1
|
Cutano V, Chia ML, Wigmore EM, Hopcroft L, Williamson SC, Christie AL, Willis B, Kerr J, Ashforth J, Fox R, D'Arcy S, Bradshaw L, Blaker C, Eberlein C, Montava-Garriga L, de Bruin EC, Critchlow SE, Brindle KM, Barry ST, Ros S. The interplay between FOXO3 and FOXM1 influences sensitivity to AKT inhibition in PIK3CA and PIK3CA/PTEN altered estrogen receptor positive breast cancer. NPJ Breast Cancer 2025; 11:36. [PMID: 40263319 PMCID: PMC12015352 DOI: 10.1038/s41523-025-00752-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Loss of PTEN expression, via homozygous or hemizygous deletion, is common in PIK3CA mutant ER + BC tumors. We assessed reduction of PTEN protein expression on AKT inhibitor capivasertib efficacy in PIK3CA altered tumors. In PIK3CA altered, PTEN protein high models, PI3Kα and AKT inhibition was effective, however ablation and partial PTEN expression reduction attenuated PI3Kαi but not AKTi efficacy, alone or combined with fulvestrant. Efficacy was FOXO3 dependent and associated with FOXM1 downregulation. FOXO3A deletion reduced response to capivasertib, and increased FOXM1 expression. Long term capivasertib exposure of ER+ BC cells upregulated FOXM1 expression. Downregulating FOXM1 expression reversed resistance to capivasertib, while FOXM1 overexpression reduced capivasertib efficacy. Collectively this suggests the AKT-FOXO3-FOXM1 axis plays a pivotal role in response to AKTi in ER+ breast cancer with PIK3CA mutations with and without expression of PTEN, that FOXO3 expression loss can mediate resistance, and that FOXM1 downregulation is a potential biomarker of response.
Collapse
Affiliation(s)
| | - Ming Li Chia
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Eleanor M Wigmore
- Early Data Science, Oncology Data Science, AstraZeneca, Cambridge, UK
| | | | | | | | - Brandon Willis
- Bioscience, Early Oncology, AstraZeneca, Boston, MA, USA
| | - James Kerr
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | - Rhys Fox
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Sophie D'Arcy
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | | | - Cath Eberlein
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | | | | | | | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Susana Ros
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| |
Collapse
|
2
|
Wang Y, Rozen V, Zhao Y, Wang Z. Oncogenic activation of PI K3 CA in cancers: Emerging targeted therapies in precision oncology. Genes Dis 2025; 12:101430. [PMID: 39717717 PMCID: PMC11665392 DOI: 10.1016/j.gendis.2024.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/04/2024] [Accepted: 08/25/2024] [Indexed: 12/25/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are heterodimers consisting of a p110 catalytic subunit and a p85 regulatory subunit. The PIK3CA gene, which encodes the p110α, is the most frequently mutated oncogene in cancer. Oncogenic PIK3CA mutations activate the PI3K pathway, promote tumor initiation and development, and mediate resistance to anti-tumor treatments, making the mutant p110α an excellent target for cancer therapy. PIK3CA mutations occur in two hotspot regions: one in the helical domain and the other in the kinase domain. The PIK3CA helical and kinase domain mutations exert their oncogenic function through distinct mechanisms. For example, helical domain mutations of p110α gained direct interaction with insulin receptor substrate 1 (IRS-1) to activate the downstream signaling pathways. Moreover, p85β proteins disassociate from helical domain mutant p110α, translocate into the nucleus, and stabilize enhancer of zeste homolog 1/2 (EZH1/2). Due to the fundamental role of PI3Kα in tumor initiation and development, PI3Kα-specific inhibitors, represented by FDA-approved alpelisib, have developed rapidly in recent decades. However, side effects, including on-target side effects such as hyperglycemia, restrict the maximum dose and thus clinical efficacy of alpelisib. Therefore, developing p110α mutant-specific inhibitors to circumvent on-target side effects becomes a new direction for targeting PIK3CA mutant cancers. In this review, we briefly introduce the function of the PI3K pathway and discuss how PIK3CA mutations rewire cell signaling, metabolism, and tumor microenvironment, as well as therapeutic strategies under development to treat patients with tumors harboring a PIK3CA mutation.
Collapse
Affiliation(s)
- Yuxiang Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Valery Rozen
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Yiqing Zhao
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhenghe Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Tufail M, Jiang CH, Li N. Tumor dormancy and relapse: understanding the molecular mechanisms of cancer recurrence. Mil Med Res 2025; 12:7. [PMID: 39934876 PMCID: PMC11812268 DOI: 10.1186/s40779-025-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Cancer recurrence, driven by the phenomenon of tumor dormancy, presents a formidable challenge in oncology. Dormant cancer cells have the ability to evade detection and treatment, leading to relapse. This review emphasizes the urgent need to comprehend tumor dormancy and its implications for cancer recurrence. Despite notable advancements, significant gaps remain in our understanding of the mechanisms underlying dormancy and the lack of reliable biomarkers for predicting relapse. This review provides a comprehensive analysis of the cellular, angiogenic, and immunological aspects of dormancy. It highlights the current therapeutic strategies targeting dormant cells, particularly combination therapies and immunotherapies, which hold promise in preventing relapse. By elucidating these mechanisms and proposing innovative research methodologies, this review aims to deepen our understanding of tumor dormancy, ultimately facilitating the development of more effective strategies for preventing cancer recurrence and improving patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
4
|
Tian H, Yang Z, Yang J, Chen Y, Li L, Fan T, Liu T, Bai G, Gao Y, He J. Integrated molecular characterization reveals the pathogenesis and therapeutic strategies of pulmonary blastoma. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:82-92. [PMID: 40040871 PMCID: PMC11873630 DOI: 10.1016/j.jncc.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 03/06/2025] Open
Abstract
Background Pulmonary blastoma (PB) is a rare subtype of lung cancer. Currently, the underlying pathogenesis mechanisms of PB have not been fully illustrated, and the therapeutic approach for this entity is limited. Methods Whole-exome sequencing (WES), RNA sequencing, and DNA methylation profiling are applied to seven PB patients. Multi-omics data of pulmonary sarcomatoid carcinoma (PSC) and pituitary blastoma (PitB) from previous studies are invoked to illuminate the associations among PB and these malignacies. Results We portray the genomic alteration spectrum of PB and find that DICER1 is with the highest alteration rate (86 %). We uncover that DICER1 alterations, Wnt signaling pathway dysregulation and IGF2 imprinting dysregulation are the potential pathogenesis mechanisms of PB. Moreover, we reveal that the integrated molecular features of PB are distinct from PSC, and the molecular characteristics of PB are more similar to PitB than to PSC. Pancancer analysis show that the tumor mutation burden (TMB) and leukocyte fraction (LF) of PB are low, while some cases are positive for PD-L1 or have CD8-positive focal areas, implying the potential applicability of immunotherapy in selected PB patients. Conclusion This study depicts the integrated molecular characteristics of PB and offers novel insights into the pathogenesis and therapeutic strategies of PB.
Collapse
Affiliation(s)
- He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Respiratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junhui Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tiejun Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Colomer R, González-Farré B, Ballesteros AI, Peg V, Bermejo B, Pérez-Mies B, de la Cruz S, Rojo F, Pernas S, Palacios J. Biomarkers in breast cancer 2024: an updated consensus statement by the Spanish Society of Medical Oncology and the Spanish Society of Pathology. Clin Transl Oncol 2024; 26:2935-2951. [PMID: 38869741 PMCID: PMC11564209 DOI: 10.1007/s12094-024-03541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/14/2024]
Abstract
This revised consensus statement of the Spanish Society of Medical Oncology (SEOM) and the Spanish Society of Pathological Anatomy (SEAP) updates the recommendations for biomarkers use in the diagnosis and treatment of breast cancer that we first published in 2018. The expert group recommends determining in early breast cancer the estrogen receptor (ER), progesterone receptor (PR), Ki-67, and Human Epidermal growth factor Receptor 2 (HER2), as well as BReast CAncer (BRCA) genes in high-risk HER2-negative breast cancer, to assist prognosis and help in indicating the therapeutic options, including hormone therapy, chemotherapy, anti-HER2 therapy, and other targeted therapies. One of the four available genetic prognostic platforms (Oncotype DX®, MammaPrint®, Prosigna®, or EndoPredict®) may be used in ER-positive patients with early breast cancer to establish a prognostic category and help decide with the patient whether adjuvant treatment may be limited to hormonal therapy. In second-line advanced breast cancer, in addition, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and estrogen receptor 1 (ESR1) should be tested in hormone-sensitive cases, BRCA gene mutations in HER2-negative cancers, and in triple-negative breast cancer (TNBC), programmed cell death-1 ligand (PD-L1). Newer biomarkers and technologies, including tumor-infiltrating lymphocytes (TILs), homologous recombination deficiency (HRD) testing, serine/threonine kinase (AKT) pathway activation, and next-generation sequencing (NGS), are at this point investigational.
Collapse
Affiliation(s)
- Ramon Colomer
- UAM Personalised Precision Medicine Chair & Medical Oncology Department, La Princesa University Hospital and Research Institute, C/Diego de León, 62, 28006, Madrid, Spain.
| | | | | | - Vicente Peg
- Pathological Anatomy Service, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Begoña Bermejo
- Medical Oncology Department, Biomedical Research Institute INCLIVA, Medicine Department of the University of Valencia and Clinic University Hospital, Valencia, Spain
| | - Belén Pérez-Mies
- Pathological Anatomy Service, Ramón y Cajal University Hospital, Faculty of Medicine, University of Alcalá, IRYCIS and CIBERONC, Madrid, Spain
| | - Susana de la Cruz
- Medical Oncology Department, Navarra University Hospital, Navarre, Spain
| | - Federico Rojo
- Anatomy Service, Fundación Jiménez Díaz University Hospital and CIBERONC, Madrid, Spain
| | - Sonia Pernas
- Oncology Department, Catalan Institute of Oncology (ICO)-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - José Palacios
- Pathological Anatomy Service, Department of Pathology, Ramón y Cajal University Hospital, Faculty of Medicine, University of Alcalá, IRYCIS and CIBERONC, Ctra. Colmenar Viejo, Km 9,1, 28034, Madrid, Spain.
| |
Collapse
|
6
|
Xi J, Ma CX, O'Shaughnessy J. Current Clinical Utility of Circulating Tumor DNA Testing in Breast Cancer: A Practical Approach. JCO Oncol Pract 2024; 20:1460-1470. [PMID: 39531841 DOI: 10.1200/op.24.00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA) refers to DNA fragments released from cancer cells into the bloodstream. Clinical utility of ctDNA in breast cancer has been explored in both metastatic breast cancer (MBC) and early-stage breast cancer (EBC) settings. In MBC, ctDNA can detect therapeutically targetable genomic alterations and has shown great potential in predicting treatment response or resistance. Accumulating data suggest that ctDNA might also have prognostic value in MBC. In EBC, emerging data have shown ctDNA's predictive and/or prognostic value in both neoadjuvant and adjuvant settings. Minimal residual disease (MRD) detection via ctDNA to detect clinical recurrence after curative therapy is a rapidly advancing field. In this review, we discuss the existing and emerging data regarding ctDNA utility in both MBC and EBC settings.
Collapse
Affiliation(s)
- Jing Xi
- Rocky Mountain Cancer Centers, Denver, CO
| | | | | |
Collapse
|
7
|
Ueda H, Ishiguro T, Mori Y, Yamawaki K, Okamoto K, Enomoto T, Yoshihara K. Glycolysis-mTORC1 crosstalk drives proliferation of patient-derived endometrial cancer spheroid cells with ALDH activity. Cell Death Discov 2024; 10:435. [PMID: 39394200 PMCID: PMC11470041 DOI: 10.1038/s41420-024-02204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
Cancer stem cells are associated with aggressive phenotypes of malignant tumors. A prominent feature of uterine endometrial cancer is the activation of the PI3K-Akt-mTOR pathway. In this study, we present variations in sensitivities to a PI3K-Akt-mTORC1 inhibitor among in vitro endometrial cancer stem cell-enriched spheroid cells from clinical specimens. The in vitro sensitivity was consistent with the effects observed in in vivo spheroid-derived xenograft tumor models. Our findings revealed a complementary suppressive effect on endometrial cancer spheroid cell growth with the combined use of aldehyde dehydrogenase (ALDH) and PI3K-Akt inhibitors. In the PI3K-Akt-mTORC1 signaling cascade, the influence of ALDH on mTORC1 was partially channeled through retinoic acid-induced lactate dehydrogenase A (LDHA) activation. LDHA inhibition was found to reduce endometrial cancer cell growth, aligning with the effects of mTORC1 inhibition. Building upon our previous findings highlighting ALDH-driven glycolysis through GLUT1 in uterine endometrial cancer spheroid cells, curbing mTORC1 enhanced glucose transport via GLUT1 activation. Notably, elevated LDHA expression correlated with adverse clinical survival and escalated tumor grade, especially in advanced stages. Collectively, our findings emphasize the pivotal role of ALDH-LDHA-mTORC1 cascade in the proliferation of endometrial cancer. Targeting the interaction between mTORC1 and ALDH-influenced glycolysis holds promise for developing novel strategies to combat this aggressive cancer.
Collapse
Affiliation(s)
- Haruka Ueda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Yutaro Mori
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaoru Yamawaki
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koji Okamoto
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
8
|
Padzińska-Pruszyńska I, Kucharzewska P, Matejuk A, Górczak M, Kubiak M, Taciak B, Król M. Macrophages: Key Players in the Battle against Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:10781. [PMID: 39409110 PMCID: PMC11476577 DOI: 10.3390/ijms251910781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a challenging subtype of breast cancer characterized by the absence of estrogen and progesterone receptors and HER2 expression, leading to limited treatment options and a poorer prognosis. TNBC is particularly prevalent in premenopausal African-descent women and is associated with aggressive tumor behavior and higher metastatic potential. Tumor-associated macrophages (TAMs) are abundantly present within the TNBC microenvironment and play pivotal roles in promoting tumor growth, progression, and metastasis through various mechanisms, including immune suppression and enhancement of angiogenesis. This review provides an in-depth overview of TNBC, focusing on its epidemiology, its molecular characteristics, and the critical influence of TAMs. It discusses the pathological and molecular aspects that define TNBC's aggressive nature and reviews current and emerging therapeutic strategies aimed at targeting these dynamics. Special attention is given to the role of TAMs, exploring their potential as therapeutic targets due to their significant impact on tumor behavior and patient outcomes. This review aims to highlight the complexities of the TNBC landscape and to present the innovative approaches that are currently being pursued to improve therapeutic efficacy and patient survival.
Collapse
Affiliation(s)
- Irena Padzińska-Pruszyńska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Paulina Kucharzewska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, 65-417 Zielona Góra, Poland;
| | - Małgorzata Górczak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Małgorzata Kubiak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Bartłomiej Taciak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| |
Collapse
|
9
|
Islam R, Yen KP, Rani NN'IM, Hossain MS. Recent advancement in developing small molecular inhibitors targeting key kinase pathways against triple-negative breast cancer. Bioorg Med Chem 2024; 112:117877. [PMID: 39159528 DOI: 10.1016/j.bmc.2024.117877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Triple-negative breast cancer (TNBC) stands out as the most formidable variant of breast cancer, predominantly affecting younger women and characterized by a bleak outlook and a high likelihood of spreading. The absence of safe and effective targeted treatments leaves standard cytotoxic chemotherapy as the primary option. The role of protein kinases, frequently altered in many cancers, is significant in the advancement and drug resistance of TNBC, making them a logical target for creating new, potent therapies against TNBC. Recently, an array of promising small molecules aimed at various kinases have been developed specifically for TNBC, with combination studies showing a synergistic improvement in combatting this condition. This review underscores the effectiveness of small molecule kinase inhibitors in battling the most lethal form of breast cancer and sheds light on prospective pathways for crafting novel treatments.
Collapse
Affiliation(s)
- Rajibul Islam
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Khor Poh Yen
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Nur Najihah 'Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Md Selim Hossain
- Vascular Biology Centre, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
10
|
Wu X, Feng N, Wang C, Jiang H, Guo Z. Small molecule inhibitors as adjuvants in cancer immunotherapy: enhancing efficacy and overcoming resistance. Front Immunol 2024; 15:1444452. [PMID: 39161771 PMCID: PMC11330769 DOI: 10.3389/fimmu.2024.1444452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Adjuvant therapy is essential in cancer treatment to enhance primary treatment effectiveness, reduce adverse effects, and prevent recurrence. Small molecule inhibitors as adjuvants in cancer immunotherapy aim to harness their immunomodulatory properties to optimize treatment outcomes. By modulating the tumor microenvironment, enhancing immune cell function, and increasing tumor sensitivity to immunotherapy, small molecule inhibitors have the potential to improve patient responses. This review discusses the evolving use of small molecule inhibitors as adjuvants in cancer treatment, highlighting their role in enhancing the efficacy of immunotherapy and the opportunities for advancing cancer therapies in the future.
Collapse
Affiliation(s)
- Xiaolin Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nuan Feng
- Department of Nutrition, Peking University People’s Hospital, Qingdao, China
- Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhu Guo
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Li RQ, Yan L, Zhang L, Ma HX, Wang HW, Bu P, Xi YF, Lian J. Genomic characterization reveals distinct mutational landscapes and therapeutic implications between different molecular subtypes of triple-negative breast cancer. Sci Rep 2024; 14:12386. [PMID: 38811720 PMCID: PMC11137060 DOI: 10.1038/s41598-024-62991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has high heterogeneity, poor prognosis, and limited treatment success. Recently, an immunohistochemistry-based surrogate classification for the "Fudan University Shanghai Cancer Center (FUSCC) subtyping" has been developed and is considered more suitable for clinical application. Seventy-one paraffin-embedded sections of surgically resected TNBC were classified into four molecular subtypes using the IHC-based surrogate classification. Genomic analysis was performed by targeted next-generation sequencing and the specificity of the subtypes was explored by bioinformatics, including survival analysis, multivariate Cox regression, pathway enrichment, Pyclone analysis, mutational signature analysis and PHIAL analysis. AKT1 and BRCA1 mutations were identified as independent prognostic factors in TNBC. TNBC molecular subtypes encompass distinct genomic landscapes that show specific heterogeneities. The luminal androgen receptor (LAR) subtype was associated with mutations in PIK3CA and PI3K pathways, which are potentially sensitive to PI3K pathway inhibitors. The basal-like immune-suppressed (BLIS) subtype was characterized by high genomic instability and the specific possession of signature 19 while patients in the immunomodulatory (IM) subtype belonged to the PD-L1 ≥ 1% subgroup with enrichment in Notch signaling, suggesting a possible benefit of immune checkpoint inhibitors and Notch inhibitors. Moreover, mesenchymal-like (MES) tumors displayed enrichment in the receptor tyrosine kinase (RTK)-RAS pathway and potential sensitivity to RTK pathway inhibitors. The findings suggest potential treatment targets and prognostic factors, indicating the possibility of TNBC stratified therapy in the future.
Collapse
Affiliation(s)
- Ruo Qi Li
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- General Surgery Department, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Lei Yan
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, China
| | - Ling Zhang
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Hai Xia Ma
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Hui Wen Wang
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Peng Bu
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yan Feng Xi
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Jing Lian
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
12
|
Van Cauwenberge J, Van Baelen K, Maetens M, Geukens T, Nguyen HL, Nevelsteen I, Smeets A, Deblander A, Neven P, Koolen S, Wildiers H, Punie K, Desmedt C. Reporting on patient's body mass index (BMI) in recent clinical trials for patients with breast cancer: a systematic review. Breast Cancer Res 2024; 26:81. [PMID: 38778365 PMCID: PMC11112918 DOI: 10.1186/s13058-024-01832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The proportion of patients with breast cancer and obesity is increasing. While the therapeutic landscape of breast cancer has been expanding, we lack knowledge about the potential differential efficacy of most drugs according to the body mass index (BMI). Here, we conducted a systematic review on recent clinical drug trials to document the dosing regimen of recent drugs, the reporting of BMI and the possible exclusion of patients according to BMI, other adiposity measurements and/or diabetes (leading comorbidity of obesity). We further explored whether treatment efficacy was evaluated according to BMI. METHODS A search of Pubmed and ClinicalTrials.gov was performed to identify phase I-IV trials investigating novel systemic breast cancer treatments. Dosing regimens and exclusion based on BMI, adiposity measurements or diabetes, documentation of BMI and subgroup analyses according to BMI were assessed. RESULTS 495 trials evaluating 26 different drugs were included. Most of the drugs (21/26, 81%) were given in a fixed dose independent of patient weight. BMI was an exclusion criterion in 3 out of 495 trials. Patients with diabetes, the leading comorbidity of obesity, were excluded in 67/495 trials (13.5%). Distribution of patients according to BMI was mentioned in 8% of the manuscripts, subgroup analysis was performed in 2 trials. No other measures of adiposity/body composition were mentioned in any of the trials. Retrospective analyses on the impact of BMI were performed in 6 trials. CONCLUSIONS Patient adiposity is hardly considered as most novel drug treatments are given in a fixed dose. BMI is generally not reported in recent trials and few secondary analyses are performed. Given the prevalence of patients with obesity and the impact obesity can have on pharmacokinetics and cancer biology, more attention should be given by investigators and study sponsors to reporting patient's BMI and evaluating its impact on treatment efficacy and toxicity.
Collapse
Affiliation(s)
- Josephine Van Cauwenberge
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Karen Van Baelen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Marion Maetens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
| | - Tatjana Geukens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Ha Linh Nguyen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
| | - Ines Nevelsteen
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Smeets
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Anne Deblander
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Stijn Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Kevin Punie
- Department of Medical Oncology, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium.
| |
Collapse
|
13
|
Pretzell I, Desuki A, Bleckmann A, Loges S, Reinacher-Schick A, Westphalen CB, Lange S. What Do German Molecular Tumor Boards Recommend in Patients with PIK3CA-Mutated Tumors? Launch and First Results from the German Transsectoral Molecular Tumor Board Exchange Platform Deutschland. Oncol Res Treat 2024; 47:410-419. [PMID: 38714183 DOI: 10.1159/000539217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
INTRODUCTION Comprehensive molecular tumor profiling is widely used in the management of patients with cancer. Molecular tumor boards devise treatment strategies based on testing results. In this setting, the Transsectoral Molecular Tumor Board exchange platform Deutschland (TEAM-D) aims to drive peer-to-peer exchange to connect experts in the field. METHODS During the first virtual TEAM-D meeting, participants from 16 German universities and 5 nonacademic institutions discussed five cases with PIK3CA hotspot mutations. Furthermore, an illustrative case vignette was presented. RESULTS Overall, German caregivers show restraint in administering off-label PIK3CA inhibitor and favor clinical trials in this setting. CONCLUSION In the setting of precision oncology, TEAM-D enables virtual case discussion across the different sectors of the German healthcare system. Based on the example of PIK3CA hotspot mutations, TEAM-D demonstrated the value of integrating knowledge from different healthcare professionals.
Collapse
Affiliation(s)
- Ina Pretzell
- West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Alexander Desuki
- University Cancer Center Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Annalen Bleckmann
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, Muenster, Germany
| | - Sonja Loges
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Anke Reinacher-Schick
- Department of Hematology and Oncology, St. Josef Hospital, Ruhr University, Bochum, Germany
| | - C Benedikt Westphalen
- Comprehensive Cancer Center Munich and Department of Medicine III, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Sebastian Lange
- TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
Aleksakhina SN, Ivantsov AO, Imyanitov EN. Agnostic Administration of Targeted Anticancer Drugs: Looking for a Balance between Hype and Caution. Int J Mol Sci 2024; 25:4094. [PMID: 38612902 PMCID: PMC11012409 DOI: 10.3390/ijms25074094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Many tumors have well-defined vulnerabilities, thus potentially allowing highly specific and effective treatment. There is a spectrum of actionable genetic alterations which are shared across various tumor types and, therefore, can be targeted by a given drug irrespective of tumor histology. Several agnostic drug-target matches have already been approved for clinical use, e.g., immune therapy for tumors with microsatellite instability (MSI) and/or high tumor mutation burden (TMB), NTRK1-3 and RET inhibitors for cancers carrying rearrangements in these kinases, and dabrafenib plus trametinib for BRAF V600E mutated malignancies. Multiple lines of evidence suggest that this histology-independent approach is also reasonable for tumors carrying ALK and ROS1 translocations, biallelic BRCA1/2 inactivation and/or homologous recombination deficiency (HRD), strong HER2 amplification/overexpression coupled with the absence of other MAPK pathway-activating mutations, etc. On the other hand, some well-known targets are not agnostic: for example, PD-L1 expression is predictive for the efficacy of PD-L1/PD1 inhibitors only in some but not all cancer types. Unfortunately, the individual probability of finding a druggable target in a given tumor is relatively low, even with the use of comprehensive next-generation sequencing (NGS) assays. Nevertheless, the rapidly growing utilization of NGS will significantly increase the number of patients with highly unusual or exceptionally rare tumor-target combinations. Clinical trials may provide only a framework for treatment attitudes, while the decisions for individual patients usually require case-by-case consideration of the probability of deriving benefit from agnostic versus standard therapy, drug availability, associated costs, and other circumstances. The existing format of data dissemination may not be optimal for agnostic cancer medicine, as conventional scientific journals are understandably biased towards the publication of positive findings and usually discourage the submission of case reports. Despite all the limitations and concerns, histology-independent drug-target matching is certainly feasible and, therefore, will be increasingly utilized in the future.
Collapse
Affiliation(s)
- Svetlana N. Aleksakhina
- Department of Tumor Growth Biology, N. N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
| | - Alexander O. Ivantsov
- Department of Tumor Growth Biology, N. N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
- Department of Medical Genetics, St. Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N. N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
- Department of Medical Genetics, St. Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| |
Collapse
|
15
|
Amato O, Giannopoulou N, Ignatiadis M. Circulating tumor DNA validity and potential uses in metastatic breast cancer. NPJ Breast Cancer 2024; 10:21. [PMID: 38472216 DOI: 10.1038/s41523-024-00626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Following the first characterization of circulating tumor DNA (ctDNA) in the 1990s, recent advances led to its introduction in the clinics. At present, the European Society Of Medical Oncology (ESMO) recommendations endorse ctDNA testing in routine clinical practice for tumor genotyping to direct molecularly targeted therapies in patients with metastatic cancer. In studies on metastatic breast cancer, ctDNA has been utilized for treatment tailoring, tracking mechanisms of drug resistance, and for predicting disease response before imaging. We review the available evidence regarding ctDNA applications in metastatic breast cancer.
Collapse
Affiliation(s)
- Ottavia Amato
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova, Italy
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Nefeli Giannopoulou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Michail Ignatiadis
- Breast Medical Oncology Clinic, Institut Jules Bordet and Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
16
|
Ou Y, Wang M, Xu Q, Sun B, Jia Y. Small molecule agents for triple negative breast cancer: Current status and future prospects. Transl Oncol 2024; 41:101893. [PMID: 38290250 PMCID: PMC10840364 DOI: 10.1016/j.tranon.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis. The number of cases increased by 2.26 million in 2020, making it the most commonly diagnosed cancer type in the world. TNBCs lack hormone receptor (HR) and human epidermal growth factor 2 (HER2), which limits treatment options. Currently, paclitaxel-based drugs combined with other chemotherapeutics remain the main treatment for TNBC. There is currently no consensus on the best therapeutic regimen for TNBC. However, there have been successful clinical trials exploring large-molecule monoclonal antibodies, small-molecule targeted drugs, and novel antibody-drug conjugate (ADC). Although monoclonal antibodies have produced clinical success, their large molecular weight can limit therapeutic benefits. It is worth noting that in the past 30 years, the FDA has approved small molecule drugs for HER2-positive breast cancers. The lack of effective targets and the occurrence of drug resistance pose significant challenges in the treatment of TNBC. To improve the prognosis of TNBC, it is crucial to search for effective targets and to overcome drug resistance. This review examines the clinical efficacy, adverse effects, resistance mechanisms, and potential solutions of targeted small molecule drugs in both monotherapies and combination therapies. New therapeutic targets, including nuclear export protein 1 (XPO1) and hedgehog (Hh), are emerging as potential options for researchers and become integrated into clinical trials for TNBC. Additionally, there is growing interest in the potential of targeted protein degradation chimeras (PROTACs), degraders of rogue proteins, as a future therapy direction. This review provides potentially valuable insights with clinical implications.
Collapse
Affiliation(s)
- Yan Ou
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mengchao Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qian Xu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Binxu Sun
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
17
|
Varkaris A, Fece de la Cruz F, Martin EE, Norden BL, Chevalier N, Kehlmann AM, Leshchiner I, Barnes H, Ehnstrom S, Stavridi AM, Yuan X, Kim JS, Ellis H, Papatheodoridi A, Gunaydin H, Danysh BP, Parida L, Sanidas I, Ji Y, Lau K, Wulf GM, Bardia A, Spring LM, Isakoff SJ, Lennerz JK, Del Vecchio K, Pierce L, Pazolli E, Getz G, Corcoran RB, Juric D. Allosteric PI3Kα Inhibition Overcomes On-target Resistance to Orthosteric Inhibitors Mediated by Secondary PIK3CA Mutations. Cancer Discov 2024; 14:227-239. [PMID: 37916958 PMCID: PMC10850944 DOI: 10.1158/2159-8290.cd-23-0704] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
PIK3CA mutations occur in ∼8% of cancers, including ∼40% of HR-positive breast cancers, where the PI3K-alpha (PI3Kα)-selective inhibitor alpelisib is FDA approved in combination with fulvestrant. Although prior studies have identified resistance mechanisms, such as PTEN loss, clinically acquired resistance to PI3Kα inhibitors remains poorly understood. Through serial liquid biopsies and rapid autopsies in 39 patients with advanced breast cancer developing acquired resistance to PI3Kα inhibitors, we observe that 50% of patients acquire genomic alterations within the PI3K pathway, including PTEN loss and activating AKT1 mutations. Notably, although secondary PIK3CA mutations were previously reported to increase sensitivity to PI3Kα inhibitors, we identified emergent secondary resistance mutations in PIK3CA that alter the inhibitor binding pocket. Some mutations had differential effects on PI3Kα-selective versus pan-PI3K inhibitors, but resistance induced by all mutations could be overcome by the novel allosteric pan-mutant-selective PI3Kα-inhibitor RLY-2608. Together, these findings provide insights to guide strategies to overcome resistance in PIK3CA-mutated cancers. SIGNIFICANCE In one of the largest patient cohorts analyzed to date, this study defines the clinical landscape of acquired resistance to PI3Kα inhibitors. Genomic alterations within the PI3K pathway represent a major mode of resistance and identify a novel class of secondary PIK3CA resistance mutations that can be overcome by an allosteric PI3Kα inhibitor. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 240 . This article is featured in Selected Articles from This Issue, p. 201.
Collapse
Affiliation(s)
- Andreas Varkaris
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ferran Fece de la Cruz
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Bryanna L. Norden
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Nicholas Chevalier
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Allison M. Kehlmann
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Haley Barnes
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Sara Ehnstrom
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Xin Yuan
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Janice S. Kim
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Haley Ellis
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | | | - Brian P. Danysh
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Ioannis Sanidas
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Yongli Ji
- Hematology-Oncology, Exeter Hospital, New Haven
| | - Kayao Lau
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Gerburg M. Wulf
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Aditya Bardia
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Laura M. Spring
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Steven J. Isakoff
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jochen K. Lennerz
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Levi Pierce
- Relay Therapeutics, Cambridge, Massachusetts
| | | | - Gad Getz
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ryan B. Corcoran
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Dejan Juric
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Cencic R, Im YK, Naineni SK, Moustafa-Kamal M, Jovanovic P, Sabourin V, Annis MG, Robert F, Schmeing TM, Koromilas A, Paquet M, Teodoro JG, Huang S, Siegel PM, Topisirovic I, Ursini-Siegel J, Pelletier J. A second-generation eIF4A RNA helicase inhibitor exploits translational reprogramming as a vulnerability in triple-negative breast cancer. Proc Natl Acad Sci U S A 2024; 121:e2318093121. [PMID: 38232291 PMCID: PMC10823175 DOI: 10.1073/pnas.2318093121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, we aimed to address the current limitations of therapies for macro-metastatic triple-negative breast cancer (TNBC) and provide a therapeutic lead that overcomes the high degree of heterogeneity associated with this disease. Specifically, we focused on well-documented but clinically underexploited cancer-fueling perturbations in mRNA translation as a potential therapeutic vulnerability. We therefore developed an orally bioavailable rocaglate-based molecule, MG-002, which hinders ribosome recruitment and scanning via unscheduled and non-productive RNA clamping by the eukaryotic translation initiation factor (eIF) 4A RNA helicase. We demonstrate that MG-002 potently inhibits mRNA translation and primary TNBC tumor growth without causing overt toxicity in mice. Importantly, given that metastatic spread is a major cause of mortality in TNBC, we show that MG-002 attenuates metastasis in pre-clinical models. We report on MG-002, a rocaglate that shows superior properties relative to existing eIF4A inhibitors in pre-clinical models. Our study also paves the way for future clinical trials exploring the potential of MG-002 in TNBC and other oncological indications.
Collapse
Affiliation(s)
- Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Young K. Im
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
| | - Sai Kiran Naineni
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Mohamed Moustafa-Kamal
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Predrag Jovanovic
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
| | - Valerie Sabourin
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
| | - Matthew G. Annis
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Antonis Koromilas
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| | - Marilène Paquet
- Département de pathologie et de microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Jose G. Teodoro
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Peter M. Siegel
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
- Department of Medicine, McGill University, Montreal, QCH4A 3J1, Canada
| | - Ivan Topisirovic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| |
Collapse
|
19
|
Weintraub MA, Liu D, DeMatteo R, Goncalves MD, Flory JH. Sodium-glucose cotransporter-2 inhibitors for hypergycemia in phosphoinositide 3-kinase pathway inhibition. Breast Cancer Res Treat 2024; 203:85-93. [PMID: 37704834 DOI: 10.1007/s10549-023-07110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE Phosphoinositide 3-kinase (PI3K) inhibition is used for the treatment of certain cancers, but can cause profound hyperglycemia and insulin resistance, for which sodium-glucose cotransporter-2 (SGLT2) inhibitors have been proposed as a preferred therapy. The objective of this research is to assess the effectiveness and safety of SGLT2 inhibitors for hyperglycemia in PI3K inhibition. METHODS We conducted a single-center retrospective review of adults initiating the PI3K inhibitor alpelisib. Exposure to different antidiabetic drugs and adverse events including diabetic ketoacidosis (DKA) were assessed through chart review. Plasma and point-of-care blood glucoses were extracted from the electronic medical record. Change in serum glucose and the rate of DKA on SGLT2 inhibitor versus other antidiabetic drugs were examined as co-primary outcomes. RESULTS We identified 103 patients meeting eligibility criteria with median follow-up of 92 days after starting alpelisib. When SGLT2 inhibitors were used to treat hyperglycemia, they were associated with a decrease in mean random glucose by -46 mg/dL (95% CI - 77 to - 15) in adjusted linear modeling. Five cases of DKA were identified, two occurring in patients on alpelisib plus SGLT2 inhibitor. Estimated incidence of DKA was: alpelisib plus SGLT2 inhibitor, 48 DKA cases per 100 patient-years (95% CI 6, 171); alpelisib with non-SGLT2 inhibitor antidiabetic drugs, 15 (95% CI 2, 53); alpelisib only, 4 (95% CI 0.1, 22). CONCLUSIONS SGLT2 inhibitors are effective treatments for hyperglycemia in the setting of PI3K inhibition.
Collapse
Affiliation(s)
- Michael A Weintraub
- New York University Diabetes & Endocrine Associates, 222 East 41st Street, 23rd Floor, New York, NY, 10017, USA
| | - Dazhi Liu
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Raymond DeMatteo
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - James H Flory
- Endocrinology Service, Division of Subspecialty Medicine, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
20
|
Masci D, Naro C, Puxeddu M, Urbani A, Sette C, La Regina G, Silvestri R. Recent Advances in Drug Discovery for Triple-Negative Breast Cancer Treatment. Molecules 2023; 28:7513. [PMID: 38005235 PMCID: PMC10672974 DOI: 10.3390/molecules28227513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most heterogeneous and aggressive breast cancer subtypes with a high risk of death on recurrence. To date, TNBC is very difficult to treat due to the lack of an effective targeted therapy. However, recent advances in the molecular characterization of TNBC are encouraging the development of novel drugs and therapeutic combinations for its therapeutic management. In the present review, we will provide an overview of the currently available standard therapies and new emerging therapeutic strategies against TNBC, highlighting the promises that newly developed small molecules, repositioned drugs, and combination therapies have of improving treatment efficacy against these tumors.
Collapse
Affiliation(s)
- Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Chiara Naro
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Claudio Sette
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| |
Collapse
|
21
|
Buckbinder L, St. Jean DJ, Tieu T, Ladd B, Hilbert B, Wang W, Alltucker JT, Manimala S, Kryukov GV, Brooijmans N, Dowdell G, Jonsson P, Huff M, Guzman-Perez A, Jackson EL, Goncalves MD, Stuart DD. STX-478, a Mutant-Selective, Allosteric PI3Kα Inhibitor Spares Metabolic Dysfunction and Improves Therapeutic Response in PI3Kα-Mutant Xenografts. Cancer Discov 2023; 13:2432-2447. [PMID: 37623743 PMCID: PMC10618743 DOI: 10.1158/2159-8290.cd-23-0396] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023]
Abstract
Phosphoinositide 3-kinase α (PIK3CA) is one of the most mutated genes across cancers, especially breast, gynecologic, and head and neck squamous cell carcinoma tumors. Mutations occur throughout the gene, but hotspot mutations in the helical and kinase domains predominate. The therapeutic benefit of isoform-selective PI3Kα inhibition was established with alpelisib, which displays equipotent activity against the wild-type and mutant enzyme. Inhibition of wild-type PI3Kα is associated with severe hyperglycemia and rash, which limits alpelisib use and suggests that selectively targeting mutant PI3Kα could reduce toxicity and improve efficacy. Here we describe STX-478, an allosteric PI3Kα inhibitor that selectively targets prevalent PI3Kα helical- and kinase-domain mutant tumors. STX-478 demonstrated robust efficacy in human tumor xenografts without causing the metabolic dysfunction observed with alpelisib. Combining STX-478 with fulvestrant and/or cyclin-dependent kinase 4/6 inhibitors was well tolerated and provided robust and durable tumor regression in ER+HER2- xenograft tumor models. SIGNIFICANCE These preclinical data demonstrate that the mutant-selective, allosteric PI3Kα inhibitor STX-478 provides robust efficacy while avoiding the metabolic dysfunction associated with the nonselective inhibitor alpelisib. Our results support the ongoing clinical evaluation of STX-478 in PI3Kα-mutated cancers, which is expected to expand the therapeutic window and mitigate counterregulatory insulin release. See related commentary by Kearney and Vasan, p. 2313. This article is featured in Selected Articles from This Issue, p. 2293.
Collapse
Affiliation(s)
| | - David J. St. Jean
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Trang Tieu
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Brendon Ladd
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Brendan Hilbert
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Weixue Wang
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | | | - Samantha Manimala
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | | | | | - Gregory Dowdell
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Philip Jonsson
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Michael Huff
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | | | - Erica L. Jackson
- Department of Biology, Scorpion Therapeutics, South San Francisco, California
| | - Marcus D. Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Darrin D. Stuart
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| |
Collapse
|
22
|
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023; 22:138. [PMID: 37596643 PMCID: PMC10436543 DOI: 10.1186/s12943-023-01827-6] [Citation(s) in RCA: 608] [Impact Index Per Article: 304.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Aaron S C Foo
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
| | - Hiu Y Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Kenneth C H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - William Jacot
- Department of Medical Oncology, Institut du Cancer de Montpellier, Inserm U1194, Montpellier University, Montpellier, France
| | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Huiyan Eng
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Inserm U1015, Université Paris-Saclay, Paris, France
| | - Matthew H Kulke
- Section of Hematology and Medical Oncology, Boston University and Boston Medical Center, Boston, MA, USA
| | - Richard D Baird
- Cancer Research UK Cambridge Centre, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Daniel B L Teh
- Departments of Ophthalmology and Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, and Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kevin H Lin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Justin Stebbing
- Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, 216 Sprague Hall, Irvine, CA, USA
| | - Alan P Kumar
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
23
|
Chapdelaine AG, Sun G. Challenges and Opportunities in Developing Targeted Therapies for Triple Negative Breast Cancer. Biomolecules 2023; 13:1207. [PMID: 37627272 PMCID: PMC10452226 DOI: 10.3390/biom13081207] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous group of breast cancers characterized by their lack of estrogen receptors, progesterone receptors, and the HER2 receptor. They are more aggressive than other breast cancer subtypes, with a higher mean tumor size, higher tumor grade, the worst five-year overall survival, and the highest rates of recurrence and metastasis. Developing targeted therapies for TNBC has been a major challenge due to its heterogeneity, and its treatment still largely relies on surgery, radiation therapy, and chemotherapy. In this review article, we review the efforts in developing targeted therapies for TNBC, discuss insights gained from these efforts, and highlight potential opportunities going forward. Accumulating evidence supports TNBCs as multi-driver cancers, in which multiple oncogenic drivers promote cell proliferation and survival. In such multi-driver cancers, targeted therapies would require drug combinations that simultaneously block multiple oncogenic drivers. A strategy designed to generate mechanism-based combination targeted therapies for TNBC is discussed.
Collapse
Affiliation(s)
| | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA;
| |
Collapse
|
24
|
Liu F, Wu Q, Dong Z, Liu K. Integrins in cancer: Emerging mechanisms and therapeutic opportunities. Pharmacol Ther 2023:108458. [PMID: 37245545 DOI: 10.1016/j.pharmthera.2023.108458] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Integrins are vital surface adhesion receptors that mediate the interactions between the extracellular matrix (ECM) and cells and are essential for cell migration and the maintenance of tissue homeostasis. Aberrant integrin activation promotes initial tumor formation, growth, and metastasis. Recently, many lines of evidence have indicated that integrins are highly expressed in numerous cancer types and have documented many functions of integrins in tumorigenesis. Thus, integrins have emerged as attractive targets for the development of cancer therapeutics. In this review, we discuss the underlying molecular mechanisms by which integrins contribute to most of the hallmarks of cancer. We focus on recent progress on integrin regulators, binding proteins, and downstream effectors. We highlight the role of integrins in the regulation of tumor metastasis, immune evasion, metabolic reprogramming, and other hallmarks of cancer. In addition, integrin-targeted immunotherapy and other integrin inhibitors that have been used in preclinical and clinical studies are summarized.
Collapse
Affiliation(s)
- Fangfang Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Qiong Wu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zigang Dong
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Kangdong Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China.
| |
Collapse
|
25
|
Zhou FH, Downton T, Freelander A, Hurwitz J, Caldon CE, Lim E. CDK4/6 inhibitor resistance in estrogen receptor positive breast cancer, a 2023 perspective. Front Cell Dev Biol 2023; 11:1148792. [PMID: 37035239 PMCID: PMC10073728 DOI: 10.3389/fcell.2023.1148792] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
CDK4/6 inhibitors have become game-changers in the treatment of estrogen receptor-positive (ER+) breast cancer, and in combination with endocrine therapy are the standard of care first-line treatment for ER+/HER2-negative advanced breast cancer. Although CDK4/6 inhibitors prolong survival for these patients, resistance is inevitable and there is currently no clear standard next-line treatment. There is an urgent unmet need to dissect the mechanisms which drive intrinsic and acquired resistance to CDK4/6 inhibitors and endocrine therapy to guide the subsequent therapeutic decisions. We will review the insights gained from preclinical studies and clinical cohorts into the diverse mechanisms of CDK4/6 inhibitor action and resistance, and highlight potential therapeutic strategies in the context of CDK4/6 inhibitor resistance.
Collapse
Affiliation(s)
- Fiona H. Zhou
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| | - Teesha Downton
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| | - Allegra Freelander
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| | - Joshua Hurwitz
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| | - C. Elizabeth Caldon
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| |
Collapse
|
26
|
Weintraub MA, Liu D, DeMatteo R, Goncalves MD, Flory J. Sodium-Glucose Cotransporter-2 Inhibitors for Hyperglycemia in Phosphoinositide 3-kinase Pathway Inhibition. RESEARCH SQUARE 2023:rs.3.rs-2655905. [PMID: 36993733 PMCID: PMC10055504 DOI: 10.21203/rs.3.rs-2655905/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Purpose Phosphoinositide 3-kinase (PI3K) inhibition is used for the treatment of certain cancers, but can cause profound hyperglycemia and insulin resistance, for which sodium-glucose cotransporter-2 (SGLT2) inhibitors have been proposed as a preferred therapy. The objective of this research is to assess the effectiveness and safety of SGLT2 inhibitors for hyperglycemia in PI3K inhibition. Methods We conducted a single-center retrospective review of adults initiating the PI3k inhibitor alpelisib. Exposure to different antidiabetic drugs and adverse events including diabetic ketoacidosis (DKA) were assessed through chart review. Plasma and point-of-care blood glucoses were extracted from the electronic medical record. Change in serum glucose and the rate of DKA on SGLT2 inhibitor versus other antidiabetic drugs were examined as co-primary outcomes. Results We identified 103 patients meeting eligibility criteria with median follow-up of 85 days after starting alpelisib. When SGLT2 inhibitors were used to treat hyperglycemia, they were associated with a decrease in mean random glucose by -54 mg/dL (95% CI -99 to -8) in adjusted linear modeling. Five cases of DKA were identified, two occurring in patients on alpelisib plus SGLT2 inhibitor. Estimated incidence of DKA was: alpelisib plus SGLT2 inhibitor, 24 DKA cases per 100 patient-years (95% CI 6, 80); alpelisib with non-SGLT2 inhibitor antidiabetic drugs, 7 (95% CI 0.1, 34); alpelisib only, 4 (95% CI 0.1, 21). Conclusions SGLT2 inhibitors are effective treatments for hyperglycemia in the setting of PI3K inhibition, but given possible adverse events, SGLT2 inhibitors should be used with caution.
Collapse
Affiliation(s)
| | - Dazhi Liu
- Memorial Sloan Kettering Cancer Center
| | | | | | | |
Collapse
|
27
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|