1
|
Hernández‐Prat A, Rodriguez‐Vida A, Cardona L, Qin M, Arpí‐Llucià O, Soria‐Jiménez L, Menendez S, Quimis FG, Galindo M, Arriola E, Salido M, Juanpere‐Rodero N, Rojo F, Muntasell A, Albanell J, Rovira A, Bellmunt J. Enhancing immunotherapy through PD-L1 upregulation: the promising combination of anti-PD-L1 plus mTOR inhibitors. Mol Oncol 2025; 19:151-172. [PMID: 39258533 PMCID: PMC11705730 DOI: 10.1002/1878-0261.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 09/12/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) pathway have transformed urothelial cancer (UC) therapy. The correlation between PD-L1 expression and ICI effectiveness is uncertain, leaving the role of PD-L1 as a predictive marker for ICI efficacy unclear. Among several ways to enhance the efficacy of ICI, trials are exploring combining ICIs with serine/threonine-protein kinase mTOR (mTOR) inhibitors in different tumor types. The potential interaction between mTOR inhibitors and PD-L1 expression in UC has not been well characterized. In our study, we investigated how phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway inhibitors (TAK-228, everolimus and TAK-117) affect PD-L1 expression and function in preclinical bladder cancer cell models. TAK-228 increased cell surface levels of glycosylated PD-L1 in all but one of the seven cell lines, regardless of baseline levels. TAK-228 promoted the secretion of epidermal growth factor (EGF) and interferon-β (IFNβ), both linked to PD-L1 protein induction. Blocking EGF and IFNβ receptors reversed the TAK-228-induced PD-L1 increase. Additionally, TAK-228 enhanced IFN-γ-induced PD-L1 expression and intracellular HLA-I levels in some cells. TAK-228-treated bladder cancer cells exhibited resistance to the cytotoxic effects of peripheral blood mononuclear cells (PBMCs) and cluster of differentiation 8 (CD8)+ T cells. The addition of an anti-PD-L1 antibody diminished this resistance in T24 cells. Increased expression of PD-L1 under TAK-228 exposure was confirmed in patient-derived explants (PDEs) treated ex vivo. These preclinical findings suggest that mTOR inhibition with TAK-228 can increase PD-L1 levels, potentially impacting the specific immune response against UC cells. This highlights the rationale for exploring the combination of mTOR inhibitors with ICIs in patients with advanced UC.
Collapse
Affiliation(s)
- Anna Hernández‐Prat
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | | | - Laura Cardona
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | - Mengjuan Qin
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | - Oriol Arpí‐Llucià
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | - Luis Soria‐Jiménez
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | - Sílvia Menendez
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Pathology DepartmentHospital del Mar‐CIBERONCBarcelonaSpain
| | | | - Miguel Galindo
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | - Edurne Arriola
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Medical Oncology DepartmentHospital del Mar‐CIBERONCBarcelonaSpain
| | - Marta Salido
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | | | - Federico Rojo
- Pathology DepartmentIIS Fundación Jimenez Diaz‐CIBERONCMadridSpain
| | - Aura Muntasell
- Immunity and Infection GroupIMIM (Hospital del Mar Research Institute)‐CIBERONCBarcelonaSpain
- Universitat Autònoma de BarcelonaSpain
| | - Joan Albanell
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Medical Oncology DepartmentHospital del Mar‐CIBERONCBarcelonaSpain
| | - Ana Rovira
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Medical Oncology DepartmentHospital del Mar‐CIBERONCBarcelonaSpain
| | - Joaquim Bellmunt
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Dana Farber Medical InstituteHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
2
|
Wu L, Yi W, Yao S, Xie S, Peng R, Zhang J, Tan W. mRNA-Based Cancer Vaccines: Advancements and Prospects. NANO LETTERS 2024. [PMID: 39375146 DOI: 10.1021/acs.nanolett.4c03296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The success of mRNA COVID-19 vaccines has reinvigorated research and interest in mRNA-based cancer vaccines. Despite promising results in clinical trials, therapeutic mRNA-based cancer vaccines have not yet been approved for human use. These vaccines are designed to trigger tumor regression, establish enduring antitumor memory, and mitigate adverse reactions. However, challenges such as tumor-induced immunosuppression and immunoresistance significantly hinder their application. Here, we provide an overview of the recent advances of neoantigen discovery and delivery systems for mRNA vaccines, focusing on improving clinical efficacy. Additionally, we summarize the recent clinical advances involving mRNA cancer vaccines and discuss prospective strategies for overcoming immuneresistance.
Collapse
Affiliation(s)
- Lijin Wu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Weicheng Yi
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Shiyu Yao
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Sitao Xie
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ruizi Peng
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jing Zhang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
3
|
Zhang W, Sun S, Zhu W, Meng D, Hu W, Yang S, Gao M, Yao P, Wang Y, Wang Q, Ji J. Birinapant Reshapes the Tumor Immunopeptidome and Enhances Antigen Presentation. Int J Mol Sci 2024; 25:3660. [PMID: 38612472 PMCID: PMC11011986 DOI: 10.3390/ijms25073660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Birinapant, an antagonist of the inhibitor of apoptosis proteins, upregulates MHCs in tumor cells and displays a better tumoricidal effect when used in combination with immune checkpoint inhibitors, indicating that Birinapant may affect the antigen presentation pathway; however, the mechanism remains elusive. Based on high-resolution mass spectrometry and in vitro and in vivo models, we adopted integrated genomics, proteomics, and immunopeptidomics strategies to study the mechanism underlying the regulation of tumor immunity by Birinapant from the perspective of antigen presentation. Firstly, in HT29 and MCF7 cells, Birinapant increased the number and abundance of immunopeptides and source proteins. Secondly, a greater number of cancer/testis antigen peptides with increased abundance and more neoantigens were identified following Birinapant treatment. Moreover, we demonstrate the existence and immunogenicity of a neoantigen derived from insertion/deletion mutation. Thirdly, in HT29 cell-derived xenograft models, Birinapant administration also reshaped the immunopeptidome, and the tumor exhibited better immunogenicity. These data suggest that Birinapant can reshape the tumor immunopeptidome with respect to quality and quantity, which improves the presentation of CTA peptides and neoantigens, thus enhancing the immunogenicity of tumor cells. Such changes may be vital to the effectiveness of combination therapy, which can be further transferred to the clinic or aid in the development of new immunotherapeutic strategies to improve the anti-tumor immune response.
Collapse
Affiliation(s)
- Weiyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Shenghuan Sun
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94143, USA;
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Delan Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Weiyi Hu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Siqi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Mingjie Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Pengju Yao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Yuhao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| |
Collapse
|
4
|
Rathbone M, O’Hagan C, Wong H, Khan A, Cook T, Rose S, Heseltine J, Escriu C. Intracranial Efficacy of Atezolizumab, Bevacizumab, Carboplatin, and Paclitaxel in Real-World Patients with Non-Small-Cell Lung Cancer and EGFR or ALK Alterations. Cancers (Basel) 2024; 16:1249. [PMID: 38610927 PMCID: PMC11011096 DOI: 10.3390/cancers16071249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Contrary to Pemetrexed-containing chemo-immunotherapy studies, Atezolizumab, Bevacizumab, Carboplatin, and Paclitaxel (ABCP) treatment has consistently shown clinical benefit in prospective studies in patients with lung cancer and actionable mutations, where intracranial metastases are common. Here, we aimed to describe the real-life population of patients fit to receive ABCP after targeted therapy and quantify its clinical effect in patients with brain metastases. Patients treated in Cheshire and Merseyside between 2019 and 2022 were identified. Data were collected retrospectively. A total of 34 patients with actionable EGFR or ALK alterations had treatment with a median age of 59 years (range 32-77). The disease control rate was 100% in patients with PDL1 ≥ 1% (n = 10). In total, 19 patients (56%) had brain metastases before starting ABCP, 17 (50%) had untreated CNS disease, and 4 (22%) had PDL1 ≥ 1%. The median time to symptom improvement was 12.5 days (range 4-21 days), with 74% intracranial disease control rates and 89.5% synchronous intracranial (IC) and extracranial (EC) responses. IC median Progression Free Survival (mPFS) was 6.48 months, EC mPFS was 10.75 months, and median Overall Survival 11.47 months. ABCP in real-life patients with brain metastases (treated or untreated) was feasible and showed similar efficacy to that described in patients without actionable mutations treated with upfront chemo-immunotherapy.
Collapse
Affiliation(s)
- Marcus Rathbone
- School of Medicine, University of Liverpool, Liverpool L69 3BX, UK; (M.R.); (C.O.)
| | - Conor O’Hagan
- School of Medicine, University of Liverpool, Liverpool L69 3BX, UK; (M.R.); (C.O.)
| | - Helen Wong
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| | - Adeel Khan
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| | - Timothy Cook
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| | - Sarah Rose
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| | - Jonathan Heseltine
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| | - Carles Escriu
- School of Medicine, University of Liverpool, Liverpool L69 3BX, UK; (M.R.); (C.O.)
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| |
Collapse
|
5
|
Qin S, Xu Y, Yu S, Han W, Fan S, Ai W, Zhang K, Wang Y, Zhou X, Shen Q, Gong K, Sun L, Zhang Z. Molecular classification and tumor microenvironment characteristics in pheochromocytomas. eLife 2024; 12:RP87586. [PMID: 38407266 PMCID: PMC10942623 DOI: 10.7554/elife.87586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Pheochromocytomas (PCCs) are rare neuroendocrine tumors that originate from chromaffin cells in the adrenal gland. However, the cellular molecular characteristics and immune microenvironment of PCCs are incompletely understood. Here, we performed single-cell RNA sequencing (scRNA-seq) on 16 tissues from 4 sporadic unclassified PCC patients and 1 hereditary PCC patient with Von Hippel-Lindau (VHL) syndrome. We found that intra-tumoral heterogeneity was less extensive than the inter-individual heterogeneity of PCCs. Further, the unclassified PCC patients were divided into two types, metabolism-type (marked by NDUFA4L2 and COX4I2) and kinase-type (marked by RET and PNMT), validated by immunohistochemical staining. Trajectory analysis of tumor evolution revealed that metabolism-type PCC cells display phenotype of consistently active metabolism and increased metastasis potential, while kinase-type PCC cells showed decreased epinephrine synthesis and neuron-like phenotypes. Cell-cell communication analysis showed activation of the annexin pathway and a strong inflammation reaction in metabolism-type PCCs and activation of FGF signaling in the kinase-type PCC. Although multispectral immunofluorescence staining showed a lack of CD8+ T cell infiltration in both metabolism-type and kinase-type PCCs, only the kinase-type PCC exhibited downregulation of HLA-I molecules that possibly regulated by RET, suggesting the potential of combined therapy with kinase inhibitors and immunotherapy for kinase-type PCCs; in contrast, the application of immunotherapy to metabolism-type PCCs (with antigen presentation ability) is likely unsuitable. Our study presents a single-cell transcriptomics-based molecular classification and microenvironment characterization of PCCs, providing clues for potential therapeutic strategies to treat PCCs.
Collapse
Affiliation(s)
- Sen Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Yawei Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Shimiao Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Wencong Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Shiheng Fan
- Shenzhen Institute of Ladder for Cancer ResearchShenzhenChina
| | - Wenxiang Ai
- Shenzhen Institute of Ladder for Cancer ResearchShenzhenChina
| | - Kenan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Yizhou Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Xuehong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Qi Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Kan Gong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| | - Zheng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Department of Urology, Peking University First Hospital, Peking University Health Science CenterBeijingChina
| |
Collapse
|
6
|
O’Brien Gore C, Billman A, Hunjan S, Colebrook J, Choy D, Li W, Haynes J, Wade J, Hobern E, McDonald L, Papa S, Brugman M, Kordasti S, Montiel-Equihua C. Pre-treatment with systemic agents for advanced NSCLC elicits changes in the phenotype of autologous T cell therapy products. Mol Ther Oncolytics 2023; 31:100749. [PMID: 38075248 PMCID: PMC10701366 DOI: 10.1016/j.omto.2023.100749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/07/2023] [Indexed: 04/17/2025] Open
Abstract
The antitumor activity of adoptive T cell therapies (ACT) is highly dependent on the expansion, persistence, and continued activity of adoptively transferred cells. Clinical studies using ACTs have revealed that products that possess and maintain less differentiated phenotypes, including memory and precursor T cells, show increased antitumor efficacy and superior patient outcomes owing to their increased expansion, persistence, and ability to differentiate into effector progeny that elicit antitumor responses. Strategies that drive the differentiation into memory or precursor-type T cell subsets with high potential for persistence and self-renewal will enhance adoptively transferred T cell maintenance and promote durable antitumor efficacy. Because of the high costs associated with ACT manufacturing, ACTs are often only offered to patients after multiple rounds of systemic therapy. An essential factor to consider in producing autologous ACT medicinal products is the impact of the patient's initial T cell fitness and subtype composition, which will likely differ with age, disease history, and treatment with prior anti-cancer therapies. This study evaluated the impact of systemic anti-cancer therapy for non-small cell lung cancer treatment on the T cell phenotype of the patient at baseline and the quality and characteristics of the genetically modified autologous T cell therapy product after manufacturing.
Collapse
Affiliation(s)
- Charlotte O’Brien Gore
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Amy Billman
- Analytical Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Suchete Hunjan
- Oncology Cell Therapy Unit, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Jayne Colebrook
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Desmond Choy
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Wilson Li
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Jack Haynes
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Jennifer Wade
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Emily Hobern
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Louisa McDonald
- Oncology & Hematology Clinical Trials (OHCT), Guy’s Hospital, 1st Floor Chapel Wing, Great Maze Pond, SE1 9RT London, UK
| | - Sophie Papa
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Martijn Brugman
- Analytical Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Shahram Kordasti
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Claudia Montiel-Equihua
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| |
Collapse
|
7
|
Meng W, Schreiber RD, Lichti CF. Recent advances in immunopeptidomic-based tumor neoantigen discovery. Adv Immunol 2023; 160:1-36. [PMID: 38042584 DOI: 10.1016/bs.ai.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
The role of aberrantly expressed proteins in tumors in driving immune-mediated control of cancer has been well documented for more than five decades. Today, we know that both aberrantly expressed normal proteins as well as mutant proteins (neoantigens) can function as tumor antigens in both humans and mice. Next-generation sequencing (NGS) and high-resolution mass spectrometry (MS) technologies have made significant advances since the early 2010s, enabling detection of rare but clinically relevant neoantigens recognized by T cells. MS profiling of tumor-specific immunopeptidomes remains the most direct method to identify mutant peptides bound to cellular MHC. However, the need for use of large numbers of cells or significant amounts of tumor tissue to achieve neoantigen detection has historically limited the application of MS. Newer, more sensitive MS technologies have recently demonstrated the capacities to detect neoantigens from fewer cells. Here, we highlight recent advancements in immunopeptidomics-based characterization of tumor-specific neoantigens. Various tumor antigen categories and neoantigen identification approaches are also discussed. Furthermore, we summarize recent reports that achieved successful tumor neoantigen detection by MS using a variety of starting materials, MS acquisition modes, and novel ion mobility devices.
Collapse
Affiliation(s)
- Wei Meng
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
8
|
Heine A, Held SAE, Daecke SN, Flores C, Brossart P. Spoilt for choice: different immunosuppressive potential of anaplastic lymphoma kinase inhibitors for non small cell lung cancer. Front Immunol 2023; 14:1257017. [PMID: 37822928 PMCID: PMC10562553 DOI: 10.3389/fimmu.2023.1257017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Several anaplastic lymphoma kinase (ALK)-inhibitors (ALKi) have been approved for the treatment of ALK-translocated advanced or metastatic Non Small Cell Lung Cancer (NSCLC), amongst crizotinib and alectinib. This forces physicians to choose the most suitable compound for each individual patient on the basis of the tumor´s genetic profile, but also in regard to toxicities and potential co-treatments. Moreover, targeted therapies might be combined with or followed by immunotherapy, which underlines the importance to gain detailed knowledge about potential immunomodulatory effects of these inhibitors. We here aimed to 1.) determine whether ALKi display an immunosuppressive effect on human dendritic cells (DCs) as important mediators of antigen-specific immunity and to 2.) dissect whether this immunosuppression differs among ALKi. Methods We investigated the effect of alectinib and crizotinib on human monocyte-derived DCs (moDC) as most powerful antigen-presenting cells. We performed immunophenotyping by flow cytometry, migration, antigen uptake and cytokine assays. Results Crizotinib-treated DCs showed reduced activation markers, such as CD83, decreased chemokine-guided migration, lower antigen uptake and produced inferior levels of pro-inflammatory cytokines, especially Interleukin-12. In contrast, the immunosuppressive potential of alectinib was significantly less pronounced. This indicates that crizotinib might profoundly dampen anti-tumor immunity, while alectinib had no unfavourable immunosuppressive effects. Conclusions Our results implicate that current ALKi differ in their capacity to suppress the activation, migration and cytokine production of DCs as essential mediators of T cell immunity. We show that crizotinib, but not alectinib, had immunosuppressive effects on DCs phenotype and reduced DC function, thereby potentially impairing anti-tumor immunity.
Collapse
|
9
|
Bourne CM, Wallisch P, Dacek MM, Gardner TJ, Pierre S, Vogt K, Corless BC, Bah MA, Romero-Pichardo JE, Charles A, Kurtz KG, Tan DS, Scheinberg DA. Host Interactions with Engineered T-cell Micropharmacies. Cancer Immunol Res 2023; 11:1253-1265. [PMID: 37379366 PMCID: PMC10472090 DOI: 10.1158/2326-6066.cir-22-0879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/08/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Genetically engineered, cytotoxic, adoptively transferred T cells localize to antigen-positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with a killing mechanism orthogonal to conventional T-cell cytotoxicity. These drug-delivering cells, termed Synthetic Enzyme-Armed KillER (SEAKER) cells, demonstrated efficacy in mouse lymphoma xenograft models. However, the interactions of an immunocompromised xenograft with such complex engineered T cells are distinct from those in an immunocompetent host, precluding an understanding of how these physiologic processes may affect the therapy. Herein, we expanded the repertoire of SEAKER cells to target solid-tumor melanomas in syngeneic mouse models using specific targeting with T-cell receptor (TCR)-engineered T cells. We demonstrate that SEAKER cells localized specifically to tumors, and activated bioactive prodrugs, despite host immune responses. We additionally show that TCR-engineered SEAKER cells were efficacious in immunocompetent hosts, demonstrating that the SEAKER platform is applicable to many adoptive cell therapies.
Collapse
Affiliation(s)
- Christopher M. Bourne
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrick Wallisch
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Megan M. Dacek
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas J. Gardner
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephanie Pierre
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kristen Vogt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Broderick C. Corless
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mamadou A. Bah
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jesus E. Romero-Pichardo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Angel Charles
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Keifer G. Kurtz
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Derek S. Tan
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
10
|
Tran S, Plant-Fox AS, Chi SN, Narendran A. Current advances in immunotherapy for atypical teratoid rhabdoid tumor (ATRT). Neurooncol Pract 2023; 10:322-334. [PMID: 37457224 PMCID: PMC10346396 DOI: 10.1093/nop/npad005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023] Open
Abstract
Atypical teratoid rhabdoid tumors (ATRT) are rare and aggressive embryonal tumors of central nervous system that typically affect children younger than 3 years of age. Given the generally poor outcomes of patients with ATRT and the significant toxicities associated with conventional multi-modal therapies, there is an urgent need for more novel approaches to treat ATRT, one such approach being immunotherapy. The recent rise of large-scale, multicenter interdisciplinary studies has delineated several molecular and genetic characteristics unique to ATRT. This review aims to describe currently available data on the tumor immune microenvironment of ATRT and its specific subtypes and to summarize the emerging clinical and preclinical results of immunotherapy-based approaches. It will also highlight the evolving knowledge of epigenetics on immunomodulation in this epigenetically influenced tumor, which may help guide the development of effective immunotherapeutic approaches in the future.
Collapse
Affiliation(s)
- Son Tran
- Departments of Oncology and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ashley S Plant-Fox
- Division of Hematology, Stem Cell Transplant, and Neuro-Oncology, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan N Chi
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Aru Narendran
- Departments of Oncology and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Bourne CM, Wallisch P, Dacek M, Gardner T, Pierre S, Vogt K, Corless BC, Bah MA, Romero Pichardo J, Charles A, Kurtz KG, Tan DS, Scheinberg DA. Host-cell Interactions of Engineered T cell Micropharmacies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535717. [PMID: 37205431 PMCID: PMC10187158 DOI: 10.1101/2023.04.05.535717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Genetically engineered, cytotoxic, adoptive T cells localize to antigen positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with an orthogonal killing mechanism to conventional T-cell cytotoxicity. These drug-delivering cells, termed Synthetic Enzyme-Armed KillER (SEAKER) cells, demonstrated efficacy in mouse lymphoma xenograft models. However, the interactions of an immunocompromised xenograft with such complex engineered T cells are distinct from those in an immunocompetent host, precluding an understanding of how these physiologic processes may affect the therapy. Here, we also expand the repertoire of SEAKER cells to target solid-tumor melanomas in syngeneic mouse models using specific targeting with TCR-engineered T cells. We demonstrate that SEAKER cells localize specifically to tumors, and activate bioactive prodrugs, despite host immune responses. We additionally show that TCR-engineered SEAKER cells are efficacious in immunocompetent hosts, demonstrating that the SEAKER platform is applicable to many adoptive cell therapies.
Collapse
Affiliation(s)
- Christopher M. Bourne
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
| | - Patrick Wallisch
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10021
| | - Megan Dacek
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10021
| | - Thomas Gardner
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
| | - Stephanie Pierre
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kristen Vogt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10065
| | - Broderick C. Corless
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10021
| | - Mamadou A. Bah
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
| | - Jesus Romero Pichardo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Angel Charles
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
| | - Keifer G. Kurtz
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10021
| | - Derek S. Tan
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10065
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10021
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA, 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
12
|
Harnessing epithelial-mesenchymal plasticity to boost cancer immunotherapy. Cell Mol Immunol 2023; 20:318-340. [PMID: 36823234 PMCID: PMC10066239 DOI: 10.1038/s41423-023-00980-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy is a powerful option for cancer treatment. Despite demonstrable progress, most patients fail to respond or achieve durable responses due to primary or acquired ICB resistance. Recently, tumor epithelial-to-mesenchymal plasticity (EMP) was identified as a critical determinant in regulating immune escape and immunotherapy resistance in cancer. In this review, we summarize the emerging role of tumor EMP in ICB resistance and the tumor-intrinsic or extrinsic mechanisms by which tumors exploit EMP to achieve immunosuppression and immune escape. We discuss strategies to modulate tumor EMP to alleviate immune resistance and to enhance the efficiency of ICB therapy. Our discussion provides new prospects to enhance the ICB response for therapeutic gain in cancer patients.
Collapse
|
13
|
Marin I, Boix O, Garcia-Garijo A, Sirois I, Caballe A, Zarzuela E, Ruano I, Attolini CSO, Prats N, López-Domínguez JA, Kovatcheva M, Garralda E, Muñoz J, Caron E, Abad M, Gros A, Pietrocola F, Serrano M. Cellular Senescence Is Immunogenic and Promotes Antitumor Immunity. Cancer Discov 2023. [PMID: 36302218 DOI: 10.1101/2022.06.05.494912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
UNLABELLED Cellular senescence is a stress response that activates innate immune cells, but little is known about its interplay with the adaptive immune system. Here, we show that senescent cells combine several features that render them highly efficient in activating dendritic cells (DC) and antigen-specific CD8 T cells. This includes the release of alarmins, activation of IFN signaling, enhanced MHC class I machinery, and presentation of senescence-associated self-peptides that can activate CD8 T cells. In the context of cancer, immunization with senescent cancer cells elicits strong antitumor protection mediated by DCs and CD8 T cells. Interestingly, this protection is superior to immunization with cancer cells undergoing immunogenic cell death. Finally, the induction of senescence in human primary cancer cells also augments their ability to activate autologous antigen-specific tumor-infiltrating CD8 lymphocytes. Our study indicates that senescent cancer cells can be exploited to develop efficient and protective CD8-dependent antitumor immune responses. SIGNIFICANCE Our study shows that senescent cells are endowed with a high immunogenic potential-superior to the gold standard of immunogenic cell death. We harness these properties of senescent cells to trigger efficient and protective CD8-dependent antitumor immune responses. See related article by Chen et al., p. 432. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Ines Marin
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Olga Boix
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Adrià Caballe
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Irene Ruano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Neus Prats
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - José A López-Domínguez
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Kovatcheva
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Javier Muñoz
- Spanish National Cancer Research Center, Madrid, Spain
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - María Abad
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Alena Gros
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
14
|
Marin I, Boix O, Garcia-Garijo A, Sirois I, Caballe A, Zarzuela E, Ruano I, Attolini CSO, Prats N, López-Domínguez JA, Kovatcheva M, Garralda E, Muñoz J, Caron E, Abad M, Gros A, Pietrocola F, Serrano M. Cellular Senescence Is Immunogenic and Promotes Antitumor Immunity. Cancer Discov 2023; 13:410-431. [PMID: 36302218 PMCID: PMC7614152 DOI: 10.1158/2159-8290.cd-22-0523] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 02/07/2023]
Abstract
Cellular senescence is a stress response that activates innate immune cells, but little is known about its interplay with the adaptive immune system. Here, we show that senescent cells combine several features that render them highly efficient in activating dendritic cells (DC) and antigen-specific CD8 T cells. This includes the release of alarmins, activation of IFN signaling, enhanced MHC class I machinery, and presentation of senescence-associated self-peptides that can activate CD8 T cells. In the context of cancer, immunization with senescent cancer cells elicits strong antitumor protection mediated by DCs and CD8 T cells. Interestingly, this protection is superior to immunization with cancer cells undergoing immunogenic cell death. Finally, the induction of senescence in human primary cancer cells also augments their ability to activate autologous antigen-specific tumor-infiltrating CD8 lymphocytes. Our study indicates that senescent cancer cells can be exploited to develop efficient and protective CD8-dependent antitumor immune responses. SIGNIFICANCE Our study shows that senescent cells are endowed with a high immunogenic potential-superior to the gold standard of immunogenic cell death. We harness these properties of senescent cells to trigger efficient and protective CD8-dependent antitumor immune responses. See related article by Chen et al., p. 432. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Ines Marin
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Olga Boix
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Adrià Caballe
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Irene Ruano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Neus Prats
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - José A López-Domínguez
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Kovatcheva
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Javier Muñoz
- Spanish National Cancer Research Center, Madrid, Spain
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - María Abad
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Alena Gros
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
15
|
Kleczko EK, Poczobutt JM, Navarro AC, Laskowski J, Johnson AM, Korpela SP, Gurule NJ, Heasley LE, Hopp K, Weiser-Evans MC, Gottlin EB, Bushey RT, Campa MJ, Patz EF, Thurman JM, Nemenoff RA. Upregulation of complement proteins in lung cancer cells mediates tumor progression. Front Oncol 2023; 12:1045690. [PMID: 36686777 PMCID: PMC9849673 DOI: 10.3389/fonc.2022.1045690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction In vivo, cancer cells respond to signals from the tumor microenvironment resulting in changes in expression of proteins that promote tumor progression and suppress anti-tumor immunity. This study employed an orthotopic immunocompetent model of lung cancer to define pathways that are altered in cancer cells recovered from tumors compared to cells grown in culture. Methods Studies used four murine cell lines implanted into the lungs of syngeneic mice. Cancer cells were recovered using FACS, and transcriptional changes compared to cells grown in culture were determined by RNA-seq. Results Changes in interferon response, antigen presentation and cytokine signaling were observed in all tumors. In addition, we observed induction of the complement pathway. We previously demonstrated that activation of complement is critical for tumor progression in this model. Complement can play both a pro-tumorigenic role through production of anaphylatoxins, and an anti-tumorigenic role by promoting complement-mediated cell killing of cancer cells. While complement proteins are produced by the liver, expression of complement proteins by cancer cells has been described. Silencing cancer cell-specific C3 inhibited tumor growth In vivo. We hypothesized that induction of complement regulatory proteins was critical for blocking the anti-tumor effects of complement activation. Silencing complement regulatory proteins also inhibited tumor growth, with different regulatory proteins acting in a cell-specific manner. Discussion Based on these data we propose that localized induction of complement in cancer cells is a common feature of lung tumors that promotes tumor progression, with induction of complement regulatory proteins protecting cells from complement mediated-cell killing.
Collapse
Affiliation(s)
- Emily K. Kleczko
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joanna M. Poczobutt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andre C. Navarro
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer Laskowski
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Amber M. Johnson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sean P. Korpela
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Natalia J. Gurule
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lynn E. Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Katharina Hopp
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mary C.M. Weiser-Evans
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elizabeth B. Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Ryan T. Bushey
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Michael J. Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Edward F. Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke School of Medicine, Durham, NC, United States
| | - Joshua M. Thurman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Raphael A. Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
16
|
Qi R, Yu Y, Shen M, Lv D, He S. Current status and challenges of immunotherapy in ALK rearranged NSCLC. Front Oncol 2022; 12:1016869. [PMID: 36591504 PMCID: PMC9795041 DOI: 10.3389/fonc.2022.1016869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Rearrangements of the anaplastic lymphoma kinase (ALK) gene account for 5-6% in non-small cell lung cancer (NSCLC). ALK rearranged NSCLC is sensitive to ALK tyrosine kinase inhibitors (TKIs) but prone to drug resistance. Meanwhile, ALK rearranged NSCLC has poor response to single immunotherapy. Here we mainly describe the immune escape mechanisms of ALK mutated NSCLC and the role of related biomarkers. Additionally, we collate and evaluate preclinical and clinical studies of novel immune combination regimens, and describe the prospects and perspectives for the in vivo application of novel immune technologies in patients with ALK rearranged NSCLC.
Collapse
Affiliation(s)
- Rongbin Qi
- Department of Respiratory Medicine, TaiZhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yingying Yu
- Department of Respiratory Medicine, TaiZhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Mo Shen
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongqing Lv
- Department of Respiratory Medicine, At Enze Hospital, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Susu He
- Department of Respiratory Medicine, TaiZhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
17
|
Zhang Z, Bu L, Luo J, Guo J. Targeting protein kinases benefits cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188738. [PMID: 35660645 DOI: 10.1016/j.bbcan.2022.188738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023]
Abstract
Small-molecule kinase inhibitors have been well established and successfully developed in the last decades for cancer target therapies. However, intrinsic or acquired drug resistance is becoming the major barrier for their clinical application. With the development of immunotherapies, in particular the discovery of immune checkpoint inhibitors (ICIs), the combination of ICIs with other therapies have recently been extensively explored, among which combination of ICIs with kinase inhibitors achieves promising clinical outcome in a plethora of cancer types. Here we comprehensively summarize the potent roles of protein kinases in modulating immune checkpoints both in tumor and immune cells, and reshaping tumor immune microenvironments by evoking innate immune response and neoantigen generation or presentation. Moreover, the clinical trial and approval of combined administration of kinase inhibitors with ICIs are collected, highlighting the precise strategies to benefit cancer immune therapies.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lang Bu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Junhang Luo
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
18
|
Unmasking the suppressed immunopeptidome of EZH2 mutated diffuse large B-cell lymphomas with combination drug treatment. Blood Adv 2022; 6:4107-4121. [PMID: 35561310 PMCID: PMC9327544 DOI: 10.1182/bloodadvances.2021006069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
Exploring the repertoire of peptides presented on major histocompatibility complexes (MHC) has been utilized to identify targets for immunotherapy in many hematological malignancies. However, there is a paucity of such data for diffuse large B-cell lymphomas (DLBCL), which might be explained by the profound downregulation of MHC expression in many DLBCLs, and in particular in the Enhancer of Zeste homolog 2 (EZH2) -mutated subgroup. Epigenetic drug treatment, especially in the context of interferon gamma (IFN-γ), restored MHC expression in DLBCL. DLBCL MHC-presented peptides were identified via mass spectrometry following tazemetostat or decitabine treatments alone, or in combination with IFN-γ. Such treatment synergistically increased MHC class I surface protein expression up to 50-fold and class II expression up to 3-fold. Peptides presented on MHC complexes increased to a similar extent for MHC class I and class II. Overall, these treatments restored the diversity of the immunopeptidome to levels described in healthy B cells for 2 out of 3 cell lines and allowed the systematic search for new targets for immunotherapy. Consequently, we identified multiple MHC ligands from regulator of G protein signaling 13 (RGS13) and E2F transcription factor 8 (E2F8) on different MHC alleles, none of which have been described in healthy tissues and therefore represent tumor-specific MHC ligands, which are unmasked only after drug treatment. Overall, our results show that EZH2 inhibition in combination with decitabine and IFN-γ can expand the repertoire of MHC ligands presented on DLBCLs by revealing suppressed epitopes, thus allowing the systematic analysis and identification of new potential immunotherapy targets.
Collapse
|
19
|
Román-Gil MS, Pozas J, Rosero-Rodríguez D, Chamorro-Pérez J, Ruiz-Granados Á, Caracuel IR, Grande E, Molina-Cerrillo J, Alonso-Gordoa T. Resistance to RET targeted therapy in Thyroid Cancer: Molecular basis and overcoming strategies. Cancer Treat Rev 2022; 105:102372. [DOI: 10.1016/j.ctrv.2022.102372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/07/2022]
|
20
|
Regulation of the antigen presentation machinery in cancer and its implication for immune surveillance. Biochem Soc Trans 2022; 50:825-837. [PMID: 35343573 PMCID: PMC9162455 DOI: 10.1042/bst20210961] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022]
Abstract
Evading immune destruction is one of the hallmarks of cancer. A key mechanism of immune evasion deployed by tumour cells is to reduce neoantigen presentation through down-regulation of the antigen presentation machinery. MHC-I and MHC-II proteins are key components of the antigen presentation machinery responsible for neoantigen presentation to CD8+ and CD4+ T lymphocytes, respectively. Their expression in tumour cells is modulated by a complex interplay of genomic, transcriptomic and post translational factors involving multiple intracellular antigen processing pathways. Ongoing research investigates mechanisms invoked by cancer cells to abrogate MHC-I expression and attenuate anti-tumour CD8+ cytotoxic T cell response. The discovery of MHC-II on tumour cells has been less characterized. However, this finding has triggered further interest in utilising tumour-specific MHC-II to harness sustained anti-tumour immunity through the activation of CD4+ T helper cells. Tumour-specific expression of MHC-I and MHC-II has been associated with improved patient survival in most clinical studies. Thus, their reactivation represents an attractive way to unleash anti-tumour immunity. This review provides a comprehensive overview of physiologically conserved or novel mechanisms utilised by tumour cells to reduce MHC-I or MHC-II expression. It outlines current approaches employed at the preclinical and clinical trial interface towards reversing these processes in order to improve response to immunotherapy and survival outcomes for patients with cancer.
Collapse
|
21
|
Mu D, Guo J, Yu W, Zhang J, Ren X, Han Y. Downregulation of
PD‐L1
and
HLA‐I
in non‐small cell lung cancer with
ALK
fusion. Thorac Cancer 2022; 13:1153-1163. [PMID: 35253386 PMCID: PMC9013653 DOI: 10.1111/1759-7714.14372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 12/28/2022] Open
Abstract
Background Early clinical trials indicate that patients with anaplastic lymphoma kinase (ALK)‐driven non‐small cell lung cancer (NSCLC) have a lower response rate to programmed cell death protein 1 (PD‐1) antibody therapy. However, the specific mechanism underlying this remains unclear. To further explore the characteristics of the tumor microenvironment and determine the potential mechanism of immunotherapy resistance in patients with ALK, we selected another important immune‐related molecule, major histocompatibility complex class I (HLA‐I), as the focus of our study. Methods We collected the biopsy samples of 140 patients with NSCLC. The number of CD8+ T cells and HLA‐I/programmed cell death 1 ligand 1 (PD‐L1) expression were determined by immunohistochemistry. Disease‐free survival (DFS) and overall survival (OS) were analyzed using the Kaplan–Meier method, and their relationship with patient clinical characteristics analyzed using Cox proportional hazards regression. In addition, we treated ALK‐positive lung cancer cells with ALK inhibitors in vitro to observe changes of HLA‐I. Results ALK positivity was associated with low membrane PD‐L1 and HLA‐I expression. However, these two indicators were not associated with the prognosis of patients with stage I–IIIa NSCLC. Inhibition of ALK could upregulate HLA‐I membrane expression to a certain extent. Conclusion Patients with ALK fusion showed downregulation of PD‐L1 and HLA‐I expression on the tumor cell membrane. Inhibition of ALK and its downstream signaling pathway can reverse it. These results suggest that the appropriate combination therapy should be considered for patients with ALK fusion and using targeted therapy at the proper time may increase patient benefits.
Collapse
Affiliation(s)
- Di Mu
- National Clinical Research Center for Cancer Tianjin Medical University Cancer Institute and Hospital Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Tianjin's Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Immunology and Biotherapy Tianjin China
| | - Jingjing Guo
- National Clinical Research Center for Cancer Tianjin Medical University Cancer Institute and Hospital Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Tianjin's Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Immunology and Biotherapy Tianjin China
| | - Wenwen Yu
- National Clinical Research Center for Cancer Tianjin Medical University Cancer Institute and Hospital Tianjin China
- Key Laboratory of Cancer Immunology and Biotherapy Tianjin China
- Department of Biotherapy Tianjin Medical University Cancer Institute and Hospital Tianjin China
| | - Jiali Zhang
- National Clinical Research Center for Cancer Tianjin Medical University Cancer Institute and Hospital Tianjin China
- Key Laboratory of Cancer Immunology and Biotherapy Tianjin China
- Department of Biotherapy Tianjin Medical University Cancer Institute and Hospital Tianjin China
| | - Xiubao Ren
- National Clinical Research Center for Cancer Tianjin Medical University Cancer Institute and Hospital Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Tianjin's Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Immunology and Biotherapy Tianjin China
- Department of Biotherapy Tianjin Medical University Cancer Institute and Hospital Tianjin China
| | - Ying Han
- National Clinical Research Center for Cancer Tianjin Medical University Cancer Institute and Hospital Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Tianjin's Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Immunology and Biotherapy Tianjin China
- Department of Biotherapy Tianjin Medical University Cancer Institute and Hospital Tianjin China
| |
Collapse
|
22
|
Maggs L, Sadagopan A, Moghaddam AS, Ferrone S. HLA class I antigen processing machinery defects in antitumor immunity and immunotherapy. Trends Cancer 2021; 7:1089-1101. [PMID: 34489208 PMCID: PMC8651070 DOI: 10.1016/j.trecan.2021.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen (HLA) class I antigen-processing machinery (APM) plays a crucial role in the synthesis and expression of HLA class I tumor antigen-derived peptide complexes; the latter mediate the recognition and elimination of malignant cells by cognate T cells. Defects in HLA class I APM component expression and/or function are frequently found in cancer cells, providing them with an immune escape mechanism that has relevance in the clinical course of the disease and in the response to T-cell-based immunotherapy. The majority of HLA class I APM defects (>75%) are caused by epigenetic mechanisms or dysregulated signaling and therefore can be corrected by strategies that counteract the underlying mechanisms. Their application in oncology is likely to improve responses to T-cell-based immunotherapies, including checkpoint inhibition.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ananthan Sadagopan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Sanjari Moghaddam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Vlachostergios PJ. Integrin signaling gene alterations and outcomes of cancer patients receiving immune checkpoint inhibitors. Am J Transl Res 2021; 13:12386-12394. [PMID: 34956460 PMCID: PMC8661141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Immune evasion is a hallmark of cancer and is associated with resistance to PD-1/PD-L1 and CTLA-4 inhibitors. Several interactions between tumor and immune cells within the tumor microenvironment are effected through integrin signaling; however the latter has been underrecognized as a pathway that could have an impact on oncological outcomes after treatment with immune checkpoint inhibitors (ICIs). This study aimed to assess the clinical relevance of genomic alterations in the integrin signaling pathway in ICI-treated patients with advanced cancers. METHODS Next generation sequencing (NGS) data from tumor samples of patients with advanced cancers treated with ICIs (anti-PD-1/PD-L1, anti-CTLA4 or both) were queried from four independent publicly available cohorts for mutations and structural variations in 72 integrin signaling pathway genes (Gene Set: GOBP_CELL_ADHESION_MEDIATED_BY_INTEGRIN). The Kaplan Meier method was used to assess the association between mutated and unmutated genes with overall (OS) and progression-free survival (PFS). All results were reported at the 0.05 significance level. RESULTS The largest cohort included 1662 patients (discovery set) and comprised 350 non-small cell lung cancer (NSCLC), 321 melanoma, 214 bladder, 151 renal cell carcinoma (RCC), 138 head neck (HN), 126 esophageal/gastric (EG), 117 glioma, 110 colorectal (CRC), 90 cancer of unknown primary (CUP), and 45 breast cancer patients. ICI treatments included PD-1 or PD-L1 inhibitors (n=1256), anti-CTLA4 inhibitors (n=146) or both (n=260). 170 patients (10% of the entire cohort) harbored mutations in PIK3CG (6%), RET (3%), SYK (1.4%), LYN (1.4%), PTPN11 (1.3%), and CRKL (0.1%) genes. Presence of these mutations was more frequent in melanoma (18%), followed by CRC (14.5%), CUP (11%), and NSCLC (11%). Patients with mutated tumors experienced a significantly longer median OS (41 months) compared to those without alterations (16 months, log-rank P<0.001). The favorable prognostic value of PIK3CG, RET, SYK, LYN, PTPN11, and CRKL alterations was confirmed in three melanoma cohorts (validation set, n=212, P=0.024). Assessment of mutation status of these genes in a fourth cohort of NSCLC patients (n=75) revealed a predictive significance as well, with regard to PFS after treatment with ipilimumab and nivolumab combination (P=0.048). CONCLUSION Mutations and/or structural variations in integrin signaling genes may have prognostic and predictive value in patients with metastatic malignancies who receive ICIs. Although confirmation in larger studies with concurrent investigation of underlying immunologic mechanisms is needed, these findings pose therapeutic implications for co-targeted approaches to overcome immune evasion and resistance.
Collapse
Affiliation(s)
- Panagiotis J Vlachostergios
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine New York 10021, NY, USA
| |
Collapse
|
24
|
Marcu A, Schlosser A, Keupp A, Trautwein N, Johann P, Wölfl M, Lager J, Monoranu CM, Walz JS, Henkel LM, Krauß J, Ebinger M, Schuhmann M, Thomale UW, Pietsch T, Klinker E, Schlegel PG, Oyen F, Reisner Y, Rammensee HG, Eyrich M. Natural and cryptic peptides dominate the immunopeptidome of atypical teratoid rhabdoid tumors. J Immunother Cancer 2021; 9:jitc-2021-003404. [PMID: 34599019 PMCID: PMC8488729 DOI: 10.1136/jitc-2021-003404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
Background Atypical teratoid/rhabdoid tumors (AT/RT) are highly aggressive CNS tumors of infancy and early childhood. Hallmark is the surprisingly simple genome with inactivating mutations or deletions in the SMARCB1 gene as the oncogenic driver. Nevertheless, AT/RTs are infiltrated by immune cells and even clonally expanded T cells. However, it is unclear which epitopes T cells might recognize on AT/RT cells. Methods Here, we report a comprehensive mass spectrometry (MS)-based analysis of naturally presented human leukocyte antigen (HLA) class I and class II ligands on 23 AT/RTs. MS data were validated by matching with a human proteome dataset and exclusion of peptides that are part of the human benignome. Cryptic peptide ligands were identified using Peptide-PRISM. Results Comparative HLA ligandome analysis of the HLA ligandome revealed 55 class I and 139 class II tumor-exclusive peptides. No peptide originated from the SMARCB1 region. In addition, 61 HLA class I tumor-exclusive peptide sequences derived from non-canonically translated proteins. Combination of peptides from natural and cryptic class I and class II origin gave optimal representation of tumor cell compartments. Substantial overlap existed with the cryptic immunopeptidome of glioblastomas, but no concordance was found with extracranial tumors. More than 80% of AT/RT exclusive peptides were able to successfully prime CD8+ T cells, whereas naturally occurring memory responses in AT/RT patients could only be detected for class II epitopes. Interestingly, >50% of AT/RT exclusive class II ligands were also recognized by T cells from glioblastoma patients but not from healthy donors. Conclusions These findings highlight that AT/RTs, potentially paradigmatic for other pediatric tumors with a low mutational load, present a variety of highly immunogenic HLA class I and class II peptides from canonical as well as non-canonical protein sources. Inclusion of such cryptic peptides into therapeutic vaccines would enable an optimized mapping of the tumor cell surface, thereby reducing the likelihood of immune evasion.
Collapse
Affiliation(s)
- Ana Marcu
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tubingen, Germany
| | | | - Anne Keupp
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| | - Nico Trautwein
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tubingen, Germany
| | - Pascal Johann
- Swabian Children's Cancer Center, Augsburg, Germany.,DKFZ Heidelberg, Heidelberg, Germany
| | - Matthias Wölfl
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| | - Johanna Lager
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| | - Camelia Maria Monoranu
- Department of Neuropathology, Institute for Pathology, University of Würzburg, Würzburg, Germany
| | - Juliane S Walz
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tubingen, Germany.,Cluster of Excellence iFIT (EXC2180), University of Tübingen, Tübingen, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and Robert Bosch Center for Tumor Diseases (RBCT), Stuttgart, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital of Tübingen, Tübingen, Germany
| | - Lisa M Henkel
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| | - Jürgen Krauß
- Department of Neurosurgery, University Medical Center Würzburg, Würzburg, Germany
| | - Martin Ebinger
- University Children's Hospital, University Medical Center Tübingen, Tübingen, Germany
| | - Martin Schuhmann
- Department of Neurosurgery, University Medical Center Tübingen, Tübingen, Germany
| | | | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
| | - Erdwine Klinker
- Institute for Transfusion Medicine, University Medical Center Würzburg, Würzburg, Germany
| | - Paul G Schlegel
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| | - Florian Oyen
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yair Reisner
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tubingen, Germany
| | - Matthias Eyrich
- University Children's Hospital, University Medical Center Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
The Dual Role of Autophagy in Crizotinib-Treated ALK + ALCL: From the Lymphoma Cells Drug Resistance to Their Demise. Cells 2021; 10:cells10102517. [PMID: 34685497 PMCID: PMC8533885 DOI: 10.3390/cells10102517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy has been described as harboring a dual role in cancer development and therapy. Depending on the context, it can exert either pro-survival or pro-death functions. Here, we review what is known about autophagy in crizotinib-treated ALK+ ALCL. We first present our main findings on the role and regulation of autophagy in these cells. Then, we provide literature-driven hypotheses that could explain mechanistically the pro-survival properties of autophagy in crizotinib-treated bulk and stem-like ALK+ ALCL cells. Finally, we discuss how the potentiation of autophagy, which occurs with combined therapies (ALK and BCL2 or ALK and RAF1 co-inhibition), could convert it from a survival mechanism to a pro-death process.
Collapse
|
26
|
Zitvogel L, Perreault C, Finn OJ, Kroemer G. Beneficial autoimmunity improves cancer prognosis. Nat Rev Clin Oncol 2021; 18:591-602. [PMID: 33976418 DOI: 10.1038/s41571-021-00508-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Many tumour antigens that do not arise from cancer cell-specific mutations are targets of humoral and cellular immunity despite their expression on non-malignant cells. Thus, in addition to the expected ability to detect mutations and stress-associated shifts in the immunoproteome and immunopeptidome (the sum of MHC class I-bound peptides) unique to malignant cells, the immune system also recognizes antigens expressed in non-malignant cells, which can result in autoimmune reactions against non-malignant cells from the tissue of origin. These autoimmune manifestations include, among others, vitiligo, thyroiditis and paraneoplastic syndromes, concurrent with melanoma, thyroid cancer and non-small-cell lung cancer, respectively. Importantly, despite the undesirable effects of these symptoms, such events can have prognostic value and correlate with favourable disease outcomes, suggesting 'beneficial autoimmunity'. Similarly, the occurrence of dermal and endocrine autoimmune adverse events in patients receiving immune-checkpoint inhibitors can have a positive predictive value for therapeutic outcomes. Neoplasias derived from stem cells deemed 'not essential' for survival (such as melanocytes, thyroid cells and most cells in sex-specific organs) have a particularly good prognosis, perhaps because the host can tolerate autoimmune reactions that destroy tumour cells at some cost to non-malignant tissues. In this Perspective, we discuss examples of spontaneous as well as therapy-induced autoimmunity that correlate with favourable disease outcomes and make a strong case in favour of this 'beneficial autoimmunity' being important not only in patients with advanced-stage disease but also in cancer immunosurveillance.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France. .,Université Paris Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France. .,INSERM U1015, Gustave Roussy, Villejuif, France. .,Equipe labellisée par la Ligue contre le cancer, Villejuif, France. .,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
27
|
Charles A, Bourne CM, Korontsvit T, Aretz ZEH, Mun SS, Dao T, Klatt MG, Scheinberg DA. Low-dose CDK4/6 inhibitors induce presentation of pathway specific MHC ligands as potential targets for cancer immunotherapy. Oncoimmunology 2021; 10:1916243. [PMID: 34104540 PMCID: PMC8158036 DOI: 10.1080/2162402x.2021.1916243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cyclin dependent kinase 4/6 inhibitors (CDK4/6i) lead to cell-cycle arrest but also trigger T cell-mediated immunity, which might be mediated by changes in human leukocyte antigen (HLA) ligands. We investigated the effects of CDK4/6i, abemaciclib and palbociclib, on the immunopeptidome at nontoxic levels in breast cancer cell lines by biochemical identification of HLA ligands followed by network analyses. This treatment led to upregulation of HLA and revealed hundreds of induced HLA ligands in breast cancer cell lines. These new ligands were significantly enriched for peptides derived from proteins involved in the “G1/S phase transition of cell cycle” including HLA ligands from CDK4/6, Cyclin D1 and the 26S regulatory proteasomal subunit 4 (PSMC1). Interestingly, peptides from proteins targeted by abemaciclib and palbociclib, were predicted to be the most likely to induce a T cell response. In strong contrast, peptides induced by solely one of the drugs had a lower T cell recognition score compared to the DMSO control suggesting that the observed effect is class dependent. This general hypothesis was exemplified by a peptide from PSMC1 which was among the HLA ligands with highest prediction scores and which elicited a T cell response in healthy donors. Overall, these data demonstrate that CDK4/6i treatment gives rise to drug-induced HLA ligands from G1/S phase transition, that have the highest chance for being recognized by T cells, thus providing evidence that inhibition of a distinct cellular process leads to increased presentation of the involved proteins that may be targeted by immunotherapeutic agents.
Collapse
Affiliation(s)
- Angel Charles
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, USA
| | - Christopher M Bourne
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, USA
| | - Tanya Korontsvit
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, USA
| | - Zita E H Aretz
- Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, USA
| | - Sung Soo Mun
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, USA
| | - Tao Dao
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, USA
| | - Martin G Klatt
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, USA.,Pharmacology Program, Weill Cornell Medicine, New York, USA
| |
Collapse
|
28
|
Harbers FN, Thier B, Stupia S, Zhu S, Schwamborn M, Peller V, Chauvistré H, Crivello P, Fleischhauer K, Roesch A, Sucker A, Schadendorf D, Chen Y, Paschen A, Zhao F. Melanoma Differentiation Trajectories Determine Sensitivity Toward Pre-Existing CD8 + Tumor-Infiltrating Lymphocytes. J Invest Dermatol 2021; 141:2480-2489. [PMID: 33798535 DOI: 10.1016/j.jid.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/23/2021] [Accepted: 03/16/2021] [Indexed: 11/19/2022]
Abstract
The highly plastic nature of melanoma enables its transition among diverse cell states to survive hostile conditions. However, the interplay between specific tumor cell states and intratumoral T cells remains poorly defined. With MAPK inhibitor‒treated BRAFV600-mutant tumors as models, we linked human melanoma state transition to CD8+ T cell responses. Repeatedly, we observed that isogenic melanoma cells could evolve along distinct differentiation trajectories on single BRAF inhibitor (BRAFi) treatment or dual BRAFi/MEKi treatment, resulting in BRAFi‒induced hyperdifferentiated and BRAFi/MEKi‒induced dedifferentiated resistant subtypes. Taking advantage of patient-derived autologous CD8+ tumor-infiltrating lymphocytes (TILs), we demonstrate that progressive melanoma cell state transition profoundly affects TIL function. Tumor cells along the hyperdifferentiation trajectory continuously gained sensitivity toward tumor-reactive CD8+ TILs, whereas those in the dedifferentiation trajectory acquired T cell resistance in part owing to the loss of differentiation antigens. Overall, our data reveal the tight connection of MAPKi‒induced temporary (drug-tolerant transition state) and stable (resistant state) phenotype alterations with T cell function and further broaden the current knowledge on melanoma plasticity in terms of sculpting local antitumor immune responses, with implications for guiding the optimal combination of targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Franziska Noelle Harbers
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Beatrice Thier
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Simone Stupia
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Si Zhu
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Marion Schwamborn
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Vicky Peller
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Heike Chauvistré
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Pietro Crivello
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
| | | | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Yong Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Fang Zhao
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.
| |
Collapse
|
29
|
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front Immunol 2021; 12:636568. [PMID: 33767702 PMCID: PMC7986854 DOI: 10.3389/fimmu.2021.636568] [Citation(s) in RCA: 552] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 02/03/2023] Open
Abstract
Major histocompatibility class I (MHC I) molecules bind peptides derived from a cell's expressed genes and then transport and display this antigenic information on the cell surface. This allows CD8 T cells to identify pathological cells that are synthesizing abnormal proteins, such as cancers that are expressing mutated proteins. In order for many cancers to arise and progress, they need to evolve mechanisms to avoid elimination by CD8 T cells. MHC I molecules are not essential for cell survival and therefore one mechanism by which cancers can evade immune control is by losing MHC I antigen presentation machinery (APM). Not only will this impair the ability of natural immune responses to control cancers, but also frustrate immunotherapies that work by re-invigorating anti-tumor CD8 T cells, such as checkpoint blockade. Here we review the evidence that loss of MHC I antigen presentation is a frequent occurrence in many cancers. We discuss new insights into some common underlying mechanisms through which some cancers inactivate the MHC I pathway and consider some possible strategies to overcome this limitation in ways that could restore immune control of tumors and improve immunotherapy.
Collapse
|
30
|
Jones HF, Molvi Z, Klatt MG, Dao T, Scheinberg DA. Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Front Immunol 2021; 11:585385. [PMID: 33569049 PMCID: PMC7868419 DOI: 10.3389/fimmu.2020.585385] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
The use of T cells reactive with intracellular tumor-associated or tumor-specific antigens has been a promising strategy for cancer immunotherapies in the past three decades, but the approach has been constrained by a limited understanding of the T cell receptor's (TCR) complex functions and specificities. Newer TCR and T cell-based approaches are in development, including engineered adoptive T cells with enhanced TCR affinities, TCR mimic antibodies, and T cell-redirecting bispecific agents. These new therapeutic modalities are exciting opportunities by which TCR recognition can be further exploited for therapeutic benefit. In this review we summarize the development of TCR-based therapeutic strategies and focus on balancing efficacy and potency versus specificity, and hence, possible toxicity, of these powerful therapeutic modalities.
Collapse
Affiliation(s)
- Heather F. Jones
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| | - Zaki Molvi
- Weill Cornell Medicine, New York, NY, United States
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
31
|
Kuznetsov A, Voronina A, Govorun V, Arapidi G. Critical Review of Existing MHC I Immunopeptidome Isolation Methods. Molecules 2020; 25:E5409. [PMID: 33228004 PMCID: PMC7699222 DOI: 10.3390/molecules25225409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) plays a crucial role in the development of adaptive immune response in vertebrates. MHC molecules are cell surface protein complexes loaded with short peptides and recognized by the T-cell receptors (TCR). Peptides associated with MHC are named immunopeptidome. The MHC I immunopeptidome is produced by the proteasome degradation of intracellular proteins. The knowledge of the immunopeptidome repertoire facilitates the creation of personalized antitumor or antiviral vaccines. A huge number of publications on the immunopeptidome diversity of different human and mouse biological samples-plasma, peripheral blood mononuclear cells (PBMCs), and solid tissues, including tumors-appeared in the scientific journals in the last decade. Significant immunopeptidome identification efficiency was achieved by advances in technology: the immunoprecipitation of MHC and mass spectrometry-based approaches. Researchers optimized common strategies to isolate MHC-associated peptides for individual tasks. They published many protocols with differences in the amount and type of biological sample, amount of antibodies, type and amount of insoluble support, methods of post-fractionation and purification, and approaches to LC-MS/MS identification of immunopeptidome. These parameters have a large impact on the final repertoire of isolated immunopeptidome. In this review, we summarize and compare immunopeptidome isolation techniques with an emphasis on the results obtained.
Collapse
Affiliation(s)
- Alexandr Kuznetsov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (A.K.); (A.V.); (V.G.)
| | - Alice Voronina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (A.K.); (A.V.); (V.G.)
| | - Vadim Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (A.K.); (A.V.); (V.G.)
- Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Georgij Arapidi
- Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
32
|
French JD. Immunotherapy for advanced thyroid cancers - rationale, current advances and future strategies. Nat Rev Endocrinol 2020; 16:629-641. [PMID: 32839578 DOI: 10.1038/s41574-020-0398-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
In the past decade, the field of cancer immunotherapy has been revolutionized by immune checkpoint blockade (ICB) technologies. Success across a broad spectrum of cancers has led to a paradigm shift in therapy for patients with advanced cancer. Early data are now accumulating in progressive thyroid cancers treated with single-agent ICB therapies and combination approaches that incorporate ICB technologies. This Review discusses our current knowledge of the immune response in thyroid cancers, the latest and ongoing immune-based approaches, and the future of immunotherapies in thyroid cancer. Physiologically relevant preclinical mouse models and human correlative research studies will inform development of the next stage of immune-based therapies for patients with advanced thyroid cancer.
Collapse
Affiliation(s)
- Jena D French
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Denver, Aurora, CO, USA.
- University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO, USA.
| |
Collapse
|
33
|
Pozdeyev N, Erickson TA, Zhang L, Ellison K, Rivard CJ, Sams S, Hirsch FR, Haugen BR, French JD. Comprehensive Immune Profiling of Medullary Thyroid Cancer. Thyroid 2020; 30:1263-1279. [PMID: 32242507 PMCID: PMC7869888 DOI: 10.1089/thy.2019.0604] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Despite advances in targeted kinase inhibitor development for patients with medullary thyroid cancer (MTC), most patients develop resistance and would benefit from alternative approaches. Immune-based therapies are now considered for patients with progressive MTC. This study is the first comprehensive assessment of the immune milieu, immune-suppressive molecules, and potential tumor antigens in patients with MTC. Methods: Primary and/or regionally metastatic tumor tissues from 46 patients with MTC were screened for immune infiltrates by using standard immunohistochemistry (IHC) and further analyzed by multispectral imaging for T cell and myeloid markers. RNASeq expression profiling was performed in parallel. RNASeq, targeted sequencing, and IHC techniques identified cancer-associated mutations and MTC-enriched proteins. Results: Organized immune infiltration was observed in 49% and 90% of primary and metastatic tumors, respectively. CD8+ cells were the dominant T cell subtype in most samples, while CD163+ macrophages were most frequent among myeloid infiltrates. PD-1+ T cells were evident in 24% of patients. Myeloid subsets were largely major histocompatibility complex II (MHCII-), suggesting a dysfunctional phenotype. Expression profiling confirmed enrichment in T cell, macrophage, and inflammatory profiles in a subset of samples. PD-L1 was expressed at low levels in a small subset of patients, while the immune regulatory molecules CD155 and CD47 were broadly expressed. Calcitonin, GRP, HIST1H4E, NOMO3, and NPIPA2 were highly and specifically expressed in MTC. Mutations in tumor suppressors, PTEN and p53, and mismatch repair genes, MSH2 and MSH6, may be relevant to disease progression and antigenicity. Conclusions: This study suggests that MTC is a more immunologically active tumor that has been previously reported. Patients with advanced MTC should be screened for targetable antigens and immune checkpoints to determine their eligibility for current clinical trials. Additional studies are necessary to fully characterize the antigenic potential of MTC and may encourage the development of adoptive T cells therapies for this rare tumor.
Collapse
Affiliation(s)
- Nikita Pozdeyev
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Timothy A. Erickson
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Lian Zhang
- Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
| | - Kim Ellison
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Christopher J. Rivard
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Sharon Sams
- Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
| | - Fred R. Hirsch
- Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
- University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado, USA
| | - Bryan R. Haugen
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
- University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado, USA
| | - Jena D. French
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
- University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado, USA
- Address correspondence to: Jena D. French, PhD, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, 12801 East 17th Avenue, RC1 South, 7401D, Campus Box 8106, Aurora, CO 80045, USA
| |
Collapse
|
34
|
Wang L, Lui VWY. Emerging Roles of ALK in Immunity and Insights for Immunotherapy. Cancers (Basel) 2020; 12:E426. [PMID: 32059449 PMCID: PMC7072244 DOI: 10.3390/cancers12020426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is mostly known for its oncogenic role in several human cancers. Recent evidences clearly indicate new roles of ALK and its genetic aberrations (e.g. gene rearrangements and mutations) in immune evasion, innate and cell-mediated immunity. New ALK-related immunotherapy approaches are demonstrating both preclinical and clinical promises. Here, we provide a timely review on the most updated laboratory and patient-related findings on ALK and immunity, which would grant us important insights for the development of novel ALK immunotherapies for ALK-altered cancers.
Collapse
Affiliation(s)
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China;
| |
Collapse
|