1
|
Hosseini A, Sheibani M, Valipour M. Exploring the Therapeutic Potential of BBB-Penetrating Phytochemicals With p38 MAPK Modulatory Activity in Addressing Oxidative Stress-Induced Neurodegenerative Disorders, With a Focus on Alzheimer's Disease. Phytother Res 2024; 38:5598-5625. [PMID: 39300812 DOI: 10.1002/ptr.8329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/17/2024] [Accepted: 08/17/2024] [Indexed: 09/22/2024]
Abstract
Oxidative stress plays an important role in the occurrence of neurodegenerative diseases. Previous studies indicate a strong connection between oxidative stress, inappropriate activation of the p38 MAPK signaling pathway, and the pathogenesis of neurodegenerative diseases. Although antioxidant therapy is a valid strategy to alleviate these problems, the most important limitation of this approach is the ineffectiveness of drug administration due to the limited permeability of the BBB. Therefore, BBB-penetrating p38 MAPK modulators with proper antioxidant capacity could be useful in preventing/reducing the complications of neurodegenerative disorders. The current manuscript aims to review the therapeutic capabilities of some recently reviewed naturally occurring p38 MAPK inhibitors in the management of neurodegenerative problems such as Alzheimer's disease. In data collection, we tried to use more recent studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so on, but no specific time frame was considered due to the nature of the study. Our evaluations indicate that natural compounds tanshinones, protoberberines, pinocembrin, osthole, rhynchophylline, oxymatrine, schisandrin, piperine, paeonol, ferulic acid, 6-gingerol, obovatol, and trolox have significant potential for use as supplements/adjuvants in the reduction of neurodegenerative-related problems. Our findings emphasize the usefulness of BBB-penetrating phytochemicals with p38 MAPK modulatory activity as potential therapeutic options against neurodegenerative disorders. Of course, the proper use of these compounds depends on considering their toxicity/safety profile and pharmacokinetic characteristics as well as the clinical conditions of users.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Bömers JP, Holm A, Kazantzi S, Edvinsson L, Mathiesen TI, Haanes KA. Protein kinase C-inhibition reduces critical weight loss and improves functional outcome after experimental subarachnoid haemorrhage. J Stroke Cerebrovasc Dis 2024; 33:107728. [PMID: 38643942 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024] Open
Abstract
OBJECTIVES Subarachnoid haemorrhage (SAH) carries a high burden of morbidity and mortality. One in three patients develop vasospasm, which is associated with Delayed Cerebral Ischemia. The pathophysiology includes vasoconstrictor receptor upregulation in cerebral arteries. The protein kinase C - inhibitor RO-31-7549 reduces the expression of several vasoconstrictor receptors and normalizes cerebral blood flow in experimental SAH but functional and behavioural effects are unknown. This study was undertaken to analyse functional outcomes up to 14 days after experimental SAH. MATERIALS AND METHODS 54 male rats were randomised to experimental SAH or sham, using the pre-chiasmatic, single injection model, and subsequent treatment or vehicle. 42 remained for final analysis. The animals were euthanized on day 14 or when reaching a humane endpoint. The primary endpoint was overall survival, defined as either spontaneous mortality or when reaching a predefined humane endpoint. The secondary outcomes were differences in the rotating pole test, weight, open field test, novel object recognition and qPCR of selected inflammatory markers. RESULTS In the vehicle group 6/15 rats reached the humane endpoint of >20 % weight loss compared to 1/14 in the treatment group. This resulted in a significant reduced risk of early euthanasia due to >20 % weight loss of HR 0.15 (0.03-0.66, p = 0.04). Furthermore, the treatment group did significantly better on the rotating pole test, RR 0.64 (0.47-0.91, p = 0.02). CONCLUSION RO-31-7549 improved outcomes in terms >20 % weight loss and rotating pole performance after experimental SAH and could be investigated.
Collapse
Affiliation(s)
- Jesper P Bömers
- Department of Neurosurgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Clinical Experimental Research Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| | - Anja Holm
- Clinical Experimental Research Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark; Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Spyridoula Kazantzi
- Clinical Experimental Research Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Lars Edvinsson
- Clinical Experimental Research Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark; Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tiit I Mathiesen
- Department of Neurosurgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kristian A Haanes
- Clinical Experimental Research Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark; Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Valipour M, Zarghi A, Ebrahimzadeh MA, Irannejad H. Therapeutic potential of chelerythrine as a multi-purpose adjuvant for the treatment of COVID-19. Cell Cycle 2021; 20:2321-2336. [PMID: 34585628 PMCID: PMC8506812 DOI: 10.1080/15384101.2021.1982509] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multifunctional nature of phytochemicals and their chemical diversity has attracted attention to develop leads originated from nature to fight COVID-19. Pharmacological activities of chelerythrine and its congeners have been studied and reported in the literature. This compound simultaneously has two key therapeutic effects for the treatment of COVID-19, antiviral and anti-inflammatory activities. Chelerythrine can prevent hyper-inflammatory immune response through regulating critical signaling pathways involved in SARS-CoV-2 infection, such as alteration in Nrf2, NF-κB, and p38 MAPK activities. In addition, chelerythrine has a strong protein kinase C-α/-β inhibitory activity suitable for cerebral vasospasm prevention and eryptosis reduction, as well as beneficial effects in suppressing pulmonary inflammation and fibrosis. In terms of antiviral activity, chelerythrine can fight with SARS-CoV-2 through various mechanisms, such as direct-acting mechanism, viral RNA-intercalation, and regulation of host-based antiviral targets. Although chelerythrine is toxic in vitro, the in vivo toxicity is significantly reduced due to its structural conversion to alkanolamine. Its multifunctional action makes chelerythrine a prominent compound for the treatment of COVID-19. Considering precautions related to the toxicity at higher doses, it is expected that this compound is useful in combination with proper antivirals to reduce the severity of COVID-19 symptoms.
Collapse
Affiliation(s)
- Mehdi Valipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Alteration of basilar artery rho-kinase and soluble guanylyl cyclase protein expression in a rat model of cerebral vasospasm following subarachnoid hemorrhage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:531508. [PMID: 24982890 PMCID: PMC4058103 DOI: 10.1155/2014/531508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/07/2014] [Accepted: 04/07/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE The vasoconstrictor endothelin-1 (ET-1) has been implicated in the pathogenesis of cerebral vasospasm following subarachnoid hemorrhage (SAH). Previous results showed that CGS 26303, an endothelin converting enzyme (ECE) inhibitor, effectively prevented and reversed arterial narrowing in animal models of SAH. In the present study, we assessed the effect of CGS 26303 on neurological deficits in SAH rats. The involvement of vasoactive pathways downstream of ET-1 signaling in SAH was also investigated. METHODS Sprague-Dawley rats were divided into five groups (n = 6/group): (1) normal control, (2) SAH, (3) SAH+vehicle, (4) SAH+CGS 26303 (prevention), and (5) SAH+CGS 26303 (reversal). SAH was induced by injecting autologous blood into cisterna magna. CGS 26303 (10 mg/kg) was injected intravenously at 1 and 24 hr after the initiation of SAH in the prevention and reversal protocols, respectively. Behavioral changes were assessed at 48 hr after SAH. Protein expression was analyzed by Western blots. RESULTS Deficits in motor function were obvious in the SAH rats, and CGS 26303 significantly improved the rate of paraplegia. Expressions of rho-kinase-II and membrane-bound protein kinase C- δ and rhoA were significantly increased, while those of soluble guanylyl cyclase α 1 and β 1 as well as protein kinase G were significantly decreased in the basilar artery of SAH rats. Treatment with CGS 26303 nearly normalized these effects. CONCLUSIONS These results demonstrate that the rhoA/rho-kinase and sGC/cGMP/PKG pathways play pivotal roles in cerebral vasospasm after SAH. It also shows that ECE inhibition is an effective strategy for the treatment of this disease.
Collapse
|
5
|
Yeung PKK, Shen J, Chung SSM, Chung SK. Targeted over-expression of endothelin-1 in astrocytes leads to more severe brain damage and vasospasm after subarachnoid hemorrhage. BMC Neurosci 2013; 14:131. [PMID: 24156724 PMCID: PMC3815232 DOI: 10.1186/1471-2202-14-131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/15/2013] [Indexed: 01/15/2023] Open
Abstract
Background Endothelin-1 (ET-1) is a potent vasoconstrictor, and astrocytic ET-1 is reported to play a role in the pathogenesis of cerebral ischemic injury and cytotoxic edema. However, it is still unknown whether astrocytic ET-1 also contributes to vasogenic edema and vasospasm during subarachnoid hemorrhage (SAH). In the present study, transgenic mice with astrocytic endothelin-1 over-expression (GET-1 mice) were used to investigate the pathophysiological role of ET-1 in SAH pathogenesis. Results The GET-1 mice experienced a higher mortality rate and significantly more severe neurological deficits, blood–brain barrier breakdown and vasogenic edema compared to the non-transgenic (Ntg) mice following SAH. Oral administration of vasopressin V1a receptor antagonist, SR 49059, significantly reduced the cerebral water content in the GET-1 mice. Furthermore, the GET-1 mice showed significantly more pronounced middle cerebral arterial (MCA) constriction after SAH. Immunocytochemical analysis showed that the calcium-activated potassium channels and the phospho-eNOS were significantly downregulated, whereas PKC-α expression was significantly upregulated in the MCA of the GET-1 mice when compared to Ntg mice after SAH. Administration of ABT-627 (ETA receptor antagonist) significantly down-regulated PKC-α expression in the MCA of the GET-1 mice following SAH. Conclusions The present study suggests that astrocytic ET-1 involves in SAH-induced cerebral injury, edema and vasospasm, through ETA receptor and PKC-mediated potassium channel dysfunction. Administration of ABT-627 (ETA receptor antagonist) and SR 49059 (vasopressin V1a receptor antagonist) resulted in amelioration of edema and vasospasm in mice following SAH. These data provide a strong rationale to investigate SR 49059 and ABT-627 as therapeutic drugs for the treatment of SAH patients.
Collapse
Affiliation(s)
| | | | | | - Sookja K Chung
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Titova E, Ostrowski RP, Zhang JH, Tang J. Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm. Neurol Res 2013; 31:568-81. [DOI: 10.1179/174313209x382412] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Kamp MA, Dibué M, Schneider T, Steiger HJ, Hänggi D. Calcium and potassium channels in experimental subarachnoid hemorrhage and transient global ischemia. Stroke Res Treat 2012; 2012:382146. [PMID: 23251831 PMCID: PMC3518967 DOI: 10.1155/2012/382146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/27/2012] [Indexed: 11/23/2022] Open
Abstract
Healthy cerebrovascular myocytes express members of several different ion channel families which regulate resting membrane potential, vascular diameter, and vascular tone and are involved in cerebral autoregulation. In animal models, in response to subarachnoid blood, a dynamic transition of ion channel expression and function is initiated, with acute and long-term effects differing from each other. Initial hypoperfusion after exposure of cerebral vessels to oxyhemoglobin correlates with a suppression of voltage-gated potassium channel activity, whereas delayed cerebral vasospasm involves changes in other potassium channel and voltage-gated calcium channels expression and function. Furthermore, expression patterns and function of ion channels appear to differ between main and small peripheral vessels, which may be key in understanding mechanisms behind subarachnoid hemorrhage-induced vasospasm. Here, changes in calcium and potassium channel expression and function in animal models of subarachnoid hemorrhage and transient global ischemia are systematically reviewed and their clinical significance discussed.
Collapse
Affiliation(s)
- Marcel A. Kamp
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
| | - Maxine Dibué
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
- Center of Molecular Medicine, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
- Center of Molecular Medicine, Cologne, Germany
| | - Hans-Jakob Steiger
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
How Large Is the Typical Subarachnoid Hemorrhage? A Review of Current Neurosurgical Knowledge. World Neurosurg 2012; 77:686-97. [DOI: 10.1016/j.wneu.2011.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/07/2011] [Accepted: 02/12/2011] [Indexed: 11/22/2022]
|
9
|
Li J, Cao YX, Liu Y, Xu CB. Minimally modified LDL upregulates endothelin type B receptors in rat basilar artery. Microvasc Res 2012; 83:178-84. [DOI: 10.1016/j.mvr.2011.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/22/2011] [Accepted: 12/08/2011] [Indexed: 11/29/2022]
|
10
|
Roles of signal transduction mechanisms in cerebral vasospasm following subarachnoid hemorrhage: overview. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 110:27-30. [PMID: 21116910 DOI: 10.1007/978-3-7091-0353-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The concept of "cortical spreading depression" following subarachnoid hemorrhage (SAH) drastically tends to change the direction of vasospasm research. It has been rather confuse whether classical idea, delayed long-lasting major cerebral arterial contraction is real cerebral vasospasm or it occurs just after SAH and classical arterial contraction is an epiphenomenon. However, it is true that such sustained arterial contraction occurs following SAH, and the mechanisms still remain unclear. Intracellular signal transduction plays a pivotal role in long-lasting arterial contraction. Although scientific research advances, each role of signal transduction system has been getting clarified; overview or interrelations among such systems have to be more investigated. Based on the previous results, some aspect or part of streams of interrelation of signal transduction systems can be getting clearer. Such way to clarify the overview is extremely important to understand the real mechanisms of long-lasting arterial contraction following SAH ("classical cerebral vasospasm").
Collapse
|
11
|
Influence of Plasma and Cerebrospinal Fluid Levels of Endothelin-1 and No in Reducing Cerebral Vasospasm after Subarachnoid Hemorrhage During Treatment with Mild Hypothermia, in a Dog Model. Cell Biochem Biophys 2011; 61:137-43. [DOI: 10.1007/s12013-011-9170-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Waldsee R, Ahnstedt H, Eftekhari S, Edvinsson L. Involvement of calcium-calmodulin-dependent protein kinase II in endothelin receptor expression in rat cerebral arteries. Am J Physiol Heart Circ Physiol 2009; 298:H823-32. [PMID: 20008273 DOI: 10.1152/ajpheart.00759.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental cerebral ischemia and organ culture of cerebral arteries result in the enhanced expression of endothelin ET(B) receptors in smooth muscle cells via increased transcription. The present study was designed to evaluate the involvement of calcium-calmodulin-dependent protein kinase (CAMK) in the transcriptional expression of endothelin receptors after organ culture. Rat basilar arteries were incubated for 24 h with or without the CAMK inhibitor KN93 or ERK1/2 inhibitor U0126. The contractile responses to endothelin-1 (ET-1; ET(A) and ET(B) receptor agonist) and sarafotoxin 6c (S6c; ET(B) receptor agonist) were studied using a sensitive myograph. The mRNA levels of the ET(A) and ET(B) receptors and CAMKII were determined by real-time PCR, and their protein levels were evaluated by immunohistochemistry and Western blot. The mRNA levels of CAMKII and the ET(B) receptor increased during organ culture, but there was no change in the expression of the ET(A) receptor. This effect was abolished by coincubation with KN93 or U0126. In functional studies, both inhibitors attenuated the S6c-induced contraction. Incubating the arteries with KN93, but not U0126, decreased the amount of phosphorylated CAMKII. The inhibitors had no effect on the levels of myosin light chain during organ culture, as measured by Western blot. CAMKII is involved in the upregulation of the endothelin ET(B) receptor and interacts with the ERK1/2 pathway to enhance receptor expression. CAMKII has no effect on the contractile apparatus in rat cerebral arteries.
Collapse
Affiliation(s)
- Roya Waldsee
- Department of Clinical Sciences, Lund University and Lund University Hospital, Sweden.
| | | | | | | |
Collapse
|
13
|
Chico LK, Van Eldik LJ, Watterson DM. Targeting protein kinases in central nervous system disorders. Nat Rev Drug Discov 2009; 8:892-909. [PMID: 19876042 PMCID: PMC2825114 DOI: 10.1038/nrd2999] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein kinases are a growing drug target class in disorders in peripheral tissues, but the development of kinase-targeted therapies for central nervous system (CNS) diseases remains a challenge, largely owing to issues associated specifically with CNS drug discovery. However, several candidate therapeutics that target CNS protein kinases are now in various stages of preclinical and clinical development. We review candidate compounds and discuss selected CNS protein kinases that are emerging as important therapeutic targets. In addition, we analyse trends in small-molecule properties that correlate with key challenges in CNS drug discovery, such as blood-brain barrier penetrance and cytochrome P450-mediated metabolism, and discuss the potential of future approaches that will integrate molecular-fragment expansion with pharmacoinformatics to address these challenges.
Collapse
Affiliation(s)
- Laura K Chico
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
14
|
Obara K, Ito Y, Shimada H, Nakayama K. The relaxant effect of okadaic acid on canine basilar artery involves activation of PKCalpha and phosphorylation of the myosin light chain at Thr-9. Eur J Pharmacol 2008; 598:87-93. [PMID: 18835557 DOI: 10.1016/j.ejphar.2008.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 09/04/2008] [Accepted: 09/18/2008] [Indexed: 11/29/2022]
Abstract
Vasodilator responses induced by okadaic acid were investigated in canine basilar artery precontracted with 80 mM KCl. Okadaic acid (1 microM) relaxed the artery and this relaxant effect was partially inhibited by Gö6976, a conventional protein kinase C inhibitor, and calphostin C, an inhibitor of conventional and novel PKCs. Rottlerin, a specific inhibitor of PKCdelta, did not influence okadaic acid's effect. KCl increased phosphorylation of 20,000-Dalton myosin light chain (MLC(20)) at Ser-19. Okadaic acid additionally increased MLC(20) phosphorylation at Thr-18 and Thr-9, resulting in triphosphorylation of MLC(20). This phosphorylation was inhibited by Gö6976. Okadaic acid stimulated phosphorylation of PKCalpha and 17,000-Dalton PKC-potentiated inhibitory phosphoprotein (CPI-17), and Gö6976 inhibited these phosphorylations. These results suggest that okadaic acid's relaxant effect involves MLC(20) triphosphorylation through a direct phosphorylation by PKCalpha and an indirect phosphorylation by inhibition of myosin light chain phosphatase through PKCalpha-mediated CPI-17 phosphorylation.
Collapse
Affiliation(s)
- Kazuo Obara
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-City, Shizuoka 422-8526, Japan.
| | | | | | | |
Collapse
|
15
|
Ansar S, Edvinsson L. Subtype Activation and Interaction of Protein Kinase C and Mitogen-Activated Protein Kinase Controlling Receptor Expression in Cerebral Arteries and Microvessels After Subarachnoid Hemorrhage. Stroke 2008; 39:185-90. [DOI: 10.1161/strokeaha.107.487827] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Saema Ansar
- From the Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Sweden; and the Department of Clinical Experimental Research, Glostrup University Hospital, Glostrup, Denmark
| | - Lars Edvinsson
- From the Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Sweden; and the Department of Clinical Experimental Research, Glostrup University Hospital, Glostrup, Denmark
| |
Collapse
|
16
|
Beg SS, Hansen-Schwartz JA, Vikman PJ, Xu CB, Edvinsson LI. Protein kinase C inhibition prevents upregulation of vascular ET(B) and 5-HT(1B) receptors and reverses cerebral blood flow reduction after subarachnoid haemorrhage in rats. J Cereb Blood Flow Metab 2007; 27:21-32. [PMID: 16736053 DOI: 10.1038/sj.jcbfm.9600313] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of cerebral ischaemia after subarachnoid haemorrhage (SAH) still remains elusive. The purpose of the present study was to examine whether specific protein kinas C (PKC) inhibition in rats could alter the transcriptional SAH induced Endothelin (ET) type B and 5-hydroxytryptamine type 1B (5-HT(1B)) receptor upregulation and prevent the associated cerebral blood flow (CBF) reduction. The PKC inhibitor RO-31-7549 or vehicle was injected intracisternally after the induced SAH in rats (n=3 to 10 in each groups for each method). The involvement of the PKC isoforms was investigated with Western blot; only PKCdelta and PKCalpha subtypes were increased after SAH RO-31-7549 treatment abolished this. At 2 days after the SAH basilar and middle cerebral arteries were harvested and the contractile response to endothelin-1 (ET-1; ET(A) and ET(B) receptor agonist) and 5-carboxamidotryptamine (5-CT; 5-HT(1) receptor agonist) were investigated with a myograph. The contractile responses to ET-1 and 5-CT were increased (P<0.05) after SAH compared with sham operated rats. In parallel, the ET(B) and 5-HT(1B) receptor mRNA and protein expression were significantly elevated after SAH, as analysed by quantitative real-time polymerase chain reaction and immunohistochemistry, respectively. Administration of RO-31-7549 prevented the upregulated contraction elicited by application of ET-1 and 5-CT in cerebral arteries and kept the ET(B) and 5-HT(1B) receptor mRNA and protein levels at pre-SAH levels. Regional and global CBF evaluated by an autoradiographic technique were reduced by 60%+/-4% after SAH (P<0.05) and prevented by treatment with RO-31-7549. Our study suggests that PKC plays an important role in the pathogenesis of cerebral ischaemia after SAH.
Collapse
Affiliation(s)
- Saema S Beg
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University Hospital, Lund, Sweden.
| | | | | | | | | |
Collapse
|
17
|
Hansen-Schwartz J. Cerebral vasospasm: a consideration of the various cellular mechanisms involved in the pathophysiology. Neurocrit Care 2006; 1:235-46. [PMID: 16174921 DOI: 10.1385/ncc:1:2:235] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cellular mechanisms responsible for cerebral vasospasm (CVS) occurring after subarachnoid hemorrhage (SAH) have been of major interest over the past 50 years. The present review describes how each of the discrete anatomic components that comprise the cerebral artery may contribute to the pathology of CVS. The blood extravasated after SAH is hemolyzed and undergoes degradation with resultant production of free radicals, known to be powerful initiators of vascular damage. An inflammatory response is generated activating both leukocytes and platelets with subsequent release of inflammatory agents. The cerebral artery affected by CVS undergoes phenotypic change involving both the endothelial and smooth muscle cells. In the endothelium the production of nitric oxide and prostacyclin is affected. In the smooth muscle cells signal transduction pathways that enhance the function of the contractile proteins and induce the upregulation of contractile receptors are activated. In parallel, there is evidence that nervous reflex pathways involving the trigeminal ganglion and the hypothalamus are activated. However, the relative contributions of each of the systems are speculative. Therapy may be directed at disrupting the cascade leading from the SAH insult to CVS or at overcoming the dysfunction incurred by CVS; possible therapeutical interventions are considered.
Collapse
Affiliation(s)
- Jacob Hansen-Schwartz
- Department of Clinical Experimental Research, Glostrup University Hospital, Glostrup, Denmark.
| |
Collapse
|
18
|
Yamaguchi-Okada M, Nishizawa S, Koide M, Nonaka Y. Biomechanical and phenotypic changes in the vasospastic canine basilar artery after subarachnoid hemorrhage. J Appl Physiol (1985) 2005; 99:2045-52. [PMID: 16051708 DOI: 10.1152/japplphysiol.01138.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because it has been argued that active myogenic tone prolongs cerebral vasospasm for >2 wk after subarachnoid hemorrhage (SAH), we attempted to identify the mechanism that plays the main role in sustaining the prolonged cerebral vasospasm. We especially focused on the roles of biomechanical and phenotypic changes in the cerebral arteries in the mechanisms of prolonged vasospasm after SAH. We used the basilar arteries from a “two-hemorrhage” canine model to make serial measurements of maximal contraction capacity and arterial stiffness (papaverine-insensitive tone) until day 28. We also examined hematoxylin-eosin-stained vasospastic canine basilar arteries for histological changes and immunohistochemically examined them for expression of myosin heavy chain isoforms (SMemb, SM1, and SM2), which are markers of smooth muscle phenotypic changes. Changes in collagen concentration in canine basilar arteries were also measured. Angiographic cerebral vasospasm persisted until day 14 and then gradually diminished; artery diameter returned to the control diameters on day 28. Maximal contraction capacity decreased until day 21 and showed some recovery by day 28. Arterial stiffness, on the other hand, progressed until day 28. Histological examination revealed medial thickening and increased connective tissue until day 21 and a return to control findings by day 28. The increased connective tissue was not accompanied by changes in collagen concentration, suggesting a role of some other protein in the increase in connective tissue. Immunohistochemical studies with anti-SMemb, anti-SM1, and anti-SM2 antibodies showed enhanced expression of SMemb from day 7 to day 21 and disappearance of SM1 and SM2 on days 14 and 21. The changes in myosin heavy chain isoform expression returned to normal on day 28. The above results indicate that biomechanical and phenotypic changes may play a pivotal role in sustaining cerebral vasospasm for >2 wk after SAH, with minimal changes in active myogenic arterial tone.
Collapse
Affiliation(s)
- Mitsuo Yamaguchi-Okada
- Department of Neurosurgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192 Japan
| | | | | | | |
Collapse
|
19
|
Abstract
The elusive nature of events that sustain cerebral vasospasm after subarachnoid hemorrhage resulting from a ruptured aneurysm presents major challenges in designing effective therapies for this frequently devastating condition. Protracted cerebral artery constriction entails several dynamic components in intracellular signaling events initiated by endothelial factors, products of hemolysate, and numerous kinases, as well as increased intracellular Ca(2+). The rationale for potential treatment modalities and their efficacy are discussed in this brief review.
Collapse
Affiliation(s)
- Shigeru Nishizawa
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | |
Collapse
|
20
|
Zakharov SI, Morrow JP, Liu G, Yang L, Marx SO. Activation of the BK (SLO1) potassium channel by mallotoxin. J Biol Chem 2005; 280:30882-7. [PMID: 15998639 DOI: 10.1074/jbc.m505302200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pharmacologic approaches to activate K+ channels represent an emerging strategy to regulate membrane excitability. Here we report the identification and characterization of a lipid soluble toxin, mallotoxin (rottlerin), which potently activates the large conductance voltage and Ca2+-activated K+ channel (BK) expressed in a heterologous expression system and human vascular smooth muscle cells, shifting the conductance/voltage relationship by >100 mV. Probing the mechanism of action, we discover that the BK channel can be activated in the absence of divalent cations (Ca2+, Mg2+), suggesting that the mallotoxin mechanism of action involves the voltage-dependent gating of the channel. Mallotoxin-activated channels remain incrementally sensitive to Ca2+ and beta subunits. In comparison to other small hydrophobic poisons, anesthetic agents, and protein toxins that inhibit ion channel activity, mallotoxin potently activates channel activity. In certain respects, mallotoxin acts as a BK channel beta1 subunit mimetic, preserving BK channel Ca2+ sensitivity yet adjusting the set-point for BK channel activation to a more hyperpolarized membrane potential.
Collapse
Affiliation(s)
- Sergey I Zakharov
- Division of Cardiology, Department of Medicine and Pharmacology and Center for Molecular Cardiology and Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
21
|
Clark JF, Pyne-Geithman G. Vascular smooth muscle function: The physiology and pathology of vasoconstriction. PATHOPHYSIOLOGY 2005; 12:35-45. [PMID: 15927823 DOI: 10.1016/j.pathophys.2005.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 02/22/2005] [Indexed: 01/13/2023] Open
Abstract
Vascular smooth muscle is the contractile component of arteries and veins. The control of contraction and relaxation is dependent upon intracellular and extracellular signals. Abnormal contractions can cause and or contribute to pathology such as hypertension, ischemia and infarction. In this review, we address the vascular pathogenesis associated with hypertension and subarachnoid hemorrhage induced cerebral vasospasm. Hypertension is a multifactorial disease with many causes and a profound impact on the cardiovascular system, whereas subarachnoid hemorrhage induced cerebral vasospasm is a pathological vasoconstriction often causing infarction that is thought to be 'caused' by a factor or factors in the CSF following the hemorrhage. However, the mechanism by which the vessels are constricted is unknown. Although the causes for these two pathological vasoconstrictions remain to be determined, we conclude that the common denominator is that these contractile changes result in pathology with devastating consequences to human health.
Collapse
Affiliation(s)
- Joseph F Clark
- Department of Neurology (ML 0536), University of Cincinnati, Cincinnati, OH 45267-0536, USA
| | | |
Collapse
|
22
|
Obara K, Nishizawa S, Koide M, Nozawa K, Mitate A, Ishikawa T, Nakayama K. Interactive role of protein kinase C-delta with rho-kinase in the development of cerebral vasospasm in a canine two-hemorrhage model. J Vasc Res 2005; 42:67-76. [PMID: 15637442 DOI: 10.1159/000083093] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 10/20/2004] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND We previously reported that protein kinase C (PKC)-delta was initially translocated from the cytosol to the membrane fraction (on day 4), followed by PKC-alpha, with the progression of cerebral vasospasm after subarachnoid hemorrhage (SAH) on day 7. Rho/Rho-kinase pathways have also been proposed to be involved in the vasospasm. Thus we investigated the interactive role of Rho-kinase and PKC in the development of cerebral vasospasm after SAH. METHODS The cerebral vasospasm was produced using a 'two-hemorrhage' canine model. The animals were treated with Y-27632, a Rho-kinase inhibitor, and rottlerin, a PKC-delta inhibitor, both injected into the cisterna magna. RESULTS Y-27632 inhibited the vasospasm, 20-kDa myosin light chain (MLC20) phosphorylation, and PKC-delta translocation after the second injection of autologous blood on day 4. In contrast, Y-27632 did not affect the vasospasm on day 7. Rottlerin also inhibited the vasospasm on day 4, but had no effect on MLC20 phosphorylation and RhoA translocation. The vasospasm was accompanied with the phosphorylation of caldesmon (CaD), an actin-linked regulatory protein, which was strongly attenuated by Y-27632 and rottlerin. The application of PKC-delta to skinned strips of isolated canine basilar arteries caused a contraction and an increase in CaD phosphorylation. CONCLUSION The development of cerebral vasospasm after SAH (on day 4) is caused by at least two mechanisms: one involves MLC20 phosphorylation mediated by the inhibition of MLC20 phosphatase by Rho-kinase, and the other CaD phosphorylation mediated by the activation of PKC-delta by Rho-kinase, which results in the alleviation of the inhibition by CaD of myosin Mg2+-ATPase activity.
Collapse
Affiliation(s)
- Kazuo Obara
- Department of Cellular and Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|