presents a formidable challenge in oncology. Dormant cancer cells have the ability to evade detection and treatment, leading to relapse. This review emphasizes the urgent need to comprehend tumor dormancy and its implications for cancer recurrence. Despite notable advancements, significant gaps remain in our understanding of the mechanisms underlying dormancy and the lack of reliable biomarkers for predicting relapse. This review provides a comprehensive analysis of the cellular, angiogenic, and immunological aspects of dormancy. It highlights the current therapeutic strategies targeting dormant cells, particularly combination therapies and immunotherapies, which hold promise in preventing relapse. By elucidating these mechanisms and proposing innovative research methodologies, this review aims to deepen our understanding of tumor dormancy, ultimately facilitating the development of more effective strategies for preventing cancer recurrence and improving patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Sahoo S, Hari K, Jolly MK. Design principles of regulatory networks underlying epithelial mesenchymal plasticity in cancer cells. Curr Opin Cell Biol 2025; 92:102445. [PMID: 39608060 DOI: 10.1016/j.ceb.2024.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Phenotypic plasticity is a hallmark of cancer and drives metastatic disease and drug resistance. The dynamics of epithelial mesenchymal plasticity is driven by complex interactions involving multiple feedback loops in underlying networks operating at multiple regulatory levels such as transcriptional and epigenetic. The past decade has witnessed a surge in systems level analysis of structural and dynamical traits of these networks. Here, we highlight the key insights elucidated from such efforts-a) multistability in gene regulatory networks and the co-existence of many hybrid phenotypes, thus enabling a landscape with multiple 'attractors', b) mutually antagonistic 'teams' of genes in these networks, shaping the rates of cell state transition in this landscape, and c) chromatin level changes that can alter the landscape, thus controlling reversibility of cell state transitions, allowing cellular memory in the context of epithelial mesenchymal plasticity in cancer cells. Such approaches, in close integration with high-throughput longitudinal data, have improved our understanding of the dynamics of cell state transitions implicated in tumor cell plasticity.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Kishore Hari
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
4
|
Fu C, Lu Z, Shi J, Liu F, Su X. Knockdown of WISP1/DKK1 restrains phenotypic plasticity in esophageal squamous cell carcinoma by suppressing epithelial-mesenchymal transition and stemness. Clin Transl Oncol 2025; 27:580-592. [PMID: 39093516 DOI: 10.1007/s12094-024-03639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Wnt-induced signaling protein 1 (WISP1) and Dickkopf-1 (DKK1) are highly expressed in esophageal squamous cell carcinoma (ESCC), but no direct connection was identified between them. Phenotypic plasticity is a hallmark of ESCC. This research intended to identify the association between WISP1 and DKK1 and their roles in the phenotypic plasticity of ESCC. METHODS Genes differentially expressed in esophageal carcinoma were analyzed in the GEO database, followed by analyses of GO and KEGG enrichment to screen the hub gene. WISP1 expression and DKK1 secretion was assessed in ESCC tissues and cells. The tumor xenograft and in vivo metastasis models were established by injecting ESCC cells into nude mice. Functional deficiency and rescue experiments were conducted, followed by assays for cell proliferation, migration/invasion, stemness, epithelial-mesenchymal transition (EMT), and apoptosis, as well as tumor volume, weight, proliferation, stemness, and lung metastasis. The binding relationship and co-expression of WISP1 and DKK1 were determined. RESULTS WISP1 and DKK1 were upregulated in ESCC cells and tissues, and WISP1 was enriched in the cell stemness and Wnt pathways. WISP1 knockdown subdued proliferation, migration/invasion, EMT activity, and stemness but enhanced apoptosis in ESCC cells. WISP1 knockdown restrained ESCC growth, proliferation, stemness, and metastasis in vivo. WISP1 bound to DKK1 in ESCC. DKK1 overexpression abolished the repressive impacts of WISP1 knockdown on the malignant behaviors of ESCC cells in vitro and of ESCC tumor in vivo. CONCLUSION Knockdown of WISP1/DKK1 restrains the phenotypic plasticity in esophageal squamous cell carcinoma by suppressing epithelial-mesenchymal transition and stemness.
Collapse
Affiliation(s)
- C Fu
- Department of Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Z Lu
- Department of Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - J Shi
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - F Liu
- Department of Medical Oncology, Luhe People's Hospital of Nanjing, Nanjing, 211599, Jiangsu, China
| | - X Su
- Department of Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Bell CC, Faulkner GJ, Gilan O. Chromatin-based memory as a self-stabilizing influence on cell identity. Genome Biol 2024; 25:320. [PMID: 39736786 DOI: 10.1186/s13059-024-03461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
Cell types are traditionally thought to be specified and stabilized by gene regulatory networks. Here, we explore how chromatin memory contributes to the specification and stabilization of cell states. Through pervasive, local, feedback loops, chromatin memory enables cell states that were initially unstable to become stable. Deeper appreciation of this self-stabilizing role for chromatin broadens our perspective of Waddington's epigenetic landscape from a static surface with islands of stability shaped by evolution, to a plasticine surface molded by experience. With implications for the evolution of cell types, stabilization of resistant states in cancer, and the widespread plasticity of complex life.
Collapse
Affiliation(s)
- Charles C Bell
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia.
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4169, Australia
| | - Omer Gilan
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia
| |
Collapse
|
6
|
Papargyriou A, Najajreh M, Cook DP, Maurer CH, Bärthel S, Messal HA, Ravichandran SK, Richter T, Knolle M, Metzler T, Shastri AR, Öllinger R, Jasper J, Schmidleitner L, Wang S, Schneeweis C, Ishikawa-Ankerhold H, Engleitner T, Mataite L, Semina M, Trabulssi H, Lange S, Ravichandra A, Schuster M, Mueller S, Peschke K, Schäfer A, Dobiasch S, Combs SE, Schmid RM, Bausch AR, Braren R, Heid I, Scheel CH, Schneider G, Zeigerer A, Luecken MD, Steiger K, Kaissis G, van Rheenen J, Theis FJ, Saur D, Rad R, Reichert M. Heterogeneity-driven phenotypic plasticity and treatment response in branched-organoid models of pancreatic ductal adenocarcinoma. Nat Biomed Eng 2024:10.1038/s41551-024-01273-9. [PMID: 39658630 DOI: 10.1038/s41551-024-01273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/26/2024] [Indexed: 12/12/2024]
Abstract
In patients with pancreatic ductal adenocarcinoma (PDAC), intratumoural and intertumoural heterogeneity increases chemoresistance and mortality rates. However, such morphological and phenotypic diversities are not typically captured by organoid models of PDAC. Here we show that branched organoids embedded in collagen gels can recapitulate the phenotypic landscape seen in murine and human PDAC, that the pronounced molecular and morphological intratumoural and intertumoural heterogeneity of organoids is governed by defined transcriptional programmes (notably, epithelial-to-mesenchymal plasticity), and that different organoid phenotypes represent distinct tumour-cell states with unique biological features in vivo. We also show that phenotype-specific therapeutic vulnerabilities and modes of treatment-induced phenotype reprogramming can be captured in phenotypic heterogeneity maps. Our methodology and analyses of tumour-cell heterogeneity in PDAC may guide the development of phenotype-targeted treatment strategies.
Collapse
Affiliation(s)
- Aristeidis Papargyriou
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Mulham Najajreh
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - David P Cook
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Carlo H Maurer
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Stefanie Bärthel
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hendrik A Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sakthi K Ravichandran
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Till Richter
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
| | - Moritz Knolle
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
- Artificial Intelligence in Medicine and Healthcare, Technical University of Munich, Munich, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology, Institut für Allgemeine Pathologie und Pathologische Anatomie, School of Medicine, Technical University of Munich, Munich, Germany
| | - Akul R Shastri
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Rupert Öllinger
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jacob Jasper
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Laura Schmidleitner
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Surui Wang
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christian Schneeweis
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hellen Ishikawa-Ankerhold
- Department of Medicine I, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Engleitner
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Laura Mataite
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Mariia Semina
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Hussein Trabulssi
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Sebastian Lange
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aashreya Ravichandra
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Maximilian Schuster
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Sebastian Mueller
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Peschke
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Arlett Schäfer
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Andreas R Bausch
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Lehrstuhl für Zell Biophysik E27, Physik Department, Technische Universität München, Garching, Germany
| | - Rickmer Braren
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Irina Heid
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Christina H Scheel
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), München, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institut für Allgemeine Pathologie und Pathologische Anatomie, School of Medicine, Technical University of Munich, Munich, Germany
| | - Georgios Kaissis
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
- Artificial Intelligence in Medicine and Healthcare, Technical University of Munich, Munich, Germany
- Institute for Machine Learning in Biomedical Imaging, Helmholtz Zentrum München, München, Germany
- Department of Computing, Imperial College London, London, UK
- Munich Center for Machine Learning (MCML), München, Germany
- School of Computation, Information and Technology, Technische Universität München, München, Germany
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maximilian Reichert
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany.
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany.
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany.
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany.
- Bavarian Cancer Research Center (BZKF), Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Munich, Germany.
| |
Collapse
|
7
|
Otsuji K, Takahashi Y, Osako T, Kobayashi T, Takano T, Saeki S, Yang L, Baba S, Kumegawa K, Suzuki H, Noda T, Takeuchi K, Ohno S, Ueno T, Maruyama R. Serial single-cell RNA sequencing unveils drug resistance and metastatic traits in stage IV breast cancer. NPJ Precis Oncol 2024; 8:222. [PMID: 39363009 PMCID: PMC11450160 DOI: 10.1038/s41698-024-00723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Metastasis is a complex process that remains poorly understood at the molecular levels. We profiled single-cell transcriptomic, genomic, and epigenomic changes associated with cancer cell progression, chemotherapy resistance, and metastasis from a Stage IV breast cancer patient. Pretreatment- and posttreatment-specimens from the primary tumor and distant metastases were collected for single-cell RNA sequencing and subsequent cell clustering, copy number variation (CNV) estimation, transcriptomic factor estimation, and pseudotime analyses. CNV analysis revealed that a small population of pretreatment cancer cells resisted chemotherapy and expanded. New clones including Metastatic Precursor Cells (MPCs), emerged in the posttreatment primary tumors in CNV similar to metastatic cells. MPCs exhibited expression profiles indicative of epithelial-mesenchymal transition. Comparison of MPCs with metastatic cancer cells also revealed dynamic changes in transcription factors and calcitonin pathway gene expression. These findings demonstrate the utility of single-patient clinical sample analysis for understanding tumor drug resistance, regrowth, and metastasis.
Collapse
Affiliation(s)
- Kazutaka Otsuji
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoko Takahashi
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
- Breast Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomo Osako
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takayuki Kobayashi
- Breast Medical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toshimi Takano
- Breast Medical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sumito Saeki
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Liying Yang
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoko Baba
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuo Noda
- Director's room, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shinji Ohno
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takayuki Ueno
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
- Breast Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan.
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
8
|
Venkatachalapathy H, Brzakala C, Batchelor E, Azarin SM, Sarkar CA. Inertial effect of cell state velocity on the quiescence-proliferation fate decision. NPJ Syst Biol Appl 2024; 10:111. [PMID: 39358384 PMCID: PMC11447052 DOI: 10.1038/s41540-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024] Open
Abstract
Energy landscapes can provide intuitive depictions of population heterogeneity and dynamics. However, it is unclear whether individual cell behavior, hypothesized to be determined by initial position and noise, is faithfully recapitulated. Using the p21-/Cdk2-dependent quiescence-proliferation decision in breast cancer dormancy as a testbed, we examined single-cell dynamics on the landscape when perturbed by hypoxia, a dormancy-inducing stress. Combining trajectory-based energy landscape generation with single-cell time-lapse microscopy, we found that a combination of initial position and velocity on a p21/Cdk2 landscape, but not position alone, was required to explain the observed cell fate heterogeneity under hypoxia. This is likely due to additional cell state information such as epigenetic features and/or other species encoded in velocity but missing in instantaneous position determined by p21 and Cdk2 levels alone. Here, velocity dependence manifested as inertia: cells with higher cell cycle velocities prior to hypoxia continued progressing along the cell cycle under hypoxia, resisting the change in landscape towards cell cycle exit. Such inertial effects may markedly influence cell fate trajectories in tumors and other dynamically changing microenvironments where cell state transitions are governed by coordination across several biochemical species.
Collapse
Affiliation(s)
- Harish Venkatachalapathy
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Cole Brzakala
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Eric Batchelor
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA.
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Aguadé-Gorgorió G, Anderson ARA, Solé R. Modeling tumors as complex ecosystems. iScience 2024; 27:110699. [PMID: 39280631 PMCID: PMC11402243 DOI: 10.1016/j.isci.2024.110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Many cancers resist therapeutic intervention. This is fundamentally related to intratumor heterogeneity: multiple cell populations, each with different phenotypic signatures, coexist within a tumor and its metastases. Like species in an ecosystem, cancer populations are intertwined in a complex network of ecological interactions. Most mathematical models of tumor ecology, however, cannot account for such phenotypic diversity or predict its consequences. Here, we propose that the generalized Lotka-Volterra model (GLV), a standard tool to describe species-rich ecological communities, provides a suitable framework to model the ecology of heterogeneous tumors. We develop a GLV model of tumor growth and discuss how its emerging properties provide a new understanding of the disease. We discuss potential extensions of the model and their application to phenotypic plasticity, cancer-immune interactions, and metastatic growth. Our work outlines a set of questions and a road map for further research in cancer ecology.
Collapse
Affiliation(s)
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ricard Solé
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
10
|
Niu X, Liu W, Zhang Y, Liu J, Zhang J, Li B, Qiu Y, Zhao P, Wang Z, Wang Z. Cancer plasticity in therapy resistance: Mechanisms and novel strategies. Drug Resist Updat 2024; 76:101114. [PMID: 38924995 DOI: 10.1016/j.drup.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.
Collapse
Affiliation(s)
- Xing Niu
- China Medical University, Shenyang, Liaoning 110122, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong, China
| | - Wenjing Liu
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yinling Zhang
- Department of Oncology Radiotherapy 1, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Yue Qiu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Peng Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
11
|
Neefjes J, Gurova K, Sarthy J, Szabó G, Henikoff S. Chromatin as an old and new anticancer target. Trends Cancer 2024; 10:696-707. [PMID: 38825423 PMCID: PMC11479676 DOI: 10.1016/j.trecan.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024]
Abstract
Recent genome-wide analyses identified chromatin modifiers as one of the most frequently mutated classes of genes across all cancers. However, chemotherapies developed for cancers involving DNA damage remain the standard of care for chromatin-deranged malignancies. In this review we address this conundrum by establishing the concept of 'chromatin damage': the non-genetic damage to protein-DNA interactions induced by certain small molecules. We highlight anthracyclines, a class of chemotherapeutic agents ubiquitously applied in oncology, as an example of overlooked chromatin-targeting agents. We discuss our current understanding of this phenomenon and explore emerging chromatin-damaging agents as a basis for further studies to maximize their impact in modern cancer treatment.
Collapse
Affiliation(s)
- Jacques Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, LUMC, Einthovenweg 20, 2333, ZC, Leiden, The Netherlands
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | - Jay Sarthy
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, 1920 Terry Ave, Seattle, WA 98109, USA
| | - Gábor Szabó
- Faculty of Medicine, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
12
|
Sahoo S, Ramu S, Nair MG, Pillai M, San Juan BP, Milioli HZ, Mandal S, Naidu CM, Mavatkar AD, Subramaniam H, Neogi AG, Chaffer CL, Prabhu JS, Somarelli JA, Jolly MK. Increased prevalence of hybrid epithelial/mesenchymal state and enhanced phenotypic heterogeneity in basal breast cancer. iScience 2024; 27:110116. [PMID: 38974967 PMCID: PMC11225361 DOI: 10.1016/j.isci.2024.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/04/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
Intra-tumoral phenotypic heterogeneity promotes tumor relapse and therapeutic resistance and remains an unsolved clinical challenge. Decoding the interconnections among different biological axes of plasticity is crucial to understand the molecular origins of phenotypic heterogeneity. Here, we use multi-modal transcriptomic data-bulk, single-cell, and spatial transcriptomics-from breast cancer cell lines and primary tumor samples, to identify associations between epithelial-mesenchymal transition (EMT) and luminal-basal plasticity-two key processes that enable heterogeneity. We show that luminal breast cancer strongly associates with an epithelial cell state, but basal breast cancer is associated with hybrid epithelial/mesenchymal phenotype(s) and higher phenotypic heterogeneity. Mathematical modeling of core underlying gene regulatory networks representative of the crosstalk between the luminal-basal and epithelial-mesenchymal axes elucidate mechanistic underpinnings of the observed associations from transcriptomic data. Our systems-based approach integrating multi-modal data analysis with mechanism-based modeling offers a predictive framework to characterize intra-tumor heterogeneity and identify interventions to restrict it.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Soundharya Ramu
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Madhumathy G. Nair
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | | | | | - Susmita Mandal
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Chandrakala M. Naidu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560012, India
| | - Apoorva D. Mavatkar
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560012, India
| | - Harini Subramaniam
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Arpita G. Neogi
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Christine L. Chaffer
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- University of New South Wales, UNSW Medicine, Sydney, NSW 2010, Australia
| | - Jyothi S. Prabhu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560012, India
| | | | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Carels N. Assessing RNA-Seq Workflow Methodologies Using Shannon Entropy. BIOLOGY 2024; 13:482. [PMID: 39056677 PMCID: PMC11274087 DOI: 10.3390/biology13070482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
RNA-seq faces persistent challenges due to the ongoing, expanding array of data processing workflows, none of which have yet achieved standardization to date. It is imperative to determine which method most effectively preserves biological facts. Here, we used Shannon entropy as a tool for depicting the biological status of a system. Thus, we assessed the measurement of Shannon entropy by several RNA-seq workflow approaches, such as DESeq2 and edgeR, but also by combining nine normalization methods with log2 fold change on paired samples of TCGA RNA-seq representing datasets of 515 patients and spanning 12 different cancer types with 5-year overall survival rates ranging from 20% to 98%. Our analysis revealed that TPM, RLE, and TMM normalization, coupled with a threshold of log2 fold change ≥1, for identifying differentially expressed genes, yielded the best results. We propose that Shannon entropy can serve as an objective metric for refining the optimization of RNA-seq workflows and mRNA sequencing technologies.
Collapse
Affiliation(s)
- Nicolas Carels
- Laboratory of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
14
|
Henon C, Vibert J, Eychenne T, Gruel N, Colmet-Daage L, Ngo C, Garrido M, Dorvault N, Marques Da Costa ME, Marty V, Signolle N, Marchais A, Herbel N, Kawai-Kawachi A, Lenormand M, Astier C, Chabanon R, Verret B, Bahleda R, Le Cesne A, Mechta-Grigoriou F, Faron M, Honoré C, Delattre O, Waterfall JJ, Watson S, Postel-Vinay S. Single-cell multiomics profiling reveals heterogeneous transcriptional programs and microenvironment in DSRCTs. Cell Rep Med 2024; 5:101582. [PMID: 38781959 PMCID: PMC11228554 DOI: 10.1016/j.xcrm.2024.101582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Desmoplastic small round cell tumor (DSRCT) is a rare, aggressive sarcoma driven by the EWSR1::WT1 chimeric transcription factor. Despite this unique oncogenic driver, DSRCT displays a polyphenotypic differentiation of unknown causality. Using single-cell multi-omics on 12 samples from five patients, we find that DSRCT tumor cells cluster into consistent subpopulations with partially overlapping lineage- and metabolism-related transcriptional programs. In vitro modeling shows that high EWSR1::WT1 DNA-binding activity associates with most lineage-related states, in contrast to glycolytic and profibrotic states. Single-cell chromatin accessibility analysis suggests that EWSR1::WT1 binding site variability may drive distinct lineage-related transcriptional programs, supporting some level of cell-intrinsic plasticity. Spatial transcriptomics reveals that glycolytic and profibrotic states specifically localize within hypoxic niches at the periphery of tumor cell islets, suggesting an additional role of tumor cell-extrinsic microenvironmental cues. We finally identify a single-cell transcriptomics-derived epithelial signature associated with improved patient survival, highlighting the clinical relevance of our findings.
Collapse
Affiliation(s)
- Clémence Henon
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
| | - Julien Vibert
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Thomas Eychenne
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Nadège Gruel
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Léo Colmet-Daage
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Carine Ngo
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Pathology, Gustave Roussy, Villejuif, France
| | - Marlène Garrido
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Nicolas Dorvault
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Maria Eugenia Marques Da Costa
- INSERM U1015, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Virginie Marty
- Experimental and Translational Pathology Platform (PETRA), AMMICa, INSERM US23/UAR3655, Gustave Roussy, Villejuif, France
| | - Nicolas Signolle
- Experimental and Translational Pathology Platform (PETRA), AMMICa, INSERM US23/UAR3655, Gustave Roussy, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Noé Herbel
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Asuka Kawai-Kawachi
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Madison Lenormand
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Clémence Astier
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Roman Chabanon
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Benjamin Verret
- Department of Medical Oncology, Gustave Roussy, Villejuif, France; Breast Cancer Translational Research Group, INSERM U981, Gustave Roussy, Villejuif, France
| | - Rastislav Bahleda
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
| | - Axel Le Cesne
- Department of Medical Oncology, Gustave Roussy, Villejuif, France; International Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Fatima Mechta-Grigoriou
- INSERM U830, Equipe labellisée LNCC, Stress et Cancer, PSL Research University, Institut Curie Research Center, Paris, France
| | | | | | - Olivier Delattre
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Joshua J Waterfall
- INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Sarah Watson
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Sophie Postel-Vinay
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France; Drug Development Department, DITEP, Gustave Roussy, Villejuif, France; University College of London, Cancer Institute, London, UK.
| |
Collapse
|
15
|
Whiting FJH, Househam J, Baker AM, Sottoriva A, Graham TA. Phenotypic noise and plasticity in cancer evolution. Trends Cell Biol 2024; 34:451-464. [PMID: 37968225 DOI: 10.1016/j.tcb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
Non-genetic alterations can produce changes in a cell's phenotype. In cancer, these phenomena can influence a cell's fitness by conferring access to heritable, beneficial phenotypes. Herein, we argue that current discussions of 'phenotypic plasticity' in cancer evolution ignore a salient feature of the original definition: namely, that it occurs in response to an environmental change. We suggest 'phenotypic noise' be used to distinguish non-genetic changes in phenotype that occur independently from the environment. We discuss the conceptual and methodological techniques used to identify these phenomena during cancer evolution. We propose that the distinction will guide efforts to define mechanisms of phenotype change, accelerate translational work to manipulate phenotypes through treatment, and, ultimately, improve patient outcomes.
Collapse
Affiliation(s)
| | - Jacob Househam
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Ann-Marie Baker
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| |
Collapse
|
16
|
Aguadé-Gorgorió G, Anderson AR, Solé R. Modeling tumors as species-rich ecological communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590504. [PMID: 38712062 PMCID: PMC11071393 DOI: 10.1101/2024.04.22.590504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Many advanced cancers resist therapeutic intervention. This process is fundamentally related to intra-tumor heterogeneity: multiple cell populations, each with different mutational and phenotypic signatures, coexist within a tumor and its metastatic nodes. Like species in an ecosystem, many cancer cell populations are intertwined in a complex network of ecological interactions. Most mathematical models of tumor ecology, however, cannot account for such phenotypic diversity nor are able to predict its consequences. Here we propose that the Generalized Lotka-Volterra model (GLV), a standard tool to describe complex, species-rich ecological communities, provides a suitable framework to describe the ecology of heterogeneous tumors. We develop a GLV model of tumor growth and discuss how its emerging properties, such as outgrowth and multistability, provide a new understanding of the disease. Additionally, we discuss potential extensions of the model and their application to three active areas of cancer research, namely phenotypic plasticity, the cancer-immune interplay and the resistance of metastatic tumors to treatment. Our work outlines a set of questions and a tentative road map for further research in cancer ecology.
Collapse
Affiliation(s)
| | - Alexander R.A. Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA
| | - Ricard Solé
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
17
|
Zhu L, Wang J. Quantifying Landscape-Flux via Single-Cell Transcriptomics Uncovers the Underlying Mechanism of Cell Cycle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308879. [PMID: 38353329 DOI: 10.1002/advs.202308879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Recent developments in single-cell sequencing technology enable the acquisition of entire transcriptome data. Understanding the underlying mechanism and identifying the driving force of transcriptional regulation governing cell function directly from these data remains challenging. This study reconstructs a continuous vector field of the cell cycle based on discrete single-cell RNA velocity to quantify the single-cell global nonequilibrium dynamic landscape-flux. It reveals that large fluctuations disrupt the global landscape and genetic perturbations alter landscape-flux, thus identifying key genes in maintaining cell cycle dynamics and predicting associated functional effects. Additionally, it quantifies the fundamental energy cost of the cell cycle initiation and unveils that sustaining the cell cycle requires curl flux and dissipation to maintain the oscillatory phase coherence. This study enables the inference of the cell cycle gene regulatory networks directly from the single-cell transcriptomic data, including the feedback mechanisms and interaction intensity. This provides a golden opportunity to experimentally verify the landscape-flux theory and also obtain its associated quantifications. It also offers a unique framework for combining the landscape-flux theory and single-cell high-through sequencing experiments for understanding the underlying mechanisms of the cell cycle and can be extended to other nonequilibrium biological processes, such as differentiation development and disease pathogenesis.
Collapse
Affiliation(s)
- Ligang Zhu
- College of Physics, Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
- Department of Chemistry, Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
18
|
Holton E, Muskovic W, Powell JE. Deciphering cancer cell state plasticity with single-cell genomics and artificial intelligence. Genome Med 2024; 16:36. [PMID: 38409176 PMCID: PMC10897991 DOI: 10.1186/s13073-024-01309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Cancer stem cell plasticity refers to the ability of tumour cells to dynamically switch between states-for example, from cancer stem cells to non-cancer stem cell states. Governed by regulatory processes, cells transition through a continuum, with this transition space often referred to as a cell state landscape. Plasticity in cancer cell states leads to divergent biological behaviours, with certain cell states, or state transitions, responsible for tumour progression and therapeutic response. The advent of single-cell assays means these features can now be measured for individual cancer cells and at scale. However, the high dimensionality of this data, complex relationships between genomic features, and a lack of precise knowledge of the genomic profiles defining cancer cell states have opened the door for artificial intelligence methods for depicting cancer cell state landscapes. The contribution of cell state plasticity to cancer phenotypes such as treatment resistance, metastasis, and dormancy has been masked by analysis of 'bulk' genomic data-constituted of the average signal from millions of cells. Single-cell technologies solve this problem by producing a high-dimensional cellular landscape of the tumour ecosystem, quantifying the genomic profiles of individual cells, and creating a more detailed model to investigate cancer plasticity (Genome Res 31:1719, 2021; Semin Cancer Biol 53: 48-58, 2018; Signal Transduct Target Ther 5:1-36, 2020). In conjunction, rapid development in artificial intelligence methods has led to numerous tools that can be employed to study cancer cell plasticity.
Collapse
Affiliation(s)
- Emily Holton
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW, 2010, Australia
- School of Biomedical Science, Faculty of Medicine UNSW Sydney, Kensington, NSW, 2010, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Walter Muskovic
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW, 2010, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joseph E Powell
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW, 2010, Australia.
- School of Biomedical Science, Faculty of Medicine UNSW Sydney, Kensington, NSW, 2010, Australia.
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
19
|
Abstract
Epithelial-to-mesenchymal transition (EMT), a biological phenomenon of cellular plasticity initially reported in embryonic development, has been increasingly recognized for its importance in cancer progression and metastasis. Despite tremendous progress being made in the past 2 decades in our understanding of the molecular mechanism and functional importance of EMT in cancer, there are several mysteries around EMT that remain unresolved. In this Unsolved Mystery, we focus on the variety of EMT types in metastasis, cooperative and collective EMT behaviors, spatiotemporal characterization of EMT, and strategies of therapeutically targeting EMT. We also highlight new technical advances that will facilitate the efforts to elucidate the unsolved mysteries of EMT in metastasis.
Collapse
Affiliation(s)
- Toni Celià-Terrassa
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey, United States of America
| |
Collapse
|
20
|
Ullrich V, Ertmer S, Baginska A, Dorsch M, Gull HH, Cima I, Berger P, Dobersalske C, Langer S, Meyer L, Dujardin P, Kebir S, Glas M, Blau T, Keyvani K, Rauschenbach L, Sure U, Roesch A, Grüner BM, Scheffler B. KDM5B predicts temozolomide-resistant subclones in glioblastoma. iScience 2024; 27:108596. [PMID: 38174322 PMCID: PMC10762356 DOI: 10.1016/j.isci.2023.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/06/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Adaptive plasticity to the standard chemotherapeutic temozolomide (TMZ) leads to glioblastoma progression. Here, we examine early stages of this process in patient-derived cellular models, exposing the human lysine-specific demethylase 5B (KDM5B) as a prospective indicator for subclonal expansion. By integration of a reporter, we show its preferential activity in rare, stem-like ALDH1A1+ cells, immediately increasing expression upon TMZ exposure. Naive, genetically unmodified KDM5Bhigh cells phosphorylate AKT (pAKT) and act as slow-cycling persisters under TMZ. Knockdown of KDM5B reverses pAKT levels, simultaneously increasing PTEN expression and TMZ sensitivity. Pharmacological inhibition of PTEN rescues the effect. Interference with KDM5B subsequent to TMZ decreases cellular vitality, and clonal tracing with DNA barcoding demonstrates high individual levels of KDM5B to predict subclonal expansion already before TMZ exposure. Thus, KDM5Bhigh treatment-naive cells preferentially contribute to the dynamics of drug resistance under TMZ. These findings may serve as a cornerstone for future biomarker-assisted clinical trials.
Collapse
Affiliation(s)
- Vivien Ullrich
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah Ertmer
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Baginska
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Madeleine Dorsch
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Hanah H. Gull
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, 45147 Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Igor Cima
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Pia Berger
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Celia Dobersalske
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah Langer
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Loona Meyer
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Philip Dujardin
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Sied Kebir
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Martin Glas
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Tobias Blau
- Department of Neuropathology, University Hospital Essen, 45147 Essen, Germany
| | - Kathy Keyvani
- Department of Neuropathology, University Hospital Essen, 45147 Essen, Germany
| | - Laurèl Rauschenbach
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, 45147 Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulrich Sure
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, 45147 Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Alexander Roesch
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Barbara M. Grüner
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Björn Scheffler
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
21
|
Ramos Zapatero M, Tong A, Opzoomer JW, O'Sullivan R, Cardoso Rodriguez F, Sufi J, Vlckova P, Nattress C, Qin X, Claus J, Hochhauser D, Krishnaswamy S, Tape CJ. Trellis tree-based analysis reveals stromal regulation of patient-derived organoid drug responses. Cell 2023; 186:5606-5619.e24. [PMID: 38065081 DOI: 10.1016/j.cell.2023.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.
Collapse
Affiliation(s)
- María Ramos Zapatero
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Alexander Tong
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Computer Science and Operations Research, Université de Montréal, Montreal, QC, Canada; Mila - Quebec AI Institute, Montréal, QC, Canada
| | - James W Opzoomer
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Rhianna O'Sullivan
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Ferran Cardoso Rodriguez
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Petra Vlckova
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Callum Nattress
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jeroen Claus
- Phospho Biomedical Animation, The Greenhouse Studio 6, London N17 9QU, UK
| | - Daniel Hochhauser
- Drug-DNA Interactions Group, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Smita Krishnaswamy
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Genetics, Yale University, New Haven, CT, USA; Program for Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA; Program for Applied Math, Yale University, New Haven, CT, USA; Wu-Tsai Institute, Yale University, New Haven, CT, USA.
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
22
|
Qin X, Cardoso Rodriguez F, Sufi J, Vlckova P, Claus J, Tape CJ. An oncogenic phenoscape of colonic stem cell polarization. Cell 2023; 186:5554-5568.e18. [PMID: 38065080 DOI: 10.1016/j.cell.2023.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/14/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Cancer cells are regulated by oncogenic mutations and microenvironmental signals, yet these processes are often studied separately. To functionally map how cell-intrinsic and cell-extrinsic cues co-regulate cell fate, we performed a systematic single-cell analysis of 1,107 colonic organoid cultures regulated by (1) colorectal cancer (CRC) oncogenic mutations, (2) microenvironmental fibroblasts and macrophages, (3) stromal ligands, and (4) signaling inhibitors. Multiplexed single-cell analysis revealed a stepwise epithelial differentiation phenoscape dictated by combinations of oncogenes and stromal ligands, spanning from fibroblast-induced Clusterin (CLU)+ revival colonic stem cells (revCSCs) to oncogene-driven LRIG1+ hyper-proliferative CSCs (proCSCs). The transition from revCSCs to proCSCs is regulated by decreasing WNT3A and TGF-β-driven YAP signaling and increasing KRASG12D or stromal EGF/Epiregulin-activated MAPK/PI3K flux. We find that APC loss and KRASG12D collaboratively limit access to revCSCs and disrupt stromal-epithelial communication-trapping epithelia in the proCSC fate. These results reveal that oncogenic mutations dominate homeostatic differentiation by obstructing cell-extrinsic regulation of cell-fate plasticity.
Collapse
Affiliation(s)
- Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Ferran Cardoso Rodriguez
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Petra Vlckova
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Jeroen Claus
- Phospho Biomedical Animation, The Greenhouse Studio 6, London N17 9QU, UK
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
23
|
Llorente A, Blasco MT, Espuny I, Guiu M, Ballaré C, Blanco E, Caballé A, Bellmunt A, Salvador F, Morales A, Nuñez M, Loren G, Imbastari F, Fidalgo M, Figueras-Puig C, Gibler P, Graupera M, Monteiro F, Riera A, Holen I, Avgustinova A, Di Croce L, Gomis RR. MAF amplification licenses ERα through epigenetic remodelling to drive breast cancer metastasis. Nat Cell Biol 2023; 25:1833-1847. [PMID: 37945904 PMCID: PMC10709142 DOI: 10.1038/s41556-023-01281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
MAF amplification increases the risk of breast cancer (BCa) metastasis through mechanisms that are still poorly understood yet have important clinical implications. Oestrogen-receptor-positive (ER+) BCa requires oestrogen for both growth and metastasis, albeit by ill-known mechanisms. Here we integrate proteomics, transcriptomics, epigenomics, chromatin accessibility and functional assays from human and syngeneic mouse BCa models to show that MAF directly interacts with oestrogen receptor alpha (ERα), thereby promoting a unique chromatin landscape that favours metastatic spread. We identify metastasis-promoting genes that are de novo licensed following oestrogen exposure in a MAF-dependent manner. The histone demethylase KDM1A is key to the epigenomic remodelling that facilitates the expression of the pro-metastatic MAF/oestrogen-driven gene expression program, and loss of KDM1A activity prevents this metastasis. We have thus determined that the molecular basis underlying MAF/oestrogen-mediated metastasis requires genetic, epigenetic and hormone signals from the systemic environment, which influence the ability of BCa cells to metastasize.
Collapse
Affiliation(s)
- Alicia Llorente
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - María Teresa Blasco
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Irene Espuny
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marc Guiu
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cecilia Ballaré
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Adrià Caballé
- Biostatistics and Bioinformatics Unit, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Bellmunt
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fernando Salvador
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrea Morales
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marc Nuñez
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Guillem Loren
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francesca Imbastari
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Fidalgo
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Cristina Figueras-Puig
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Patrizia Gibler
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mariona Graupera
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Freddy Monteiro
- Functional Genomics Core Facility, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antoni Riera
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roger R Gomis
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
24
|
Jain P, Pillai M, Duddu AS, Somarelli JA, Goyal Y, Jolly MK. Dynamical hallmarks of cancer: Phenotypic switching in melanoma and epithelial-mesenchymal plasticity. Semin Cancer Biol 2023; 96:48-63. [PMID: 37788736 DOI: 10.1016/j.semcancer.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Phenotypic plasticity was recently incorporated as a hallmark of cancer. This plasticity can manifest along many interconnected axes, such as stemness and differentiation, drug-sensitive and drug-resistant states, and between epithelial and mesenchymal cell-states. Despite growing acceptance for phenotypic plasticity as a hallmark of cancer, the dynamics of this process remains poorly understood. In particular, the knowledge necessary for a predictive understanding of how individual cancer cells and populations of cells dynamically switch their phenotypes in response to the intensity and/or duration of their current and past environmental stimuli remains far from complete. Here, we present recent investigations of phenotypic plasticity from a systems-level perspective using two exemplars: epithelial-mesenchymal plasticity in carcinomas and phenotypic switching in melanoma. We highlight how an integrated computational-experimental approach has helped unravel insights into specific dynamical hallmarks of phenotypic plasticity in different cancers to address the following questions: a) how many distinct cell-states or phenotypes exist?; b) how reversible are transitions among these cell-states, and what factors control the extent of reversibility?; and c) how might cell-cell communication be able to alter rates of cell-state switching and enable diverse patterns of phenotypic heterogeneity? Understanding these dynamic features of phenotypic plasticity may be a key component in shifting the paradigm of cancer treatment from reactionary to a more predictive, proactive approach.
Collapse
Affiliation(s)
- Paras Jain
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA
| | | | - Jason A Somarelli
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
25
|
Bhattacharyya S, Ehsan SF, Karacosta LG. Phenotypic maps for precision medicine: a promising systems biology tool for assessing therapy response and resistance at a personalized level. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1256104. [PMID: 37964768 PMCID: PMC10642209 DOI: 10.3389/fnetp.2023.1256104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023]
Abstract
In this perspective we discuss how tumor heterogeneity and therapy resistance necessitate a focus on more personalized approaches, prompting a shift toward precision medicine. At the heart of the shift towards personalized medicine, omics-driven systems biology becomes a driving force as it leverages high-throughput technologies and novel bioinformatics tools. These enable the creation of systems-based maps, providing a comprehensive view of individual tumor's functional plasticity. We highlight the innovative PHENOSTAMP program, which leverages high-dimensional data to construct a visually intuitive and user-friendly map. This map was created to encapsulate complex transitional states in cancer cells, such as Epithelial-Mesenchymal Transition (EMT) and Mesenchymal-Epithelial Transition (MET), offering a visually intuitive way to understand disease progression and therapeutic responses at single-cell resolution in relation to EMT-related single-cell phenotypes. Most importantly, PHENOSTAMP functions as a reference map, which allows researchers and clinicians to assess one clinical specimen at a time in relation to their phenotypic heterogeneity, setting the foundation on constructing phenotypic maps for personalized medicine. This perspective argues that such dynamic predictive maps could also catalyze the development of personalized cancer treatment. They hold the potential to transform our understanding of cancer biology, providing a foundation for a future where therapy is tailored to each patient's unique molecular and cellular tumor profile. As our knowledge of cancer expands, these maps can be continually refined, ensuring they remain a valuable tool in precision oncology.
Collapse
Affiliation(s)
- Sayantan Bhattacharyya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shafqat F. Ehsan
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Loukia G. Karacosta
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
26
|
Sahoo S, Ramu S, Nair MG, Pillai M, San Juan BP, Milioli HZ, Mandal S, Naidu CM, Mavatkar AD, Subramaniam H, Neogi AG, Chaffer CL, Prabhu JS, Somarelli JA, Jolly MK. Multi-modal transcriptomic analysis unravels enrichment of hybrid epithelial/mesenchymal state and enhanced phenotypic heterogeneity in basal breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.558960. [PMID: 37873432 PMCID: PMC10592858 DOI: 10.1101/2023.09.30.558960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Intra-tumoral phenotypic heterogeneity promotes tumor relapse and therapeutic resistance and remains an unsolved clinical challenge. It manifests along multiple phenotypic axes and decoding the interconnections among these different axes is crucial to understand its molecular origins and to develop novel therapeutic strategies to control it. Here, we use multi-modal transcriptomic data analysis - bulk, single-cell and spatial transcriptomics - from breast cancer cell lines and primary tumor samples, to identify associations between epithelial-mesenchymal transition (EMT) and luminal-basal plasticity - two key processes that enable heterogeneity. We show that luminal breast cancer strongly associates with an epithelial cell state, but basal breast cancer is associated with hybrid epithelial/mesenchymal phenotype(s) and higher phenotypic heterogeneity. These patterns were inherent in methylation profiles, suggesting an epigenetic crosstalk between EMT and lineage plasticity in breast cancer. Mathematical modelling of core underlying gene regulatory networks representative of the crosstalk between the luminal-basal and epithelial-mesenchymal axes recapitulate and thus elucidate mechanistic underpinnings of the observed associations from transcriptomic data. Our systems-based approach integrating multi-modal data analysis with mechanism-based modeling offers a predictive framework to characterize intra-tumor heterogeneity and to identify possible interventions to restrict it.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Soundharya Ramu
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
- Current affiliation: Feinberg School of Medicine, Northwestern University, Chicago, 60611, USA
| | - Beatriz P San Juan
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | | | - Susmita Mandal
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Chandrakala M Naidu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | - Apoorva D Mavatkar
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | - Harini Subramaniam
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Arpita G Neogi
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Christine L Chaffer
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- University of New South Wales, UNSW Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | | | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
27
|
Gunawan I, Vafaee F, Meijering E, Lock JG. An introduction to representation learning for single-cell data analysis. CELL REPORTS METHODS 2023; 3:100547. [PMID: 37671013 PMCID: PMC10475795 DOI: 10.1016/j.crmeth.2023.100547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Single-cell-resolved systems biology methods, including omics- and imaging-based measurement modalities, generate a wealth of high-dimensional data characterizing the heterogeneity of cell populations. Representation learning methods are routinely used to analyze these complex, high-dimensional data by projecting them into lower-dimensional embeddings. This facilitates the interpretation and interrogation of the structures, dynamics, and regulation of cell heterogeneity. Reflecting their central role in analyzing diverse single-cell data types, a myriad of representation learning methods exist, with new approaches continually emerging. Here, we contrast general features of representation learning methods spanning statistical, manifold learning, and neural network approaches. We consider key steps involved in representation learning with single-cell data, including data pre-processing, hyperparameter optimization, downstream analysis, and biological validation. Interdependencies and contingencies linking these steps are also highlighted. This overview is intended to guide researchers in the selection, application, and optimization of representation learning strategies for current and future single-cell research applications.
Collapse
Affiliation(s)
- Ihuan Gunawan
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- School of Computer Science and Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW, Australia
| | - Erik Meijering
- School of Computer Science and Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
| | - John George Lock
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
28
|
Venkat A, Bhaskar D, Krishnaswamy S. Multiscale geometric and topological analyses for characterizing and predicting immune responses from single cell data. Trends Immunol 2023; 44:551-563. [PMID: 37301677 DOI: 10.1016/j.it.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023]
Abstract
Single cell genomics has revolutionized our ability to map immune heterogeneity and responses. With the influx of large-scale data sets from diverse modalities, the resolution achieved has supported the long-held notion that immune cells are naturally organized into hierarchical relationships, characterized at multiple levels. Such a multigranular structure corresponds to key geometric and topological features. Given that differences between an effective and ineffective immunological response may not be found at one level, there is vested interest in characterizing and predicting outcomes from such features. In this review, we highlight single cell methods and principles for learning geometric and topological properties of data at multiple scales, discussing their contributions to immunology. Ultimately, multiscale approaches go beyond classical clustering, revealing a more comprehensive picture of cellular heterogeneity.
Collapse
Affiliation(s)
- Aarthi Venkat
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
| | | | - Smita Krishnaswamy
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA; Department of Genetics, Yale University, New Haven, CT, USA; Department of Computer Science, Yale University, New Haven, CT, USA.
| |
Collapse
|
29
|
Bobbitt JR, Seachrist DD, Keri RA. Chromatin Organization and Transcriptional Programming of Breast Cancer Cell Identity. Endocrinology 2023; 164:bqad100. [PMID: 37394919 PMCID: PMC10370366 DOI: 10.1210/endocr/bqad100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
The advent of sequencing technologies for assessing chromosome conformations has provided a wealth of information on the organization of the 3-dimensional genome and its role in cancer progression. It is now known that changes in chromatin folding and accessibility can promote aberrant activation or repression of transcriptional programs that can drive tumorigenesis and progression in diverse cancers. This includes breast cancer, which comprises several distinct subtypes defined by their unique transcriptomes that dictate treatment response and patient outcomes. Of these, basal-like breast cancer is an aggressive subtype controlled by a pluripotency-enforcing transcriptome. Meanwhile, the more differentiated luminal subtype of breast cancer is driven by an estrogen receptor-dominated transcriptome that underlies its responsiveness to antihormone therapies and conveys improved patient outcomes. Despite the clear differences in molecular signatures, the genesis of each subtype from normal mammary epithelial cells remains unclear. Recent technical advances have revealed key distinctions in chromatin folding and organization between subtypes that could underlie their transcriptomic and, hence, phenotypic differences. These studies also suggest that proteins controlling particular chromatin states may be useful targets for treating aggressive disease. In this review, we explore the current state of understanding of chromatin architecture in breast cancer subtypes and its potential role in defining their phenotypic characteristics.
Collapse
Affiliation(s)
- Jessica R Bobbitt
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Darcie D Seachrist
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ruth A Keri
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
30
|
Venkatachalapathy H, Brzakala C, Batchelor E, Azarin SM, Sarkar CA. Inertial effect of cell state velocity on the quiescence-proliferation fate decision in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541793. [PMID: 37292599 PMCID: PMC10245870 DOI: 10.1101/2023.05.22.541793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Energy landscapes can provide intuitive depictions of population heterogeneity and dynamics. However, it is unclear whether individual cell behavior, hypothesized to be determined by initial position and noise, is faithfully recapitulated. Using the p21-/Cdk2-dependent quiescence-proliferation decision in breast cancer dormancy as a testbed, we examined single-cell dynamics on the landscape when perturbed by hypoxia, a dormancy-inducing stress. Combining trajectory-based energy landscape generation with single-cell time-lapse microscopy, we found that initial position on a p21/Cdk2 landscape did not fully explain the observed cell-fate heterogeneity under hypoxia. Instead, cells with higher cell state velocities prior to hypoxia, influenced by epigenetic parameters, tended to remain proliferative under hypoxia. Thus, the fate decision on this landscape is significantly influenced by "inertia", a velocity-dependent ability to resist directional changes despite reshaping of the underlying landscape, superseding positional effects. Such inertial effects may markedly influence cell-fate trajectories in tumors and other dynamically changing microenvironments.
Collapse
Affiliation(s)
- Harish Venkatachalapathy
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cole Brzakala
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric Batchelor
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samira M. Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Casim A. Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
31
|
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J, Li L. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther 2023; 8:204. [PMID: 37208335 DOI: 10.1038/s41392-023-01468-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression. Insights into the structures and functions of the JAK-STAT pathway have led to the development and approval of diverse drugs for the clinical treatment of diseases. Currently, drugs have been developed to mainly target the JAK-STAT pathway and are commonly divided into three subtypes: cytokine or receptor antibodies, JAK inhibitors, and STAT inhibitors. And novel agents also continue to be developed and tested in preclinical and clinical studies. The effectiveness and safety of each kind of drug also warrant further scientific trials before put into being clinical applications. Here, we review the current understanding of the fundamental composition and function of the JAK-STAT signaling pathway. We also discuss advancements in the understanding of JAK-STAT-related pathogenic mechanisms; targeted JAK-STAT therapies for various diseases, especially immune disorders, and cancers; newly developed JAK inhibitors; and current challenges and directions in the field.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
32
|
Subhadarshini S, Markus J, Sahoo S, Jolly MK. Dynamics of Epithelial-Mesenchymal Plasticity: What Have Single-Cell Investigations Elucidated So Far? ACS OMEGA 2023; 8:11665-11673. [PMID: 37033874 PMCID: PMC10077445 DOI: 10.1021/acsomega.2c07989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) is a key driver of cancer metastasis and therapeutic resistance, through which cancer cells can reversibly and dynamically alter their molecular and functional traits along the epithelial-mesenchymal spectrum. While cells in the epithelial phenotype are usually tightly adherent, less metastatic, and drug-sensitive, those in the hybrid epithelial/mesenchymal and/or mesenchymal state are more invasive, migratory, drug-resistant, and immune-evasive. Single-cell studies have emerged as a powerful tool in gaining new insights into the dynamics of EMP across various cancer types. Here, we review many recent studies that employ single-cell analysis techniques to better understand the dynamics of EMP in cancer both in vitro and in vivo. These single-cell studies have underlined the plurality of trajectories cells can traverse during EMP and the consequent heterogeneity of hybrid epithelial/mesenchymal phenotypes seen at both preclinical and clinical levels. They also demonstrate how diverse EMP trajectories may exhibit hysteretic behavior and how the rate of such cell-state transitions depends on the genetic/epigenetic background of recipient cells, as well as the dose and/or duration of EMP-inducing growth factors. Finally, we discuss the relationship between EMP and patient survival across many cancer types. We also present a next set of questions related to EMP that could benefit much from single-cell observations and pave the way to better tackle phenotypic switching and heterogeneity in clinic.
Collapse
Affiliation(s)
| | - Joel Markus
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sarthak Sahoo
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
33
|
Lee J, Roh JL. Epithelial-Mesenchymal Plasticity: Implications for Ferroptosis Vulnerability and Cancer Therapy. Crit Rev Oncol Hematol 2023; 185:103964. [PMID: 36931615 DOI: 10.1016/j.critrevonc.2023.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Cancers polarized to a mesenchymal or poorly differentiated state can often evade cell death induced by conventional therapies. The epithelial-mesenchymal transition is involved in lipid metabolism and increases polyunsaturated fatty acid levels in cancer cells, contributing to chemo- and radio-resistance. Altered metabolism in cancer enables invasion and metastasis but is prone to lipid peroxidation under oxidative stress. Cancers with mesenchymal rather than epithelial signatures are highly vulnerable to ferroptosis. Therapy-resistant persister cancer cells show a high mesenchymal cell state and dependence on the lipid peroxidase pathway, which can respond more sensitively to ferroptosis inducers. Cancer cells may survive under specific metabolic and oxidative stress conditions, and targeting this unique defense system can selectively kill only cancer cells. Therefore, this article summarizes the core regulatory mechanisms of ferroptosis in cancer, the relationship between ferroptosis and epithelial-mesenchymal plasticity, and the implications of epithelial-mesenchymal transition for ferroptosis-based cancer therapy.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
34
|
Jain P, Corbo S, Mohammad K, Sahoo S, Ranganathan S, George JT, Levine H, Taube J, Toneff M, Jolly MK. Epigenetic memory acquired during long-term EMT induction governs the recovery to the epithelial state. J R Soc Interface 2023; 20:20220627. [PMID: 36628532 PMCID: PMC9832289 DOI: 10.1098/rsif.2022.0627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and its reverse mesenchymal-epithelial transition (MET) are critical during embryonic development, wound healing and cancer metastasis. While phenotypic changes during short-term EMT induction are reversible, long-term EMT induction has been often associated with irreversibility. Here, we show that phenotypic changes seen in MCF10A cells upon long-term EMT induction by TGFβ need not be irreversible, but have relatively longer time scales of reversibility than those seen in short-term induction. Next, using a phenomenological mathematical model to account for the chromatin-mediated epigenetic silencing of the miR-200 family by ZEB family, we highlight how the epigenetic memory gained during long-term EMT induction can slow the recovery to the epithelial state post-TGFβ withdrawal. Our results suggest that epigenetic modifiers can govern the extent and time scale of EMT reversibility and advise caution against labelling phenotypic changes seen in long-term EMT induction as 'irreversible'.
Collapse
Affiliation(s)
- Paras Jain
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Sophia Corbo
- Department of Biology, Widener University, Chester, PA 19013, USA
| | - Kulsoom Mohammad
- Department of Biology, Widener University, Chester, PA 19013, USA
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | - Jason T. George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 76798, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics and Departments of Physics and Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Joseph Taube
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Michael Toneff
- Department of Biology, Widener University, Chester, PA 19013, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
35
|
Herrington D, Wang Y. CLINICAL HETEROGENEITY IN THE AGE OF BIG DATA, ADVANCED ANALYTICS, AND COMPLEXITY THEORY. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2023; 133:56-68. [PMID: 37701617 PMCID: PMC10493739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Clinical heterogeneity remains a challenge in the practice of medicine and is an underlying motivation for much of biomedical research. Unfortunately, despite an abundance of technologies capable of producing millions of discrete data elements with information about a patient's health status or disease prognosis, our ability to translate those data into meaningful improvements in understanding of clinical heterogeneity is limited. To address this gap, we have applied newer approaches to manifold learning and developed additional and complementary techniques to interrogate and interpret complex, high dimensional omics data. The central premise is that there exist manifolds embedded in high dimensional data that represent fundamental biologic processes that may help address the challenges of clinical heterogeneity. Preliminary evidence from several real-world data sets suggests that these techniques can identify coherent and reproducible manifolds embedded in higher dimensional omics data. Work is currently ongoing to determine the clinical informativeness of these novel data structures.
Collapse
|
36
|
Stochastic population dynamics of cancer stemness and adaptive response to therapies. Essays Biochem 2022; 66:387-398. [PMID: 36073715 DOI: 10.1042/ebc20220038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 02/07/2023]
Abstract
Intratumoral heterogeneity can exist along multiple axes: Cancer stem cells (CSCs)/non-CSCs, drug-sensitive/drug-tolerant states, and a spectrum of epithelial-hybrid-mesenchymal phenotypes. Further, these diverse cell-states can switch reversibly among one another, thereby posing a major challenge to therapeutic efficacy. Therefore, understanding the origins of phenotypic plasticity and heterogeneity remains an active area of investigation. While genomic components (mutations, chromosomal instability) driving heterogeneity have been well-studied, recent reports highlight the role of non-genetic mechanisms in enabling both phenotypic plasticity and heterogeneity. Here, we discuss various processes underlying phenotypic plasticity such as stochastic gene expression, chromatin reprogramming, asymmetric cell division and the presence of multiple stable gene expression patterns ('attractors'). These processes can facilitate a dynamically evolving cell population such that a subpopulation of (drug-tolerant) cells can survive lethal drug exposure and recapitulate population heterogeneity on drug withdrawal, leading to relapse. These drug-tolerant cells can be both pre-existing and also induced by the drug itself through cell-state reprogramming. The dynamics of cell-state transitions both in absence and presence of the drug can be quantified through mathematical models. Such a dynamical systems approach to elucidating patterns of intratumoral heterogeneity by integrating longitudinal experimental data with mathematical models can help design effective combinatorial and/or sequential therapies for better clinical outcomes.
Collapse
|