1
|
Behrooz AB, Latifi-Navid H, Zolfaghari N, Piroozmand S, Pour-Rashidi A, Bourbour M, Jusheghani F, Aghaei M, Azarpira N, Mollasalehi F, Alamdar S, Nasimian A, Lotfi J, Shojaei S, Nazar E, Ghavami S. Metabolic reprogramming in glioblastoma: a rare case of recurrence to scalp metastasis. BJC REPORTS 2025; 3:27. [PMID: 40274950 DOI: 10.1038/s44276-025-00134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/09/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Glioblastoma (GB), an aggressive brain malignancy with a poor prognosis of 1.5-2 years, rarely exhibits extracranial metastasis (ECM). However, metabolic reprogramming has emerged as a key driver of GB progression and invasiveness. This study presents a rare case of recurrent GB with scalp metastasis, exploring how metabolic shifts enable GB cells to evade treatment and adapt to hostile environments, offering insights for developing innovative therapies. METHODS Tandem mass spectrometry (MS/MS) was employed to analyze amino acid profiles in both the recurrent and metastatic stages of GB. Systems biology approaches were used to uncover genetic alterations and metabolic reprogramming associated with the progression from recurrence to metastasis. RESULTS Our analysis revealed distinct amino acid utilization patterns in a patient with a molecular phenotype of wild-type IDH-1&2, TERT mutation, non-mutated BRAF and EGFR, and non-methylated MGMT. During recurrence and metastasis, significant differences in amino acid profiles were observed between blood and cerebrospinal fluid (CSF) samples. Additionally, protein-protein interaction (PPI) analysis identified key genomic drivers potentially responsible for the transition from recurrent to metastatic GB. CONCLUSIONS Beyond established risk factors such as craniotomy, biopsies, ventricular shunting, and radiation therapy, our findings suggest that metabolic reprogramming plays a crucial role in the transition from recurrent to metastatic GB. Targeting these metabolic shifts could provide new avenues for managing and preventing extracranial metastasis in GB, making this an important focus for future research.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB, Canada
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Narges Zolfaghari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran, Iran
| | - Fatemeh Jusheghani
- Department of Biotechnology, Asu vanda Gene Industrial Research Company, Tehran, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negar Azarpira
- Shiraz Institute for Stem Cell and Regenerative Medicine, Shiraz University of Medical Science, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Sedigheh Alamdar
- Clinical and Anatomical Pathology Department, Milad Hospital, Tehran, Iran
| | - Ahmad Nasimian
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB, Canada
| | - Jabar Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Growth and development research center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB, Canada
| | - Elham Nazar
- Department of Pathology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB, Canada.
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB, Canada.
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
2
|
Guillorit H, Relier S, Zagiel B, Di Giorgio A, Planque C, Felipe B, Hérault H, Bansard L, Bouclier C, Chabi B, Casas F, Clara O, Bonafos B, Mialhe X, Cazevieille C, Hideg S, Choquet A, Bastide A, Pannequin J, Duca M, Macari F, David A. Streptomycin targets tumor-initiating cells by disrupting oxidative phosphorylation. Cell Chem Biol 2025; 32:570-585.e7. [PMID: 40209702 DOI: 10.1016/j.chembiol.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2025] [Accepted: 03/19/2025] [Indexed: 04/12/2025]
Abstract
Tumor initiating cells (TICs) are the roots of current shortcomings in advanced and metastatic cancer treatment. Endowed with self-renewal and multi-lineage differentiation capacity, TICs can disseminate and seed metastasis in distant organ. Our work identified streptomycin (SM), a potent bactericidal antibiotic, as a molecule capable of specifically targeting non-adherent TIC from colon and breast cancer cell lines. SM induces iron-dependent, reactive oxygen species (ROS)-mediated cell death, which is mechanistically distinct from RSL3-induced ferroptosis. SM-induced cell death is associated with profound alterations in mitochondrial morphology. This effect results from COX1 inhibition, which disrupts the regulation of the cytochrome c oxidase complex and triggers mitochondrial ROS production. SM's aldehyde group is essential, as its reduction into dihydrostreptomycin (DSM) abolishes its activity. These findings reveal a mechanism of action for streptomycin, shedding light on TIC metabolism and resistance, with potential implications for advanced cancer treatment.
Collapse
Affiliation(s)
- Hélène Guillorit
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Sébastien Relier
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Benjamin Zagiel
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), Nice, France
| | - Chris Planque
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France; IRCM, Université de Montpellier, INSERM, Montpellier, France
| | - Bastien Felipe
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Hélène Hérault
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France; IRCM, Université de Montpellier, INSERM, Montpellier, France
| | - Lucile Bansard
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Céline Bouclier
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Béatrice Chabi
- DMEM, Université de Montpellier, INRAE, Montpellier, France
| | - François Casas
- DMEM, Université de Montpellier, INRAE, Montpellier, France
| | - Ornella Clara
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Xavier Mialhe
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Chantal Cazevieille
- Institut des Neurosciences de Montpellier (INM), Université de Montpellier, Montpellier, France
| | - Szimonetta Hideg
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Armelle Choquet
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France; IRCM, Université de Montpellier, INSERM, Montpellier, France
| | - Amandine Bastide
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Pannequin
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), Nice, France
| | - Françoise Macari
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France; IRCM, Université de Montpellier, INSERM, Montpellier, France.
| | - Alexandre David
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France; IRMB-PPC, Université de Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France; IRCM, Université de Montpellier, INSERM, Montpellier, France.
| |
Collapse
|
3
|
Ismailov A, Spallone A, Belogurov A, Herbert A, Poptsova M. Molecular biology of the deadliest cancer - glioblastoma: what do we know? Front Immunol 2025; 16:1530305. [PMID: 40191211 PMCID: PMC11968700 DOI: 10.3389/fimmu.2025.1530305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Glioblastomas are the most prevalent primary brain tumors and are associated with a dramatically poor prognosis. Despite an intensive treatment approach, including maximal surgical tumor removal followed by radio- and chemotherapy, the median survival for glioblastoma patients has remained around 18 months for decades. Glioblastoma is distinguished by its highly complex mechanisms of immune evasion and pronounced heterogeneity. This variability is apparent both within the tumor itself, which can exhibit multiple phenotypes simultaneously, and in its surrounding microenvironment. Another key feature of glioblastoma is its "cold" microenvironment, characterized by robust immunosuppression. Recent advances in single-cell RNA sequencing have uncovered new promising insights, revealing previously unrecognized aspects of this tumor. In this review, we consolidate current knowledge on glioblastoma cells and its microenvironment, with an emphasis on their biological properties and unique patterns of molecular communication through signaling pathways. The evidence underscores the critical need for personalized poly-immunotherapy and other approaches to overcome the plasticity of glioblastoma stem cells. Analyzing the tumor microenvironment of individual patients using single-cell transcriptomics and implementing a customized immunotherapeutic strategy could potentially improve survival outcomes for those facing this formidable disease.
Collapse
Affiliation(s)
- Aly Ismailov
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| | - Aldo Spallone
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- Laboratory of Hormonal Regulation Proteins, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Alexey Belogurov
- Laboratory of Hormonal Regulation Proteins, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Scientific and Educational Institute of Fundamental Medicine named after V.I. Pokrovsky, Department of Biological Chemistry, Russian University of Medicine, Moscow, Russia
| | - Alan Herbert
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- Discovery Department, InsideOutBio, Boston, MA, United States
| | - Maria Poptsova
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
4
|
Lyu X, Yu Y, Jiang Y, Li Z, Qiao Q. The role of mitochondria transfer in cancer biological behavior, the immune system and therapeutic resistance. J Pharm Anal 2025; 15:101141. [PMID: 40115812 PMCID: PMC11925581 DOI: 10.1016/j.jpha.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 03/23/2025] Open
Abstract
Mitochondria play a crucial role as organelles, managing several physiological processes such as redox balance, cell metabolism, and energy synthesis. Initially, the assumption was that mitochondria primarily resided in the host cells and could exclusively transmit from oocytes to offspring by a mechanism known as vertical inheritance of mitochondria. Recent scholarly works, however, suggest that certain cell types transmit their mitochondria to other developmental cell types via a mechanism referred to as intercellular or horizontal mitochondrial transfer. This review details the process of which mitochondria are transferred across cells and explains the impact of mitochondrial transfer between cells on the efficacy and functionality of cancer cells in various cancer forms. Specifically, we review the role of mitochondria transfer in regulating cellular metabolism restoration, excess reactive oxygen species (ROS) generation, proliferation, invasion, metastasis, mitophagy activation, mitochondrial DNA (mtDNA) inheritance, immune system modulation and therapeutic resistance in cancer. Additionally, we highlight the possibility of using intercellular mitochondria transfer as a therapeutic approach to treat cancer and enhance the efficacy of cancer treatments.
Collapse
Affiliation(s)
- Xintong Lyu
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Yangyang Yu
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuanjun Jiang
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhiyuan Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110001, China
| | - Qiao Qiao
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
5
|
Burban A, Tessier C, Larroquette M, Guyon J, Lubiato C, Pinglaut M, Toujas M, Galvis J, Dartigues B, Georget E, Luchman HA, Weiss S, Cappellen D, Nicot N, Klink B, Nikolski M, Brisson L, Mathivet T, Bikfalvi A, Daubon T, Sharanek A. Exploiting metabolic vulnerability in glioblastoma using a brain-penetrant drug with a safe profile. EMBO Mol Med 2025; 17:469-503. [PMID: 39901019 PMCID: PMC11903783 DOI: 10.1038/s44321-025-00195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/05/2025] Open
Abstract
Glioblastoma is one of the most treatment-resistant and lethal cancers, with a subset of self-renewing brain tumour stem cells (BTSCs), driving therapy resistance and relapse. Here, we report that mubritinib effectively impairs BTSC stemness and growth. Mechanistically, bioenergetic assays and rescue experiments showed that mubritinib targets complex I of the electron transport chain, thereby impairing BTSC self-renewal and proliferation. Gene expression profiling and Western blot analysis revealed that mubritinib disrupts the AMPK/p27Kip1 pathway, leading to cell-cycle impairment. By employing in vivo pharmacokinetic assays, we established that mubritinib crosses the blood-brain barrier. Using preclinical patient-derived and syngeneic models, we demonstrated that mubritinib delays glioblastoma progression and extends animal survival. Moreover, combining mubritinib with radiotherapy or chemotherapy offers survival advantage to animals. Notably, we showed that mubritinib alleviates hypoxia, thereby enhancing ROS generation, DNA damage, and apoptosis in tumours when combined with radiotherapy. Encouragingly, toxicological and behavioural studies revealed that mubritinib is well tolerated and spares normal cells. Our findings underscore the promising therapeutic potential of mubritinib, warranting its further exploration in clinic for glioblastoma therapy.
Collapse
Affiliation(s)
- Audrey Burban
- University of Bordeaux, CNRS, IBGC, UMR5095, Bordeaux, France
| | - Cloe Tessier
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France
| | | | - Joris Guyon
- CHU of Bordeaux, Service de Pharmacologie Médicale, Bordeaux, France
- University of Bordeaux, INSERM, BPH, U1219, Bordeaux, France
| | - Cloe Lubiato
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France
| | - Mathis Pinglaut
- University of Bordeaux, CNRS, IBGC, UMR5095, Bordeaux, France
| | - Maxime Toujas
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France
| | - Johanna Galvis
- University of Bordeaux, CNRS, IBGC, UMR5095, Bordeaux, France
| | - Benjamin Dartigues
- Bordeaux Bioinformatic Center CBiB, University of Bordeaux, Bordeaux, France
| | - Emmanuelle Georget
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France
| | - H Artee Luchman
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - David Cappellen
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France
| | - Nathalie Nicot
- LuxGen Genome Center, Luxembourg Institute of Health, Laboratoire national de santé, Dudelange, Luxembourg
| | - Barbara Klink
- LuxGen Genome Center, Luxembourg Institute of Health, Laboratoire national de santé, Dudelange, Luxembourg
- National Center of Genetics (NCG), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Luxembourg, 1526, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Macha Nikolski
- University of Bordeaux, CNRS, IBGC, UMR5095, Bordeaux, France
- Bordeaux Bioinformatic Center CBiB, University of Bordeaux, Bordeaux, France
| | - Lucie Brisson
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France
| | - Thomas Mathivet
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France
| | - Andreas Bikfalvi
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France.
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, UMR5095, Bordeaux, France.
| | - Ahmad Sharanek
- University of Bordeaux, INSERM, UMR1312, BRIC, BoRdeaux Institute of onCology, Bordeaux, France.
| |
Collapse
|
6
|
Mohamed Yusoff AA, Mohd Khair SZN, Abd Radzak SM. Mitochondrial DNA copy number alterations: Key players in the complexity of glioblastoma (Review). Mol Med Rep 2025; 31:78. [PMID: 39886971 PMCID: PMC11795256 DOI: 10.3892/mmr.2025.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
Renowned as a highly invasive and lethal tumor derived from neural stem cells in the central nervous system, glioblastoma (GBM) exhibits substantial histopathological variation and genomic complexity, which drive its rapid progression and therapeutic resistance. Alterations in mitochondrial DNA (mtDNA) copy number (CN) serve a crucial role in GBM development and progression, affecting various aspects of tumor biology, including energy production, oxidative stress regulation and cellular adaptability. Fluctuations in mtDNA levels, whether elevated or diminished, can impair mitochondrial function, potentially disrupting oxidative phosphorylation and amplifying reactive oxygen species generation, thereby fueling tumor growth and influencing treatment responses. Understanding the mechanisms of mtDNA‑CN variations, and their interplay with genetic and environmental elements in the tumor microenvironment, is essential for advancing diagnostic and therapeutic strategies. Targeting mtDNA alterations could strengthen treatment efficacy, mitigate resistance and ultimately enhance the prognosis of patients with this aggressive brain tumor. The present review summarizes the existing literature on mtDNA alterations, specifically emphasizing variations in mtDNA‑CN and their association with GBM by surveying articles published between 1996 and 2024, sourced from databases such as Scopus, PubMed and Google Scholar. In addition, the review provides a brief overview of mitochondrial genome architecture, knowledge regarding the regulation of mtDNA integrity and CN, and how mitochondria significantly impact GBM tumorigenesis. This review further presents information on therapeutic approaches for restoring mtDNA‑CN that contribute to optimized mitochondrial function and improved health outcomes.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
7
|
Tsai HY, Tsai KJ, Wu DC, Huang YB, Lin MW. Transplantation of gastric epithelial mitochondria into human gastric cancer cells inhibits tumor growth and enhances chemosensitivity by reducing cancer stemness and modulating gastric cancer metabolism. Stem Cell Res Ther 2025; 16:87. [PMID: 39988680 PMCID: PMC11849191 DOI: 10.1186/s13287-025-04223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Gastric cancer is the malignant disease. The problems associated with cancer stemness and chemotherapy resistance in gastric cancer therapy remain unresolved. Glucose-regulated protein 78 (GRP78) is a biomarker of gastric cancer and modulates cancer stemness and chemoresistance. Previous studies have shown that mitochondrial transplantation from healthy cells is a promising method for treating various diseases and that the regulation of mitochondrial metabolism is crucial for modulating the stemness and chemoresistance of cancer cells. The aim of this study was to investigate the therapeutic effect of mitochondrial transplantation from normal gastric epithelial cells into gastric cancer and the associated mechanisms. METHODS The expression of cancer stemness markers, intracellular oxidative stress, or apoptotic-related proteins were evaluated via flow cytometry. Western blotting was used to investigate the molecular mechanism involved in MKN45 or AGS human gastric cancer cells after transplantation with human gastric epithelial mitochondria. The mitochondrial metabolic function of gastric cancer cells was determined via a Seahorse bioanalyzer, and extracellular lactate was evaluated via bioluminescent assay. The viability of 5-fluorouracil (5-FU)-treated gastric cancer cells was detected via a CCK-8 assay. Furthermore, a xenograft tumor animal study was performed to validate the therapeutic effects of human gastric epithelial mitochondrial transplantation in gastric cancer. Immunohistochemistry and Western blotting were then used to assess the expressions related to cancer stemness and mitochondrial metabolism-related proteins in tumor tissues. RESULTS Transplanting human gastric epithelial mitochondria downregulates gastric cancer mitochondrial biogenesis, glycolysis, GRP78-mediated cancer stemness, and increases oxidative stress, cell apoptosis under hypoxic conditions and chemosensitivity in response to 5-FU treatment. Moreover, the transplantation of epithelial mitochondria into gastric tumors inhibited the tumor growth in vivo tumor graft animal models. Therefore, mitochondrial transplantation can be considered for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Hsin-Yi Tsai
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Research, E-Da Hospital/ E-Da Cancer Hospital, I- Shou University, Kaohsiung, 82445, Taiwan
| | - Kuen-Jang Tsai
- Department of Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yaw-Bin Huang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Ming-Wei Lin
- Department of Medical Research, E-Da Hospital/ E-Da Cancer Hospital, I- Shou University, Kaohsiung, 82445, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Nursing, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan.
| |
Collapse
|
8
|
Puurand M, Llorente A, Linē A, Kaambre T. Exercise-induced extracellular vesicles in reprogramming energy metabolism in cancer. Front Oncol 2025; 14:1480074. [PMID: 39834935 PMCID: PMC11743358 DOI: 10.3389/fonc.2024.1480074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer is caused by complex interactions between genetic, environmental, and lifestyle factors, making prevention strategies, including exercise, a promising avenue for intervention. Physical activity is associated with reduced cancer incidence and progression and systemic anti-cancer effects, including improved tumor suppression and prolonged survival in preclinical models. Exercise impacts the body's nutrient balance and stimulates the release of several exercise-induced factors into circulation. The mechanisms of how exercise modulates cancer energy metabolism and the tumor microenvironment through systemic effects mediated, in part, by extracellular vesicles (EVs) are still unknown. By transferring bioactive cargo such as miRNAs, proteins and metabolites, exercise-induced EVs may influence cancer cells by altering glycolysis and oxidative phosphorylation, potentially shifting metabolic plasticity - a hallmark of cancer. This short review explores the roles of EVs in cancer as mediators to reprogram cellular energy metabolism through exchanging information inside the tumor microenvironment, influencing immune cells, fibroblast and distant cells. Considering this knowledge, further functional studies into exercise-induced EVs and cellular energy production pathways could inform more specific exercise interventions to enhance cancer therapy and improve patient outcomes.
Collapse
Affiliation(s)
- Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| | - Aija Linē
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
9
|
Gaiaschi L, Bottone MG, De Luca F. Towards Effective Treatment of Glioblastoma: The Role of Combination Therapies and the Potential of Phytotherapy and Micotherapy. Curr Issues Mol Biol 2024; 46:14324-14350. [PMID: 39727987 DOI: 10.3390/cimb46120859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and difficult-to-treat brain tumors, with a poor prognosis due to its high resistance to conventional therapies. Current treatment options, including surgical resection, radiotherapy, and chemotherapy, have limited effectiveness in improving long-term survival. Despite the emergence of new therapies, monotherapy approaches have not shown significant improvements, highlighting the need for innovative therapeutic strategies. Combination therapies appear to be the most promising solution, as they target multiple molecular pathways involved in GBM progression. One area of growing interest is the incorporation of phytotherapy and micotherapy as complementary treatments, which offer potential benefits due to their anti-tumor, anti-inflammatory, and immunomodulatory properties. This review examines the current challenges in GBM treatment, discusses the potential of combination therapies, and highlights the promising role of phytotherapy and micotherapy as integrative therapeutic options for GBM management.
Collapse
Affiliation(s)
- Ludovica Gaiaschi
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Maria Grazia Bottone
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Fabrizio De Luca
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
10
|
Chen M, Zhao D. Invisible Bridges: Unveiling the Role and Prospects of Tunneling Nanotubes in Cancer Therapy. Mol Pharm 2024; 21:5413-5429. [PMID: 39373242 PMCID: PMC11539062 DOI: 10.1021/acs.molpharmaceut.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Tunneling nanotubes (TNTs) are essential intercellular communication channels that significantly impact cancer pathophysiology, affecting tumor progression and resistance. This review methodically examines the mechanisms of TNTs formation, their structural characteristics, and their functional roles in material and signal transmission between cells. Highlighting their regulatory functions within the tumor microenvironment, TNTs are crucial for modulating cell survival, proliferation, drug resistance, and immune evasion. The review critically evaluates the therapeutic potential of TNTs, focusing on their applications in targeted drug delivery and gene therapy. It also proposes future research directions to thoroughly understand TNTs biogenesis, identify cell-specific molecular targets, and develop advanced technologies for the real-time monitoring of TNTs. By integrating insights from molecular biology, nanotechnology, and immunology, this review highlights the transformative potential of TNTs in advancing cancer treatment strategies.
Collapse
Affiliation(s)
- Meiru Chen
- Department
of Gastroenterology, The Second Hospital of Hebei Medical University,
Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei 050000, China
- Department
of Gastroenterology, Hengshui People’s
Hospital, Hengshui, Hebei 053000, China
| | - Dongqiang Zhao
- Department
of Gastroenterology, The Second Hospital of Hebei Medical University,
Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
11
|
Vaillant L, Akhter W, Nakhle J, Simon M, Villalba M, Jorgensen C, Vignais ML, Hernandez J. The role of mitochondrial transfer in the suppression of CD8 + T cell responses by Mesenchymal stem cells. Stem Cell Res Ther 2024; 15:394. [PMID: 39497203 PMCID: PMC11536934 DOI: 10.1186/s13287-024-03980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND . CD8+ Cytotoxic T lymphocytes play a key role in the pathogenesis of autoimmune diseases and clinical conditions such as graft versus host disease and graft rejection. Mesenchymal Stromal Cells (MSCs) are multipotent cells with tissue repair and immunomodulatory capabilities. Since they are able to suppress multiple pathogenic immune responses, MSCs have been proposed as a cellular therapy for the treatment of immune-mediated diseases. However, the mechanisms underlying their immunosuppressive properties are not yet fully understood. MSCs have the remarkable ability to sense tissue injury and inflammation and respond by donating their own mitochondria to neighboring cells. Whether mitochondrial transfer has any role in the repression of CD8+ responses is unknown. METHODS AND RESULTS . We have utilized CD8+ T cells from Clone 4 TCR transgenic mice that differentiate into effector cells upon activation in vitro and in vivo to address this question. Allogeneic bone marrow derived MSCs, co-cultured with activated Clone 4 CD8+ T cells, decreased their expansion, the production of the effector cytokine IFNγ and their diabetogenic potential in vivo. Notably, we found that during this interaction leading to suppression, MSCs transferred mitochondria to CD8+ T cells as evidenced by FACS and confocal microscopy. Transfer of MSC mitochondria to Clone 4 CD8+ T cells also resulted in decreased expansion and production of IFNγ upon activation. These effects overlapped and were additive with those of prostaglandin E2 secreted by MSCs. Furthermore, preventing mitochondrial transfer in co-cultures diminished the ability of MSCs to inhibit IFNγ production. Finally, we demonstrated that both MSCs and MSC mitochondria downregulated T-bet and Eomes expression, key transcription factors for CTL differentiation, on activated CD8+ T cells. CONCLUSION . In this report we showed that MSCs are able to interact with CD8+ T cells and transfer them their mitochondria. Mitochondrial transfer contributed to the global suppressive effect of MSCs on CD8+ T cell activation by downregulating T-bet and Eomes expression resulting in impaired IFNγ production of activated CD8+ T cells.
Collapse
Affiliation(s)
- Loic Vaillant
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM U1183, Montpellier, 34295, France
| | - Waseem Akhter
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM U1183, Montpellier, 34295, France
| | - Jean Nakhle
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM U1183, Montpellier, 34295, France
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France
- IGMM, Université de Montpellier, CNRS, Montpellier, France
| | - Matthieu Simon
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM U1183, Montpellier, 34295, France
| | - Martin Villalba
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM U1183, Montpellier, 34295, France
| | - Christian Jorgensen
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM U1183, Montpellier, 34295, France
- CHU Montpellier, Montpellier, France
| | - Marie-Luce Vignais
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM U1183, Montpellier, 34295, France
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Javier Hernandez
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM U1183, Montpellier, 34295, France.
| |
Collapse
|
12
|
Zhang L, Wang Y, Cai X, Mao X, Sun H. Deciphering the CNS-glioma dialogue: Advanced insights into CNS-glioma communication pathways and their therapeutic potential. J Cent Nerv Syst Dis 2024; 16:11795735241292188. [PMID: 39493257 PMCID: PMC11528668 DOI: 10.1177/11795735241292188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
The field of cancer neuroscience has rapidly evolved, shedding light on the complex interplay between the nervous system and cancer, with a particular focus on the relationship between the central nervous system (CNS) and gliomas. Recent advancements have underscored the critical influence of CNS activity on glioma progression, emphasizing the roles of neurons and neuroglial cells in both the onset and evolution of gliomas. This review meticulously explores the primary communication pathways between the CNS and gliomas, encompassing neuro-glioma synapses, paracrine mechanisms, extracellular vesicles, tunneling nanotubes, and the integrative CNS-immune-glioma axis. It also evaluates current and emerging therapeutic interventions aimed at these pathways and proposes forward-looking perspectives for research in this domain.
Collapse
Affiliation(s)
- Lu Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yajing Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxi Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyuan Mao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Laplane L, Maley CC. The evolutionary theory of cancer: challenges and potential solutions. Nat Rev Cancer 2024; 24:718-733. [PMID: 39256635 PMCID: PMC11627115 DOI: 10.1038/s41568-024-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/12/2024]
Abstract
The clonal evolution model of cancer was developed in the 1950s-1970s and became central to cancer biology in the twenty-first century, largely through studies of cancer genetics. Although it has proven its worth, its structure has been challenged by observations of phenotypic plasticity, non-genetic forms of inheritance, non-genetic determinants of clone fitness and non-tree-like transmission of genes. There is even confusion about the definition of a clone, which we aim to resolve. The performance and value of the clonal evolution model depends on the empirical extent to which evolutionary processes are involved in cancer, and on its theoretical ability to account for those evolutionary processes. Here, we identify limits in the theoretical performance of the clonal evolution model and provide solutions to overcome those limits. Although we do not claim that clonal evolution can explain everything about cancer, we show how many of the complexities that have been identified in the dynamics of cancer can be integrated into the model to improve our current understanding of cancer.
Collapse
Affiliation(s)
- Lucie Laplane
- UMR 8590 Institut d'Histoire et Philosophie des Sciences et des Techniques, CNRS, University Paris I Pantheon-Sorbonne, Paris, France
- UMR 1287 Hematopoietic Tissue Aging, Gustave Roussy Cancer Campus, Villejuif, France
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
14
|
Cortes Ballen AI, Amosu M, Ravinder S, Chan J, Derin E, Slika H, Tyler B. Metabolic Reprogramming in Glioblastoma Multiforme: A Review of Pathways and Therapeutic Targets. Cells 2024; 13:1574. [PMID: 39329757 PMCID: PMC11430559 DOI: 10.3390/cells13181574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and highly malignant primary brain tumor characterized by rapid growth and a poor prognosis for patients. Despite advancements in treatment, the median survival time for GBM patients remains low. One of the crucial challenges in understanding and treating GBMs involves its remarkable cellular heterogeneity and adaptability. Central to the survival and proliferation of GBM cells is their ability to undergo metabolic reprogramming. Metabolic reprogramming is a process that allows cancer cells to alter their metabolism to meet the increased demands of rapid growth and to survive in the often oxygen- and nutrient-deficient tumor microenvironment. These changes in metabolism include the Warburg effect, alterations in several key metabolic pathways including glutamine metabolism, fatty acid synthesis, and the tricarboxylic acid (TCA) cycle, increased uptake and utilization of glutamine, and more. Despite the complexity and adaptability of GBM metabolism, a deeper understanding of its metabolic reprogramming offers hope for developing more effective therapeutic interventions against GBMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (A.I.C.B.); (M.A.); (S.R.); (J.C.); (E.D.); (H.S.)
| |
Collapse
|
15
|
Ore A, Angelastro JM, Giulivi C. Integrating Mitochondrial Biology into Innovative Cell Therapies for Neurodegenerative Diseases. Brain Sci 2024; 14:899. [PMID: 39335395 PMCID: PMC11429837 DOI: 10.3390/brainsci14090899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The role of mitochondria in neurodegenerative diseases is crucial, and recent developments have highlighted its significance in cell therapy. Mitochondrial dysfunction has been implicated in various neurodegenerative disorders, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and Huntington's diseases. Understanding the impact of mitochondrial biology on these conditions can provide valuable insights for developing targeted cell therapies. This mini-review refocuses on mitochondria and emphasizes the potential of therapies leveraging mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, stem cell-derived secretions, and extracellular vesicles. Mesenchymal stem cell-mediated mitochondria transfer is highlighted for restoring mitochondrial health in cells with dysfunctional mitochondria. Additionally, attention is paid to gene-editing techniques such as mito-CRISPR, mitoTALENs, mito-ZNFs, and DdCBEs to ensure the safety and efficacy of stem cell treatments. Challenges and future directions are also discussed, including the possible tumorigenic effects of stem cells, off-target effects, disease targeting, immune rejection, and ethical issues.
Collapse
Affiliation(s)
- Adaleiz Ore
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.O.); (J.M.A.)
- Department of Chemical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James M. Angelastro
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.O.); (J.M.A.)
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.O.); (J.M.A.)
- University of California Medical Investigations of Neurodevelopmental Disorders Institute (MIND Institute), University of California Health, Sacramento, CA 95817, USA
| |
Collapse
|
16
|
Strack M, Kückelhaus J, Diebold M, Wuchter P, Huber PE, Schnell O, Sankowski R, Prinz M, Grosu AL, Heiland DH, Nicolay NH, Rühle A. Effects of tumor treating fields (TTFields) on human mesenchymal stromal cells. J Neurooncol 2024; 169:329-340. [PMID: 38900237 PMCID: PMC11341748 DOI: 10.1007/s11060-024-04740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE Mesenchymal stromal cells (MSCs) within the glioblastoma microenvironment have been shown to promote tumor progression. Tumor Treating Fields (TTFields) are alternating electric fields with low intensity and intermediate frequency that exhibit anti-tumorigenic effects. While the effects of TTFields on glioblastoma cells have been studied previously, nothing is known about the influence of TTFields on MSCs. METHODS Single-cell RNA sequencing and immunofluorescence staining were employed to identify glioblastoma-associated MSCs in patient samples. Proliferation and clonogenic survival of human bone marrow-derived MSCs were assessed after TTFields in vitro. MSC' characteristic surface marker expression was determined using flow cytometry, while multi-lineage differentiation potential was examined with immunohistochemistry. Apoptosis was quantified based on caspase-3 and annexin-V/7-AAD levels in flow cytometry, and senescence was assessed with ß-galactosidase staining. MSCs' migratory potential was evaluated with Boyden chamber assays. RESULTS Single-cell RNA sequencing and immunofluorescence showed the presence of glioblastoma-associated MSCs in patient samples. TTFields significantly reduced proliferation and clonogenic survival of human bone marrow-derived MSCs by up to 60% and 90%, respectively. While the characteristic surface marker expression and differentiation capacity were intact after TTFields, treatment resulted in increased apoptosis and senescence. Furthermore, TTFields significantly reduced MSCs' migratory capacity. CONCLUSION We could demonstrate the presence of tumor-associated MSCs in glioblastoma patients, providing a rationale to study the impact of TTFields on MSCs. TTFields considerably increase apoptosis and senescence in MSCs, resulting in impaired survival and migration. The results provide a basis for further analyses on the role of MSCs in glioblastoma patients receiving TTFields.
Collapse
Affiliation(s)
- Maren Strack
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Jan Kückelhaus
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Diebold
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Neurology and Medical Oncology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, German Red Cross Blood Service Baden- Württemberg- Hessen, Heidelberg University, Mannheim, Germany
| | - Peter E Huber
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Center Heidelberg, Heidelberg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
- Department of Radiation Oncology, University of Leipzig Medical Center, Leipzig, Germany
- Comprehensive Cancer Center Central (CCCG) Germany, Partner Site Leipzig, Leipzig, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.
- Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany.
- Department of Radiation Oncology, University of Leipzig Medical Center, Leipzig, Germany.
- Comprehensive Cancer Center Central (CCCG) Germany, Partner Site Leipzig, Leipzig, Germany.
| |
Collapse
|
17
|
Marabitti V, Vulpis E, Nazio F, Campello S. Mitochondrial Transfer as a Strategy for Enhancing Cancer Cell Fitness:Current Insights and Future Directions. Pharmacol Res 2024; 208:107382. [PMID: 39218420 DOI: 10.1016/j.phrs.2024.107382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
It is now recognized that tumors are not merely masses of transformed cells but are intricately interconnected with healthy cells in the tumor microenvironment (TME), forming complex and heterogeneous structures. Recent studies discovered that cancer cells can steal mitochondria from healthy cells to empower themselves, while reducing the functions of their target organ. Mitochondrial transfer, i.e. the intercellular movement of mitochondria, is recently emerging as a novel process in cancer biology, contributing to tumor growth, metastasis, and resistance to therapy by shaping the metabolic landscape of the tumor microenvironment. This review highlights the influence of transferred mitochondria on cancer bioenergetics, redox balance and apoptotic resistance, which collectively foster aggressive cancer phenotype. Furthermore, the therapeutic implications of mitochondrial transfer are discussed, emphasizing the potential of targeting these pathways to overcome drug resistance and improve treatment efficacy.
Collapse
Affiliation(s)
- Veronica Marabitti
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Elisabetta Vulpis
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Francesca Nazio
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy.
| |
Collapse
|
18
|
Sarkari A, Lou E. Do tunneling nanotubes drive chemoresistance in solid tumors and other malignancies? Biochem Soc Trans 2024; 52:1757-1764. [PMID: 39034648 PMCID: PMC11668275 DOI: 10.1042/bst20231364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Intercellular communication within the tumor microenvironment (TME) is essential for establishing, mediating, and synchronizing cancer cell invasion and metastasis. Cancer cells, individually and collectively, react at the cellular and molecular levels to insults from standard-of-care treatments used to treat patients with cancer. One form of cell communication that serves as a prime example of cellular phenotypic stress response is a type of cellular protrusion called tunneling nanotubes (TNTs). TNTs are ultrafine, actin-enriched contact-dependent forms of membrane protrusions that facilitate long distance cell communication through transfer of various cargo, including genetic materials, mitochondria, proteins, ions, and various other molecules. In the past 5-10 years, there has been a growing body of evidence that implicates TNTs as a novel mechanism of cell-cell communication in cancer that facilitates and propagates factors that drive or enhance chemotherapeutic resistance in a variety of cancer cell types. Notably, recent literature has highlighted the potential of TNTs to serve as cellular conduits and mediators of drug and nanoparticle delivery. Given that TNTs have also been shown to form in vivo in a variety of tumor types, disrupting TNT communication within the TME provides a novel strategy for enhancing the cytotoxic effect of existing chemotherapies while suppressing this form of cellular stress response. In this review, we examine current understanding of interplay between cancer cells occurring via TNTs, and even further, the implications of TNT-mediated tumor-stromal cross-talk and the potential to enhance chemoresistance. We then examine tumor microtubes, an analogous cell protrusion heavily implicated in mediating treatment resistance in glioblastoma multiforme, and end with a brief discussion of the effects of radiation and other emerging treatment modalities on TNT formation.
Collapse
Affiliation(s)
- Akshat Sarkari
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, U.S.A
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, U.S.A
- Graduate Faculty, Integrative Biology and Physiology Department, University of Minnesota, Minneapolis, MN, U.S.A
| |
Collapse
|
19
|
Guan F, Wu X, Zhou J, Lin Y, He Y, Fan C, Zeng Z, Xiong W. Mitochondrial transfer in tunneling nanotubes-a new target for cancer therapy. J Exp Clin Cancer Res 2024; 43:147. [PMID: 38769583 PMCID: PMC11106947 DOI: 10.1186/s13046-024-03069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
A century ago, the Warburg effect was first proposed, revealing that cancer cells predominantly rely on glycolysis during the process of tumorigenesis, even in the presence of abundant oxygen, shifting the main pathway of energy metabolism from the tricarboxylic acid cycle to aerobic glycolysis. Recent studies have unveiled the dynamic transfer of mitochondria within the tumor microenvironment, not only between tumor cells but also between tumor cells and stromal cells, immune cells, and others. In this review, we explore the pathways and mechanisms of mitochondrial transfer within the tumor microenvironment, as well as how these transfer activities promote tumor aggressiveness, chemotherapy resistance, and immune evasion. Further, we discuss the research progress and potential clinical significance targeting these phenomena. We also highlight the therapeutic potential of targeting intercellular mitochondrial transfer as a future anti-cancer strategy and enhancing cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Fan Guan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaomin Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiatong Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuzhe Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuqing He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chunmei Fan
- Department of Histology and Embryology, School of Basic Medicine Sciences, Central South University, Changsha, Hunan Province, 410013, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.
| |
Collapse
|
20
|
Pećina-Šlaus N, Hrašćan R. Glioma Stem Cells-Features for New Therapy Design. Cancers (Basel) 2024; 16:1557. [PMID: 38672638 PMCID: PMC11049195 DOI: 10.3390/cancers16081557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
On a molecular level, glioma is very diverse and presents a whole spectrum of specific genetic and epigenetic alterations. The tumors are unfortunately resistant to available therapies and the survival rate is low. The explanation of significant intra- and inter-tumor heterogeneity and the infiltrative capability of gliomas, as well as its resistance to therapy, recurrence and aggressive behavior, lies in a small subset of tumor-initiating cells that behave like stem cells and are known as glioma cancer stem cells (GCSCs). They are responsible for tumor plasticity and are influenced by genetic drivers. Additionally, GCSCs also display greater migratory abilities. A great effort is under way in order to find ways to eliminate or neutralize GCSCs. Many different treatment strategies are currently being explored, including modulation of the tumor microenvironment, posttranscriptional regulation, epigenetic modulation and immunotherapy.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Reno Hrašćan
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
21
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
22
|
Reyes-Ábalos AL, Álvarez-Zabaleta M, Olivera-Bravo S, Di Tomaso MV. Acute Genetic Damage Induced by Ethanol and Corticosterone Seems to Modulate Hippocampal Astrocyte Signaling. Int J Cell Biol 2024; 2024:5524487. [PMID: 38439918 PMCID: PMC10911912 DOI: 10.1155/2024/5524487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Astrocytes maintain CNS homeostasis but also critically contribute to neurological and psychiatric disorders. Such functional diversity implies an extensive signaling repertoire including extracellular vesicles (EVs) and nanotubes (NTs) that could be involved in protection or damage, as widely shown in various experimental paradigms. However, there is no information associating primary damage to the astrocyte genome, the DNA damage response (DDR), and the EV and NT repertoire. Furthermore, similar studies were not performed on hippocampal astrocytes despite their involvement in memory and learning processes, as well as in the development and maintenance of alcohol addiction. By exposing murine hippocampal astrocytes to 400 mM ethanol (EtOH) and/or 1 μM corticosterone (CTS) for 1 h, we tested whether the induced DNA damage and DDR could elicit significant changes in NTs and surface-attached EVs. Genetic damage and initial DDR were assessed by immunolabeling against the phosphorylated histone variant H2AX (γH2AX), DDR-dependent apoptosis by BAX immunoreactivity, and astrocyte activation by the glial acidic fibrillary protein (GFAP) and phalloidin staining. Surface-attached EVs and NTs were examined via scanning electron microscopy, and labeled proteins were analyzed via confocal microscopy. Relative to controls, astrocytes exposed to EtOH, CTS, or EtOH+CTS showed significant increases in nuclear γlH2AX foci, nuclear and cytoplasmic BAX signals, and EV frequency at the expense of the NT amount, mainly upon EtOH, without detectable signs of morphological reactivity. Furthermore, the largest and most complex EVs originated only in DNA-damaged astrocytes. Obtained results revealed that astrocytes exposed to acute EtOH and/or CTS preserved their typical morphology but presented severe DNA damage, triggered canonical DDR pathways, and early changes in the cell signaling mediated by EVs and NTs. Further deepening of this initial morphological and quantitative analysis is necessary to identify the mechanistic links between genetic damage, DDR, cell-cell communication, and their possible impact on hippocampal neural cells.
Collapse
Affiliation(s)
- Ana Laura Reyes-Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
- Unidad de Microscopía Electrónica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Magdalena Álvarez-Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Silvia Olivera-Bravo
- Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
23
|
Lootens T, Roman BI, Stevens CV, De Wever O, Raedt R. Glioblastoma-Associated Mesenchymal Stem/Stromal Cells and Cancer-Associated Fibroblasts: Partners in Crime? Int J Mol Sci 2024; 25:2285. [PMID: 38396962 PMCID: PMC10889514 DOI: 10.3390/ijms25042285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor-associated mesenchymal stem/stromal cells (TA-MSCs) have been recognized as attractive therapeutic targets in several cancer types, due to their ability to enhance tumor growth and angiogenesis and their contribution to an immunosuppressive tumor microenvironment (TME). In glioblastoma (GB), mesenchymal stem cells (MSCs) seem to be recruited to the tumor site, where they differentiate into glioblastoma-associated mesenchymal stem/stromal cells (GA-MSCs) under the influence of tumor cells and the TME. GA-MSCs are reported to exert important protumoral functions, such as promoting tumor growth and invasion, increasing angiogenesis, stimulating glioblastoma stem cell (GSC) proliferation and stemness, mediating resistance to therapy and contributing to an immunosuppressive TME. Moreover, they could act as precursor cells for cancer-associated fibroblasts (CAFs), which have recently been identified in GB. In this review, we provide an overview of the different functions exerted by GA-MSCs and CAFs and the current knowledge on the relationship between these cell types. Increasing our understanding of the interactions and signaling pathways in relevant models might contribute to future regimens targeting GA-MSCs and GB-associated CAFs to inhibit tumor growth and render the TME less immunosuppressive.
Collapse
Affiliation(s)
- Thibault Lootens
- 4Brain, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium;
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (B.I.R.); (C.V.S.)
| | - Bart I. Roman
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (B.I.R.); (C.V.S.)
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Christian V. Stevens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (B.I.R.); (C.V.S.)
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (B.I.R.); (C.V.S.)
| | - Robrecht Raedt
- 4Brain, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium;
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (B.I.R.); (C.V.S.)
| |
Collapse
|
24
|
Fernandes S, Vieira M, Prudêncio C, Ferraz R. Betulinic Acid for Glioblastoma Treatment: Reality, Challenges and Perspectives. Int J Mol Sci 2024; 25:2108. [PMID: 38396785 PMCID: PMC10889789 DOI: 10.3390/ijms25042108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Betulinic acid is a naturally occurring compound that can be obtained through methanolic or ethanolic extraction from plant sources, as well as through chemical synthesis or microbial biotransformation. Betulinic acid has been investigated for its potential therapeutic properties, and exhibits anti-inflammatory, antiviral, antimalarial, and antioxidant activities. Notably, its ability to cross the blood-brain barrier addresses a significant challenge in treating neurological pathologies. This review aims to compile information about the impact of betulinic acid as an antitumor agent, particularly in the context of glioblastoma. Importantly, betulinic acid demonstrates selective antitumor activity against glioblastoma cells by inhibiting proliferation and inducing apoptosis, consistent with observations in other cancer types. Compelling evidence published highlights the acid's therapeutic action in suppressing the Akt/NFκB-p65 signaling cascade and enhancing the cytotoxic effects of the chemotherapeutic agent temozolomide. Interesting findings with betulinic acid also suggest a focus on researching the reduction of glioblastoma's invasiveness and aggressiveness profile. This involves modulation of extracellular matrix components, remodeling of the cytoskeleton, and secretion of proteolytic proteins. Drawing from a comprehensive review, we conclude that betulinic acid formulations as nanoparticles and/or ionic liquids are promising drug delivery approaches with the potential for translation into clinical applications for the treatment and management of glioblastoma.
Collapse
Affiliation(s)
- Sílvia Fernandes
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Center for Research on Health and Environment (CISA), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Mariana Vieira
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
| | - Cristina Prudêncio
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Ciências Químicas e das Biomoléculas, School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Ricardo Ferraz
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Ciências Químicas e das Biomoléculas, School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
25
|
Kuo FC, Tsai HY, Cheng BL, Tsai KJ, Chen PC, Huang YB, Liu CJ, Wu DC, Wu MC, Huang B, Lin MW. Endothelial Mitochondria Transfer to Melanoma Induces M2-Type Macrophage Polarization and Promotes Tumor Growth by the Nrf2/HO-1-Mediated Pathway. Int J Mol Sci 2024; 25:1857. [PMID: 38339136 PMCID: PMC10855867 DOI: 10.3390/ijms25031857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Gynecologic tract melanoma is a malignant tumor with poor prognosis. Because of the low survival rate and the lack of a standard treatment protocol related to this condition, the investigation of the mechanisms underlying melanoma progression is crucial to achieve advancements in the relevant gynecological surgery and treatment. Mitochondrial transfer between adjacent cells in the tumor microenvironment regulates tumor progression. This study investigated the effects of endothelial mitochondria on the growth of melanoma cells and the activation of specific signal transduction pathways following mitochondrial transplantation. Mitochondria were isolated from endothelial cells (ECs) and transplanted into B16F10 melanoma cells, resulting in the upregulation of proteins associated with tumor growth. Furthermore, enhanced antioxidation and mitochondrial homeostasis mediated by the Sirt1-PGC-1α-Nrf2-HO-1 pathway were observed, along with the inhibition of apoptotic protein caspase-3. Finally, the transplantation of endothelial mitochondria into B16F10 cells promoted tumor growth and increased M2-type macrophages through Nrf2/HO-1-mediated pathways in a xenograft animal model. In summary, the introduction of exogenous mitochondria from ECs into melanoma cells promoted tumor growth, indicating the role of mitochondrial transfer by stromal cells in modulating a tumor's phenotype. These results provide valuable insights into the role of mitochondrial transfer and provide potential targets for gynecological melanoma treatment.
Collapse
Affiliation(s)
- Fu-Chen Kuo
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
- Department of Obstetrics & Gynecology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Hsin-Yi Tsai
- Department of Medical Research, E-Da Hospital and E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Bi-Ling Cheng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (B.-L.C.); (P.-C.C.)
| | - Kuen-Jang Tsai
- Department of General Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Ping-Chen Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (B.-L.C.); (P.-C.C.)
| | - Yaw-Bin Huang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Meng-Chieh Wu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Bin Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (B.-L.C.); (P.-C.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ming-Wei Lin
- Department of Medical Research, E-Da Hospital and E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Department of Nursing, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
26
|
Valdivia A, Cowan M, Cardenas H, Isac AM, Zhao G, Huang H, Matei D. E2F1 mediates competition, proliferation and response to cisplatin in cohabitating resistant and sensitive ovarian cancer cells. Front Oncol 2024; 14:1304691. [PMID: 38344207 PMCID: PMC10853425 DOI: 10.3389/fonc.2024.1304691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
Background Tumor heterogeneity is one of the key factors leading to chemo-resistance relapse. It remains unknown how resistant cancer cells influence sensitive cells during cohabitation and growth within a heterogenous tumors. The goal of our study was to identify driving factors that mediate the interactions between resistant and sensitive cancer cells and to determine the effects of cohabitation on both phenotypes. Methods We used isogenic ovarian cancer (OC) cell lines pairs, sensitive and resistant to platinum: OVCAR5 vs. OVCAR5 CisR and PE01 vs. PE04, respectively, to perform long term direct culture and to study the phenotypical changes of the interaction of these cells. Results Long term direct co-culture of sensitive and resistant OC cells promoted proliferation (p < 0.001) of sensitive cells and increased the proportion of cells in the G1 and S cell cycle phase in both PE01 and OVCAR5 cells. Direct co-culture led to a decrease in the IC50 to platinum in the cisplatin-sensitive cells (5.92 µM to 2.79 µM for PE01, and from 2.05 µM to 1.51 µM for OVCAR5). RNAseq analysis of co-cultured cells showed enrichment of Cell Cycle Control, Cyclins and Cell Cycle Regulation pathways. The transcription factor E2F1 was predicted as the main effector responsible for the transcriptomic changes in sensitive cells. Western blot and qRT-PCR confirmed upregulation of E2F1 in co-cultured vs monoculture. Furthermore, an E2F1 inhibitor reverted the increase in proliferation rate induced by co-culture to baseline levels. Conclusion Our data suggest that long term cohabitation of chemo-sensitive and -resistant cancer cells drive sensitive cells to a higher proliferative state, more responsive to platinum. Our results reveal an unexpected effect caused by direct interactions between cancer cells with different proliferative rates and levels of platinum resistance, modelling competition between cells in heterogeneous tumors.
Collapse
Affiliation(s)
- Andres Valdivia
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Matthew Cowan
- Department of Obstetrics & Gynecology and Women’s Health, Montefiore Medical Center, Bronx, NY, United States
| | - Horacio Cardenas
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ana Maria Isac
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hao Huang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
27
|
Gavasso S, Kråkenes T, Olsen H, Evjenth EC, Ytterdal M, Haugsøen JB, Kvistad CE. The Therapeutic Mechanisms of Mesenchymal Stem Cells in MS-A Review Focusing on Neuroprotective Properties. Int J Mol Sci 2024; 25:1365. [PMID: 38338644 PMCID: PMC10855165 DOI: 10.3390/ijms25031365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
In multiple sclerosis (MS), there is a great need for treatment with the ability to suppress compartmentalized inflammation within the central nervous system (CNS) and to promote remyelination and regeneration. Mesenchymal stem cells (MSCs) represent a promising therapeutic option, as they have been shown to migrate to the site of CNS injury and exert neuroprotective properties, including immunomodulation, neurotrophic factor secretion, and endogenous neural stem cell stimulation. This review summarizes the current understanding of the underlying neuroprotective mechanisms and discusses the translation of MSC transplantation and their derivatives from pre-clinical demyelinating models to clinical trials with MS patients.
Collapse
Affiliation(s)
- Sonia Gavasso
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway; (T.K.); (H.O.); (E.C.E.); (J.B.H.); (C.E.K.)
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Torbjørn Kråkenes
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway; (T.K.); (H.O.); (E.C.E.); (J.B.H.); (C.E.K.)
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Olsen
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway; (T.K.); (H.O.); (E.C.E.); (J.B.H.); (C.E.K.)
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Elisabeth Claire Evjenth
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway; (T.K.); (H.O.); (E.C.E.); (J.B.H.); (C.E.K.)
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Marie Ytterdal
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway; (T.K.); (H.O.); (E.C.E.); (J.B.H.); (C.E.K.)
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jonas Bull Haugsøen
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway; (T.K.); (H.O.); (E.C.E.); (J.B.H.); (C.E.K.)
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Christopher Elnan Kvistad
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway; (T.K.); (H.O.); (E.C.E.); (J.B.H.); (C.E.K.)
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
28
|
Kapoor D, Sharma P, Saini A, Azhar E, Elste J, Kohlmeir EK, Shukla D, Tiwari V. Tunneling Nanotubes: The Cables for Viral Spread and Beyond. Results Probl Cell Differ 2024; 73:375-417. [PMID: 39242387 DOI: 10.1007/978-3-031-62036-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Multicellular organisms require cell-to-cell communication to maintain homeostasis and thrive. For cells to communicate, a network of filamentous, actin-rich tunneling nanotubes (TNTs) plays a pivotal role in facilitating efficient cell-to-cell communication by connecting the cytoplasm of adjacent or distant cells. Substantial documentation indicates that diverse cell types employ TNTs in a sophisticated and intricately organized fashion for both long and short-distance communication. Paradoxically, several pathogens, including viruses, exploit the structural integrity of TNTs to facilitate viral entry and rapid cell-to-cell spread. These pathogens utilize a "surfing" mechanism or intracellular transport along TNTs to bypass high-traffic cellular regions and evade immune surveillance and neutralization. Although TNTs are present across various cell types in healthy tissue, their magnitude is increased in the presence of viruses. This heightened induction significantly amplifies the role of TNTs in exacerbating disease manifestations, severity, and subsequent complications. Despite significant advancements in TNT research within the realm of infectious diseases, further studies are imperative to gain a precise understanding of TNTs' roles in diverse pathological conditions. Such investigations are essential for the development of novel therapeutic strategies aimed at leveraging TNT-associated mechanisms for clinical applications. In this chapter, we emphasize the significance of TNTs in the life cycle of viruses, showcasing the potential for a targeted approach to impede virus-host cell interactions during the initial stages of viral infections. This approach holds promise for intervention and prevention strategies.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Pankaj Sharma
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Akash Saini
- Hinsdale Central High School, Hinsdale, IL, USA
| | - Eisa Azhar
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - James Elste
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | | | - Deepak Shukla
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
29
|
Dagar S, Subramaniam S. Tunneling Nanotube: An Enticing Cell-Cell Communication in the Nervous System. BIOLOGY 2023; 12:1288. [PMID: 37886998 PMCID: PMC10604474 DOI: 10.3390/biology12101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
The field of neuroscience is rapidly progressing, continuously uncovering new insights and discoveries. Among the areas that have shown immense potential in research, tunneling nanotubes (TNTs) have emerged as a promising subject of study. These minute structures act as conduits for the transfer of cellular materials between cells, representing a mechanism of communication that holds great significance. In particular, the interplay facilitated by TNTs among various cell types within the brain, including neurons, astrocytes, oligodendrocytes, glial cells, and microglia, can be essential for the normal development and optimal functioning of this complex organ. The involvement of TNTs in neurodegenerative disorders, such as Alzheimer's disease, Huntington's disease, and Parkinson's disease, has attracted significant attention. These disorders are characterized by the progressive degeneration of neurons and the subsequent decline in brain function. Studies have predicted that TNTs likely play critical roles in the propagation and spread of pathological factors, contributing to the advancement of these diseases. Thus, there is a growing interest in understanding the precise functions and mechanisms of TNTs within the nervous system. This review article, based on our recent work on Rhes-mediated TNTs, aims to explore the functions of TNTs within the brain and investigate their implications for neurodegenerative diseases. Using the knowledge gained from studying TNTs could offer novel opportunities for designing targeted treatments that can stop the progression of neurodegenerative disorders.
Collapse
Affiliation(s)
- Sunayana Dagar
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
- The Scripps Research Institute, La Jolla, CA 92037, USA
- Norman Fixel Institute for Neurological Diseases, 130 Scripps Way, C323, Jupiter, FL 33458, USA
| |
Collapse
|
30
|
Zhang L. The Role of Mesenchymal Stem Cells in Modulating the Breast Cancer Microenvironment. Cell Transplant 2023; 32:9636897231220073. [PMID: 38135917 DOI: 10.1177/09636897231220073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
The role of mesenchymal stem cells (MSCs) in the breast tumor microenvironment (TME) is significant and multifaceted. MSCs are recruited to breast tumor sites through molecular signals released by tumor sites. Once in the TME, MSCs undergo polarization and interact with various cell populations, including immune cells, cancer-associated fibroblasts (CAFs), cancer stem cells (CSCs), and breast cancer cells. In most cases, MSCs play roles in breast cancer therapeutic resistance, but there is also evidence that indicates their abilities to sensitize cancer cells to chemotherapy and radiotherapy. MSCs possess inherent regenerative and homing properties, making them attractive candidates for cell-based therapies. Therefore, MSCs can be engineered to express therapeutic molecules or deliver anti-cancer agents directly to tumor sites. Unraveling the intricate relationship between MSCs and the breast TME has the potential to uncover novel therapeutic targets and advance our understanding of breast cancer biology.
Collapse
Affiliation(s)
- Luxiao Zhang
- Department of Surgical Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|