1
|
Durmuş S, Ülgen KÖ. Comparative interactomics for virus-human protein-protein interactions: DNA viruses versus RNA viruses. FEBS Open Bio 2017; 7:96-107. [PMID: 28097092 PMCID: PMC5221455 DOI: 10.1002/2211-5463.12167] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/06/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023] Open
Abstract
Viruses are obligatory intracellular pathogens and completely depend on their hosts for survival and reproduction. The strategies adopted by viruses to exploit host cell processes and to evade host immune systems during infections may differ largely with the type of the viral genetic material. An improved understanding of these viral infection mechanisms is only possible through a better understanding of the pathogen-host interactions (PHIs) that enable viruses to enter into the host cells and manipulate the cellular mechanisms to their own advantage. Experimentally-verified protein-protein interaction (PPI) data of pathogen-host systems only became available at large scale within the last decade. In this study, we comparatively analyzed the current PHI networks belonging to DNA and RNA viruses and their human host, to get insights into the infection strategies used by these viral groups. We investigated the functional properties of human proteins in the PHI networks, to observe and compare the attack strategies of DNA and RNA viruses. We observed that DNA viruses are able to attack both human cellular and metabolic processes simultaneously during infections. On the other hand, RNA viruses preferentially interact with human proteins functioning in specific cellular processes as well as in intracellular transport and localization within the cell. Observing virus-targeted human proteins, we propose heterogeneous nuclear ribonucleoproteins and transporter proteins as potential antiviral therapeutic targets. The observed common and specific infection mechanisms in terms of viral strategies to attack human proteins may provide crucial information for further design of broad and specific next-generation antiviral therapeutics.
Collapse
Affiliation(s)
- Saliha Durmuş
- Computational Systems Biology GroupDepartment of BioengineeringGebze Technical UniversityKocaeliTurkey
| | - Kutlu Ö. Ülgen
- Department of Chemical EngineeringBoğaziçi UniversityİstanbulTurkey
| |
Collapse
|
2
|
HPV16 E2-mediated potentiation of NF-κB activation induced by TNF-α involves parallel activation of STAT3 with a reduction in E2-induced apoptosis. Mol Cell Biochem 2014; 394:77-90. [PMID: 24833467 DOI: 10.1007/s11010-014-2083-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/03/2014] [Indexed: 02/08/2023]
Abstract
Human papilloma virus is associated with cervical and other tumors, and several cellular conditions also play an important role in carcinogenesis. Human papilloma virus (HPV)-infected cells exhibit activation of NF-κB and STAT3 (mediators of inflammation), but little is known about their regulation by HPV. This study attempts to understand the role of HPV16 E2, an important early protein of HPV16, in the regulation of NF-κB and STAT3 by reporter assays, quantitative reverse transcriptase-polymerase chain reaction, and immunoblotting. We demonstrate that E2 enhances NF-κB activation induced by TNF-α, a proinflammatory cytokine, in both non-tumor- and tumor-derived epithelial cell lines besides potentiating STAT3 transcriptional activity induced by TNF-α in HEK293 cells. E2 increases the expression of RelA and its transcriptional activation, and retention of E2 was observed in the nucleus with significant interaction with RelA (immunoprecipitation) upon TNF-α treatment. Transfection with shRNA-RelA or pretreatment with a STAT3 inhibitor had a negative effect on the ability of E2 to enhance TNF-α-induced NF-κB activation. Experiments with co-expression of a mutant of STAT3 with E2 also suggested that the activation of STAT3 is indispensible for TNF-α-induced NF-κB activation. Inhibition of STAT3 activation enhanced E2-induced apoptosis, whereas parallel activation of NF-κB and STAT3 by the combined action of E2 and TNF-α increased the expression of their common targets, cyclin-D1, c-Myc, survivin, and Bcl-2, leading to a decrease in E2-induced apoptosis (viability and cell cycle). Our results reveal novel mechanisms by which E2 may regulate NF-κB and STAT3 activation in the presence of TNF-α with implications on the survival of HPV-infected cells.
Collapse
|
3
|
Ribeiro JR, Lovasco LA, Vanderhyden BC, Freiman RN. Targeting TBP-Associated Factors in Ovarian Cancer. Front Oncol 2014; 4:45. [PMID: 24653979 PMCID: PMC3949196 DOI: 10.3389/fonc.2014.00045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022] Open
Abstract
As ovarian tumors progress, they undergo a process of dedifferentiation, allowing adaptive changes in growth and morphology that promote metastasis and chemoresistance. Herein, we outline a hypothesis that TATA-box binding protein associated factors (TAFs), which compose the RNA Polymerase II initiation factor, TFIID, contribute to regulation of dedifferentiation states in ovarian cancer. Numerous studies demonstrate that TAFs regulate differentiation and proliferation states; their expression is typically high in pluripotent cells and reduced upon differentiation. Strikingly, TAF2 exhibits copy number increases or mRNA overexpression in 73% of high-grade serous ovarian cancers (HGSC). At the biochemical level, TAF2 directs TFIID to TATA-less promoters by contact with an Initiator element, which may lead to the deregulation of the transcriptional output of these tumor cells. TAF4, which is altered in 66% of HGSC, is crucial for the stability of the TFIID complex and helps drive dedifferentiation of mouse embryonic fibroblasts to induced pluripotent stem cells. Its ovary-enriched paralog, TAF4B, is altered in 26% of HGSC. Here, we show that TAF4B mRNA correlates with Cyclin D2 mRNA expression in human granulosa cell tumors. TAF4B may also contribute to regulation of tumor microenvironment due to its estrogen-responsiveness and ability to act as a cofactor for NFκB. Conversely, TAF9, a cofactor for p53 in regulating apoptosis, may act as a tumor suppressor in ovarian cancer, since it is downregulated or deleted in 98% of HGSC. We conclude that a greater understanding of mechanisms of transcriptional regulation that execute signals from oncogenic signaling cascades is needed in order to expand our understanding of the etiology and progression of ovarian cancer, and most importantly to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Lindsay A Lovasco
- Molecular and Cellular Biology and Biochemistry, Brown University , Providence, RI , USA
| | - Barbara C Vanderhyden
- Cellular and Molecular Medicine, University of Ottawa , Ottawa, ON , Canada ; Centre for Cancer Therapeutics, Ottawa Hospital Research Institute , Ottawa, ON , Canada
| | - Richard N Freiman
- Pathobiology Graduate Program, Brown University , Providence, RI , USA ; Molecular and Cellular Biology and Biochemistry, Brown University , Providence, RI , USA
| |
Collapse
|
4
|
Abstract
The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Muller M, Demeret C. The HPV E2-Host Protein-Protein Interactions: A Complex Hijacking of the Cellular Network. Open Virol J 2012; 6:173-89. [PMID: 23341853 PMCID: PMC3547520 DOI: 10.2174/1874357901206010173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 11/22/2022] Open
Abstract
Over 100 genotypes of human papillomaviruses (HPVs) have been identified as being responsible for unapparent infections or for lesions ranging from benign skin or genital warts to cancer. The pathogenesis of HPV results from complex relationships between viral and host factors, driven in particular by the interplay between the host proteome and the early viral proteins. The E2 protein regulates the transcription, the replication as well as the mitotic segregation of the viral genome through the recruitment of host cell factors to the HPV regulatory region. It is thereby a pivotal factor for the productive viral life cycle and for viral persistence, a major risk factor for cancer development. In addition, the E2 proteins have been shown to engage numerous interactions through which they play important roles in modulating the host cell. Such E2 activities are probably contributing to create cell conditions appropriate for the successive stages of the viral life cycle, and some of these activities have been demonstrated only for the oncogenic high-risk HPV. The recent mapping of E2-host protein-protein interactions with 12 genotypes representative of HPV diversity has shed some light on the large complexity of the host cell hijacking and on its diversity according to viral genotypes. This article reviews the functions of E2 as they emerge from the E2/host proteome interplay, taking into account the large-scale comparative interactomic study.
Collapse
Affiliation(s)
- Mandy Muller
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France ; Univ. Paris Diderot, Sorbonne Paris cite, Cellule Pasteur, rue du Docteur Roux, 75015 Paris, France
| | | |
Collapse
|
6
|
Abstract
The p300, CBP, and pCAF lysine acetyltransferase (KAT) proteins have been reported to physically interact with bovine (BPV) and human (HPV) papillomavirus E2 proteins. While overexpression of these KAT proteins enhances E2-dependent transcription, the mechanism has not been determined. Using RNA interference (RNAi) to deplete these factors, we demonstrated that E2 transcriptional activity requires physiological levels of p300, CBP, and pCAF. Each protein appears to have a unique function in E2-dependent transcription, since overexpression of one KAT failed to compensate for RNAi knockdown of another KAT. Using an in vitro acetylation assay, we identified highly conserved lysines that are targeted by p300 for acetylation. The conservative changes of lysines at positions 111 and 112 to arginine were of particular interest. The K111R and the K111R/K112R mutants showed reduced transcriptional activity that was not responsive to p300 overexpression, while the K112R mutant retained activity. p300 and CBP were detected at the viral promoter; however, pCAF was not. We propose a model by which E2 transcriptional activity is controlled by p300-mediated acetylation of lysine 111. This model represents a novel mechanism regulating papillomavirus gene expression.
Collapse
|
7
|
Durmuş Tekir S, Cakir T, Ulgen KÖ. Infection Strategies of Bacterial and Viral Pathogens through Pathogen-Human Protein-Protein Interactions. Front Microbiol 2012; 3:46. [PMID: 22347880 PMCID: PMC3278985 DOI: 10.3389/fmicb.2012.00046] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/30/2012] [Indexed: 01/21/2023] Open
Abstract
Since ancient times, even in today’s modern world, infectious diseases cause lots of people to die. Infectious organisms, pathogens, cause diseases by physical interactions with human proteins. A thorough analysis of these interspecies interactions is required to provide insights about infection strategies of pathogens. Here we analyzed the most comprehensive available pathogen–human protein interaction data including 23,435 interactions, targeting 5,210 human proteins. The data were obtained from the newly developed pathogen–host interaction search tool, PHISTO. This is the first comprehensive attempt to get a comparison between bacterial and viral infections. We investigated human proteins that are targeted by bacteria and viruses to provide an overview of common and special infection strategies used by these pathogen types. We observed that in the human protein interaction network the proteins targeted by pathogens have higher connectivity and betweenness centrality values than those proteins not interacting with pathogens. The preference of interacting with hub and bottleneck proteins is found to be a common infection strategy of all types of pathogens to manipulate essential mechanisms in human. Compared to bacteria, viruses tend to interact with human proteins of much higher connectivity and centrality values in the human network. Gene Ontology enrichment analysis of the human proteins targeted by pathogens indicates crucial clues about the infection mechanisms of bacteria and viruses. As the main infection strategy, bacteria interact with human proteins that function in immune response to disrupt human defense mechanisms. Indispensable viral strategy, on the other hand, is the manipulation of human cellular processes in order to use that transcriptional machinery for their own genetic material transcription. A novel observation about pathogen–human systems is that the human proteins targeted by both pathogens are enriched in the regulation of metabolic processes.
Collapse
Affiliation(s)
- Saliha Durmuş Tekir
- Biosystems Engineering Research Group, Department of Chemical Engineering, Boğaziçi University istanbul, Turkey
| | | | | |
Collapse
|
8
|
D'Abramo CM, Archambault J. Small molecule inhibitors of human papillomavirus protein - protein interactions. Open Virol J 2011; 5:80-95. [PMID: 21769307 PMCID: PMC3137155 DOI: 10.2174/1874357901105010080] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/23/2011] [Accepted: 06/13/2011] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) have now been identified as a necessary cause of benign and malignant lesions of the differentiating epithelium, particularly cervical cancer, the second most prevalent cancer in women worldwide. While two prophylactic HPV vaccines and screening programs are available, there is currently no antiviral drug for the treatment of HPV infections and associated diseases. The recent progress toward the identification and characterization of specific molecular targets for small molecule-based approaches provides prospect for the development of effective HPV antiviral compounds. Traditionally, antiviral therapies target viral enzymes. HPV encode for few proteins, however, and rely extensively on the infected cell for completion of their life cycle. This article will review the functions of the viral E1 helicase, which encodes the only enzymatic function of the virus, of the E2 regulatory protein, and of the viral E6 and E7 oncogenes in viral replication and pathogenesis. Particular emphasis will be placed on the recent progress made towards the development of novel small molecule inhibitors that specifically target and inhibit the functions of these viral proteins, as well as their interactions with other viral and/or cellular proteins.
Collapse
Affiliation(s)
- C M D'Abramo
- Laboratory of Molecular Virology, Institut de Recherches Cliniques de Montréal and Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
9
|
Ramírez-Salazar E, Centeno F, Nieto K, Valencia-Hernández A, Salcedo M, Garrido E. HPV16 E2 could act as down-regulator in cellular genes implicated in apoptosis, proliferation and cell differentiation. Virol J 2011; 8:247. [PMID: 21599968 PMCID: PMC3127837 DOI: 10.1186/1743-422x-8-247] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/20/2011] [Indexed: 12/26/2022] Open
Abstract
Background Human Papillomavirus (HPV) E2 plays several important roles in the viral cycle, including the transcriptional regulation of the oncogenes E6 and E7, the regulation of the viral genome replication by its association with E1 helicase and participates in the viral genome segregation during mitosis by its association with the cellular protein Brd4. It has been shown that E2 protein can regulate negative or positively the activity of several cellular promoters, although the precise mechanism of this regulation is uncertain. In this work we constructed a recombinant adenoviral vector to overexpress HPV16 E2 and evaluated the global pattern of biological processes regulated by E2 using microarrays expression analysis. Results The gene expression profile was strongly modified in cells expressing HPV16 E2, finding 1048 down-regulated genes, and 581 up-regulated. The main cellular pathway modified was WNT since we found 28 genes down-regulated and 15 up-regulated. Interestingly, this pathway is a convergence point for regulating the expression of genes involved in several cellular processes, including apoptosis, proliferation and cell differentiation; MYCN, JAG1 and MAPK13 genes were selected to validate by RT-qPCR the microarray data as these genes in an altered level of expression, modify very important cellular processes. Additionally, we found that a large number of genes from pathways such as PDGF, angiogenesis and cytokines and chemokines mediated inflammation, were also modified in their expression. Conclusions Our results demonstrate that HPV16 E2 has regulatory effects on cellular gene expression in HPV negative cells, independent of the other HPV proteins, and the gene profile observed indicates that these effects could be mediated by interactions with cellular proteins. The cellular processes affected suggest that E2 expression leads to the cells in to a convenient environment for a replicative cycle of the virus.
Collapse
Affiliation(s)
- Eric Ramírez-Salazar
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
10
|
Martin ER, Rampersaud E. Family-based genetic association tests. Cold Spring Harb Protoc 2011; 2011:pdb.top96. [PMID: 21285276 DOI: 10.1101/pdb.top96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Mole S, Milligan SG, Graham SV. Human papillomavirus type 16 E2 protein transcriptionally activates the promoter of a key cellular splicing factor, SF2/ASF. J Virol 2009; 83:357-67. [PMID: 18945764 PMCID: PMC2612322 DOI: 10.1128/jvi.01414-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 10/16/2008] [Indexed: 01/02/2023] Open
Abstract
Human papillomavirus (HPV) gene expression is regulated in concert with the epithelial differentiation program. In particular, expression of the virus capsid proteins L1 and L2 is tightly restricted to differentiated epithelial cells. For HPV16, the capsid proteins are encoded by 13 structurally different mRNAs that are produced by extensive alternative splicing. Previously, we demonstrated that upon epithelial differentiation, HPV16 infection upregulates hnRNP A1 and SF2/ASF, both key factors in alternative splicing regulation. Here we cloned a 1-kb region upstream of and including the transcriptional start site of the SF2ASF gene and used it in in vivo transcription assays to demonstrate that the HPV16 E2 transcription factor transactivates the SF2/ASF promoter. The transactivation domain but not the DNA binding domain of the protein is necessary for this. Active E2 association with the promoter was demonstrated using chromatin immunoprecipitation assays. Electrophoretic mobility shift assays indicated that E2 interacted with a region 482 to 684 bp upstream of the transcription initiation site in vitro. This is the first time that HPV16 E2 has been shown to regulate cellular gene expression and the first report of viral regulation of expression of an RNA processing factor. Such E2-mediated control during differentiation of infected epithelial cells may facilitate late capsid protein expression and completion of the virus life cycle.
Collapse
Affiliation(s)
- Sarah Mole
- Room 312, Jarrett Building, Institute of Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, Scotland, UK
| | | | | |
Collapse
|
12
|
Dyer MD, Murali TM, Sobral BW. The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog 2008; 4:e32. [PMID: 18282095 PMCID: PMC2242834 DOI: 10.1371/journal.ppat.0040032] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 01/04/2008] [Indexed: 12/28/2022] Open
Abstract
Infectious diseases result in millions of deaths each year. Mechanisms of infection have been studied in detail for many pathogens. However, many questions are relatively unexplored. What are the properties of human proteins that interact with pathogens? Do pathogens interact with certain functional classes of human proteins? Which infection mechanisms and pathways are commonly triggered by multiple pathogens? In this paper, to our knowledge, we provide the first study of the landscape of human proteins interacting with pathogens. We integrate human-pathogen protein-protein interactions (PPIs) for 190 pathogen strains from seven public databases. Nearly all of the 10,477 human-pathogen PPIs are for viral systems (98.3%), with the majority belonging to the human-HIV system (77.9%). We find that both viral and bacterial pathogens tend to interact with hubs (proteins with many interacting partners) and bottlenecks (proteins that are central to many paths in the network) in the human PPI network. We construct separate sets of human proteins interacting with bacterial pathogens, viral pathogens, and those interacting with multiple bacteria and with multiple viruses. Gene Ontology functions enriched in these sets reveal a number of processes, such as cell cycle regulation, nuclear transport, and immune response that participate in interactions with different pathogens. Our results provide the first global view of strategies used by pathogens to subvert human cellular processes and infect human cells. Supplementary data accompanying this paper is available at http://staff.vbi.vt.edu/dyermd/publications/dyer2008a.html.
Collapse
Affiliation(s)
- Matthew D Dyer
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - T. M Murali
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * To whom correspondence should be addressed. E-mail: (TMM), (BWS)
| | - Bruno W Sobral
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * To whom correspondence should be addressed. E-mail: (TMM), (BWS)
| |
Collapse
|