1
|
Abstract
Gene drives are selfish genetic elements that are transmitted to progeny at super-Mendelian (>50%) frequencies. Recently developed CRISPR-Cas9-based gene-drive systems are highly efficient in laboratory settings, offering the potential to reduce the prevalence of vector-borne diseases, crop pests and non-native invasive species. However, concerns have been raised regarding the potential unintended impacts of gene-drive systems. This Review summarizes the phenomenal progress in this field, focusing on optimal design features for full-drive elements (drives with linked Cas9 and guide RNA components) that either suppress target mosquito populations or modify them to prevent pathogen transmission, allelic drives for updating genetic elements, mitigating strategies including trans-complementing split-drives and genetic neutralizing elements, and the adaptation of drive technology to other organisms. These scientific advances, combined with ethical and social considerations, will facilitate the transparent and responsible advancement of these technologies towards field implementation.
Collapse
Affiliation(s)
- Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Maringer K, Yousuf A, Heesom KJ, Fan J, Lee D, Fernandez-Sesma A, Bessant C, Matthews DA, Davidson AD. Proteomics informed by transcriptomics for characterising active transposable elements and genome annotation in Aedes aegypti. BMC Genomics 2017; 18:101. [PMID: 28103802 PMCID: PMC5248466 DOI: 10.1186/s12864-016-3432-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aedes aegypti is a vector for the (re-)emerging human pathogens dengue, chikungunya, yellow fever and Zika viruses. Almost half of the Ae. aegypti genome is comprised of transposable elements (TEs). Transposons have been linked to diverse cellular processes, including the establishment of viral persistence in insects, an essential step in the transmission of vector-borne viruses. However, up until now it has not been possible to study the overall proteome derived from an organism's mobile genetic elements, partly due to the highly divergent nature of TEs. Furthermore, as for many non-model organisms, incomplete genome annotation has hampered proteomic studies on Ae. aegypti. RESULTS We analysed the Ae. aegypti proteome using our new proteomics informed by transcriptomics (PIT) technique, which bypasses the need for genome annotation by identifying proteins through matched transcriptomic (rather than genomic) data. Our data vastly increase the number of experimentally confirmed Ae. aegypti proteins. The PIT analysis also identified hotspots of incomplete genome annotation, and showed that poor sequence and assembly quality do not explain all annotation gaps. Finally, in a proof-of-principle study, we developed criteria for the characterisation of proteomically active TEs. Protein expression did not correlate with a TE's genomic abundance at different levels of classification. Most notably, long terminal repeat (LTR) retrotransposons were markedly enriched compared to other elements. PIT was superior to 'conventional' proteomic approaches in both our transposon and genome annotation analyses. CONCLUSIONS We present the first proteomic characterisation of an organism's repertoire of mobile genetic elements, which will open new avenues of research into the function of transposon proteins in health and disease. Furthermore, our study provides a proof-of-concept that PIT can be used to evaluate a genome's annotation to guide annotation efforts which has the potential to improve the efficiency of annotation projects in non-model organisms. PIT therefore represents a valuable new tool to study the biology of the important vector species Ae. aegypti, including its role in transmitting emerging viruses of global public health concern.
Collapse
Affiliation(s)
- Kevin Maringer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA.
- Present address: Department of Microbial Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Amjad Yousuf
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- College of Applied Medical Sciences, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Kate J Heesom
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Jun Fan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - David Lee
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
| | - Conrad Bessant
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - David A Matthews
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
3
|
Maringer K, Yousuf A, Heesom KJ, Fan J, Lee D, Fernandez-Sesma A, Bessant C, Matthews DA, Davidson AD. Proteomics informed by transcriptomics for characterising active transposable elements and genome annotation in Aedes aegypti. BMC Genomics 2017. [PMID: 28103802 DOI: 10.1186/s12864-016-3432-5+10.1186/s12864-016-3432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aedes aegypti is a vector for the (re-)emerging human pathogens dengue, chikungunya, yellow fever and Zika viruses. Almost half of the Ae. aegypti genome is comprised of transposable elements (TEs). Transposons have been linked to diverse cellular processes, including the establishment of viral persistence in insects, an essential step in the transmission of vector-borne viruses. However, up until now it has not been possible to study the overall proteome derived from an organism's mobile genetic elements, partly due to the highly divergent nature of TEs. Furthermore, as for many non-model organisms, incomplete genome annotation has hampered proteomic studies on Ae. aegypti. RESULTS We analysed the Ae. aegypti proteome using our new proteomics informed by transcriptomics (PIT) technique, which bypasses the need for genome annotation by identifying proteins through matched transcriptomic (rather than genomic) data. Our data vastly increase the number of experimentally confirmed Ae. aegypti proteins. The PIT analysis also identified hotspots of incomplete genome annotation, and showed that poor sequence and assembly quality do not explain all annotation gaps. Finally, in a proof-of-principle study, we developed criteria for the characterisation of proteomically active TEs. Protein expression did not correlate with a TE's genomic abundance at different levels of classification. Most notably, long terminal repeat (LTR) retrotransposons were markedly enriched compared to other elements. PIT was superior to 'conventional' proteomic approaches in both our transposon and genome annotation analyses. CONCLUSIONS We present the first proteomic characterisation of an organism's repertoire of mobile genetic elements, which will open new avenues of research into the function of transposon proteins in health and disease. Furthermore, our study provides a proof-of-concept that PIT can be used to evaluate a genome's annotation to guide annotation efforts which has the potential to improve the efficiency of annotation projects in non-model organisms. PIT therefore represents a valuable new tool to study the biology of the important vector species Ae. aegypti, including its role in transmitting emerging viruses of global public health concern.
Collapse
Affiliation(s)
- Kevin Maringer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK. .,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA. .,Present address: Department of Microbial Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Amjad Yousuf
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.,College of Applied Medical Sciences, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Kate J Heesom
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Jun Fan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - David Lee
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
| | - Conrad Bessant
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - David A Matthews
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
4
|
Maringer K, Yousuf A, Heesom KJ, Fan J, Lee D, Fernandez-Sesma A, Bessant C, Matthews DA, Davidson AD. Proteomics informed by transcriptomics for characterising active transposable elements and genome annotation in Aedes aegypti. BMC Genomics 2017. [PMID: 28103802 DOI: 10.1186/s12864-016-3432-5 10.1186/s12864-016-3432-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aedes aegypti is a vector for the (re-)emerging human pathogens dengue, chikungunya, yellow fever and Zika viruses. Almost half of the Ae. aegypti genome is comprised of transposable elements (TEs). Transposons have been linked to diverse cellular processes, including the establishment of viral persistence in insects, an essential step in the transmission of vector-borne viruses. However, up until now it has not been possible to study the overall proteome derived from an organism's mobile genetic elements, partly due to the highly divergent nature of TEs. Furthermore, as for many non-model organisms, incomplete genome annotation has hampered proteomic studies on Ae. aegypti. RESULTS We analysed the Ae. aegypti proteome using our new proteomics informed by transcriptomics (PIT) technique, which bypasses the need for genome annotation by identifying proteins through matched transcriptomic (rather than genomic) data. Our data vastly increase the number of experimentally confirmed Ae. aegypti proteins. The PIT analysis also identified hotspots of incomplete genome annotation, and showed that poor sequence and assembly quality do not explain all annotation gaps. Finally, in a proof-of-principle study, we developed criteria for the characterisation of proteomically active TEs. Protein expression did not correlate with a TE's genomic abundance at different levels of classification. Most notably, long terminal repeat (LTR) retrotransposons were markedly enriched compared to other elements. PIT was superior to 'conventional' proteomic approaches in both our transposon and genome annotation analyses. CONCLUSIONS We present the first proteomic characterisation of an organism's repertoire of mobile genetic elements, which will open new avenues of research into the function of transposon proteins in health and disease. Furthermore, our study provides a proof-of-concept that PIT can be used to evaluate a genome's annotation to guide annotation efforts which has the potential to improve the efficiency of annotation projects in non-model organisms. PIT therefore represents a valuable new tool to study the biology of the important vector species Ae. aegypti, including its role in transmitting emerging viruses of global public health concern.
Collapse
Affiliation(s)
- Kevin Maringer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK. .,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA. .,Present address: Department of Microbial Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Amjad Yousuf
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.,College of Applied Medical Sciences, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Kate J Heesom
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Jun Fan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - David Lee
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
| | - Conrad Bessant
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - David A Matthews
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
5
|
Unger MF, Sharakhova MV, Harshbarger AJ, Glass P, Collins FH. A standard cytogenetic map of Culex quinquefasciatus polytene chromosomes in application for fine-scale physical mapping. Parasit Vectors 2015; 8:307. [PMID: 26048143 PMCID: PMC4465148 DOI: 10.1186/s13071-015-0912-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/20/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Southern house mosquito Culex quinquefasciatus belongs to the C. pipiens cryptic species complex, with global distribution and unclear taxonomy. Mosquitoes of the complex can transmit human and animal pathogens, such as filarial worm, West Nile virus and avian malarial Plasmodium. Physical gene mapping is crucial to understanding genome organization, function, and systematic relationships of cryptic species, and is a basis for developing new vector control strategies. However, physical mapping was not established previously for Culex due to the lack of well-structured polytene chromosomes. METHODS Inbreeding was used to diminish inversion polymorphism and asynapsis of chromosomal homologs. Identification of larvae of the same developmental stage using the shape of imaginal discs allowed achievement of uniformity in chromosomal banding pattern. This together with high-resolution phase-contrast photography enabled the development of a cytogenetic map. Fluorescent in situ hybridization was used for gene mapping. RESULTS A detailed cytogenetic map of C. quinquefasciatus polytene chromosomes was produced. Landmarks for chromosome recognition and cytological boundaries for two inversions were identified. Locations of 23 genes belonging to 16 genomic supercontigs, and 2 cDNA were established. Six supercontigs were oriented and one was found putatively misassembled. The cytogenetic map was linked to the previously developed genetic linkage groups by corresponding positions of 2 genetic markers and 10 supercontigs carrying genetic markers. Polytene chromosomes were numbered according to the genetic linkage groups. CONCLUSIONS This study developed a new standard cytogenetic photomap of the polytene chromosomes for C. quinquefasciatus and was applied for the fine-scale physical mapping. It allowed us to infer chromosomal position of 1333 of annotated genes belonging to 16 genomic supercontigs and find orientation of 6 of these supercontigs; the new cytogenetic and previously developed genetic linkage maps were integrated based on 12 matches. The map will further assist in finding chromosomal position of the medically important and other genes, contributing into improvement of the genome assembly. Better assembled C. quinquefasciatus genome can serve as a reference for studying other vector species of C. pipiens complex and will help to resolve their taxonomic relationships. This, in turn, will contribute into future development of vector and disease control strategies.
Collapse
Affiliation(s)
- Maria F Unger
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Maria V Sharakhova
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA.
- Laboratory of Evolutionary Cytogenetics, Tomsk State University, 36 Lenina Avenue, Tomsk, 634050, Russia.
| | - Adam J Harshbarger
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Patrick Glass
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Frank H Collins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
6
|
Fablet M, Vieira C. Evolvability, epigenetics and transposable elements. Biomol Concepts 2015; 2:333-41. [PMID: 25962041 DOI: 10.1515/bmc.2011.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/11/2011] [Indexed: 12/31/2022] Open
Abstract
Evolvability can be defined as the capacity of an individual to evolve and thus to capture adaptive mutations. Transposable elements (TE) are an important source of mutations in organisms. Their capacity to transpose within a genome, sometimes at a high rate, and their copy number regulation are environment-sensitive, as are the epigenetic pathways that mediate TE regulation in a genome. In this review we revisit the way we see evolvability with regard to transposable elements and epigenetics.
Collapse
|
7
|
Programmed translational bypassing elements in mitochondria: structure, mobility, and evolutionary origin. Trends Genet 2015; 31:187-94. [PMID: 25795412 DOI: 10.1016/j.tig.2015.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 02/03/2023]
Abstract
Programmed translational bypassing enables ribosomes to 'ignore' a precise mRNA interval of several dozen nucleotides. Well-characterized bypassed sequences include hop and byp elements, present in bacteriophage T4 and mitochondria of the yeast Magnusiomyces capitatus, respectively. The bypassing mechanism of byps is probably similar to that of hop, yet the former appears more effective and less constrained as to sequence context. Furthermore, both elements are mobile but hop moves as part of a cassette including a homing endonuclease, whereas byps seem to spread like miniature DNA transposable elements known as GC clusters. Here, we argue that hop and byps arose independently by convergent evolution, and that byps evolved in magnusiomycete mitochondria due to (as yet unknown) alterations of the mitochondrial translation machinery.
Collapse
|
8
|
Goubert C, Modolo L, Vieira C, ValienteMoro C, Mavingui P, Boulesteix M. De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti). Genome Biol Evol 2015; 7:1192-205. [PMID: 25767248 PMCID: PMC4419797 DOI: 10.1093/gbe/evv050] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Repetitive DNA, including transposable elements (TEs), is found throughout eukaryotic genomes. Annotating and assembling the “repeatome” during genome-wide analysis often poses a challenge. To address this problem, we present dnaPipeTE—a new bioinformatics pipeline that uses a sample of raw genomic reads. It produces precise estimates of repeated DNA content and TE consensus sequences, as well as the relative ages of TE families. We shows that dnaPipeTE performs well using very low coverage sequencing in different genomes, losing accuracy only with old TE families. We applied this pipeline to the genome of the Asian tiger mosquito Aedes albopictus, an invasive species of human health interest, for which the genome size is estimated to be over 1 Gbp. Using dnaPipeTE, we showed that this species harbors a large (50% of the genome) and potentially active repeatome with an overall TE class and order composition similar to that of Aedes aegypti, the yellow fever mosquito. However, intraorder dynamics show clear distinctions between the two species, with differences at the TE family level. Our pipeline’s ability to manage the repeatome annotation problem will make it helpful for new or ongoing assembly projects, and our results will benefit future genomic studies of A. albopictus.
Collapse
Affiliation(s)
- Clément Goubert
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, INRIA, VetAgro Sup, Villeurbanne, France Université de Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France
| | - Laurent Modolo
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, INRIA, VetAgro Sup, Villeurbanne, France Université de Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, INRIA, VetAgro Sup, Villeurbanne, France Université de Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France
| | - Claire ValienteMoro
- Université de Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France Ecologie Microbienne, UMR 5557, CNRS, USC INRA 1364, VetAgro Sup, FR41 BioEnvironment and Health, Villeurbanne, France
| | - Patrick Mavingui
- Université de Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France Ecologie Microbienne, UMR 5557, CNRS, USC INRA 1364, VetAgro Sup, FR41 BioEnvironment and Health, Villeurbanne, France Université de La Réunion, UMR PIMIT, CNRS 9192, INSERM 1187, IRD 249
| | - Matthieu Boulesteix
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, INRIA, VetAgro Sup, Villeurbanne, France Université de Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France
| |
Collapse
|
9
|
Wilding CS, Smith I, Lynd A, Yawson AE, Weetman D, Paine MJI, Donnelly MJ. A cis-regulatory sequence driving metabolic insecticide resistance in mosquitoes: functional characterisation and signatures of selection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:699-707. [PMID: 22732326 DOI: 10.1016/j.ibmb.2012.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 06/01/2023]
Abstract
Although cytochrome P450 (CYP450) enzymes are frequently up-regulated in mosquitoes resistant to insecticides, no regulatory motifs driving these expression differences with relevance to wild populations have been identified. Transposable elements (TEs) are often enriched upstream of those CYP450s involved in insecticide resistance, leading to the assumption that they contribute regulatory motifs that directly underlie the resistance phenotype. A partial CuRE1 (Culex Repetitive Element 1) transposable element is found directly upstream of CYP9M10, a cytochrome P450 implicated previously in larval resistance to permethrin in the ISOP450 strain of Culex quinquefasciatus, but is absent from the equivalent genomic region of a susceptible strain. Via expression of CYP9M10 in Escherichia coli we have now demonstrated time- and NADPH-dependant permethrin metabolism, prerequisites for confirmation of a role in metabolic resistance, and through qPCR shown that CYP9M10 is >20-fold over-expressed in ISOP450 compared to a susceptible strain. In a fluorescent reporter assay the region upstream of CYP9M10 from ISOP450 drove 10× expression compared to the equivalent region (lacking CuRE1) from the susceptible strain. Close correspondence with the gene expression fold-change implicates the upstream region including CuRE1 as a cis-regulatory element involved in resistance. Only a single CuRE1 bearing allele, identical to the CuRE1 bearing allele in the resistant strain, is found throughout Sub-Saharan Africa, in contrast to the diversity encountered in non-CuRE1 alleles. This suggests a single origin and subsequent spread due to selective advantage. CuRE1 is detectable using a simple diagnostic. When applied to C. quinquefasciatus larvae from Ghana we have demonstrated a significant association with permethrin resistance in multiple field sites (mean Odds Ratio = 3.86) suggesting this marker has relevance to natural populations of vector mosquitoes. However, when CuRE1 was excised from the allele used in the reporter assay through fusion PCR, expression was unaffected, indicating that the TE has no direct role in resistance and hence that CuRE1 is acting only as a marker of an as yet unidentified regulatory motif in the association analysis. This suggests that a re-evaluation of the assumption that TEs contribute regulatory motifs involved in gene expression may be necessary.
Collapse
Affiliation(s)
- Craig S Wilding
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | | | | | | | | | |
Collapse
|
10
|
Zampicinini G, Cervella P, Biémont C, Sella G. Insertional variability of four transposable elements and population structure of the midge Chironomus riparius (Diptera). Mol Genet Genomics 2011; 286:293-305. [PMID: 21901555 DOI: 10.1007/s00438-011-0646-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 08/16/2011] [Indexed: 11/29/2022]
Abstract
The dipteran Chironomus riparius is found across the entire Palearctic region; its larvae are among the most abundant macroinvertebrates inhabiting inland waterbodies. Chironomid larvae have been extensively used in ecotoxicological and cytogenetic research, but relatively little is known on the population structure of this species. Transposable elements (TEs) are DNA sequences that are capable of autonomous replication; the number and genomic location of TE insertions varies across individuals; this variability is increasingly being used in population studies. Several TEs had been characterized in Chironomids; this enabled the analysis of insertional variability of four different TEs in six natural populations of C. riparius from Italy, Bulgaria and Russia using a PCR-based method, transposon insertion display (TID). The method allows to obtain dominant markers, similar to AFLP. In all populations, TE insertions showed high individual polymorphism, while median copy numbers of the same TEs did not vary between populations. Analysis of molecular variance (AMOVA) detected significant differentiation between populations for three of the TEs; although no correlation between genetic and geographic distances was found, the corresponding population structures were found to be significantly correlated and indicate a degree of isolation by distance. TEs belonging to different classes have different mechanisms of replication, resulting in different transposition rates of mobilization; the finding of mostly concordant population structuring for three of the TEs indicates that population dynamics contributed significantly in shaping the detected insertional polymorphism.
Collapse
Affiliation(s)
- Giampaolo Zampicinini
- Dipartimento di Biologia Animale e dell'Uomo, Università di Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | | | | | | |
Collapse
|
11
|
Carr M, Nelson M, Leadbeater BSC, Baldauf SL. Three families of LTR retrotransposons are present in the genome of the choanoflagellate Monosiga brevicollis. Protist 2008; 159:579-90. [PMID: 18621583 DOI: 10.1016/j.protis.2008.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 05/01/2008] [Indexed: 11/29/2022]
Abstract
The choanoflagellates are a ubiquitous group of nanoflagellates and the sister group of Metazoa. Examination of the initial draft version of the first choanoflagellate genome, that of Monosiga brevicollis, reveals the presence of three novel families of long terminal repeat (LTR) retrotransposons and an apparent absence of non-LTR retrotransposons and transposons. One of the newly discovered LTR families falls in the chromovirus clade of the Ty3/gypsy group while the other two families are closely related members of the Ty1/copia group. Examination of EST sequences and nucleotide analyses show that all three families are transcriptionally active and potentially functional within the genome of M. brevicollis.
Collapse
Affiliation(s)
- Martin Carr
- Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | | | | | | |
Collapse
|
12
|
Rodrigues FG, Santos MN, de Carvalho TXT, Rocha BC, Riehle MA, Pimenta PFP, Abraham EG, Jacobs-Lorena M, Alves de Brito CF, Moreira LA. Expression of a mutated phospholipase A2 in transgenic Aedes fluviatilis mosquitoes impacts Plasmodium gallinaceum development. INSECT MOLECULAR BIOLOGY 2008; 17:175-83. [PMID: 18353106 PMCID: PMC4137777 DOI: 10.1111/j.1365-2583.2008.00791.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The genetic manipulation of mosquito vectors is an alternative strategy in the fight against malaria. It was previously shown that bee venom phospholipase A2 (PLA2) inhibits ookinete invasion of the mosquito midgut although mosquito fitness was reduced. To maintain the PLA2 blocking ability without compromising mosquito biology, we mutated the protein-coding sequence to inactivate the enzyme while maintaining the protein's structure. DNA encoding the mutated PLA2 (mPLA2) was placed downstream of a mosquito midgut-specific promoter (Anopheles gambiae peritrophin protein 1 promoter, AgPer1) and this construct used to transform Aedes fluviatilis mosquitoes. Four different transgenic lines were obtained and characterized and all lines significantly inhibited Plasmodium gallinaceum oocyst development (up to 68% fewer oocysts). No fitness cost was observed when this mosquito species expressed the mPLA2.
Collapse
Affiliation(s)
- F G Rodrigues
- Laboratório de Malária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte-MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Novikova O, Śliwińska E, Fet V, Settele J, Blinov A, Woyciechowski M. CR1 clade of non-LTR retrotransposons from Maculinea butterflies (Lepidoptera: Lycaenidae): evidence for recent horizontal transmission. BMC Evol Biol 2007; 7:93. [PMID: 17588269 PMCID: PMC1925062 DOI: 10.1186/1471-2148-7-93] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 06/25/2007] [Indexed: 01/28/2023] Open
Abstract
Background Non-long terminal repeat (non-LTR) retrotransposons are mobile genetic elements that propagate themselves by reverse transcription of an RNA intermediate. Non-LTR retrotransposons are known to evolve mainly via vertical transmission and random loss. Horizontal transmission is believed to be a very rare event in non-LTR retrotransposons. Our knowledge of distribution and diversity of insect non-LTR retrotransposons is limited to a few species – mainly model organisms such as dipteran genera Drosophila, Anopheles, and Aedes. However, diversity of non-LTR retroelements in arthropods seems to be much richer. The present study extends the analysis of non-LTR retroelements to CR1 clade from four butterfly species of genus Maculinea (Lepidoptera: Lycaenidae). The lycaenid genus Maculinea, the object of interest for evolutionary biologists and also a model group for European biodiversity studies, possesses a unique, specialized myrmecophilous lifestyle at larval stage. Their caterpillars, after three weeks of phytophagous life on specific food plants drop to the ground where they are adopted to the ant nest by Myrmica foraging workers. Results We found that the genome of Maculinea butterflies contains multiple CR1 lineages of non-LTR retrotransposons, including those from MacCR1A, MacCR1B and T1Q families. A comparative analysis of RT nucleotide sequences demonstrated an extremely high similarity among elements both in interspecific and intraspecific comparisons. CR1A-like elements were found only in family Lycaenidae. In contrast, MacCR1B lineage clones were extremely similar to CR1B non-LTR retrotransposons from Bombycidae moths: silkworm Bombyx mori and Oberthueria caeca. Conclusion The degree of coding sequence similarity of the studied elements, their discontinuous distribution, and results of divergence-versus-age analysis make it highly unlikely that these sequences diverged at the same time as their host taxa. The only reasonable alternative explanation is horizontal transfer. In addition, phylogenetic markers for population analysis of Maculinea could be developed based on the described non-LTR retrotransposons.
Collapse
Affiliation(s)
- Olga Novikova
- Laboratory of Molecular Evolution, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Ewa Śliwińska
- UJAG – Jagiellonian University, Institute of Environmental Sciences, Krakow, Poland
| | - Victor Fet
- Marshall University, Huntington, West Virginia, USA
| | - Josef Settele
- Department of Community Ecology, UFZ – Centre for Environmental Research Leipzig-Halle, Halle (Saale), Germany
| | - Alexander Blinov
- Laboratory of Molecular Evolution, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Michal Woyciechowski
- UJAG – Jagiellonian University, Institute of Environmental Sciences, Krakow, Poland
| |
Collapse
|
14
|
Boulesteix M, Simard F, Antonio-Nkondjio C, Awono-Ambene HP, Fontenille D, Biémont C. Insertion polymorphism of transposable elements and population structure of Anopheles gambiae M and S molecular forms in Cameroon. Mol Ecol 2007; 16:441-52. [PMID: 17217356 DOI: 10.1111/j.1365-294x.2006.03150.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The insertion polymorphism of five transposable element (TE) families was studied by Southern blots in several populations of the M and S molecular forms of the mosquito Anopheles gambiae sensu stricto from southern Cameroon. We showed that the mean TE insertion site number and the within-population insertion site polymorphism globally differed between the M and S molecular forms. The comparison of the TE insertion profiles of the populations revealed a significant differentiation between these two molecular forms (0.163 < Phi(ST) < 0.371). We cloned several insertions of a non-LTR retrotransposon (Aara8) that were fixed in one form and absent in the other one. The only insertion that could be clearly located on a chromosome arm mapped to cytological division 6 of chromosome X, confirming the importance of this region in the ongoing speciation between the M and S molecular forms.
Collapse
Affiliation(s)
- M Boulesteix
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université Claude Bernard Lyon1, 69622 Villeurbanne Cedex, France
| | | | | | | | | | | |
Collapse
|
15
|
Schön I, Arkhipova IR. Two families of non-LTR retrotransposons, Syrinx and Daphne, from the Darwinulid ostracod, Darwinula stevensoni. Gene 2006; 371:296-307. [PMID: 16469453 DOI: 10.1016/j.gene.2005.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/14/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
Two novel families of non-LTR retrotransposons, named Syrinx and Daphne, were cloned and characterized in a putative ancient asexual ostracod Darwinula stevensoni. Phylogenetic analysis reveals that Daphne is the founding member of a novel clade of non-LTR retroelements, which also contains retrotransposon families from the sea urchin and the silkworm and forms a sister clade to L2-like elements. The Syrinx family of non-LTR retrotransposons exhibits evidence of relatively recent activity, manifested in high levels of sequence similarity between individual copies and a three- to ten-fold excess of synonymous substitutions, which is indicative of purifying selection. The Daphne family may have very few copies with intact open reading frames, and exhibits neutral within-family ratio of non-synonymous to synonymous substitutions. It can additionally be characterized by formation of inverted truncated head-to-head structures. All of these features make recent activity less likely than in the Syrinx family. Our results are discussed in light of the evolutionary consequences of long-term asexuality in general and in D. stevensoni in particular.
Collapse
Affiliation(s)
- Isabelle Schön
- Freshwater Biology Section, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium
| | | |
Collapse
|