1
|
Miles TK, Odle AK, Byrum SD, Lagasse AN, Haney AC, Ortega VG, Herdman AK, MacNicol MC, MacNicol AM, Childs GV. Ablation of Leptin Receptor Signaling Alters Somatotrope Transcriptome Maturation in Female Mice. Endocrinology 2025; 166:bqaf036. [PMID: 39964842 PMCID: PMC11919818 DOI: 10.1210/endocr/bqaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/13/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Anterior pituitary somatotropes respond to metabolic signals from the adipokine leptin to optimize functional responses to the body's nutritional state via growth hormone (GH) secretion. Molecular targets of leptin in pituitary somatotropes include GH, the GH-releasing hormone receptor (GHRHR), and, in females, the transcription factor POU1F1, all of which are dependent on leptin stimulation for expression. To identify the trophic mechanisms underlying leptin action upon somatotropes, we analyzed single-cell gene transcriptomes comparing pituitaries from a female mouse model bearing somatotropes lacking leptin receptors (LEPR-null mutants) and control pituitaries. Computational clustering of results identified all common pituitary cell types and differentially expressed genes. Mutant female somatotrope clusters showed decreased levels of Gh and Htatsf1 mRNA, which was also reduced in mutant pituitaries lacking Prop1 or POU1F1. Mutant somatotropes also showed increased expression of markers for pituitary stem and progenitor cells (eg, Sox9) and increased (1.73-6.7 fold) expression of nonsomatotrope hormones, Pomc, Lhb, Tshb, Cga, and Prl. Conversely, the mutant female Sox2-positive stem cell cluster showed decreased expression of markers for stem cells and increased expression of pituitary hormone genes. The data support a model in which the female pituitary somatotrope cell population's development and/or maintenance requires leptin trophic signals and also suggests that, in the absence of normal somatotrope maturation, pituitary stem cells are driven towards premature differentiation.
Collapse
Affiliation(s)
- Tiffany K Miles
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angela K Odle
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alex N Lagasse
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Anessa C Haney
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Victoria G Ortega
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ashley K Herdman
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Melanie C MacNicol
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angus M MacNicol
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gwen V Childs
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
2
|
Dieguez C, López M, Casanueva F. Hypothalamic GHRH. Rev Endocr Metab Disord 2025:10.1007/s11154-025-09951-y. [PMID: 39913072 DOI: 10.1007/s11154-025-09951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Despite initial discovery in pancreatic tumors, GHRH is a 44-amino acid peptide primarily expressed in the hypothalamus. Recent RNA sequencing clarifies GHRH expression: predominantly hypothalamic in humans, with some basal ganglia presence, while extending to additional central nervous system (CNS) regions in other species. GHRH binds to its G-protein coupled receptor (GHRHR) in the arcuate (ARC), ventromedial (VMH), and periventricular (PeN) nuclei of the hypothalamus to exert its effects. Notably, the highest non-brain expression is found in somatotroph cells of the pituitary, directly targeting growth hormone (GH) production. GHRH is the primary regulator of pulsatile GH secretion, counteracted by somatostatin. While early models proposed alternating GHRH/somatostatin bursts, others implicate somatostatin as the primary regulator of GH pulse timing. These models fail to fully explain species and gender differences, particularly regarding nutritional status. The discovery of ghrelin, acting via GHS-R1a on GHRH neurons, significantly advanced understanding of GH regulation. Ghrelin interacts intricately with GHRH, modulating its expression and neuronal activity. Ghrelin also exerts GHRH-independent GH stimulation and synergizes with GHRH. The crucial role of GHRH in GH regulation is demonstrated by its key involvement in the action of other GH regulators, such as leptin, neuropeptide Y (NPY), and orexins. However, these interactions have also revealed that the physiological effects of GHRH extend far beyond its canonical role as a GH secretagogue. In this context, GHRH is thought to be a key regulator of the sleep-wake cycle and may be involved in whole-body energy homeostasis. The objective of this review is to summarize the current knowledge on GHRH and to discuss the potential pleiotropic effect of this hypothalamic neuropeptide, far beyond its classical action as regulator of the somatotroph axis.
Collapse
Affiliation(s)
- Carlos Dieguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, 15782,, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain.
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, 15782,, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain
| | - Felipe Casanueva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain
- Department of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, 15782, Santiago de Compotela, Spain
- Complejo Universitario de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| |
Collapse
|
3
|
Stefanakis K, Upadhyay J, Ramirez-Cisneros A, Patel N, Sahai A, Mantzoros CS. Leptin physiology and pathophysiology in energy homeostasis, immune function, neuroendocrine regulation and bone health. Metabolism 2024; 161:156056. [PMID: 39481533 DOI: 10.1016/j.metabol.2024.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Since its discovery and over the past thirty years, extensive research has significantly expanded our understanding of leptin and its diverse roles in human physiology, pathophysiology and therapeutics. A prototypical adipokine initially identified for its critical function in appetite regulation and energy homeostasis, leptin has been revealed to also exert profound effects on the hypothalamic-pituitary-gonadal, thyroid, adrenal and growth hormone axis, differentially between animals and humans, as well as in regulating immune function. Beyond these roles, leptin plays a pivotal role in significantly affecting bone health by promoting bone formation and regulating bone metabolism both directly and indirectly through its neuroendocrine actions. The diverse actions of leptin are particularly notable in leptin-deficient animal models and in conditions characterized by low circulating leptin levels, such as lipodystrophies and relative energy deficiency. Conversely, the effectiveness of leptin is attenuated in leptin-sufficient states, such as obesity and other high-adiposity conditions associated with hyperleptinemia and leptin tolerance. This review attempts to consolidate 30 years of leptin research with an emphasis on its physiology and pathophysiology in humans, including its promising therapeutic potential. We discuss preclinical and human studies describing the pathophysiology of energy deficiency across organ systems and the significant role of leptin in regulating neuroendocrine, immune, reproductive and bone health. We finally present past proof of concept clinical trials of leptin administration in leptin-deficient subjects that have demonstrated positive neuroendocrine, reproductive, and bone health outcomes, setting the stage for future phase IIb and III randomized clinical trials in these conditions.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jagriti Upadhyay
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Arantxa Ramirez-Cisneros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nihar Patel
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Akshat Sahai
- Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
4
|
Barrios V, López-Villar E, Frago LM, Canelles S, Díaz-González F, Burgos-Ramos E, Frühbeck G, Chowen JA, Argente J. Cerebral Insulin Bolus Revokes the Changes in Hepatic Lipid Metabolism Induced by Chronic Central Leptin Infusion. Cells 2021; 10:cells10030581. [PMID: 33800837 PMCID: PMC8000796 DOI: 10.3390/cells10030581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Central actions of leptin and insulin on hepatic lipid metabolism can be opposing and the mechanism underlying this phenomenon remains unclear. Both hormones can modulate the central somatostatinergic system that has an inhibitory effect on growth hormone (GH) expression, which plays an important role in hepatic metabolism. Using a model of chronic central leptin infusion, we evaluated whether an increase in central leptin bioavailability modifies the serum lipid pattern through changes in hepatic lipid metabolism in male rats in response to an increase in central insulin and the possible involvement of the GH axis in these effects. We found a rise in serum GH in leptin plus insulin-treated rats, due to an increase in pituitary GH mRNA levels associated with lower hypothalamic somatostatin and pituitary somatostatin receptor-2 mRNA levels. An augment in hepatic lipolysis and a reduction in serum levels of non-esterified fatty acids (NEFA) and triglycerides were found in leptin-treated rats. These rats experienced a rise in lipogenic-related factors and normalization of serum levels of NEFA and triglycerides after insulin treatment. These results suggest that an increase in insulin in leptin-treated rats can act on the hepatic lipid metabolism through activation of the GH axis.
Collapse
Affiliation(s)
- Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
- Correspondence: (V.B.); (J.A.)
| | - Elena López-Villar
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
| | - Laura M. Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
| | - Francisca Díaz-González
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, E-28049 Madrid, Spain;
| | - Emma Burgos-Ramos
- Faculty of Environmental Sciences and Biochemistry, Universidad de Castilla-La Mancha, E-45071 Toledo, Spain;
| | - Gema Frühbeck
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
- Metabolic Research Laboratory, Clínica Universidad de Navarra, E-31008 Pamplona, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
- IMDEA Food Institute, CEI UAM + CSIC, E-28049 Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, E-28049 Madrid, Spain
- Correspondence: (V.B.); (J.A.)
| |
Collapse
|
5
|
Vélez EJ, Unniappan S. A Comparative Update on the Neuroendocrine Regulation of Growth Hormone in Vertebrates. Front Endocrinol (Lausanne) 2020; 11:614981. [PMID: 33708174 PMCID: PMC7940767 DOI: 10.3389/fendo.2020.614981] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/31/2020] [Indexed: 12/22/2022] Open
Abstract
Growth hormone (GH), mainly produced from the pituitary somatotrophs is a key endocrine regulator of somatic growth. GH, a pleiotropic hormone, is also involved in regulating vital processes, including nutrition, reproduction, physical activity, neuroprotection, immunity, and osmotic pressure in vertebrates. The dysregulation of the pituitary GH and hepatic insulin-like growth factors (IGFs) affects many cellular processes associated with growth promotion, including protein synthesis, cell proliferation and metabolism, leading to growth disorders. The metabolic and growth effects of GH have interesting applications in different fields, including the livestock industry and aquaculture. The latest discoveries on new regulators of pituitary GH synthesis and secretion deserve our attention. These novel regulators include the stimulators adropin, klotho, and the fibroblast growth factors, as well as the inhibitors, nucleobindin-encoded peptides (nesfatin-1 and nesfatin-1-like peptide) and irisin. This review aims for a comparative analysis of our current understanding of the endocrine regulation of GH from the pituitary of vertebrates. In addition, we will consider useful pharmacological molecules (i.e. stimulators and inhibitors of the GH signaling pathways) that are important in studying GH and somatotroph biology. The main goal of this review is to provide an overview and update on GH regulators in 2020. While an extensive review of each of the GH regulators and an in-depth analysis of specifics are beyond its scope, we have compiled information on the main endogenous and pharmacological regulators to facilitate an easy access. Overall, this review aims to serve as a resource on GH endocrinology for a beginner to intermediate level knowledge seeker on this topic.
Collapse
|
6
|
Sarmento-Cabral A, Peinado JR, Halliday LC, Malagon MM, Castaño JP, Kineman RD, Luque RM. Adipokines (Leptin, Adiponectin, Resistin) Differentially Regulate All Hormonal Cell Types in Primary Anterior Pituitary Cell Cultures from Two Primate Species. Sci Rep 2017; 7:43537. [PMID: 28349931 PMCID: PMC5640086 DOI: 10.1038/srep43537] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/25/2017] [Indexed: 12/27/2022] Open
Abstract
Adipose-tissue (AT) is an endocrine organ that dynamically secretes multiple hormones, the adipokines, which regulate key physiological processes. However, adipokines and their receptors are also expressed and regulated in other tissues, including the pituitary, suggesting that locally- and AT-produced adipokines might comprise a regulatory circuit that relevantly modulate pituitary cell-function. Here, we used primary pituitary cell-cultures from two normal nonhuman-primate species [Papio-anubis/Macaca-fascicularis] to determine the impact of different adipokines on the functioning of all anterior-pituitary cell-types. Leptin and resistin stimulated GH-release, a response that was blocked by somatostatin. Conversely, adiponectin decreased GH-release, and inhibited GHRH-, but not ghrelin-stimulated GH-secretion. Furthermore: 1) Leptin stimulated PRL/ACTH/FSH- but not LH/TSH-release; 2) adiponectin stimulated PRL-, inhibited ACTH- and did not alter LH/FSH/TSH-release; and 3) resistin increased ACTH-release and did not alter PRL/LH/FSH/TSH-secretion. These effects were mediated through the activation of common (AC/PKA) and distinct (PLC/PKC, intra-/extra-cellular calcium, PI3K/MAPK/mTOR) signaling-pathways, and by the gene-expression regulation of key receptors/transcriptional-factors involved in the functioning of these pituitary cell-types (e.g. GHRH/ghrelin/somatostatin/insulin/IGF-I-receptors/Pit-1). Finally, we found that primate pituitaries expressed leptin/adiponectin/resistin. Altogether, these and previous data suggest that local-production of adipokines/receptors, in conjunction with circulating adipokine-levels, might comprise a relevant regulatory circuit that contribute to the fine-regulation of pituitary functions.
Collapse
Affiliation(s)
- André Sarmento-Cabral
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain
| | - Juan R Peinado
- Department of Medical Sciences, Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Spain
| | - Lisa C Halliday
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, Illinois, USA
| | - María M Malagon
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain
| | - Rhonda D Kineman
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain
| |
Collapse
|
7
|
Steyn FJ, Tolle V, Chen C, Epelbaum J. Neuroendocrine Regulation of Growth Hormone Secretion. Compr Physiol 2016; 6:687-735. [PMID: 27065166 DOI: 10.1002/cphy.c150002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article reviews the main findings that emerged in the intervening years since the previous volume on hormonal control of growth in the section on the endocrine system of the Handbook of Physiology concerning the intra- and extrahypothalamic neuronal networks connecting growth hormone releasing hormone (GHRH) and somatostatin hypophysiotropic neurons and the integration between regulators of food intake/metabolism and GH release. Among these findings, the discovery of ghrelin still raises many unanswered questions. One important event was the application of deconvolution analysis to the pulsatile patterns of GH secretion in different mammalian species, including Man, according to gender, hormonal environment and ageing. Concerning this last phenomenon, a great body of evidence now supports the role of an attenuation of the GHRH/GH/Insulin-like growth factor-1 (IGF-1) axis in the control of mammalian aging.
Collapse
Affiliation(s)
- Frederik J Steyn
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Virginie Tolle
- Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Jacques Epelbaum
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Allensworth-James ML, Odle A, Haney A, Childs G. Sex Differences in Somatotrope Dependency on Leptin Receptors in Young Mice: Ablation of LEPR Causes Severe Growth Hormone Deficiency and Abdominal Obesity in Males. Endocrinology 2015; 156:3253-64. [PMID: 26168341 PMCID: PMC4541611 DOI: 10.1210/en.2015-1198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Leptin receptor (LEPR) signaling controls appetite and energy expenditure. Somatotrope-specific deletion of the LEPRb signaling isoform causes GH deficiency and obesity. The present study selectively ablated Lepr exon 1 in somatotropes, which removes the signal peptide, causing the loss of all isoforms of LEPR. Excision of Lepr exon 1 was restricted to the pituitary, and mutant somatotropes failed to respond to leptin. Young (2-3 mo) males showed a severe 84% reduction in serum GH levels and more than 60% reduction in immunolabeled GH cells compared with 41%-42% reductions in GH and GH cells in mutant females. Mutant males (35 d) and females (45 d) weighed less than controls and males had lower lean body mass. Image analysis of adipose tissue by magnetic resonance imaging showed that young males had a 2-fold increase in abdominal fat mass and increased adipose tissue density. Young females had only an overall increase in adipose tissue. Both males and females showed lower energy expenditure and higher respiratory quotient, indicating preferential carbohydrate burning. Young mutant males slept less and were more restless during the dark phase, whereas the opposite was true of females. The effects of a Cre-bearing sire on his non-Cre-recombinase bearing progeny are seen by increased respiratory quotient and reduced litter sizes. These studies elucidate clear sex differences in the extent to which somatotropes are dependent on all isoforms of LEPR. These results, which were not seen with the ablation of Lepr exon 17, highlight the severe consequences of ablation of LEPR in male somatotropes.
Collapse
Affiliation(s)
- Melody L Allensworth-James
- Department of Neurobiology and Developmental Sciences, College of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas 72212
| | - Angela Odle
- Department of Neurobiology and Developmental Sciences, College of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas 72212
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, College of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas 72212
| | - Gwen Childs
- Department of Neurobiology and Developmental Sciences, College of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas 72212
| |
Collapse
|
9
|
Lisboa PC, de Oliveira E, Manhães AC, Santos-Silva AP, Pinheiro CR, Younes-Rapozo V, Faustino LC, Ortiga-Carvalho TM, Moura EG. Effects of maternal nicotine exposure on thyroid hormone metabolism and function in adult rat progeny. J Endocrinol 2015; 224:315-25. [PMID: 25653393 DOI: 10.1530/joe-14-0473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Postnatal nicotine exposure leads to obesity and hypothyroidism in adulthood. We studied the effects of maternal nicotine exposure during lactation on thyroid hormone (TH) metabolism and function in adult offspring. Lactating rats received implants of osmotic minipumps releasing nicotine (NIC, 6 mg/kg per day s.c.) or saline (control) from postnatal days 2 to 16. Offspring were killed at 180 days. We measured types 1 and 2 deiodinase activity and mRNA, mitochondrial α-glycerol-3-phosphate dehydrogenase (mGPD) activity, TH receptor (TR), uncoupling protein 1 (UCP1), hypothalamic TRH, pituitary TSH, and in vitro TRH-stimulated TSH secretion. Expression of deiodinase mRNAs followed the same profile as that of the enzymatic activity. NIC exposure caused lower 5'-D1 and mGPD activities; lower TRβ1 content in liver as well as lower 5'-D1 activity in muscle; and higher 5'-D2 activity in brown adipose tissue (BAT), heart, and testis, which are in accordance with hypothyroidism. Although deiodinase activities were not changed in the hypothalamus, pituitary, and thyroid of NIC offspring, UCP1 expression was lower in BAT. Levels of both TRH and TSH were lower in offspring exposed to NIC, which presented higher basal in vitro TSH secretion, which was not increased in response to TRH. Thus, the hypothyroidism in NIC offspring at adulthood was caused, in part, by in vivo TRH-TSH suppression and lower sensitivity to TRH. Despite the hypothyroid status of peripheral tissues, these animals seem to develop an adaptive mechanism to preserve thyroxine to triiodothyronine conversion in central tissues.
Collapse
Affiliation(s)
- P C Lisboa
- Laboratory of Endocrine PhysiologyLaboratory of NeurophysiologyBiology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551-030, BrazilCarlos Chagas Filho Biophysic InstituteFederal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - E de Oliveira
- Laboratory of Endocrine PhysiologyLaboratory of NeurophysiologyBiology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551-030, BrazilCarlos Chagas Filho Biophysic InstituteFederal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - A C Manhães
- Laboratory of Endocrine PhysiologyLaboratory of NeurophysiologyBiology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551-030, BrazilCarlos Chagas Filho Biophysic InstituteFederal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - A P Santos-Silva
- Laboratory of Endocrine PhysiologyLaboratory of NeurophysiologyBiology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551-030, BrazilCarlos Chagas Filho Biophysic InstituteFederal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - C R Pinheiro
- Laboratory of Endocrine PhysiologyLaboratory of NeurophysiologyBiology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551-030, BrazilCarlos Chagas Filho Biophysic InstituteFederal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - V Younes-Rapozo
- Laboratory of Endocrine PhysiologyLaboratory of NeurophysiologyBiology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551-030, BrazilCarlos Chagas Filho Biophysic InstituteFederal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil Laboratory of Endocrine PhysiologyLaboratory of NeurophysiologyBiology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551-030, BrazilCarlos Chagas Filho Biophysic InstituteFederal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - L C Faustino
- Laboratory of Endocrine PhysiologyLaboratory of NeurophysiologyBiology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551-030, BrazilCarlos Chagas Filho Biophysic InstituteFederal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - T M Ortiga-Carvalho
- Laboratory of Endocrine PhysiologyLaboratory of NeurophysiologyBiology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551-030, BrazilCarlos Chagas Filho Biophysic InstituteFederal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - E G Moura
- Laboratory of Endocrine PhysiologyLaboratory of NeurophysiologyBiology Institute, State University of Rio de Janeiro, Rio de Janeiro 20551-030, BrazilCarlos Chagas Filho Biophysic InstituteFederal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| |
Collapse
|
10
|
Syed M, Cozart M, Haney AC, Akhter N, Odle AK, Allensworth-James M, Crane C, Syed FM, Childs GV. Ghrelin restoration of function in vitro in somatotropes from male mice lacking the Janus kinase (JAK)-binding site of the leptin receptor. Endocrinology 2013; 154:1565-76. [PMID: 23417423 PMCID: PMC3602631 DOI: 10.1210/en.2012-2254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deletion of the signaling domain of leptin receptors selectively in somatotropes, with Cre-loxP technology, reduced the percentage of immunolabeled GH cells and serum GH. We hypothesized that the deficit occurred when leptin's postnatal surge failed to stimulate an expansion in the cell population. To learn more about the deficiency in GH cells, we tested their expression of GHRH receptors and GH mRNA and the restorative potential of secretagogue stimulation in vitro. In freshly plated dissociated pituitary cells from control male mice, GHRH alone (0.3 nM) increased the percentage of immunolabeled GH cells from 27 ± 0.05% (vehicle) to 42 ± 1.8% (P < .002) and the secretion of GH 1.8-3×. Deletion mutant pituitary cells showed a 40% reduction in percentages of immunolabeled GH cells (16.7 ± 0.4%), which correlated with a 47% reduction in basal GH levels (50 ng/mL control; 26.7 ng/mL mutants P = .01). A 50% reduction in the percentage of mutant cells expressing GHRH receptors (to 12%) correlated with no or reduced responses to GHRH. Ghrelin alone (10 nM) stimulated more GH cells in mutants (from 16.7-23%). When added with 1-3 nM GHRH, ghrelin restored GH cell percentages and GH secretion to levels similar to those of stimulated controls. Counts of somatotropes labeled for GH mRNA confirmed normal percentages of somatotropes in the population. These discoveries suggest that leptin may optimize somatotrope function by facilitating expression of membrane GHRH receptors and the production or maintenance of GH stores.
Collapse
Affiliation(s)
- Mohsin Syed
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, College of Medicine, 4301 West Markham, Slot 510, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Luque RM, Gahete MD, Cordoba-Chacon J, Childs GV, Kineman RD. Does the pituitary somatotrope play a primary role in regulating GH output in metabolic extremes? Ann N Y Acad Sci 2011; 1220:82-92. [PMID: 21388406 DOI: 10.1111/j.1749-6632.2010.05913.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circulating growth hormone (GH) levels rise in response to nutrient deprivation and fall in states of nutrient excess. Because GH regulates carbohydrate, lipid, and protein metabolism, defining the mechanisms by which changes in metabolism alter GH secretion will aid in our understanding of the cause, progression, and treatment of metabolic diseases. This review will summarize what is currently known regarding the impact of systemic metabolic signals on GH-axis function. In addition, ongoing studies using the Cre/loxP system to generate mouse models with selective somatotrope resistance to metabolic signals will be discussed, where these models will serve to enhance our understanding of the specific role the somatotrope plays in sensing the metabolic environment and adjusting GH output in metabolic extremes.
Collapse
Affiliation(s)
- Raul M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba, CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | | | | | | | | |
Collapse
|
12
|
Attig L, Larcher T, Gertler A, Abdennebi-Najar L, Djiane J. Postnatal leptin is necessary for maturation of numerous organs in newborn rats. Organogenesis 2011; 7:88-94. [PMID: 21378499 DOI: 10.4161/org.7.2.14871] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The postnatal leptin surge, described particularly in rodents, has been demonstrated to be crucial for hypothalamic maturation and brain development. In the present study, the possible general effects of this hormone on maturation of numerous peripheral organs have been explored. To test this hypothesis, we used a leptin antagonist (L39A/D40A/F41A) to investigate the effects of the blockage of postnatal leptin action on neonatal growth and maturation of organs involved in metabolism regulation, reproduction and immunity. For that purpose, newborn female pups were subcutaneously injected from days 2-13 with either saline or leptin antagonist and sacrificed at weaning. Organs were submitted to histological and immunohistochemical analyses. Leptin antagonist treatment clearly impaired the maturation of pancreas, kidney, thymus and ovary. All these alterations, at the organ level, occurred without changes in the whole-body mass of the animals. Leptin antagonist treatment induced: (1) a reduction in b cell area and a concomitant increase of a cells in Langherans islets in the pancreas, (2) a reduction in the number of glomeruli and a persistence of immature glomeruli in kidney, (3) an increase in the thymic cortical layer thickness, reflecting an unmatured stage, (4) a drastic reduction of the pool of primordial follicles, in ovaries. All these results strongly argue for a crucial role of leptin for the achievement of organ maturation, opening new perspectives in the field of leptin physiology and organ development.
Collapse
Affiliation(s)
- Linda Attig
- Institut National de Recherche Agronomique (INRA)-Université Paris-Sud, France.
| | | | | | | | | |
Collapse
|
13
|
Rose MK, Parvizi N. Up-regulation of lymphocytic growth hormone secretion during the luteal phase of cycle and early pregnancy. ACTA ACUST UNITED AC 2011; 167:1-4. [DOI: 10.1016/j.regpep.2010.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/12/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
|
14
|
Childs GV, Akhter N, Haney A, Syed M, Odle A, Cozart M, Brodrick Z, Gaddy D, Suva LJ, Akel N, Crane C, Benes H, Charlesworth A, Luque R, Chua S, Kineman RD. The somatotrope as a metabolic sensor: deletion of leptin receptors causes obesity. Endocrinology 2011; 152:69-81. [PMID: 21084451 PMCID: PMC3033057 DOI: 10.1210/en.2010-0498] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 10/07/2010] [Indexed: 01/01/2023]
Abstract
Leptin, the product of the Lep gene, reports levels of adiposity to the hypothalamus and other regulatory cells, including pituitary somatotropes, which secrete GH. Leptin deficiency is associated with a decline in somatotrope numbers and function, suggesting that leptin may be important in their maintenance. This hypothesis was tested in a new animal model in which exon 17 of the leptin receptor (Lepr) protein was selectively deleted in somatotropes by Cre-loxP technology. Organ genotyping confirmed the recombination of the floxed LepR allele only in the pituitary. Deletion mutant mice showed a 72% reduction in pituitary cells bearing leptin receptor (LEPR)-b, a 43% reduction in LEPR proteins and a 60% reduction in percentages of immunopositive GH cells, which correlated with reduced serum GH. In mutants, LEPR expression by other pituitary cells was like that of normal animals. Leptin stimulated phosphorylated Signal transducer and activator of transcription 3 expression in somatotropes from normal animals but not from mutants. Pituitary weights, cell numbers, IGF-I, and the timing of puberty were not different from control values. Growth curves were normal during the first 3 months. Deletion mutant mice became approximately 30-46% heavier than controls with age, which was attributed to an increase in fat mass. Serum leptin levels were either normal in younger animals or reflected the level of obesity in older animals. The specific ablation of the Lepr exon 17 gene in somatotropes resulted in GH deficiency with a consequential reduction in lipolytic activity normally maintained by GH and increased adiposity.
Collapse
Affiliation(s)
- Gwen V Childs
- Professor and Chair, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gahete MD, Durán-Prado M, Luque RM, Martínez-Fuentes AJ, Quintero A, Gutiérrez-Pascual E, Córdoba-Chacón J, Malagón MM, Gracia-Navarro F, Castaño JP. Understanding the multifactorial control of growth hormone release by somatotropes: lessons from comparative endocrinology. Ann N Y Acad Sci 2009; 1163:137-53. [PMID: 19456335 DOI: 10.1111/j.1749-6632.2008.03660.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Control of postnatal growth is the main, but not the only, role for growth hormone (GH) as this hormone also contributes to regulating metabolism, reproduction, immunity, development, and osmoregulation in different species. Likely owing to this variety of group-specific functions, GH production is differentially regulated across vertebrates, with an apparent evolutionary trend to simplification, especially in the number of stimulatory factors governing substantially GH release. Thus, teleosts exhibit a multifactorial regulation of GH secretion, with a number of factors, from the newly discovered fish GH-releasing hormone (GHRH) to pituitary adenylate cyclase-activating peptide (PACAP) but also gonadotropin-releasing hormone, dopamine, corticotropin-releasing hormone, and somatostatin(s) directly controlling somatotropes. In amphibians and reptiles, GH secretion is primarily stimulated by the major hypothalamic peptides GHRH and PACAP and inhibited by somatostatin(s), while other factors (ghrelin, thyrotropin-releasing hormone) also influence GH release. Finally, in birds and mammals, primary control of GH secretion is exerted by a dual interplay between GHRH and somatostatin. In addition, somatotrope function is modulated by additional hypothalamic and peripheral factors (e.g., ghrelin, leptin, insulin-like growth factor-I), which together enable a balanced integration of feedback signals related to processes in which GH plays a relevant regulatory role, such as metabolic and energy status, reproductive, and immune function. Interestingly, in contrast to the high number of stimulatory factors impinging upon somatotropes, somatostatin(s) stand(s) as the main primary inhibitory regulator(s) for this cell type.
Collapse
Affiliation(s)
- Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Accorsi PA, Munno A, Gamberoni M, Viggiani R, De Ambrogi M, Tamanini C, Seren E. Role of Leptin on Growth Hormone and Prolactin Secretion by Bovine Pituitary Explants. J Dairy Sci 2007; 90:1683-91. [PMID: 17369208 DOI: 10.3168/jds.2006-611] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin is an important hormone regulating nutritional status in humans and animals. Its most relevant activity is at the hypothalamic level, where it modulates food behavior, thermogenesis, and secretion of several pituitary hormones. The exact mechanisms underlying these processes are unclear. The purpose of this study was to verify whether leptin could modulate growth hormone (GH) and prolactin (PRL) secretion acting directly on bovine pituitary cells. Adenohypophyseal explants were cultured with different concentrations of leptin (50, 250, and 500 ng/mL); GH and PRL concentrations in culture media were determined by RIA. On tissues treated with 250 ng/mL of leptin, GH and PRL mRNA, as well as protein content, were estimated by reverse transcription-PCR and Western immunoblotting, respectively. Concentrations of GH in culture media containing 250 and 500 ng/mL of leptin were significantly higher than in controls: 1,063.5 +/- 141.2 (mean +/- SEM) and 1,018.8 +/- 88.4 vs. 748.9 +/- 74.0 ng/mg of tissue, respectively, after 1 h of treatment. Prolactin concentrations were significantly higher in culture media containing 50, 250, and 500 ng/mL of leptin than in controls after 2 h of treatment (547.1 +/- 50.3, 547.5 +/- 58.8, and 577.0 +/- 63.7 vs. 406.8 +/- 43.9 ng/mg of tissue, respectively). Tissues cultured with 250 ng/mL of leptin had significantly higher GH mRNA and lower GH protein content than controls (389.7 +/- 17.9 vs. 289.7 +/- 16.7; 1,601.5 +/- 90.1 vs. 2,212.7 +/- 55.6 arbitrary units, respectively) after 5 h of treatment. In contrast, no significant differences were found for PRL mRNA and protein content, possibly because of a delay in the leptin stimulation of PRL secretion. The results suggest that GH and PRL secretion in bovine pituitary explants can be directly regulated by leptin.
Collapse
Affiliation(s)
- P A Accorsi
- Dipartimento di Morfofisiologia Veterinaria e Produzioni Animali, Università di Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (BO), Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Luque RM, Huang ZH, Shah B, Mazzone T, Kineman RD. Effects of leptin replacement on hypothalamic-pituitary growth hormone axis function and circulating ghrelin levels in ob/ob mice. Am J Physiol Endocrinol Metab 2007; 292:E891-9. [PMID: 17122091 DOI: 10.1152/ajpendo.00258.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leptin-deficient obese mice (ob/ob) have decreased circulating growth hormone (GH) and pituitary GH and ghrelin receptor (GHS-R) mRNA levels, whereas hypothalamic GH-releasing hormone (GHRH) and somatostatin (SST) expression do not differ from lean controls. Given the fact that GH is suppressed in diet-induced obesity (a state of hyperleptinemia), it remains to be determined whether the absence of leptin contributes to changes in the GH axis of ob/ob mice. Therefore, to study the impact of leptin replacement on the hypothalamic-pituitary GH axis of ob/ob mice, leptin was infused for 7 days (sc), resulting in circulating leptin levels that were similar to wild-type controls (approximately 1 ng/ml). Leptin treatment reduced food intake, body weight, and circulating insulin while elevating circulating n-octanoyl ghrelin concentrations. Leptin treatment did not alter hypothalamic GHRH, SST, or GHS-R mRNA levels compared with vehicle-treated controls. However, leptin significantly increased pituitary GH and GHRH-R expression and tended to enhance circulating GH levels, but this latter effect did not reach statistical significance. In vitro, leptin (1 ng/ml, 24 h) did not affect pituitary GH, GHRH-R, or GHS-R mRNA but did enhance GH release. The in vivo effects of leptin on circulating hormone and pituitary mRNA levels were not replicated by pair feeding ob/ob mice to match the food intake of leptin-treated mice. However, leptin did prevent the fall in hypothalamic GHRH mRNA and circulating IGF-I levels observed in pair-fed mice. These results demonstrate that leptin replacement has positive effects on multiple levels of GH axis function in ob/ob mice.
Collapse
Affiliation(s)
- Raul M Luque
- Department of Medicine, University of Illinois at Chicago, and Jesse Brown VA Medical Center, Research and Development Division, M. P. 151, West Side, Suite no. 6215, 820 South Damen Ave., Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Swallowing is under the control of premotoneurons located in the medullary solitary tract nucleus. Although rats with transected midbrain do not seek out food, they are able to ingest food present near the mouth, and acute food deprivation induces an increase in food intake. Leptin is a satiety signal that regulates feeding behavior. Because leptin receptors are found within the caudal brainstem, and because food intake is regulated in midbrain transected rats, this study tested the hypothesis that leptin is able to modify the activity of premotoneurons involved in swallowing. Leptin was microinjected at the subpostremal level of the medullary solitary tract nucleus in anesthetized Wistar rats. Electromyographic electrodes in sublingual muscles allowed recording of swallowing induced by stimulation of sensitive fibers of the superior laryngeal nerve. Repeated stimulation induced rhythmic swallowing. Microinjection of leptin (0.1 pg and 0.1 ng) in the swallowing center induced an inhibition of rhythmic swallowing (latency of <30 s) as shown by the reduced number and strength of electromyographic activities, which could last several minutes. The threshold of the leptin-induced inhibition was close to 0.1 pg. Interestingly, the inhibitory effect of leptin was not observed in leptin receptor-deficient Zucker rats. Here we show that, in Wistar rats, leptin already known to modulate the discharge of medullary solitary tract nucleus-sensitive neurons involved in satiety reflexes can also modify the activity of swallowing premotoneurons, thereby inhibiting an essential motor component of feeding behavior.
Collapse
Affiliation(s)
- Bernadette Félix
- Université Paul Cézanne, Aix Marseille III, Faculté des Sciences et Techniques Campus St Jérôme, Laboratoire de Physiologie Neurovégétative, UMR PNV CNRS-INRA-Université, IFR Jean Roche, 13397 Marseille cedex 20, France.
| | | | | |
Collapse
|
19
|
Wong AOL, Zhou H, Jiang Y, Ko WKW. Feedback regulation of growth hormone synthesis and secretion in fish and the emerging concept of intrapituitary feedback loop. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:284-305. [PMID: 16406825 DOI: 10.1016/j.cbpa.2005.11.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 11/21/2005] [Accepted: 11/21/2005] [Indexed: 11/21/2022]
Abstract
Growth hormone (GH) is known to play a key role in the regulation of body growth and metabolism. Similar to mammals, GH secretion in fish is under the control of hypothalamic factors. Besides, signals generated within the pituitary and/or from peripheral tissues/organs can also exert a feedback control on GH release by effects acting on both the hypothalamus and/or anterior pituitary. Among these feedback signals, the functional role of IGF is well conserved from fish to mammals. In contrast, the effects of steroids and thyroid hormones are more variable and appear to be species-specific. Recently, a novel intrapituitary feedback loop regulating GH release and GH gene expression has been identified in fish. This feedback loop has three functional components: (i) LH induction of GH release from somatotrophs, (ii) amplification of GH secretion by GH autoregulation in somatotrophs, and (iii) GH feedback inhibition of LH release from neighboring gonadotrophs. In this article, the mechanisms for feedback control of GH synthesis and secretion are reviewed and functional implications of this local feedback loop are discussed. This intrapituitary feedback loop may represent a new facet of pituitary research with potential applications in aquaculture and clinical studies.
Collapse
Affiliation(s)
- Anderson O L Wong
- Department of Zoology, University of Hong Kong, Pokfulam Road, Hong Kong, PR China.
| | | | | | | |
Collapse
|
20
|
Luque RM, Kineman RD. Impact of obesity on the growth hormone axis: evidence for a direct inhibitory effect of hyperinsulinemia on pituitary function. Endocrinology 2006; 147:2754-63. [PMID: 16513828 DOI: 10.1210/en.2005-1549] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There is a negative relationship between obesity and GH. However, it is not known how metabolic changes, associated with obesity, lead to a reduction in GH output. This study examined the GH axis of two mouse models of obesity, the leptin-deficient (ob/ob) mouse and the diet-induced obese (DIO; high-fat fed) mouse. Both models displayed hyperglycemia and hyperinsulinemia with reduced expression of GH as well as reduced expression of pituitary receptors important for GH synthesis and release [GHRH receptor (DIO only) and the ghrelin receptor (ob/ob and DIO)]. These pituitary changes were not accompanied by changes in hypothalamic expression of GHRH or somatostatin; suggesting that alterations in pituitary function may be precipitated in part by direct effects of systemic signals. Of the metabolic and hormonal parameters examined (insulin, glucose, corticosterone, free fatty acids, ghrelin, and IGF-I), only insulin/glucose showed a significant, and negative, correlation with pituitary expression. Pituitaries of DIO mice remained responsive to the acute in vivo actions of insulin, as assessed by phosphorylation of Akt, despite systemic (skeletal muscle and fat) insulin resistance. In addition, treating primary pituitary cell cultures from lean mice with insulin reduced GH release as well as GH, GHRH receptor, and ghrelin receptor mRNA levels compared with vehicle-treated controls, where the magnitude of suppression of pituitary mRNA levels was similar to that observed in the DIO mouse. These results coupled with the fact that the pituitary expresses the insulin receptor at levels comparable to tissues classically considered insulin sensitive, indicates high circulating insulin levels can directly contribute to the suppression of GH synthesis and release in the obese state.
Collapse
Affiliation(s)
- Raul M Luque
- Section of Endocrinology and Metabolism, Department of Medicine, University of Illinois at Chicago, Illinois, USA
| | | |
Collapse
|
21
|
Saleri R, Cavalli V, Grasselli F, Tamanini C. Growth hormone expression and secretion in pig pituitary and median eminence slices are not influenced by the VGF protein. Neuroendocrinology 2006; 83:89-96. [PMID: 16804334 DOI: 10.1159/000094149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 05/09/2006] [Indexed: 12/16/2022]
Abstract
Body homeostasis is maintained by a complex system that involves the brain and the periphery via many circulating hormones. In recent years the VGF protein has been indicated as an important peptide affecting the regulation of body composition. We examined the effects of VGF on growth hormone (GH) expression and secretion in porcine pituitary slices, incubated alone (group 1) or with stalk median eminence (SME) (group 2). After 2 h (time 0), medium was removed and replaced with a fresh one; tissues were challenged with VGF (10(-6) M, 10(-8) M) alone or with ghrelin (10(-8) M) or growth hormone-releasing hormone (GHRH) (10(-8) M). Medium was replaced again 2 h (+2) and 6 h (+6) later. None of the VGF concentrations influenced GH secretion in either group; the association with GHRH or ghrelin appeared ineffective in influencing GH secretion as compared with the effects of GH mRNA expression and was not influenced by VGF treatments. The presence of SME had an additive effect on GH expression. Collectively, our results confirm previous findings on GH regulation; however, further investigations are needed to establish whether the modulation of GH secretion in the absence of nutrients involves the balance of GHRH/ghrelin receptors at pituitary levels. As for VGF, a crucial aspect to clarify is whether its lack of effects depends on our experimental conditions or, alternatively, it is not effective at all.
Collapse
Affiliation(s)
- Roberta Saleri
- Department of Animal Production, Veterinary Biotechnology and Food Safety, Section of Veterinary Physiology, University of Parma, Parma, Italy.
| | | | | | | |
Collapse
|
22
|
Caperna TJ, Shannon AE, Poch SM, Garrett WM, Richards MP. Hormonal regulation of leptin receptor expression in primary cultures of porcine hepatocytes. Domest Anim Endocrinol 2005; 29:582-92. [PMID: 16213991 DOI: 10.1016/j.domaniend.2005.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 03/08/2005] [Accepted: 03/19/2005] [Indexed: 10/25/2022]
Abstract
A study was conducted to elucidate hormonal control of leptin receptor gene expression in primary cultures of porcine hepatocytes. Hepatocytes were isolated from pigs (52 kg) and seeded into collagen-coated T-25 flasks. Monolayer cultures were established in medium containing fetal bovine serum for 1 day and switched to a serum-free medium for the remainder of the 3-day culture period. To establish basal conditions hepatocytes were maintained in serum-free William's E medium containing 10 nM dexamethasone and 1 ng/ml insulin. For the final 24 h, insulin (1 or 100 ng/ml) or glucagon (100 ng/ml), were added in the presence or absence of 100 nM triiodothyronine (T3). RNA was extracted and quantitative RT-PCR was performed with primers specific for the long form and total porcine leptin receptors. Leptin receptor expression was calculated relative to co-amplified 18S rRNA. Expression of the long form of the leptin receptor was confirmed under basal conditions. Insulin, glucagon and synthetic human proteins (ghrelin and GLP-1) at 100 ng/ml had no influence on leptin receptor expression; the addition of T3 was associated with a marked increase (P < 0.001) in expression of total and long forms of the leptin receptor by 1.6 and 2.4-fold, respectively. Addition of leptin to cells which were pre-treated with T3 for 24 h (to up-regulate leptin receptor expression), confirmed the lack of a direct effect of leptin on glucagon-induced glycogen turnover and cAMP production. These data suggest that porcine hepatocytes may be insensitive to leptin stimulation even when leptin receptor expression is enhanced by T3.
Collapse
Affiliation(s)
- T J Caperna
- Growth Biology Laboratory, Animal and Natural Resources Institute, Beltsville Agricultural Research Center, USDA-ARS, Bulding 200, Room 202, BARC-East, Beltsville, MD 20705, USA.
| | | | | | | | | |
Collapse
|
23
|
Glavaski-Joksimovic A, Rowe EW, Jeftinija K, Scanes CG, Anderson LL, Jeftinija S. Effects of leptin on intracellular calcium concentrations in isolated porcine somatotropes. Neuroendocrinology 2004; 80:73-82. [PMID: 15528950 DOI: 10.1159/000081843] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 08/09/2004] [Indexed: 01/03/2023]
Abstract
Leptin, the product of the obese gene, is a protein that is secreted primarily from adipocytes. Leptin can influence the function of the pituitary gland through its action on the hypothalamus, but it can also directly act at the level of the pituitary gland. The ability of leptin to induce an increase in intracellular Ca2+ concentration ([Ca2+]i) in somatotropes was examined in dispersed porcine pituitary cells using a calcium imaging system. Somatotropes were functionally identified by the application of human growth hormone releasing hormone. Leptin increased [Ca2+]i in porcine somatotropes in a dose-dependent manner. The application of 100 nM leptin for 3 min did not have a significant effect on [Ca2+]i, while a 3-min application of 1 microM leptin increased [Ca2+]i in about 50% of the somatotropes (p < 0.01). The application of a second leptin challenge (1 microM) evoked a response in only 18% of the observed somatotropes. The stimulatory effect of leptin was abolished in low calcium saline and blocked by nifedipine, an L-calcium channel blocker, suggesting an involvement of calcium channels. Pretreatment of the cultures with AG 490, a specific Janus kinase inhibitor, and with SB 203580, a mitogen-activated protein kinase (MAP kinase) inhibitor, abolished the increase in [Ca2+]i evoked by leptin. In the presence of N(omega)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, the magnitude of the increase in [Ca2+]i evoked by 1 microM leptin was not significantly changed. However, in the presence of L-NAME only 24% of the somatotropes responded to leptin, while in parallel control cultures 70% of the somatotropes responded to leptin. These results imply an involvement of Janus kinase/signal transducer and activator or transcription, MAP kinase and NOS-signaling pathways in the stimulatory effect of leptin on porcine somatotropes.
Collapse
|