1
|
Fu CH, Tsai WC, Lee TJ, Huang CC, Chang PH, Su Pang JH. Simvastatin Inhibits IL-5-Induced Chemotaxis and CCR3 Expression of HL-60-Derived and Human Primary Eosinophils. PLoS One 2016; 11:e0157186. [PMID: 27275740 PMCID: PMC4898827 DOI: 10.1371/journal.pone.0157186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/25/2016] [Indexed: 12/27/2022] Open
Abstract
IL-5-induced chemotaxis of eosinophils is an important feature of allergic airway inflammatory diseases. Simvastatin, a lipid lowering agent, has been shown to exhibit anti-inflammatory and anti-allergic effects. Our aim was to investigate the effect of simvastatin on IL-5-induced eosinophil chemotaxis and its regulatory mechanisms. Eosinophils were derived by treating HL-60 clone 15 (HC15) cells with butyric acid (BA) in an alkaline condition or through direct isolation from human peripheral blood. The expressions of CC chemokine receptor 3 (CCR3) and interleukin (IL)-5 receptors (IL5Rα and β) were analyzed using RT/real-time PCR. The granular proteins were stained using fast green. Eotaxin-induced chemotaxis was measured using a transwell migration assay. CCR3 protein expression was revealed by immunocytochemistry. An animal model of allergic rhinitis was established by challenging Sprague-Dawley® rats repeatedly with ovalbumin. Butyric acid significantly increased the expression of IL5Rα and IL5Rβ, CCR3 and granular proteins in HC15 cells, indicating the maturation of eosinophils (BA-E cells). IL-5 further enhanced the CCR3 expression at both the mRNA and protein levels and the eotaxin-induced chemotaxis of BA-E cells. Simvastatin inhibited the effects of IL-5 on BA-E cells, but not in the presence of mevalonate. Similar results were also exhibited in human primary eosinophils. In vivo animal studies further confirmed that oral simvastatin could significantly suppress the infiltration of eosinophils into turbinate tissues of allergic rats. Therefore, simvastatin was demonstrated to inhibit IL-5-induced CCR3 expression and chemotaxis of eosinophils mediated via the mevalonate pathway. We confirmed that simvastatin also reduced eosinophilic infiltration in allergic rhinitis.
Collapse
Affiliation(s)
- Chia-Hsiang Fu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Department of Otolaryngology, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, ROC
| | - Wan-Chun Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
| | - Ta-Jen Lee
- Department of Otolaryngology, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, ROC
| | - Chi-Che Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Department of Otolaryngology, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, ROC
| | - Po-Hung Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Department of Otolaryngology, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, ROC
| | - Jong-Hwei Su Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan, ROC
- * E-mail:
| |
Collapse
|
2
|
Odemuyiwa SO, Ilarraza R, Davoine F, Logan MR, Shayeganpour A, Wu Y, Majaesic C, Adamko DJ, Moqbel R, Lacy P. Cyclin-dependent kinase 5 regulates degranulation in human eosinophils. Immunology 2015; 144:641-8. [PMID: 25346443 DOI: 10.1111/imm.12416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 10/03/2014] [Accepted: 10/17/2014] [Indexed: 12/19/2022] Open
Abstract
Degranulation from eosinophils in response to secretagogue stimulation is a regulated process that involves exocytosis of granule proteins through specific signalling pathways. One potential pathway is dependent on cyclin-dependent kinase 5 (Cdk5) and its effector molecules, p35 and p39, which play a central role in neuronal cell exocytosis by phosphorylating Munc18, a regulator of SNARE binding. Emerging evidence suggests a role for Cdk5 in exocytosis in immune cells, although its role in eosinophils is not known. We sought to examine the expression of Cdk5 and its activators in human eosinophils, and to assess the role of Cdk5 in eosinophil degranulation. We used freshly isolated human eosinophils and analysed the expression of Cdk5, p35, p39 and Munc18c by Western blot, RT-PCR, flow cytometry and immunoprecipitation. Cdk5 kinase activity was determined following eosinophil activation. Cdk5 inhibitors were used (roscovitine, AT7519 and small interfering RNA) to determine its role in eosinophil peroxidase (EPX) secretion. Cdk5 was expressed in association with Munc18c, p35 and p39, and phosphorylated following human eosinophil activation with eotaxin/CCL11, platelet-activating factor, and secretory IgA-Sepharose. Cdk5 inhibitors (roscovitine, AT7519) reduced EPX release when cells were stimulated by PMA or secretory IgA. In assays using small interfering RNA knock-down of Cdk5 expression in human eosinophils, we observed inhibition of EPX release. Our findings suggest that in activated eosinophils, Cdk5 is phosphorylated and binds to Munc18c, resulting in Munc18c release from syntaxin-4, allowing SNARE binding and vesicle fusion, with subsequent eosinophil degranulation. Our work identifies a novel role for Cdk5 in eosinophil mediator release by agonist-induced degranulation.
Collapse
Affiliation(s)
- Solomon O Odemuyiwa
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Department of Paediatrics, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kim JD, Willetts L, Ochkur S, Srivastava N, Hamburg R, Shayeganpour A, Seabra MC, Lee JJ, Moqbel R, Lacy P. An essential role for Rab27a GTPase in eosinophil exocytosis. J Leukoc Biol 2013; 94:1265-74. [PMID: 23986549 DOI: 10.1189/jlb.0812431] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophil degranulation has been implicated in inflammatory processes associated with allergic asthma. Rab27a, a Rab-related GTPase, is a regulatory intracellular signaling molecule expressed in human eosinophils. We postulated that Rab27a regulates eosinophil degranulation. We investigated the role of Rab27a in eosinophil degranulation within the context of airway inflammation. Rab27a expression and localization in eosinophils were investigated by using subcellular fractionation combined with Western blot analysis, and the results were confirmed by immunofluorescence analysis of Rab27a and the granule membrane marker CD63. To determine the function of eosinophil Rab27a, we used Ashen mice, a strain of Rab27a-deficient animals. Ashen eosinophils were tested for degranulation in response to PAF and calcium ionophore by measuring released EPX activity. Airway EPX release was also determined by intratracheal injection of eosinophils into mice lacking EPX. Rab27a immunoreactivity colocalized with eosinophil crystalloid granules, as determined by subcellular fractionation and immunofluorescence analysis. PAF induced eosinophil degranulation in correlation with redistribution of Rab27a(+) structures, some of which colocalized with CD63(+) crystalloid granules at the cell membrane. Eosinophils from mice had significantly reduced EPX release compared with normal WT eosinophils, both in vitro and in vivo. In mouse models, Ashen mice demonstrated reduced EPX release in BAL fluid. These findings suggest that Rab27a has a key role in eosinophil degranulation. Furthermore, these findings have implications for Rab27a-dependent eosinophil degranulation in airway inflammation.
Collapse
Affiliation(s)
- John Dongil Kim
- 2.559 HMRC, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhu Y, Bertics PJ. Chemoattractant-induced signaling via the Ras-ERK and PI3K-Akt networks, along with leukotriene C4 release, is dependent on the tyrosine kinase Lyn in IL-5- and IL-3-primed human blood eosinophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:516-26. [PMID: 21106848 PMCID: PMC3156584 DOI: 10.4049/jimmunol.1000955] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human blood eosinophils exhibit a hyperactive phenotype in response to chemotactic factors after cell "priming" with IL-5 family cytokines. Earlier work has identified ERK1/2 as molecular markers for IL-5 priming, and in this article, we show that IL-3, a member of the IL-5 family, also augments fMLP-stimulated ERK1/2 phosphorylation in primary eosinophils. Besides ERK1/2, we also observed an enhancement of chemotactic factor-induced Akt phosphorylation after IL-5 priming of human blood eosinophils. Administration of a peptide antagonist that targets the Src family member Lyn before cytokine (IL-5/IL-3) priming of blood eosinophils inhibited the synergistic increase of fMLP-induced activation of Ras, ERK1/2 and Akt, as well as the release of the proinflammatory factor leukotriene C(4). In this study, we also examined a human eosinophil-like cell line HL-60 clone-15 and observed that these cells exhibited significant surface expression of IL-3Rs and GM-CSFRs, as well as ERK1/2 phosphorylation in response to the addition of IL-5 family cytokines or the chemotactic factors fMLP, CCL5, and CCL11. Consistent with the surface profile of IL-5 family receptors, HL-60 clone-15 recapitulated the enhanced fMLP-induced ERK1/2 phosphorylation observed in primary blood eosinophils after priming with IL-3/GM-CSF, and small interfering RNA-mediated knockdown of Lyn expression completely abolished the synergistic effects of IL-3 priming on fMLP-induced ERK1/2 phosphorylation. Altogether, our data demonstrate a central role for Lyn in the mechanisms of IL-5 family priming and suggest that Lyn contributes to the upregulation of the Ras-ERK1/2 and PI3K-Akt cascades, as well as the increased leukotriene C(4) release observed in response to fMLP in "primed" eosinophils.
Collapse
Affiliation(s)
- Yiming Zhu
- Molecular and Cellular Pharmacology Program, University of Wisconsin, Madison, WI, 53706
| | - Paul J. Bertics
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706
| |
Collapse
|
5
|
Salicylate restores transport function and anion exchanger activity of missense pendrin mutations. Hear Res 2010; 270:110-8. [PMID: 20826203 DOI: 10.1016/j.heares.2010.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 11/24/2022]
Abstract
The SLC26A4 gene encodes the transmembrane protein pendrin, which is involved in the homeostasis of the ion concentration of the endolymph of the inner ear, most likely by acting as a chloride/bicarbonate transporter. Mutations in the SLC26A4 gene cause sensorineuronal hearing loss. However, the mechanisms responsible for such loss have remained unknown. Therefore, in this study, we focused on the function of ten missense pendrin mutations (p.P123S (Pendred syndrome), p.M147V (NSEVA), p.K369E (NSEVA), p.A372V (Pendred syndrome/NSEVA), p.N392Y (Pendred syndrome), p.C565Y (NSEVA), p.S657N (NSEVA), p.S666F (NSEVA), p.T721M (NSEVA) and p.H723R (Pendred syndrome/NSEVA)) reported in Japanese patients, and analyzed their cellular localization and anion exchanger activity using HEK293 cells transfected with each mutant gene. Immunofluorescent staining of the cellular localization of the pendrin mutants revealed that p.K369E and p.C565Y, as well as wild-type pendrin, were transported to the plasma membrane, while 8 other mutants were retained in the cytoplasm. Furthermore, we analyzed whether salicylate, as a pharmacological chaperone, restores normal plasma membrane localization of 8 pendrin mutants retained in the cytoplasm to the plasma membrane. Incubation with 10 mM of salicylate of the cells transfected with the mutants induced the transport of 4 pendrin mutants (p.P123S, p.M147V, p.S657Y and p.H723R) from the cytoplasm to the plasma membrane and restored the anion exchanger activity. These findings suggest that salicylate might contribute to development of a new method of medical treatment for sensorineuronal hearing loss caused by the mutation of the deafness-related proteins, including pendrin.
Collapse
|
6
|
Coughlin JJ, Odemuyiwa SO, Davidson CE, Moqbel R. Differential expression and activation of Rab27A in human eosinophils: relationship to blood eosinophilia. Biochem Biophys Res Commun 2008; 373:382-6. [PMID: 18571497 DOI: 10.1016/j.bbrc.2008.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 06/10/2008] [Indexed: 11/17/2022]
Abstract
Eosinophil degranulation is thought to play a pathophysiological role in asthma. Rab27A is a GTP-binding protein that is known to be essential for the degranulation of several leukocyte subsets and thus may be essential for eosinophil granule exocytosis. Here, we show that Rab27A mRNA and protein are expressed in human eosinophils. We have developed a novel assay to assess Rab27A activation and have found a similar activation pattern of this protein upon stimulation of eosinophils, neutrophils and NK cells suggesting a similar function in these cell types. Interestingly, Rab27A expression was elevated in eosinophils from asthmatic donors. Furthermore, eosinophils from eosinophilic donors displayed more rapid Rab27A activation kinetics than those from donors with lower eosinophil counts. Given that elevated blood eosinophil numbers correlate with increased priming of eosinophils, this pattern of Rab27A activation suggests differential protein expression in activated cells may allow eosinophils to degranulate more rapidly upon stimulation.
Collapse
Affiliation(s)
- Jason J Coughlin
- Pulmonary Research Group, Department of Medicine, University of Alberta, 550A Heritage Medical Research Centre, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | |
Collapse
|
7
|
Yoshida N, Aizu-Yokota E, Sonoda Y, Moriwaki Y, Kishi K, Kasahara T. Production and regulation of eotaxin-2/CCL24 in a differentiated human leukemic cell line, HT93. Biol Pharm Bull 2007; 30:1826-32. [PMID: 17917245 DOI: 10.1248/bpb.30.1826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When a human leukemic cell line, HT93 was incubated with all-trans retinoic acid (ATRA), IL-5, or both, this cell line was differentiated into eosinophic lineage, in that an eosinophilic specific granule proteins, major basic protein (MBP) and eosinophil peroxidase (EPO) appeared. Both CD11b and CC chemokine receptor, CCR3 expression were upregulated, while CD71 expression was downregulated by ATRA or ATRA+IL-5. Concomitantly, marked production of eotaxin-2/CCL24 was observed, but no production of eotaxin-1/CCL11 and eotaxin-3/CCL26 was detected. Since only 20 to 30% cells incubated with ATRA became positive for CCR3, CCR3(+) population was enriched by a magnetic activated cell sorter (MACS). Enriched CCR3(+) population produced higher eotaxin-2/CCL24 than the CCR3(-) population, indicating that differentiated eosinophils are capable of producing eotaxin-2/CCL24. During the ATRA-induced differentiation, expression of a transcriptional factor, GATA-1 was significantly increased. Introduction of siRNA against GATA-1 markedly reduced the ATRA-induced differentiation markers including CD11b and CCR3, as well as reduced eotaxin-2/CCL24 production. Finally, ATRA-induced differentiation and eotaxin-2/CCL24 production were greatly enhanced in the GATA-1-overexpressed clones. These results indicate that the ability to produce eotaxin-2/CCL24 is acquired during the differentiation into eosinophilic lineage which is dependent on GATA-1 expression.
Collapse
Affiliation(s)
- Naomi Yoshida
- Department of Biochemistry, Kyoritsu University of Pharmacy, Minato-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Wang J, Liu N, Liu Z, Li Y, Song C, Yuan H, Li YY, Zhao X, Lu H. The orphan nuclear receptor Rev-erbbeta recruits Tip60 and HDAC1 to regulate apolipoprotein CIII promoter. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:224-36. [PMID: 17996965 DOI: 10.1016/j.bbamcr.2007.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/21/2007] [Accepted: 09/20/2007] [Indexed: 11/19/2022]
Abstract
Nuclear hormone receptors function as ligand activated transcription factors. Ligand binding and modification such as acetylation have been reported to regulate nuclear hormone receptors. The orphan receptors, Rev-erbalpha and Rev-erbbeta, are members of the nuclear receptor superfamily and act as transcriptional repressors. In this study, the role of recruitment of co-factors by Rev-erbbeta and acetylation of Rev-erbbeta in modulating apolipoprotein CIII (apoCIII) transcription were investigated. Rev-erbbeta was found to transcriptionally repress apoCIII after binding to the apoCIII promoter. Tip60, a histone acetyl-transferase (HAT), was a novel binding partner for Rev-erbbeta and recruited to the apoCIII promoter by Rev-erbbeta. Tip60 was able to acetylate Rev-erbbeta and relieve the apoCIII repression mediated by Rev-erbbeta. This de-repression effect depended on acetylation of Rev-erbbeta at its RXKK motif by Tip60. In addition, histone deacetylase 1 (HDAC1) interacted with Rev-erbbeta and was recruited to the apoCIII promoter by Rev-erbbeta to antagonize Tip60's activity. Taken together, we have provided evidence that Rev-erbbeta modulates the apoCIII gene expression by recruiting different transcription co-activator or co-repressor.
Collapse
Affiliation(s)
- Jiadong Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kaneko M, Ishihara K, Takahashi A, Hong J, Hirasawa N, Zee O, Ohuchi K. Mechanism for the Differentiation of EoL-1 Cells into Eosinophils by Histone Deacetylase Inhibitors. Int Arch Allergy Immunol 2007; 143 Suppl 1:28-32. [PMID: 17541273 DOI: 10.1159/000101401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND EoL-1 cells have a FIP1L1-PDGFRA fusion gene which causes the transformation of eosinophilic precursor cells into leukemia cells. Recently, we suggested that the induction of differentiation of EoL-1 cells into eosinophils by the HDAC inhibitors apicidin and n-butyrate is due to the continuous inhibition of HDACs. However, neither apicidin nor n-butyrate inhibited the expression of FIP1L1-PDGFRA mRNA, although both these inhibitors suppressed cell proliferation. Therefore, in this study, we analyzed whether the levels of FIP1L1-PDGFRalpha protein and phosphorylated-Stat5 involved in the signaling for the proliferation of EoL-1 cells are attenuated by HDAC inhibitors. METHODS EoL-1 cells were incubated in the presence of apicidin, TSA or n-butyrate. FIP1L1-PDGFRalpha and phosphorylated-Stat5 were detected by Western blotting. RESULTS Treatment of EoL-1 cells with apicidin at 100 nM or n-butyrate at 500 microM decreased the levels of FIP1L1-PDGFRalpha protein and phosphorylated-Stat5, while that with trichostatin A at 30 nM did not. CONCLUSIONS The decrease in the level of FIP1L1-PDGFRalpha protein caused by apicidin and n-butyrate might be one of the mechanisms by which EoL-1 cells are induced to differentiate into eosinophils by these HDAC inhibitors.
Collapse
MESH Headings
- Butyrates/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Line, Tumor/cytology
- Cell Line, Tumor/drug effects
- Eosinophils/cytology
- Gene Expression Regulation, Leukemic/drug effects
- Histone Deacetylase Inhibitors
- Humans
- Hydroxamic Acids/pharmacology
- Hypereosinophilic Syndrome/genetics
- Hypereosinophilic Syndrome/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Peptides, Cyclic/pharmacology
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Platelet-Derived Growth Factor alpha/biosynthesis
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/physiology
- STAT5 Transcription Factor/metabolism
- mRNA Cleavage and Polyadenylation Factors/biosynthesis
- mRNA Cleavage and Polyadenylation Factors/genetics
- mRNA Cleavage and Polyadenylation Factors/physiology
Collapse
Affiliation(s)
- Motoko Kaneko
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Ishihara K, Takahashi A, Kaneko M, Sugeno H, Hirasawa N, Hong J, Zee O, Ohuchi K. Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors. Life Sci 2007; 80:1213-20. [PMID: 17258775 DOI: 10.1016/j.lfs.2006.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/16/2006] [Accepted: 12/13/2006] [Indexed: 01/29/2023]
Abstract
EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells without attenuating the level of FIP1L1-PDGFRA mRNA, and induced the expression of markers for mature eosinophils such as integrin beta7, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of histones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.
Collapse
Affiliation(s)
- Kenji Ishihara
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578, Japan
| | | | | | | | | | | | | | | |
Collapse
|