1
|
Liu W, Ma Y, He Y, Liu Y, Guo Z, He J, Han X, Hu Y, Li M, Jiang R, Wang S. Discovery of Novel p53-MDM2 Inhibitor (RG7388)-Conjugated Platinum IV Complexes as Potent Antitumor Agents. J Med Chem 2024; 67:9645-9661. [PMID: 38776419 DOI: 10.1021/acs.jmedchem.4c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
While a number of p53-MDM2 inhibitors have progressed into clinical trials for the treatment of cancer, their progression has been hampered by a variety of problems, including acquired drug resistance, dose-dependent toxicity, and limited clinical efficiency. To make more progress, we integrated the advantages of MDM2 inhibitors and platinum drugs to construct novel PtIV-RG7388 (a selective MDM2 inhibitor) complexes. Most complexes, especially 5a and 5b, displayed greatly improved antiproliferative activity against both wild-type and mutated p53 cancer cells. Remarkably, 5a exhibited potent in vivo tumor growth inhibition in the A549 xenograft model (66.5%) without apparent toxicity. It arrested the cell cycle at both the S phase and the G2/M phase and efficiently induced apoptosis via the synergistic effects of RG7388 and cisplatin. Altogether, PtIV-RG7388 complex 5a exhibited excellent in vitro and in vivo antitumor activities, highlighting the therapeutic potential of PtIV-RG7388 complexes as antitumor agents.
Collapse
Affiliation(s)
- Wei Liu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yi Ma
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Youyou He
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yanhong Liu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zhongjie Guo
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jin He
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaodong Han
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yujiao Hu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Muqiong Li
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ru Jiang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
2
|
Navas F, Chocarro-Calvo A, Iglesias-Hernández P, Fernández-García P, Morales V, García-Martínez JM, Sanz R, De la Vieja A, García-Jiménez C, García-Muñoz RA. Promising Anticancer Prodrugs Based on Pt(IV) Complexes with Bis-organosilane Ligands in Axial Positions. J Med Chem 2024; 67:6410-6424. [PMID: 38592014 PMCID: PMC11056991 DOI: 10.1021/acs.jmedchem.3c02393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
We report two novel prodrug Pt(IV) complexes with bis-organosilane ligands in axial positions: cis-dichloro(diamine)-trans-[3-(triethoxysilyl)propylcarbamate]platinum(IV) (Pt(IV)-biSi-1) and cis-dichloro(diisopropylamine)-trans-[3-(triethoxysilyl) propyl carbamate]platinum(IV) (Pt(IV)-biSi-2). Pt(IV)-biSi-2 demonstrated enhanced in vitro cytotoxicity against colon cancer cells (HCT 116 and HT-29) compared with cisplatin and Pt(IV)-biSi-1. Notably, Pt(IV)-biSi-2 exhibited higher cytotoxicity toward cancer cells and lower toxicity on nontumorigenic intestinal cells (HIEC6). In preclinical mouse models of colorectal cancer, Pt(IV)-biSi-2 outperformed cisplatin in reducing tumor growth at lower concentrations, with reduced side effects. Mechanistically, Pt(IV)-biSi-2 induced permanent DNA damage independent of p53 levels. DNA damage such as double-strand breaks marked by histone gH2Ax was permanent after treatment with Pt(IV)-biSi-2, in contrast to cisplatin's transient effects. Pt(IV)-biSi-2's faster reduction to Pt(II) species upon exposure to biological reductants supports its superior biological response. These findings unveil a novel strategy for designing Pt(IV) anticancer prodrugs with enhanced activity and specificity, offering therapeutic opportunities beyond conventional Pt drugs.
Collapse
Affiliation(s)
- Francisco Navas
- Group
of Chemical and Environmental Engineering, Rey Juan Carlos University. C/Tulipán s/n, Móstoles, Madrid28933, Spain
| | - Ana Chocarro-Calvo
- Department
of Basic Health Sciences. Rey Juan Carlos
University. Avda. Atenas
s/n, Alcorcón, Madrid 28922, Spain
| | - Patricia Iglesias-Hernández
- Endocrine
Tumor Unit Chronic Disease Program (UFIEC). Carlos III Health Institute. Ctra. Majadahonda a Pozuelo km 2,2. Majadahonda, Madrid 28220, Spain
| | - Paloma Fernández-García
- Group
of Chemical and Environmental Engineering, Rey Juan Carlos University. C/Tulipán s/n, Móstoles, Madrid28933, Spain
| | - Victoria Morales
- Group
of Chemical and Environmental Engineering, Rey Juan Carlos University. C/Tulipán s/n, Móstoles, Madrid28933, Spain
| | - José Manuel García-Martínez
- Department
of Basic Health Sciences. Rey Juan Carlos
University. Avda. Atenas
s/n, Alcorcón, Madrid 28922, Spain
| | - Raúl Sanz
- Group
of Chemical and Environmental Engineering, Rey Juan Carlos University. C/Tulipán s/n, Móstoles, Madrid28933, Spain
| | - Antonio De la Vieja
- Endocrine
Tumor Unit Chronic Disease Program (UFIEC). Carlos III Health Institute. Ctra. Majadahonda a Pozuelo km 2,2. Majadahonda, Madrid 28220, Spain
| | - Custodia García-Jiménez
- Department
of Basic Health Sciences. Rey Juan Carlos
University. Avda. Atenas
s/n, Alcorcón, Madrid 28922, Spain
| | - Rafael A. García-Muñoz
- Group
of Chemical and Environmental Engineering, Rey Juan Carlos University. C/Tulipán s/n, Móstoles, Madrid28933, Spain
| |
Collapse
|
3
|
Ahmedova A, Mihaylova R, Stoykova S, Mihaylova V, Burdzhiev N, Elincheva V, Momekov G, Momekova D. Pyrenebutyrate Pt(IV) Complexes with Nanomolar Anticancer Activity. Pharmaceutics 2023; 15:2310. [PMID: 37765279 PMCID: PMC10537052 DOI: 10.3390/pharmaceutics15092310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Research on platinum-based anticancer drugs continuously strives to develop new non-classical platinum complexes. Pt(IV) prodrugs are the most promising, and their activation-by-reduction mechanism of action is being explored as a prospect for higher selectivity and efficiency. Herein, we present the anticancer potency and chemical reactivity of Pt(IV) complexes formed by linking pyrene butyric acid with cisplatin. The results from cytotoxicity screening on 10 types of cancer cell lines and non-malignant cells (HEK-293) indicated IC50 values as low as 50-70 nM for the monosubstituted Pt(IV) complex against leukemia cell lines (HL-60 and SKW3) and a cisplatin-resistant derivative (HL-60/CDDP). Interestingly, the bis-substituted complex is virtually non-toxic to both healthy and cancerous cells of adherent types. Nevertheless, it shows high cytotoxicity against multidrug-resistant derivatives HL-60/CDDP and HL-60/Dox. The reactivity of the complexes with biological reductants was monitored by the NMR method. Furthermore, the platinum uptake by the treated cells was examined on two types of cellular cultures: adherent and suspension growing, and proteome profiling was conducted to track expression changes of key apoptosis-related proteins in HL-60 cells. The general conclusion points to a possible cytoskeletal entrapment of the bulkier bis-pyrene complex that could be limiting its cytotoxicity to adherent cells, both cancerous and healthy ones.
Collapse
Affiliation(s)
- Anife Ahmedova
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria; (S.S.); (V.M.); (N.B.)
| | - Rositsa Mihaylova
- Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria; (R.M.); (G.M.); (D.M.)
| | - Silviya Stoykova
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria; (S.S.); (V.M.); (N.B.)
| | - Veronika Mihaylova
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria; (S.S.); (V.M.); (N.B.)
| | - Nikola Burdzhiev
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria; (S.S.); (V.M.); (N.B.)
| | - Viktoria Elincheva
- Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria; (R.M.); (G.M.); (D.M.)
| | - Georgi Momekov
- Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria; (R.M.); (G.M.); (D.M.)
| | - Denitsa Momekova
- Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria; (R.M.); (G.M.); (D.M.)
| |
Collapse
|
4
|
Zheng S, Li G, Shi J, Liu X, Li M, He Z, Tian C, Kamei KI. Emerging platinum(IV) prodrug nanotherapeutics: A new epoch for platinum-based cancer therapy. J Control Release 2023; 361:819-846. [PMID: 37597809 DOI: 10.1016/j.jconrel.2023.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Owing to the unique DNA damaging cytotoxicity, platinum (Pt)-based chemotherapy has long been the first-line choice for clinical oncology. Unfortunately, Pt drugs are restricted by the severe dose-dependent toxicity and drug resistance. Correspondingly, Pt(IV) prodrugs are developed with the aim to improve the antitumor performance of Pt drugs. However, as "free" molecules, Pt(IV) prodrugs are still subject to unsatisfactory in vivo destiny and antitumor efficacy. Recently, Pt(IV) prodrug nanotherapeutics, inheriting both the merits of Pt(IV) prodrugs and nanotherapeutics, have emerged and demonstrated the promise to address the underexploited dilemma of Pt-based cancer therapy. Herein, we summarize the latest fronts of emerging Pt(IV) prodrug nanotherapeutics. First, the basic outlines of Pt(IV) prodrug nanotherapeutics are overviewed. Afterwards, how versatile Pt(IV) prodrug nanotherapeutics overcome the multiple biological barriers of antitumor drug delivery is introduced in detail. Moreover, advanced combination therapies based on multimodal Pt(IV) prodrug nanotherapeutics are discussed with special emphasis on the synergistic mechanisms. Finally, prospects and challenges of Pt(IV) prodrug nanotherapeutics for future clinical translation are spotlighted.
Collapse
Affiliation(s)
- Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China.
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Alqahtani AA, Aslam H, Shukrullah S, Fatima H, Naz MY, Rahman S, Mahnashi MH, Irfan M. Nanocarriers for Smart Therapeutic Strategies to Treat Drug-Resistant Tumors: A Review. Assay Drug Dev Technol 2022; 20:191-210. [DOI: 10.1089/adt.2022.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Hira Aslam
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Shazia Shukrullah
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hareem Fatima
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saifur Rahman
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| |
Collapse
|
6
|
Improvement of Kiteplatin Efficacy by a Benzoato Pt(IV) Prodrug Suitable for Oral Administration. Int J Mol Sci 2022; 23:ijms23137081. [PMID: 35806087 PMCID: PMC9266928 DOI: 10.3390/ijms23137081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022] Open
Abstract
Kiteplatin, [PtCl2(cis-1,4-DACH)] (DACH = diaminocyclohexane), contains an isomeric form of the oxaliplatin diamine ligand trans-1R,2R-DACH and has been proposed as a valuable drug candidate against cisplatin- and oxaliplatin-resistant tumors, in particular, colorectal cancer. To further improve the activity of kiteplatin, it has been transformed into a Pt(IV) prodrug by the addition of two benzoato groups in the axial positions. The new compound, cis,trans,cis-[PtCl2(OBz)2(cis-1,4-DACH)] (1; OBz = benzoate), showed cytotoxic activity at nanomolar concentration against a wide panel of human cancer cell lines. Based on these very promising results, the investigation has been extended to the in vivo activity of compound 1 in a Lewis Lung Carcinoma (LLC) model and its suitability for oral administration. Compound 1 resulted to be remarkably stable in acidic conditions (pH 1.5 to mimic the stomach environment) undergoing a drop of the initial concentration to ~60% of the initial one only after 72 h incubation at 37 °C; thus resulting amenable for oral administration. Interestingly, in a murine model (2·106 LLC cells implanted i.m. into the right hind leg of 8-week old male and female C57BL mice), a comparable reduction of tumor mass (~75%) was observed by administering compound 1 by oral gavage and the standard drug cisplatin by intraperitoneal injection, thus indicating that, indeed, there is the possibility of oral administration for this dibenzoato prodrug of kiteplatin. Moreover, since the mechanism of action of Pt(IV) prodrugs involves an initial activation by chemical reduction to cytotoxic Pt(II) species, the reduction of 1 by two bioreductants (ascorbic acid/sodium ascorbate and glutathione) was investigated resulting to be rather slow (not complete after 120 h incubation at 37 °C). Finally, the neurotoxicity of 1 was evaluated using an in vitro assay.
Collapse
|
7
|
Gao A, Wu Y, Yu J, Gong H, Jiang J, Yang C, Liu W, Qing C. Synthesis and anticancer activity of two highly water-soluble and ionic Pt(iv) complexes as prodrugs for Pt(ii) anticancer drugs. RSC Med Chem 2022; 13:594-598. [PMID: 35694692 PMCID: PMC9132197 DOI: 10.1039/d2md00004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/07/2022] [Indexed: 11/21/2022] Open
Abstract
Two new Pt(iv) complexes featuring mesylate as the outer sphere anion, cis,trans,cis-[PtCl2(OH2)2(NH3)2](CH3SO3)2 (SPt-1) and cis,trans,cis-[PtCl2(OH2)2(1R,2R-DACH)](CH3SO3)2 (SPt-2), were synthesized and characterized by elemental analysis, 1H and 13C NMR, IR, and ESI-MS. Both complexes have excellent water-solubility, high molar conductivity and good water stability. They exhibit an irreversible two-electron reduction event with the peak potentials (E p) for the processes being -0.40 V for SPt-1 and -0.52 V for SPt-2. The biological tests reveal that SPt-2 possesses high in vitro anticancer activity against three human cancer cell lines (HCT-116, A549 and MKN-1) and its overall anticancer activity is slightly greater than that of oxaliplatin, whereas SPt-1 is less active than cisplatin. Moreover, the antitumor efficacy of SPt-2 on human colon carcinoma HCT-116 xenografts in nude mice is also greater than that of oxaliplatin, suggesting that SPt-2 deserves further evaluation as a prodrug for oxaliplatin.
Collapse
Affiliation(s)
- Anli Gao
- State Key Lab of Advanced Technologies for PGM, Kunming Institute of Precious Metals 988 Keji Road Kunming City 650106 China
| | - Yaxi Wu
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University 1168 Chunrong West Road Kunming City 650500 China
- Department of Pharmacy, Yunnan New Kunhua Hospital Anning City Z044 Provincial Highway Kunming City 650301 China
| | - Juan Yu
- State Key Lab of Advanced Technologies for PGM, Kunming Institute of Precious Metals 988 Keji Road Kunming City 650106 China
| | - Hongyu Gong
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University 1168 Chunrong West Road Kunming City 650500 China
| | - Jing Jiang
- State Key Lab of Advanced Technologies for PGM, Kunming Institute of Precious Metals 988 Keji Road Kunming City 650106 China
| | - Caihong Yang
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University 1168 Chunrong West Road Kunming City 650500 China
| | - Weiping Liu
- State Key Lab of Advanced Technologies for PGM, Kunming Institute of Precious Metals 988 Keji Road Kunming City 650106 China
| | - Chen Qing
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University 1168 Chunrong West Road Kunming City 650500 China
| |
Collapse
|
8
|
Research progress of azido-containing Pt(IV) antitumor compounds. Eur J Med Chem 2021; 227:113927. [PMID: 34695775 DOI: 10.1016/j.ejmech.2021.113927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Cancer is a long-known incurable disease, and the medical use of cisplatin has been a significant discovery. However, the side-effects of cisplatin necessitate the development of new and improved drug. Therefore, in this study, we focused on the photoactivatable Pt(IV) compounds Pt[(X1)(X2)(Y1)(Y2)(N3)2], which have a completely novel mechanism of action. Pt(IV) can efficiently overcome the side-effects of cisplatin and other drugs. Here, we have demonstrated, summarized and discussed the effects and mechanism of these compounds. Compared to the relevant articles in the literature, we have provided a more detailed introduction and a made comprehensive classification of these compounds. We believe that our results can effectively provide a reference for the development of these drugs.
Collapse
|
9
|
Li Y, Shi S, Zhang S, Gan Z, Wang X, Zhao X, Zhu Y, Cao M, Wang X, Li W. ctc-[Pt(NH 3) 2(cinnamate)(valproate)Cl 2] is a highly potent and low-toxic triple action anticancer prodrug. Dalton Trans 2021; 50:11180-11188. [PMID: 34338267 DOI: 10.1039/d1dt01421h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pt(iv) prodrugs have gained tremendous attention due to their indisputable advantages compared to cisplatin. Herein, new Pt(iv) derivatives with cinnamic acid at the first axial position, and inhibitor of matrix metalloproteinases-2 and -9, histone deacetylase, cyclooxygenase or pyruvate dehydrogenase at the second axial position are constructed to develop multi-action prodrugs. We demonstrate that Pt(iv) prodrugs are reducible and have superior antiproliferative activity with IC50 values at submicromolar concentrations. Notably, Pt(iv) prodrugs exhibit highly potent anti-tumour activity in an in vivo breast cancer model. Our results support the view that a triple-action Pt(iv) prodrug acts via a synergistic mechanism, which involves the effects of CDDP and the effects of axial moieties, thus jointly leading to the death of tumour cells. These findings provide a practical strategy for the rational design of more effective Pt(iv) prodrugs to efficiently kill tumour cells by enhancing their cellular accumulation and tuning their canonical mechanism.
Collapse
Affiliation(s)
- Yang Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bartzatt R. Prostate Cancer: Biology, Incidence, Detection Methods, Treatment Methods, and Vaccines. Curr Top Med Chem 2021; 20:847-854. [PMID: 32091336 DOI: 10.2174/1568026620666200224100730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
Cancer of the prostate are cancers in which most incidences are slow-growing, and in the U.S., a record of 1.2 million new cases of prostate cancer occurred in 2018. The rates of this type of cancer have been increasing in developing nations. The risk factors for prostate cancer include age, family history, and obesity. It is believed that the rate of prostate cancer is correlated with the Western diet. Various advances in methods of radiotherapy have contributed to lowering morbidity. Therapy for hormone- refractory prostate cancer is making progress, for almost all men with metastases will proceed to hormone-refractory prostate cancer. Smoking cigarettes along with the presence of prostate cancer has been shown to cause a higher risk of mortality in prostate cancer. The serious outcome of incontinence and erectile dysfunction result from the cancer treatment of surgery and radiation, particularly for prostate- specific antigen detected cancers that will not cause morbidity or mortality. Families of patients, as well as patients, are profoundly affected following the diagnosis of prostate cancer. Poor communication between spouses during prostate cancer increases the risk for poor adjustment to prostate cancer. The use of serum prostate-specific antigen to screen for prostate cancer has led to a greater detection, in its early stage, of this cancer. Prostate cancer is the most common malignancy in American men, accounting for more than 29% of all diagnosed cancers and about 13% of all cancer deaths. A shortened course of hormonal therapy with docetaxel following radical prostatectomy (or radiation therapy) for high-risk prostate cancer has been shown to be both safe and feasible. Patients treated with docetaxel-estramustine had a prostate-specific antigen response decline of at least 50%. Cancer vaccines are an immune-based cancer treatment that may provide the promise of a non-toxic but efficacious therapeutic alternative for cancer patients. Further studies will elucidate improved methods of detection and treatment.
Collapse
Affiliation(s)
- Ronald Bartzatt
- Durham Science Center, College of Arts and Sciences, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, Nebraska 68182, United States
| |
Collapse
|
11
|
Karmakar S, Kostrhunova H, Ctvrtlikova T, Novohradsky V, Gibson D, Brabec V. Platinum(IV)-Estramustine Multiaction Prodrugs Are Effective Antiproliferative Agents against Prostate Cancer Cells. J Med Chem 2020; 63:13861-13877. [PMID: 33175515 DOI: 10.1021/acs.jmedchem.0c01400] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we describe the synthesis, characterization, and biological properties of Pt(IV) derivatives of cisplatin with estramustine at the first axial position, which is known to disrupt the microtubule assembly and act as an androgen antagonist, and varying the second axial position using an innocent ligand (acetate or hydroxyl) to prepare dual-action and triple-action prodrugs with known inhibitors of histone deacetylase, cyclooxygenase, and pyruvate dehydrogenase kinase. We demonstrate superior antiproliferative activity at submicromolar concentrations of the prodrugs against a panel of cancer cell lines, particularly against prostate cancer cell lines. The results obtained in this study exemplify the complex mode of action of "multiaction" Pt(IV) prodrugs. Interestingly, changing the second axial ligand in the Pt-estramustine complex has a significant effect on the mode of action, suggesting that all three components of the Pt(IV) prodrugs (platinum moiety and axial ligands) contribute to the killing of cells and not just one dominant component.
Collapse
Affiliation(s)
- Subhendu Karmakar
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hana Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Tereza Ctvrtlikova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Vojtech Novohradsky
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| |
Collapse
|
12
|
Slootbeek PHJ, Duizer ML, van der Doelen MJ, Kloots ISH, Kuppen MCP, Westgeest HM, Uyl-de Groot CA, Pamidimarri Naga S, Ligtenberg MJL, van Oort IM, Gerritsen WR, Schalken JA, Kroeze LI, Bloemendal HJ, Mehra N. Impact of DNA damage repair defects and aggressive variant features on response to carboplatin-based chemotherapy in metastatic castration-resistant prostate cancer. Int J Cancer 2020; 148:385-395. [PMID: 32965028 PMCID: PMC7756382 DOI: 10.1002/ijc.33306] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/08/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Platinum‐based chemotherapy is not standard of care for unselected or genetically selected metastatic castration‐resistant prostate cancer (mCRPC) patients. A retrospective assessment of 71 patients was performed on platinum use in the Netherlands. Genetically unselected patients yielded low response rates. For a predefined subanalysis of all patients with comprehensive next‐generation sequencing, 30 patients were grouped based on the presence of pathogenic aberrations in genes associated with DNA damage repair (DDR) or aggressive variant prostate cancer (AVPC). Fourteen patients (47%) were DDR deficient (DDRd), of which seven with inactivated BRCA2 (BRCA2mut). Six patients classified as AVPC. DDRd patients showed beneficial biochemical response to carboplatin, largely driven by all BRCA2mut patients having >50% prostate‐specific antigen (PSA) decline and objective radiographic response. In the wild‐type BRCA2 subgroup, 35% had a >50% PSA decline (P = .006) and 16% radiographic response (P < .001). Median overall survival was 21 months for BRCA2mut patients vs 7 months (P = .041) for those with functional BRCA2. AVPC patients demonstrated comparable responses to non‐AVPC, including a similar overall survival, despite the poor prognosis for this subgroup. In the scope of the registration of poly‐(ADP)‐ribose polymerase inhibitors (PARPi) for mCRPC, we provide initial insights on cross‐resistance between PARPi and platinum compounds. By combining the literature and our study, we identified 18 patients who received both agents. In this cohort, only BRCA2mut patients treated with platinum first (n = 4), responded to both agents. We confirm that BRCA2 inactivation is associated with meaningful responses to carboplatin, suggesting a role for both PARPi and platinum‐based chemotherapy in preselected mCRPC patients. What's new? Platinum‐based chemotherapy is not standard of care for unselected or genetically‐selected patients with metastatic castration‐resistant prostate cancer (mCRPC). However, several studies have shown that platinum‐based chemotherapy may still have a role in postponing progression in selected patient groups. This new study investigating DNA damage repair gene alterations and response to platinum‐based chemotherapy provides evidence that deep and durable responses are primarily associated with patients harbouring BRCA2 inactivation. Based on these data and the limited available literature, platinum‐based chemotherapy followed by PARP inhibition is potentially emerging as the optimal treatment sequence in pre‐selected mCRPC patients.
Collapse
Affiliation(s)
- Peter H J Slootbeek
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marleen L Duizer
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maarten J van der Doelen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris S H Kloots
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Malou C P Kuppen
- Institute for Medical Technology Assessment (iMTA), Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Hans M Westgeest
- Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands
| | - Carin A Uyl-de Groot
- Institute for Medical Technology Assessment (iMTA), Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Samhita Pamidimarri Naga
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Inge M van Oort
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Winald R Gerritsen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack A Schalken
- Department of Experimental Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leonie I Kroeze
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Haiko J Bloemendal
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Khoury A, Deo KM, Aldrich-Wright JR. Recent advances in platinum-based chemotherapeutics that exhibit inhibitory and targeted mechanisms of action. J Inorg Biochem 2020; 207:111070. [PMID: 32299045 DOI: 10.1016/j.jinorgbio.2020.111070] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022]
Abstract
Current platinum-based drugs used in chemotherapy, like cisplatin and its derivatives, are greatly limited due to side-effects and drug resistance. This has inspired the search for novel platinum-based drugs that deviate from the conventional mechanism of action seen with current chemotherapeutics. This review highlights recent advances in platinum(II) and platinum(IV)-based complexes that have been developed within the past six years. The platinum compounds explored within this review are those that display a more targeted approach by incorporating ligands that act on selected cellular targets within cancer cells. This includes mitochondria, overexpressed receptors or proteins and enzymes that contribute to cancer cell proliferation. These types of platinum compounds have shown significant improvements in anticancer activity and as such, this review highlights the importance of pursuing these new designed platinum drugs for cancer therapy, with the potential of undergoing clinical trials.
Collapse
Affiliation(s)
- Aleen Khoury
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Krishant M Deo
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | | |
Collapse
|
14
|
Karmakar S, Poetsch I, Kowol CR, Heffeter P, Gibson D. Synthesis and Cytotoxicity of Water-Soluble Dual- and Triple-Action Satraplatin Derivatives: Replacement of Equatorial Chlorides of Satraplatin by Acetates. Inorg Chem 2019; 58:16676-16688. [PMID: 31790216 DOI: 10.1021/acs.inorgchem.9b02796] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pt(II) complexes, such as cisplatin and oxaliplatin, are in widespread use as anticancer drugs. Their use is limited by the toxic side effects and the ability of tumors to develop resistance to the drugs. A popular approach to overcome these drawbacks is to use their kinetically inert octahedral Pt(IV) derivatives that act as prodrugs. The most successful Pt(IV) complex in clinical trials to date is satraplatin, cct-[Pt(NH3)(c-hexylamine)Cl2(OAc)2], that upon cellular reduction releases the cytotoxic cis-[Pt(NH3)(c-hexylamine)Cl2]. In an attempt to obtain water-soluble and more effective cytotoxic Pt(IV) complexes, we prepared a series of dual- and triple-action satraplatin analogues, where the equatorial chlorido ligands were replaced with acetates and the axial ligands include innocent and bioactive ligands. Replacement of the chlorides with acetates enhanced the water solubility of the compounds and, with one exception, all of the compounds were very stable in buffer. In general, compounds with one or two axial hydroxido ligands were reduced by ascorbate significantly more quickly than compounds with two axial carboxylates. While replacement of the chlorides with acetates in satraplatin led to a reduction in cytotoxicity, the dual- and triple-action analogues with equatorial acetates had low- to sub-micromolar IC50 values in a panel of eight cancer cells. The triple-action compound cct-[Pt(NH3)(c-hexylamine)(OAc)2(PhB)(DCA)] was active in all cell lines, causing DNA damage that induced cell cycle inhibition and apoptosis. Its good activity against CT26 cells in vitro translated into good in vivo efficacy against the CT26 allograft, an in vivo model with intrinsic satraplatin resistance. This indicates that multiaction Pt(IV) derivatives of diamine dicarboxylates are interesting anticancer drug candidates.
Collapse
Affiliation(s)
- Subhendu Karmakar
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I , Medical University of Vienna , Borschkegasse 8a , 1090 Vienna , Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry , University of Vienna , Vienna , Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry , University of Vienna , Vienna , Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I , Medical University of Vienna , Borschkegasse 8a , 1090 Vienna , Austria
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| |
Collapse
|
15
|
Gurruchaga-Pereda J, Martínez Á, Terenzi A, Salassa L. Anticancer platinum agents and light. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Arasaratnam M, Crumbaker M, Bhatnagar A, McKay MJ, Molloy MP, Gurney H. Inter- and intra-patient variability in pharmacokinetics of abiraterone acetate in metastatic prostate cancer. Cancer Chemother Pharmacol 2019; 84:139-146. [PMID: 31081533 DOI: 10.1007/s00280-019-03862-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/02/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE This study examined the inter- and intra-patient variability in pharmacokinetics of AA and its metabolites abiraterone and Δ(4)-abiraterone (D4A), and potential contributing factors. METHODS AA administered daily for ≥4 weeks concurrently with androgen deprivation therapy (ADT) for mCRPC were included. Pharmacokinetic evaluation was performed at two consecutive visits at least 4 weeks apart. Plasma samples were collected 24 h after last dose of AA to obtain drug trough level (DTL) of two active metabolites, abiraterone and D4A. RESULTS 39 plasma samples were obtained from 22 patients, with 17 patients had repeat DTL measurement. Considerable inter-patient variability in DTL was seen, with initial DTL for abiraterone ranging between 1.5 and 25.4 ng/ml (CV 61%) and for D4A between 0.2 and 2.5 ng/ml (CV 61%). Intra-patient variability in DTL for abiraterone varied between 0.85 and 336% and for D4A between 1.14 and 199%. There was no increase in AA exposure with use of dexamethasone (n = 5; DTL 13.9) compared with prednisone (n = 17; DTL 11.0 p = 0.5), dosing in fasted state (n = 13, DTL 12.1) compared to dosing in fed state (n = 9; DTL 11.1, p = 0.8), or chemotherapy-exposed (n = 10; DTL 8.9) compared to chemotherapy naïve (n = 12; DTL 14.0, p = 0.1). CONCLUSIONS Our cohort demonstrated high inter- and intra-patient variability in both abiraterone and D4A with fixed dosing of AA, with no effect from choice of corticosteroids, prior use of chemotherapy, or dosing in fasting state. Monitoring DTL of AA may be necessary to minimise risk of patients being under-dosed and earlier development of resistance.
Collapse
Affiliation(s)
- Malmaruha Arasaratnam
- Department of Medical Oncology, Gosford Hospital, Sydney, Australia.
- Kolling Institute, The University of Sydney, Royal North Shore Hospital, Sydney, Australia.
- Gosford Hospital, Holden St, Gosford, NSW, 2250, Australia.
| | - Megan Crumbaker
- Department of Medical Oncology, The Kinghorn Cancer Centre, Sydney, Australia
| | - Atul Bhatnagar
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Matthew J McKay
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Mark P Molloy
- Kolling Institute, The University of Sydney, Royal North Shore Hospital, Sydney, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Howard Gurney
- Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia
- Macquarie University Clinic, Macquarie University Hospital, Sydney, Australia
| |
Collapse
|
17
|
Pötsch I, Baier D, Keppler BK, Berger W. Challenges and Chances in the Preclinical to Clinical Translation of Anticancer Metallodrugs. METAL-BASED ANTICANCER AGENTS 2019. [DOI: 10.1039/9781788016452-00308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite being “sentenced to death” for quite some time, anticancer platinum compounds are still the most frequently prescribed cancer therapies in the oncological routine and recent exciting news from late-stage clinical studies on combinations of metallodrugs with immunotherapies suggest that this situation will not change soon. It is perhaps surprising that relatively simple molecules like cisplatin, discovered over 50 years ago, are still widely used clinically, while none of the highly sophisticated metal compounds developed over the last decade, including complexes with targeting ligands and multifunctional (nano)formulations, have managed to obtain clinical approval. In this book chapter, we summarize the current status of ongoing clinical trials for anticancer metal compounds and discuss the reasons for previous failures, as well as new opportunities for the clinical translation of metal complexes.
Collapse
Affiliation(s)
- Isabella Pötsch
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| | - Dina Baier
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
| | - Walter Berger
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| |
Collapse
|
18
|
Lee VEY, Chin CF, Ang WH. Design and investigation of photoactivatable platinum(iv) prodrug complexes of cisplatin. Dalton Trans 2019; 48:7388-7393. [PMID: 30957798 DOI: 10.1039/c9dt00540d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Platinum(iv) carboxylate scaffolds have garnered considerable research interest because they can be engineered to function as prodrugs of clinical platinum(ii) anticancer drugs. These platinum(iv) prodrug complexes are stable and tunable, and activated by reduction to release their cytotoxic platinum(ii) cargo. Here we propose new platinum(iv) prodrug complexes designed to release cisplatin via photoreduction upon UV irradiation. The central strategy is to utilise aryl carboxylate ligands on the axial positions of that platinum(iv) scaffold that confer significant UV absorption and would stabilise carboxyl radical formation, thus favouring homolytic Pt-O bond cleavage. We isolated and identified aryl carboxyl radicals via spin-trapping and showed that the photoreduced platinum species mirror cisplatin reactivity toward DNA bases, thereby validating the efficacy of this approach.
Collapse
Affiliation(s)
- Violet Eng Yee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543. and NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077
| | - Chee Fei Chin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543. and NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077
| |
Collapse
|
19
|
Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS. Hypoxia-targeted drug delivery. Chem Soc Rev 2019; 48:771-813. [PMID: 30575832 PMCID: PMC6361706 DOI: 10.1039/c8cs00304a] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia is a state of low oxygen tension found in numerous solid tumours. It is typically associated with abnormal vasculature, which results in a reduced supply of oxygen and nutrients, as well as impaired delivery of drugs. The hypoxic nature of tumours often leads to the development of localized heterogeneous environments characterized by variable oxygen concentrations, relatively low pH, and increased levels of reactive oxygen species (ROS). The hypoxic heterogeneity promotes tumour invasiveness, metastasis, angiogenesis, and an increase in multidrug-resistant proteins. These factors decrease the therapeutic efficacy of anticancer drugs and can provide a barrier to advancing drug leads beyond the early stages of preclinical development. This review highlights various hypoxia-targeted and activated design strategies for the formulation of drugs or prodrugs and their mechanism of action for tumour diagnosis and treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | | | | | | | | | | |
Collapse
|
20
|
Lo Re D, Montagner D, Tolan D, Di Sanza C, Iglesias M, Calon A, Giralt E. Increased immune cell infiltration in patient-derived tumor explants treated with Traniplatin: an original Pt(iv) pro-drug based on Cisplatin and Tranilast. Chem Commun (Camb) 2018; 54:8324-8327. [PMID: 29796549 DOI: 10.1039/c8cc02071j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Elevated intra-tumoral immune infiltrate is associated with an improved prognosis in cancer of distinct origins. Traniplatin (TPT) is a novel platinum(iv) pro-drug based on Cisplatin (CDDP) and the marketed drug Tranilast. When compared in vitro to Cisplatin, TPT showed increased cytotoxic activity against colon and lung cancer cells but decreased activity against immune cells. In addition, TPT efficiency was evaluated in tumor explants derived from colorectal cancer samples from patients subjected to intended curative surgery. TPT induced strong intra-tumoral cytotoxic activity yet was associated with an elevated presence of immune cell infiltrate, suggesting a reduced cytotoxic activity against immune cells in colorectal cancer.
Collapse
Affiliation(s)
- Daniele Lo Re
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, E-08028, Spain.
| | | | | | | | | | | | | |
Collapse
|
21
|
Kornberg Z, Chou J, Feng FY, Ryan CJ. Prostate cancer in the era of "Omic" medicine: recognizing the importance of DNA damage repair pathways. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:161. [PMID: 29911109 PMCID: PMC5985268 DOI: 10.21037/atm.2018.05.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/02/2018] [Indexed: 02/01/2023]
Abstract
Data from recent high-throughput studies analyzing local and advanced prostate cancer have revealed an incredible amount of biological diversity, which has led to the classification of distinct molecular tumor subtypes. While integrating prostate cancer genomics with clinical medicine is still at its infancy, new approaches to treat prostate cancer are well underway and being studied. With the recognition that DNA damage repair (DDR) mutations play an important role in the pathogenesis of this disease, clinicians can begin to utilize genomic information in complex treatment decisions for prostate cancer patients. In this Review, we discuss the role of DDR mutations in prostate cancer, including deficiencies in homologous repair and mismatch repair (MMR), and how this information is revolutionizing the treatment landscape. In addition, we highlight the potential resistance mechanisms that may result as we begin to target these pathways in isolation and discuss potential combinatorial approaches that may delay or overcome resistance.
Collapse
Affiliation(s)
- Zachary Kornberg
- Department of Radiation Oncology, Division of Hematology and Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jonathan Chou
- Department of Medicine, Division of Hematology and Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Felix Y. Feng
- Department of Radiation Oncology, Division of Hematology and Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Charles J. Ryan
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
22
|
Di Lorenzo G, De Placido S. Hormone Refractory Prostate Cancer (Hrpc): Present and Future Approaches of Therapy. Int J Immunopathol Pharmacol 2018. [DOI: 10.1177/205873920601900103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mainstay of therapy for patients with advanced prostate cancer still remains androgen deprivation, although response to this is invariably temporary. Most of the patients develop hormone-refractory disease resulting in progressive clinical deterioration and, ultimately, death. Until recently there has been no standard chemotherapeutic approach for hormone refractory prostate cancer (HRPC), the major benefits of chemotherapy being only palliative. The studies combining mitoxantrone plus a corticosteroid demonstrated that chemotherapy could be given to men with symptomatic HRPC with minimal toxicity and a significant palliation could be provided. Recently, results from 2 phase III randomized clinical trials demonstrating that a combination of docetaxel plus prednisone can improve survival in men with HRPC have propelled docetaxel-based therapy into the forefront of treatment options for these patients as the new standard of care. There is a promising activity of new drug combinations such as taxanes plus vinca alkaloids; bisphosphonates are assuming a prominent role in prostate therapy through their ability to prevent skeletal morbidity. Combinations of classic chemotherapeutic agents and biological drugs began to be tested in phase II-III trials and the first results appear interesting. This article focuses on combinations recently evaluated or under clinical development for the treatment of HRPC.
Collapse
Affiliation(s)
- G. Di Lorenzo
- Dipartimento di Endocrinologia Molecolare e Clinica, Cattedra di Oncologia Università degli Studi di Napoli Federico II, Naples, Italy
| | - S. De Placido
- Dipartimento di Endocrinologia Molecolare e Clinica, Cattedra di Oncologia Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
23
|
Cai L, Yu C, Ba L, Liu Q, Qian Y, Yang B, Gao C. Anticancer platinum-based complexes with non-classical structures. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4228] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Linxiang Cai
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Congtao Yu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Linkui Ba
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Qinghua Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Yunxu Qian
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Bo Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| |
Collapse
|
24
|
Zhang W, Song Y, Eldi P, Guo X, Hayball JD, Garg S, Albrecht H. Targeting prostate cancer cells with hybrid elastin-like polypeptide/liposome nanoparticles. Int J Nanomedicine 2018; 13:293-305. [PMID: 29391790 PMCID: PMC5768422 DOI: 10.2147/ijn.s152485] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer cells frequently overexpress the gastrin-releasing peptide receptor, and various strategies have been applied in preclinical settings to target this receptor for the specific delivery of anticancer compounds. Recently, elastin-like polypeptide (ELP)-based self-assembling micelles with tethered GRP on the surface have been suggested to actively target prostate cancer cells. Poorly soluble chemotherapeutics such as docetaxel (DTX) can be loaded into the hydrophobic cores of ELP micelles, but only limited drug retention times have been achieved. Herein, we report the generation of hybrid ELP/liposome nanoparticles which self-assembled rapidly in response to temperature change, encapsulated DTX at high concentrations with slow release, displayed the GRP ligand on the surface, and specifically bound to GRP receptor expressing PC-3 cells as demonstrated by flow cytometry. This novel type of drug nanocarrier was successfully used to reduce cell viability of prostate cancer cells in vitro through the specific delivery of DTX.
Collapse
Affiliation(s)
- Wei Zhang
- Centre for Pharmaceutical Innovation and Development, Centre for Drug Discovery and Development, Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation and Development, Centre for Drug Discovery and Development, Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Preethi Eldi
- Centre for Pharmaceutical Innovation and Development, Centre for Drug Discovery and Development, Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Xiuli Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - John D Hayball
- Centre for Pharmaceutical Innovation and Development, Centre for Drug Discovery and Development, Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation and Development, Centre for Drug Discovery and Development, Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hugo Albrecht
- Centre for Pharmaceutical Innovation and Development, Centre for Drug Discovery and Development, Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
25
|
Abstract
Background Docetaxel has recently been found to improve survival in patients with metastatic androgen-independent prostate cancer (AIPC). Chemotherapy as a first-line option leaves room for improvement, while second-line options are multiple and somewhat controversial. Methods Clinically relevant articles focusing on chemotherapy drugs for metastatic prostate cancer and their mechanism of action and efficacy were reviewed from January 2004 through April 2006. Results Docetaxel is the standard of care for AIPC. However, for doublets with docetaxel or second-line chemotherapy, multiple studies have shown interesting and promising results with calcitriol, thalidomide, bevacizumab, satraplatin, vaccines, ixabepilone, and atrasentan. Conclusions Docetaxel should be considered for first-line treatment of metastatic AIPC. Due to its progression-free survival of only 6 months, more effective drugs and drug combinations need to be developed to treat patients with AIPC. Combination treatments with docetaxel and other new agents are promising, but adequately powered phase III trials need to be conducted with survival as the principal endpoint for these promising drug combinations.
Collapse
Affiliation(s)
- Winston W Tan
- Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
26
|
Kortikoide im Management des fortgeschrittenen Prostatakarzinoms. Urologe A 2017; 56:217-223. [DOI: 10.1007/s00120-016-0276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Yap SQ, Chin CF, Hong Thng AH, Pang YY, Ho HK, Ang WH. Finely Tuned Asymmetric Platinum(IV) Anticancer Complexes: Structure-Activity Relationship and Application as Orally Available Prodrugs. ChemMedChem 2017; 12:300-311. [PMID: 28028938 DOI: 10.1002/cmdc.201600577] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/22/2016] [Indexed: 01/12/2023]
Abstract
Platinum(IV) bis-carboxylates are highly versatile prodrug scaffolds with different axial ligands that can be functionalized while keeping the platinum(II) pharmacophore intact. Using a sequential acylation strategy, we developed a class of PtIV prodrugs of cisplatin with contrasting lipophilic and hydrophilic ligands. We investigated their stability, reduction rates, lipophilicity, aqueous solubility, and antiproliferative efficacies, and assessed for correlations among the parameters that could be useful in drug design. We showed that compounds with high lipophilicity result in better antiproliferative effects in vitro and in vivo, with one of the three compounds tested showing better efficacy than satraplatin against an animal model of colorectal cancer, owing to its higher solubility and lower reduction rates. Our asymmetric PtIV prodrugs may pave the way for a highly predictable, fine-tuned class of orally available PtIV prodrugs for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Siew Qi Yap
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Chee Fei Chin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Agnes Hwee Hong Thng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yi Yun Pang
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.,NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| |
Collapse
|
28
|
Hu J, Chen Q. The role of glucocorticoid receptor in prostate cancer progression: from bench to bedside. Int Urol Nephrol 2016; 49:369-380. [PMID: 27987128 DOI: 10.1007/s11255-016-1476-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
Abstract
Glucocorticoids are a common class of adjuvant drugs for the treatment of castration-resistant prostate cancer (CRPC) combined with antitumour or antiandrogen agents. Glucocorticoids are administered clinically because they ameliorate toxic side effects and have inhibitory effects on adrenal androgen production, acting as a pituitary suppressant. However, their effects on prostate cancer cells especially the castration resistance prostate cancer cells are poorly defined. Glucocorticoids exert effects depend to a great extent on glucocorticoid receptor. In addition to a number of glucocorticoid receptor isoforms determined, it is found that the actions of glucocorticoids through GRα are influenced by other isoforms, such as GRβ and GRγ. Recently, studies found GR confers resistance to androgen deprivation therapy, and various glucocorticoids exert distinct efficacy in CRPC. In this review, we summarized the mechanisms of glucocorticoids and its clinical appliances on the basis of present evidence.
Collapse
Affiliation(s)
- Jieping Hu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Qingke Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
29
|
Rancoule C, Guy JB, Vallard A, Ben Mrad M, Rehailia A, Magné N. [50th anniversary of cisplatin]. Bull Cancer 2016; 104:167-176. [PMID: 27989629 DOI: 10.1016/j.bulcan.2016.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/06/2016] [Accepted: 11/12/2016] [Indexed: 01/08/2023]
Abstract
We have just celebrated the 50th anniversary of cisplatin cytotoxic potential discovery. It is time to take stock… and it seems mainly positive. This drug, that revolutionized the treatment of many cancer types, continues to be the most widely prescribed chemotherapy. Despite significant toxicities, resistance mechanisms associated with treatment failures, and unresolved questions about its mechanism of action, the use of this cytotoxic agent remains unwavering. The interest concerning this "old" invincible drug has not yet abated. Indeed many research axes are in the news. New platinum salts agents are tested, new cisplatin formulations are developed to target tumor cells more efficiently, and new combinations are established to increase the cytotoxic potency of cisplatin or overcome the resistance mechanisms.
Collapse
Affiliation(s)
- Chloé Rancoule
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez, France; CNRS UMR 5822, laboratoire de radiobiologie cellulaire et moléculaire de Lyon Sud, 165, chemin du Grand-Revoyet, BP 12, 69921 Oullins cedex, France
| | - Jean-Baptiste Guy
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez, France; CNRS UMR 5822, laboratoire de radiobiologie cellulaire et moléculaire de Lyon Sud, 165, chemin du Grand-Revoyet, BP 12, 69921 Oullins cedex, France
| | - Alexis Vallard
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez, France
| | - Majed Ben Mrad
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez, France
| | - Amel Rehailia
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez, France
| | - Nicolas Magné
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez, France; CNRS UMR 5822, laboratoire de radiobiologie cellulaire et moléculaire de Lyon Sud, 165, chemin du Grand-Revoyet, BP 12, 69921 Oullins cedex, France.
| |
Collapse
|
30
|
Margiotta N, Savino S, Marzano C, Pacifico C, Hoeschele JD, Gandin V, Natile G. Cytotoxicity-boosting of kiteplatin by Pt(IV) prodrugs with axial benzoate ligands. J Inorg Biochem 2016; 160:85-93. [DOI: 10.1016/j.jinorgbio.2015.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/04/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023]
|
31
|
Aljuffali IA, Lin CF, Chen CH, Fang JY. The codrug approach for facilitating drug delivery and bioactivity. Expert Opin Drug Deliv 2016; 13:1311-25. [DOI: 10.1080/17425247.2016.1187598] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ibrahim A. Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chun-Han Chen
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
32
|
Hager S, Ackermann CJ, Joerger M, Gillessen S, Omlin A. Anti-tumour activity of platinum compounds in advanced prostate cancer-a systematic literature review. Ann Oncol 2016; 27:975-984. [PMID: 27052650 DOI: 10.1093/annonc/mdw156] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/25/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND For men with advanced castration-resistant prostate cancer (CRPC), several treatment options are available, including androgen receptor (AR) pathway inhibitors (abiraterone acetate, enzalutamide), taxanes (docetaxel, cabazitaxel) and the radionuclide (radium-223). However, cross-resistance is a clinically relevant problem. Platinum compounds have been tested in a number of clinical trials in molecularly unselected prostate cancer patients. Advances in CRPC molecular profiling have shown that a significant proportion of patients harbour DNA repair defects, which may serve as predictive markers for sensitivity to platinum agents. OBJECTIVE To systematically identify and analyse clinical trials that have evaluated platinum agents in advanced prostate cancer patients. METHODS PubMed was searched to identify published clinical trials of platinum agents in advanced prostate cancer. The PRIMSA statement was followed for the systematic review process. Identified trials are analysed for study design, statistical plan, assessments of anti-tumour activity and the potential value of predictive biomarkers. RESULTS A total of 163 references were identified by the literature search and 72 publications that met the selection criteria were included in this review; of these 33 used carboplatin, 27 cisplatin, 6 satraplatin, 4 oxaliplatin and 2 other platinum compounds. Overall, anti-tumour activity varies in the range of 10%-40% for objective response and 20%-70% for PSA decline ≥50%. Response seemed highest for the combinations of carboplatin with taxanes or oxaliplatin with gemcitabine. The interpretation of the clinical data is limited by differences in response criteria used and patient populations studied. CONCLUSION Platinum compounds have moderate anti-tumour activity in molecularly unselected patients with advanced prostate cancer. Translational evidence of DNA repair deficiency should be leveraged in future studies to select prostate cancer patients most likely to benefit from platinum-based therapy.
Collapse
Affiliation(s)
- S Hager
- Department of Oncology and Haematology, Cantonal Hospital, St Gallen, Switzerland
| | - C J Ackermann
- Department of Oncology and Haematology, Cantonal Hospital, St Gallen, Switzerland
| | - M Joerger
- Department of Oncology and Haematology, Cantonal Hospital, St Gallen, Switzerland
| | - S Gillessen
- Department of Oncology and Haematology, Cantonal Hospital, St Gallen, Switzerland
| | - A Omlin
- Department of Oncology and Haematology, Cantonal Hospital, St Gallen, Switzerland.
| |
Collapse
|
33
|
Johnstone TC, Suntharalingam K, Lippard SJ. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem Rev 2016; 116:3436-86. [PMID: 26865551 PMCID: PMC4792284 DOI: 10.1021/acs.chemrev.5b00597] [Citation(s) in RCA: 1801] [Impact Index Per Article: 200.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive.
Collapse
Affiliation(s)
- Timothy C Johnstone
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
34
|
Miura N, Tanji N, Yanagihara Y, Noda T, Asai S, Nishimura K, Shirato A, Miyauchi Y, Kikugawa T, Yokoyama M. Low-Dose Docetaxel Combined with Dexamethasone Is Feasible for Patients with Castration-Resistant Prostate Cancer. Chemotherapy 2015; 61:23-31. [PMID: 26528957 DOI: 10.1159/000440942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/07/2015] [Indexed: 11/19/2022]
Abstract
AIM Docetaxel-based chemotherapy against castration-resistant prostate cancer (CRPC) has recently been shown to be effective and tolerable. The objective of this study was to retrospectively evaluate the efficacy and toxicity of low-dose docetaxel in combination with dexamethasone. METHODS Thirty-seven CRPC patients were administered a treatment regimen consisting of 50 mg/m2 docetaxel once every 3-4 weeks and 1 mg dexamethasone daily at our institution, between November 2004 and April 2014. RESULTS Twenty-four patients (65%) had a decrease in serum prostate-specific antigen (PSA) >50%. The median overall survival (OS) and PSA progression-free survival were 26.2 and 10.0 months, respectively. Ten of 12 patients (83%) taking analgesic agents reduced their intake because of decreased pain levels. Grade 3 febrile neutropenia occurred in 2 patients (5%). Nonhematological toxicities were less frequent but sometimes severe. Treatment-related death occurred in 2 octogenarian patients, 1 due to gastric bleeding and the other due to infective endocarditis. CONCLUSION Low-dose docetaxel in combination with dexamethasone is feasible in Japanese CRPC patients. Hematological toxicity is less than that seen with standard docetaxel therapy, but it is necessary to monitor patients for severe nonhematological toxicities, particularly very elderly patients.
Collapse
|
35
|
Venkitaraman R, Lorente D, Murthy V, Thomas K, Parker L, Ahiabor R, Dearnaley D, Huddart R, De Bono J, Parker C. A randomised phase 2 trial of dexamethasone versus prednisolone in castration-resistant prostate cancer. Eur Urol 2015; 67:673-9. [PMID: 25457497 DOI: 10.1016/j.eururo.2014.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/01/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Prednisolone is widely used as secondary hormonal treatment for castration-resistant prostate cancer (CRPC). We hypothesised that dexamethasone, another corticosteroid, is more active. OBJECTIVE To compare the activity of prednisolone and dexamethasone in CRPC. DESIGN, SETTING, AND PARTICIPANTS This single-centre, randomised, phase 2 trial was performed in 82 men with chemotherapy-naïve CRPC enrolled from 2006 to 2010. INTERVENTION Prednisolone 5mg twice daily versus dexamethasone 0.5mg once daily versus intermittent dexamethasone 8mg twice daily on days 1-3 every 3 wk. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The main end point was prostate-specific antigen (PSA) response rate. Secondary end points included time to PSA progression, radiologic response rate using Response Evaluation Criteria In Solid Tumors (RECIST), and safety. RESULTS AND LIMITATIONS The intermittent dexamethasone arm was dropped after no response was seen in seven patients. By intention to treat, confirmed PSA response was seen in 41% versus 22% for daily dexamethasone versus prednisolone, respectively (p=0.08). In evaluable patients, the PSA response rates were 47% versus 24% for dexamethasone and prednisolone, respectively (p=0.05). Median time to PSA progression was 9.7 mo on dexamethasone versus 5.1 mo on prednisolone (hazard ratio: 1.6; 95% confidence interval, 0.9-2.8). In 43 patients with measurable disease, the response rate by RECIST was 15% and 6% for dexamethasone and prednisolone, respectively (p=0.6). Of 23 patients who crossed over at PSA progression on prednisolone, 7 of the 19 evaluable (37%) had a confirmed PSA response to dexamethasone. Clinically significant toxicities were rare. CONCLUSIONS Dexamethasone may be more active than prednisolone in CRPC. In the absence of more definitive trials, dexamethasone should be used in preference to prednisolone. PATIENT SUMMARY We compared two different steroids used for treating men with advanced prostate cancer. Our results suggest that dexamethasone may be more effective than prednisolone and that both are well tolerated. CLINICAL TRIAL REGISTRY EUDRAC 2005-006018-16.
Collapse
Affiliation(s)
| | | | - Vedang Murthy
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dorff TB, Quek ML, Daneshmand S, Pinski J. Evolving treatment paradigms for locally advanced and metastatic prostate cancer. Expert Rev Anticancer Ther 2014; 6:1639-51. [PMID: 17134367 DOI: 10.1586/14737140.6.11.1639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While men with early stage prostate cancer typically enjoy long-term survival after definitive management, for those who present with locally advanced or metastatic disease, survival is compromised. Multimodality therapy can prolong survival in these patients, with state-of-the-art options including intensity-modulated radiation or brachytherapy in conjunction with androgen ablation, adjuvant androgen ablation and/or chemotherapy with radical retropubic prostatectomy. In addition, novel biological therapies are being explored to target the unique molecular changes in prostate cancer cells and their interactions with the microenvironment. With these advances the outlook will undoubtedly improve, even for patients presenting with advanced disease. Careful application of these emerging therapies to a select group of prostate cancer patients most likely to obtain benefit from them is the challenge for urologists, medical oncologists and radiation oncologists for the future.
Collapse
Affiliation(s)
- Tanya B Dorff
- University of Southern California, Norris Comprehensive Cancer Center, Division of Medical Oncology, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
37
|
Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK. Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev 2013; 65:1667-85. [PMID: 24113520 PMCID: PMC4197009 DOI: 10.1016/j.addr.2013.09.014] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 12/18/2022]
Abstract
Platinum based anticancer drugs have revolutionized cancer chemotherapy, and continue to be in widespread clinical use especially for management of tumors of the ovary, testes, and the head and neck. However, several dose limiting toxicities associated with platinum drug use, partial anti-tumor response in most patients, development of drug resistance, tumor relapse, and many other challenges have severely limited the patient quality of life. These limitations have motivated an extensive research effort towards development of new strategies for improving platinum therapy. Nanocarrier-based delivery of platinum compounds is one such area of intense research effort beginning to provide encouraging preclinical and clinical results and may allow the development of the next generation of platinum chemotherapy. This review highlights current understanding on the pharmacology and limitations of platinum compounds in clinical use, and provides a comprehensive analysis of various platinum-polymer complexes, micelles, dendrimers, liposomes and other nanoparticles currently under investigation for delivery of platinum drugs.
Collapse
Affiliation(s)
- Hardeep S. Oberoi
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia V. Nukolova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
- Russian State Medical University, Department of Medical Nanobiotechnology, Ostrovityanova 1, Moscow 117997, Russia
| | - Alexander V. Kabanov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
- Center for Nanotechnology in Drug Delivery and Division of Molecular Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Tatiana K. Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
38
|
Pezaro C, Omlin A, Lorente D, de Bono J. Management of patients with castration-resistant disease. Hematol Oncol Clin North Am 2013; 27:1243-60, ix. [PMID: 24188261 DOI: 10.1016/j.hoc.2013.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The medical management of men with castration-resistant prostate cancer (CRPC) has changed dramatically in the last decade. Men can now access several agents developed to extend survival, delay morbidity caused by complications, and preserve quality of life. Strategies to extend survival include docetaxel and cabazitaxel, the CYP-inhibitor abiraterone acetate, the second-generation androgen receptor antagonist enzalutamide, sipuleucel-T immunotherapy, and the α-emitting radionuclide (223)radium. These novel therapies have fostered interest in translational science and a deeper understanding of the underlying biology of CRPC. This article summarizes clinical data and unresolved issues in the use of current and emerging CRPC therapies.
Collapse
Affiliation(s)
- Carmel Pezaro
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, The Institute of Cancer Research, Downs Road, Sutton, Surrey SM2 5PT, UK
| | | | | | | |
Collapse
|
39
|
Figg WD, Chau CH, Madan RA, Gulley JL, Gao R, Sissung TM, Spencer S, Beatson M, Aragon-Ching J, Steinberg SM, Dahut WL. Phase II study of satraplatin and prednisone in patients with metastatic castration-resistant prostate cancer: a pharmacogenetic assessment of outcome and toxicity. Clin Genitourin Cancer 2013; 11:229-37. [PMID: 23684781 PMCID: PMC3758779 DOI: 10.1016/j.clgc.2013.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/31/2012] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND We assessed the effect of excision repair cross-complementing group 1 (ERCC1) and x-ray cross-complementing group 1 (XRCC1) gene polymorphisms on treatment outcomes with satraplatin and prednisone in patients with metastatic castration-resistant prostate cancer previously treated with docetaxel-based therapy. PATIENTS AND METHODS Twenty-four patients were enrolled in this single arm study. The primary objective was to determine if the presence of ERCC1 Asn118Asn (N118N, 500C>T, rs11615) and XRCC1 Arg399Gln (R399Q, 1301G>A, rs25487) genetic variants might be associated with an impact on progression-free survival (PFS); secondary objectives included overall response, survival, and toxicity. RESULTS After population stratification by race, white patients carrying heterozygous or variant genotypes at the ERCC1 C>T locus had a >3-fold longer median PFS (5.8 vs. 1.8 months; 2P = .18, adjusted) and 5-fold longer median overall survival (OS) (15.7 vs. 3.2 months; 2P = .010, adjusted) than did patients carrying only wild-type alleles. For the XRCC1 G>A variant, without regard to race, patients carrying the wild-type GG alleles had a longer PFS (9.3 months) than those carrying GA or AA alleles (2.7 months; 2P = .02). Similarly, those carrying GG alleles did not reach median OS, whereas those carrying GA or AA alleles had a median OS of 9.6 months (2P = .12, adjusted). Multivariable analysis by using Cox proportional hazards modeling demonstrated that only XRCC1 was associated with PFS. CONCLUSIONS To our knowledge, this is the first prospective study to date in patients with metastatic castration-resistant prostate cancer that describes predictive germline polymorphisms of ERCC1 and XRCC1 for assessing the clinical activity of satraplatin.
Collapse
Affiliation(s)
- William D Figg
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cetnar J, Wilding G, McNeel D, LoConte NK, McFarland TA, Eickhoff J, Liu G. A phase 1/1b study of satraplatin (JM-216) in combination with docetaxel in patients with advanced solid tumors and metastatic castrate-resistant prostate cancer. Urol Oncol 2013; 31:436-41. [PMID: 21481618 PMCID: PMC3508252 DOI: 10.1016/j.urolonc.2011.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/12/2011] [Accepted: 02/13/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Satraplatin is an oral platinum with potential advantages over other platinum agents. This study investigated the combination of satraplatin and docetaxel in a phase 1 study of patients with advanced solid tumor malignancies followed by a phase 1b study in men with chemotherapy naïve metastatic castrate-resistant prostate cancer (CRPC). METHODS In this single institution phase 1/1b study, patients received docetaxel on day 1 and satraplatin on days 1-5 of a 21-day cycle ± granulocyte colony stimulating factor (GCSF). For phase 1b, prednisone 10 mg daily was added. RESULTS Twenty-nine patients received treatment. Based on 3 dose limiting toxicities (DLT) (grade 4 neutropenia) in 13 patients at dose levels 1 and -1 (docetaxel 60 mg/m(2) plus satraplatin 40 mg/m(2) and docetaxel 60 mg/m(2) plus satraplatin 50 mg/m(2)) GCSF was administered with subsequent cohorts. A dose level of docetaxel 60 mg/m(2) plus satraplatin 50 mg/m(2) with GCSF was the starting dose level for phase 1b. At the highest dose in the phase 1b (docetaxel 75 mg/m(2) plus satraplatin 50 mg/m(2)) there were no DLTs. CONCLUSION The combination of satraplatin and docetaxel is feasible in solid tumor malignancies. In advanced malignancies, the recommended phase 2 dose is docetaxel 60 mg/m(2) IV day 1 with satraplatin 40 mg/m(2)/d PO days 1-5, without G-CSF, and Docetaxel 70 mg/m(2) IV day 1 with Satraplatin 50 mg/m(2)/day PO days 1-5, with G-CSF support, repeated in 3-week cycles. For patients with CRPC the recommended phase 2 dose is docetaxel 75 mg/m(2) IV day 1 with satraplatin 50 mg/m(2)/d PO days 1--5, with G-CSF and prednisone 10 mg daily, repeated in 3-week cycles.
Collapse
Affiliation(s)
- Jeremy Cetnar
- University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, Madison, WI 53705, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Synthesis, Characterization, and Interaction with Biomolecules of Platinum(II) Complexes with Shikimic Acid-Based Ligands. Bioinorg Chem Appl 2013; 2013:565032. [PMID: 23533373 PMCID: PMC3603162 DOI: 10.1155/2013/565032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/03/2013] [Indexed: 12/11/2022] Open
Abstract
Starting from the active ingredient shikimic acid (SA) of traditional Chinese medicine and NH2(CH2)nOH, (n = 2–6), we have synthesized a series of new water-soluble Pt(II) complexes PtLa–eCl2, where La–e are chelating diamine ligands with carbon chain covalently attached to SA (La–e = SA-NH(CH2)nNHCH2CH2NH2; La, n = 2; Lb, n = 3; Lc, n = 4; Ld, n = 5; Le, n = 6). The results of the elemental analysis, LC-MS, capillary electrophoresis, and 1H, 13C NMR indicated that there was only one product (isomer) formed under the present experimental conditions, in which the coordinate mode of PtLa–eCl2 was two-amine bidentate. Their in vitro cytotoxic activities were evaluated by MTT method, where these compounds only exhibited low cytotoxicity towards BEL7404, which should correlate their low lipophilicity. The interactions of the five Pt(II) complexes with DNA were investigated by agarose gel electrophoresis, which suggests that the Pt(II) complexes could induce DNA alteration. We also studied the interactions of the Pt(II) complexes with 5′-GMP with ESI-MS and 1H NMR and found that PtLbCl2, PtLcCl2, and PtLdCl2 could react with 5′-GMP to form mono-GMP and bis-GMP adducts. Furthermore, the cell-cycle analysis revealed that PtLbCl2, PtLcCl2 cause cell G2-phase arrest after incubation for 72 h. Overall, these water-soluble Pt(II) complexes interact with DNA mainly through covalent binding, which blocks the DNA synthesis and replication and thus induces cytotoxicity that weakens as the length of carbon chain increases.
Collapse
|
42
|
Vaishampayan UN, Fontana J, Heilbrun LK, Smith D, Heath E, Dickow B, Figg WD. Phase II trial of bevacizumab and satraplatin in docetaxel-pretreated metastatic castrate-resistant prostate cancer. Urol Oncol 2013; 32:31.e25-33. [PMID: 23433892 DOI: 10.1016/j.urolonc.2012.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Satraplatin is an oral platinum compound that has demonstrated efficacy and tolerability in prostate cancer. Preclinical synergy between bevacizumab and platinum has been noted. METHODS Docetaxel-pretreated metastatic castrate-resistant prostate cancer patients with disease progression were eligible. Satraplatin 80 mg/m(2) orally on days 1 to 5, prednisone 5mg twice daily, and bevacizumab 10mg/kg on day 1, and 15 mg/kg on day 15 were administered in 35-day cycles. RESULTS Thirty one patients were enrolled. Grade 3 or 4 toxicities were pulmonary embolism in 2 patients and thrombocytopenia in 1 patient. 31% of the patients had a ≥ 30% decline in prostate-specific antigen. Median time to progression was 7.0 months (90% confidence interval [CI] 4.7-8.5mo) and median overall survival was 11.2 months (90% CI 9.1-16.4 mo). Polymorphism in the excision repair cross-complementation-1 (ERCC-1) gene was associated with time to progression (hazard ratio = 1.91). A circulating tumor cell count ≥ 5 was moderately prognostic of overall survival (hazard ratio = 1.49) as compared with CTC <5. CONCLUSIONS The combination was tolerable, and revealed promising efficacy in metastatic castrate-resistant prostate cancer. ERCC1 genotype maybe predictive of clinical benefit with platinum-based therapy in metastatic prostate cancer.
Collapse
Affiliation(s)
- Ulka N Vaishampayan
- Department of Oncology, Department of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI.
| | - Joseph Fontana
- Department of Oncology, Department of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI
| | - Lance K Heilbrun
- Biostatistics Core, Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Daryn Smith
- Biostatistics Core, Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Elisabeth Heath
- Department of Oncology, Department of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI
| | - Brenda Dickow
- Clinical Trials Office, Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - William D Figg
- Medical Oncology Branch, National Cancer Institute, Bethesda, MD
| |
Collapse
|
43
|
O'Hanlon Brown C, Waxman J. Current management of prostate cancer: dilemmas and trials. Br J Radiol 2013; 85 Spec No 1:S28-40. [PMID: 23118100 DOI: 10.1259/bjr/13017671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The past decade has witnessed significant advances in our understanding of the biology of prostate cancer. Androgen ablation/androgen receptor inhibition remains as the mainstay of treatment for advanced prostate cancer. Our understanding of the biology of prostate cancer has increased exponentially owing to advances in molecular biology. With this knowledge many intriguing issues have come to light, which clinicians and scientists alike strive to answer. These include why prostate cancer is so common, what drives the development of prostate cancer at a molecular level, why prostate cancer appears refractory to many families of cytotoxic chemotherapeutics, and why prostate cancer preferentially metastasizes to bone. Two clinical forms of prostate cancer have been identified: indolent organ confined disease, which elderly men often die of, and aggressive metastatic disease. A method of distinguishing between these two forms of the disease at an organ-confined stage remains elusive. Understanding the mechanisms of castrate resistance is a further issue of clinical importance. New trials of treatments, including molecular agents that target prostate cancer from a range of angles, have been instituted over the past 10-15 years. We can look at these trials not only as a chance to investigate the effectiveness of new treatments but also as an opportunity to further understand the complex biology of this disease.
Collapse
Affiliation(s)
- C O'Hanlon Brown
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, UK
| | | |
Collapse
|
44
|
Gunn S, Reveles X, Weldon K, Barrera A, Ishaque M, Taylor D, McCaskill C, Kim J, Shah R, Mohammed M, Barry T, Kaiser B, Patnaik A, Tolcher A. Molecular cytogenetics as a clinical test for prognostic and predictive biomarkers in newly diagnosed ovarian cancer. J Ovarian Res 2013; 6:2. [PMID: 23289505 PMCID: PMC3601995 DOI: 10.1186/1757-2215-6-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/07/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND There is a clinical need for routinely available genomic biomarker testing in newly diagnosed ovarian cancer. In the current study we performed molecular cytogenetics using a validated array based comparative genomic hybridization (array CGH) assay to screen for the presence of predictive and prognostic biomarkers in archival diagnostic tissue from ovarian cancer patients. We hypothesized that biomarkers of high-risk disease would be detectable in tumor samples from patients with treatment refractory, advanced disease, and would be detected less frequently in tumor samples from patients with more favorable outcomes. In addition, we predicted that the use of a genome-wide copy number analysis (CNA) testing platform would enable us to identify novel potentially targetable chromosomal alterations of therapeutic significance in a percentage of cases. METHODS Formalin-fixed paraffin-embedded tissue (FFPE) tumor bank specimens were retrieved from the initial surgical resection for 18 ovarian cancer patients. Molecular cytogenetics was performed by array CGH for the detection of somatic chromosomal alterations associated with high-risk disease including amplifications of the CCNE1 and HER2 genes. Genomic risk stratification results were correlated with available clinical data. CGH data from each patient's tumor genome was also surveyed for the presence of potentially targetable aberrations. Relevant therapeutic agents and open studies for investigational drugs were reported for each patient. RESULTS High-risk genomic alterations were identified in 12/18 (67%) of cases and all patients with high-risk markers had advanced, treatment refractory disease. Three tumors with minimal genomic changes had no high-risk markers and were from patients with Stage I/II disease that had been completely resected and under surveillance for recurrence. Eleven patients (61%) had at least one potentially targetable genomic alteration including CCNE1, HER2, KRAS gene amplifications, and somatic BRCA1 and/or BRCA2 gene deletions. Bi-allelic PTEN gene deletion was detected in one patient's tumor. CONCLUSIONS Clinical genomic profiling of ovarian tumors by array CGH augments pathologic grade and stage to help stratify newly diagnosed ovarian cancer into high and low-risk disease. This personalized genomic information can also help guide treatment planning and disease monitoring by identifying novel potentially targetable genomic alterations that can be used by clinicians to choose rational directed therapies for patients with chemo-resistant disease.
Collapse
Affiliation(s)
- Shelly Gunn
- Start Center for Cancer Care, San Antonio, TX, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Paola EDD, Alonso S, Giuliani R, Calabrò F, D'Alessio A, Regine G, Cerbone L, Bianchi L, Mancuso A, Sperka S, Rozencweig M, Sternberg CN. An open-label, dose-finding study of the combination of satraplatin and gemcitabine in patients with advanced solid tumors. Front Oncol 2012. [PMID: 23189269 PMCID: PMC3504330 DOI: 10.3389/fonc.2012.00175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose: Satraplatin is a third generation oral platinum, which has demonstrated antitumor activity. The aim of this phase I study was to determine the maximum tolerated dose (MTD) of the combination of satraplatin and gemcitabine in patients previously treated with chemotherapy and in patients without prior chemotherapy. Patients and Methods: Two separate MTDs were planned in two different patient groups (those with and without prior chemotherapy treatment). Dose escalations were planned in cohorts of three patients. Tumor measurements were obtained every two cycles. Assessment of response was performed according to Response Evaluation Criteria in Solid Tumors (RECIST criteria v.1.0). Results: Thirty subjects were enrolled. A MTD of gemcitabine 1000 mg/m2 days 1 and 8 plus satraplatin 60 mg/m2 days 1–3, every 21 days was determined in the prior chemotherapy group. No MTD could be determined for the no prior chemotherapy group treated with this schedule. Five patients completed 12 treatment cycles; 22 serious adverse events (SAE) were observed. Although not an entry criteria, overall confirmed response was observed in 17 (24%) evaluable patients (complete response, CR = 1 and partial response, PR = 3) and in 3/7 (43%) patients with measure prostate cancer lesions. Conclusions: In this phase Ib study, the combination of satraplatin and gemcitabine demonstrated to be safe and efficacious in particular in patients with prostate cancer.
Collapse
Affiliation(s)
- Eugenio Donato Di Paola
- Department of Medical Oncology, San Camillo and Forlanini Hospitals Rome, Italy ; Department of Science of Health, School of Medicine, University "Magna Graecia" Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chin CF, Tian Q, Setyawati MI, Fang W, Tan ESQ, Leong DT, Ang WH. Tuning the Activity of Platinum(IV) Anticancer Complexes through Asymmetric Acylation. J Med Chem 2012; 55:7571-82. [DOI: 10.1021/jm300580y] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Chee Fei Chin
- Department
of Chemistry, National
University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Quan Tian
- Department
of Chemistry, National
University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Magdiel Inggrid Setyawati
- Department of Chemical and Biomolecular
Engineering, National University of Singapore, 4 Engineering Drive
4, 117576 Singapore
| | - Wanru Fang
- Department of Chemical and Biomolecular
Engineering, National University of Singapore, 4 Engineering Drive
4, 117576 Singapore
| | - Emelyn Sue Qing Tan
- Department
of Chemistry, National
University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular
Engineering, National University of Singapore, 4 Engineering Drive
4, 117576 Singapore
| | - Wee Han Ang
- Department
of Chemistry, National
University of Singapore, 3 Science Drive 3, 117543 Singapore
| |
Collapse
|
47
|
Sinisi M, Intini FP, Natile G. Dependence of the Reduction Products of Platinum(IV) Prodrugs upon the Configuration of the Substrate, Bulk of the Carrier Ligands, and Nature of the Reducing Agent. Inorg Chem 2012; 51:9694-704. [DOI: 10.1021/ic300957v] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marilù Sinisi
- Dipartimento
Farmaco-Chimico, Università degli Studi di Bari “A. Moro”, Via E.
Orabona 4, 70125 Bari, Italy
| | - Francesco P. Intini
- Dipartimento
Farmaco-Chimico, Università degli Studi di Bari “A. Moro”, Via E.
Orabona 4, 70125 Bari, Italy
| | - Giovanni Natile
- Dipartimento
Farmaco-Chimico, Università degli Studi di Bari “A. Moro”, Via E.
Orabona 4, 70125 Bari, Italy
| |
Collapse
|
48
|
Altavilla A, Iacovelli R, Procopio G, Alesini D, Risi E, Campennì GM, Palazzo A, Cortesi E. Medical strategies for treatment of castration resistant prostate cancer (CRPC) docetaxel resistant. Cancer Biol Ther 2012; 13:1001-8. [PMID: 22825325 DOI: 10.4161/cbt.21188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Current landscape of treatment of castration-resistant prostate cancer (CRPC) has recently changed. Cabazitaxel, a new taxane with potential antineoplastic activity, has been approved by Food and Drug Administration (FDA) after docetaxel failure. In a phase III trial, cabazitaxel showed increased overall survival (OS) compared with mitoxantrone (15.1 vs. 12.7 mo, HR 0.70, 95% CI 0.59-0.83, p < 0.0001). Furthermore, chemotherapy is not the only strategy available: several studies have shown as CRPC remains dependent on androgen receptor function for growth. Abiraterone acetate, an irreversible inhibitor of CYP17, has also been approved by FDA after docetaxel failure. In a phase III trial comparing abiraterone acetate to placebo, abiraterone showed improvement in OS (14.8 vs. 10.4 mo, HR 0.65, 95% CI 0.54-0.77; p < 0.0001). This review will discuss current options and the ongoing trials for second-line treatment of CRPC including chemotherapy, hormonal therapies, antiangiogenetic and immune strategies.
Collapse
Affiliation(s)
- Amelia Altavilla
- Department of Radiology, Oncology and Human Pathology, Sapienza, University of Rome, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Docetaxel is a reference treatment of metastatic prostate cancer castration-resistant. Until now, the different associations were studied without benefit when compared to docetaxel as monotherapy. Cabazitaxel showed efficacy in second-line in patients with progressive disease during or after docetaxel chemotherapy. Other molecules are being evaluated in second-line post-docetaxel. Abiraterone acetate is an alternative treatment to cabazitaxel in metastatic second-line resistant to castration. Predictive factors to choice treatment must be evaluated and proposed to personalize treatment in the future. Docetaxel activity was also studied in early stage of prostate cancer and seems to be promising. A cabazitaxel activity in early stage of cancer is also being evaluated.
Collapse
|
50
|
Ratcliff J, Kuduk-Jaworska J, Chojnacki H, Nemykin V, Gerasimchuk N. Part 1: Experimental and theoretical studies of 2-cyano-2-isonitroso-N-piperidynylacetamide (HPiPCO), 2-cyano-2-isonitroso-N-morpholylacetamide (HMCO) and their Pt- and Pd-complexes. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2011.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|