1
|
Colasante C, Jednakowski J, Valerius KP, Li X, Baumgart-Vogt E. Peroxisomal dysfunction interferes with odontogenesis and leads to developmentally delayed teeth and defects in distinct dental cells in Pex11b-deficient mice. PLoS One 2024; 19:e0313445. [PMID: 39652567 PMCID: PMC11627416 DOI: 10.1371/journal.pone.0313445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/23/2024] [Indexed: 12/12/2024] Open
Abstract
Human peroxisomal biogenesis disorders of the Zellweger syndrome spectrum affect skeletal development and induce tooth malformations. Whereas several peroxisomal knockout mouse studies elucidated the pathogenesis of skeletal defects, little information is available on how dental pathologies arise in peroxisomal biogenesis disorder patients. To understand the impact of severe peroxisomal dysfunction on early odontogenesis, here we performed morphometric studies on developing molars of new-born Pex11b knockout mice. Immunofluorescence analysis revealed reduced peroxisome number and mistargeting of the peroxisomal matrix enzyme catalase to the cytoplasm in several dental cell types of the Pex11b knockout animals. We also observed secondary mitochondrial alterations, comprising decreased staining of mitochondrial superoxide dismutase and of complex IV in cells of the developing molar. The peroxisomal defect caused by the PEX11b knockout also decreased the staining of cytokeratin intermediate filaments and of the secretory proteins amelogenin, osteopontin and osteocalcin. Interestingly, the staining of the gap junction protein connexin 43, an important modulator of tissue development, was also decreased, possibly causing the observed cellular disarrangement within the inner enamel epithelium and the odontoblast palisade. Taken together, our results show that the severe phenotype associated with the PEX11b knockout results in a reduction of the number of peroxisomes in dental cells and causes a delay odontogenesis. This adds a new component to the already described symptomatic spectrum induced by severe peroxisomal defects.
Collapse
Affiliation(s)
- Claudia Colasante
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Julia Jednakowski
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Klaus-Peter Valerius
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Xiaoling Li
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, United States of America
| | | |
Collapse
|
2
|
Kegulian NC, Visakan G, Bapat RA, Moradian-Oldak J. Ameloblastin and its multifunctionality in amelogenesis: A review. Matrix Biol 2024; 131:62-76. [PMID: 38815936 PMCID: PMC11218920 DOI: 10.1016/j.matbio.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Extracellular matrix proteins play crucial roles in the formation of mineralized tissues like bone and teeth via multifunctional mechanisms. In tooth enamel, ameloblastin (Ambn) is one such multifunctional extracellular matrix protein implicated in cell signaling and polarity, cell adhesion to the developing enamel matrix, and stabilization of prismatic enamel morphology. To provide a perspective for Ambn structure and function, we begin this review by describing dental enamel and enamel formation (amelogenesis) followed by a description of enamel extracellular matrix. We then summarize the established domains and motifs in Ambn protein, human amelogenesis imperfecta cases, and genetically engineered mouse models involving mutated or null Ambn. We subsequently delineate in silico, in vitro, and in vivo evidence for the amphipathic helix in Ambn as a proposed cell-matrix adhesive and then more recent in vitro evidence for the multitargeting domain as the basis for dynamic interactions of Ambn with itself, amelogenin, and membranes. The multitargeting domain facilitates tuning between Ambn-membrane interactions and self/co-assembly and supports a likely overall role for Ambn as a matricellular protein. We anticipate that this review will enhance the understanding of multifunctional matrix proteins by consolidating diverse mechanisms through which Ambn contributes to enamel extracellular matrix mineralization.
Collapse
Affiliation(s)
- Natalie C Kegulian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Gayathri Visakan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Rucha Arun Bapat
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA.
| |
Collapse
|
3
|
Gil-Bona A, Karaaslan H, Depalle B, Sulyanto R, Bidlack FB. Proteomic Analyses Discern the Developmental Inclusion of Albumin in Pig Enamel: A New Model for Human Enamel Hypomineralization. Int J Mol Sci 2023; 24:15577. [PMID: 37958567 PMCID: PMC10650821 DOI: 10.3390/ijms242115577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Excess albumin in enamel is a characteristic of the prevalent developmental dental defect known as chalky teeth or molar hypomineralization (MH). This study uses proteomic analyses of pig teeth to discern between developmental origin and post-eruptive contamination and to assess the similarity to hypomineralized human enamel. Here, the objective is to address the urgent need for an animal model to uncover the etiology of MH and to improve treatment. Porcine enamel is chalky and soft at eruption; yet, it hardens quickly to form a hard surface and then resembles human teeth with demarcated enamel opacities. Proteomic analyses of enamel from erupted teeth, serum, and saliva from pigs aged 4 (n = 3) and 8 weeks (n = 2) and human (n = 4) molars with demarcated enamel opacities show alpha-fetoprotein (AFP). AFP expression is limited to pre- and perinatal development and its presence in enamel indicates pre- or perinatal inclusion. In contrast, albumin is expressed after birth, indicating postnatal inclusion into enamel. Peptides were extracted from enamel and analyzed by nano-liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) after tryptic digestion. The mean total protein number was 337 in the enamel of all teeth with 13 different unique tryptic peptides of porcine AFP in all enamel samples but none in saliva samples. Similarities in the composition, micro-hardness, and microstructure underscore the usefulness of the porcine model to uncover the MH etiology, cellular mechanisms of albumin inclusion, and treatment for demarcated opacities.
Collapse
Affiliation(s)
- Ana Gil-Bona
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Hakan Karaaslan
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Baptiste Depalle
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Rosalyn Sulyanto
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
- Department of Dentistry, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Felicitas B. Bidlack
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
4
|
Enamel Phenotypes: Genetic and Environmental Determinants. Genes (Basel) 2023; 14:genes14030545. [PMID: 36980818 PMCID: PMC10048525 DOI: 10.3390/genes14030545] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Dental enamel is a specialized tissue that has adapted over millions of years of evolution to enhance the survival of a variety of species. In humans, enamel evolved to form the exterior protective layer for the crown of the exposed tooth crown. Its unique composition, structure, physical properties and attachment to the underlying dentin tissue allow it to be a resilient, although not self-repairing, tissue. The process of enamel formation, known as amelogenesis, involves epithelial-derived cells called ameloblasts that secrete a unique extracellular matrix that influences the structure of the mineralizing enamel crystallites. There are over 115 known genetic conditions affecting amelogenesis that are associated with enamel phenotypes characterized by either a reduction of enamel amount and or mineralization. Amelogenesis involves many processes that are sensitive to perturbation and can be altered by numerous environmental stressors. Genetics, epigenetics, and environment factors can influence enamel formation and play a role in resistance/risk for developmental defects and the complex disease, dental caries. Understanding why and how enamel is affected and the enamel phenotypes seen clinically support diagnostics, prognosis prediction, and the selection of treatment approaches that are appropriate for the specific tissue defects (e.g., deficient amount, decreased mineral, reduced insulation and hypersensitivity). The current level of knowledge regarding the heritable enamel defects is sufficient to develop a new classification system and consensus nosology that effectively communicate the mode of inheritance, molecular defect/pathway, and the functional aberration and resulting enamel phenotype.
Collapse
|
5
|
Masunova N, Tereschenko M, Alexandrov G, Spirina L, Tarasenko N. Crucial Role of microRNAs as New Targets for Amelogenesis Disorders Detection. Curr Drug Targets 2023; 24:1139-1149. [PMID: 37936447 DOI: 10.2174/0113894501257011231030161427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Amelogenesis imperfecta (AI) refers to a heterogeneous group of conditions with multiple factors which contribute to the hypomineralisation of enamel. Preventive measures are necessary to predict this pathology. Prospects for preventive medicine are closely related to the search for new informative methods for diagnosing a human disease. MicroRNAs are prominent for the non-invasive diagnostic platform. THE AIM OF THE STUDY The aim of the review is to review the heterogeneous factors involved in amelogenesis and to select the microRNA panel associated with the AI type. METHODS We used DIANA Tools (algorithms, databases and software) for interpreting and archiving data in a systematic framework ranging from the analysis of expression regulation from deep sequencing data to the annotation of miRNA regulatory elements and targets (https://dianalab. e-ce.uth.gr/). In our study, based on a gene panel associated with the AI types, twenty-four miRNAs were identified for the hypoplastic type (supplement), thirty-five for hypocalcified and forty-- nine for hypomaturation AI. The selection strategy included the microRNA search with multiple targets using the AI type's gene panel. RESULTS Key proteins, calcium-dependent and genetic factors were analysed to reveal their role in amelogenesis. The role of extracellular non-coding RNA sequences with multiple regulatory functions seems to be the most attractive. We chose the list of microRNAs associated with the AI genes. We found four microRNAs (hsa-miR-27a-3p, hsa-miR-375, hsa-miR-16-5p and hsamiR- 146a-5p) for the gene panel, associated with the hypoplastic type of AI; five microRNAs (hsa- miR-29c-3p, hsa-miR-124-3p, hsa-miR-1343-3p, hsa-miR-335-5p, and hsa-miR-16-5p - for hypocalcified type of AI, and seven ones (hsa-miR-124-3p, hsa-miR-147a, hsa-miR-16-5p, hsamiR- 429, hsa-let-7b-5p, hsa-miR-146a-5p, hsa-miR-335-5p) - for hypomaturation. It was revealed that hsa-miR-16-5p is included in three panels specific for both hypoplastic, hypocalcified, and hypomaturation types. Hsa-miR-146a-5p is associated with hypoplastic and hypomaturation type of AI, which is associated with the peculiarities of the inflammatory response immune response. In turn, hsa-miR-335-5p associated with hypocalcified and hypomaturation type of AI. CONCLUSION Liquid biopsy approaches are a promising way to reduce the economic cost of treatment for these patients in modern healthcare. Unique data exist about the role of microRNA in regulating amelogenesis. The list of microRNAs that are associated with AI genes and classified by AI types has been uncovered. The target gene analysis showed the variety of functions of selected microRNAs, which explains the multiple heterogeneous mechanisms in amelogenesis. Predisposition to mineralisation problems is a programmed event. Many factors determine the manifestation of this problem. Additionally, it is necessary to remember the variable nature of the changes, which reduces the prediction accuracy. Therefore, models based on liquid biopsy and microRNAs make it possible to take into account these factors and their influence on the mineralisation. The found data needs further investigation.
Collapse
Affiliation(s)
- Nadezhda Masunova
- Siberian State Medical University of the Ministry of Health of Russia, 634050, Tomsk, Russia
| | - Maria Tereschenko
- Siberian State Medical University of the Ministry of Health of Russia, 634050, Tomsk, Russia
| | - Georgy Alexandrov
- Siberian State Medical University of the Ministry of Health of Russia, 634050, Tomsk, Russia
| | - Liudmila Spirina
- Siberian State Medical University of the Ministry of Health of Russia, 634050, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Natalia Tarasenko
- Siberian State Medical University of the Ministry of Health of Russia, 634050, Tomsk, Russia
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
6
|
An Intron c.103-3T>C Variant of the AMELX Gene Causes Combined Hypomineralized and Hypoplastic Type of Amelogenesis Imperfecta: Case Series and Review of the Literature. Genes (Basel) 2022; 13:genes13071272. [PMID: 35886055 PMCID: PMC9321068 DOI: 10.3390/genes13071272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic disorders of dental enamel. X-linked AI results from disease-causing variants in the AMELX gene. In this paper, we characterise the genetic aetiology and enamel histology of female AI patients from two unrelated families with similar clinical and radiographic findings. All three probands were carefully selected from 40 patients with AI. In probands from both families, scanning electron microscopy confirmed hypoplastic and hypomineralised enamel. A neonatal line separated prenatally and postnatally formed enamel of distinctly different mineralisation qualities. In both families, whole exome analysis revealed the intron variant NM_182680.1: c.103-3T>C, located three nucleotides before exon 4 of the AMELX gene. In family I, an additional variant, c.2363G>A, was found in exon 5 of the FAM83H gene. This report illustrates a variant in the AMELX gene that was not previously reported to be causative for AI as well as an additional variant in the FAM83H gene with probably limited clinical significance.
Collapse
|
7
|
Mohabatpour F, Al-Dulaymi M, Lobanova L, Scutchings B, Papagerakis S, Badea I, Chen X, Papagerakis P. Gemini surfactant-based nanoparticles T-box1 gene delivery as a novel approach to promote epithelial stem cells differentiation and dental enamel formation. BIOMATERIALS ADVANCES 2022; 137:212844. [PMID: 35929273 DOI: 10.1016/j.bioadv.2022.212844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Enamel is the highest mineralized tissue in the body protecting teeth from external stimuli, infections, and injuries. Enamel lacks the ability to self-repair due to the absence of enamel-producing cells in the erupted teeth. Here, we reported a novel approach to promote enamel-like tissue formation via the delivery of a key ameloblast inducer, T-box1 gene, into a rat dental epithelial stem cell line, HAT-7, using non-viral gene delivery systems based on cationic lipids. We comparatively assessed the lipoplexes prepared from glycyl-lysine-modified gemini surfactants and commercially available 1,2-dioleoyl-3-trimethylammonium-propane lipids at three nitrogen-to phosphate (N/P) ratios of 2.5, 5 and 10. Our findings revealed that physico-chemical characteristics and biological activities of the gemini surfactant-based lipoplexes with a N/P ratio of 5 provide the most optimal outcomes among those examined. HAT-7 cells were transfected with T-box1 gene using the optimal formulation then cultured in conventional 2D cell culture systems. Ameloblast differentiation, mineralization, bio-enamel interface and structure were assessed at different time points over 28 days. Our results showed that our gemini transfection system provides superior gene expression compared to the benchmark agent, while keeping low cytotoxicity levels. T-box1-transfected HAT-7 cells strongly expressed markers of secretory and maturation stages of the ameloblasts, deposited minerals, and produced enamel-like crystals when compared to control cells. Taken together, our gemini surfactant-based T-box1 gene delivery system is effective to accelerate and guide ameloblastic differentiation of dental epithelial stem cells and promote enamel-like tissue formation. This study would represent a significant advance towards the tissue engineering and regeneration of dental enamel.
Collapse
Affiliation(s)
- Fatemeh Mohabatpour
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9 SK, Canada; College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, S7N 5E4, SK, Canada
| | - Mays Al-Dulaymi
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, S7N 5E5, SK, Canada
| | - Liubov Lobanova
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, S7N 5E4, SK, Canada
| | - Brittany Scutchings
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, S7N 5E5, SK, Canada
| | - Silvana Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9 SK, Canada; Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd B419, S7N 0W8, SK, Canada; Department of Otolaryngology, College of Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, S7N 5E5, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9 SK, Canada; Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9 SK, Canada.
| | - Petros Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9 SK, Canada; College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, S7N 5E4, SK, Canada.
| |
Collapse
|
8
|
Bai Y, Bonde J, Carneiro KMM, Zhang Y, Li W, Habelitz S. A Brief History of the Discovery of Amelogenin Nanoribbons In Vitro and In Vivo. J Dent Res 2021; 100:1429-1433. [PMID: 34612757 DOI: 10.1177/00220345211043463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Without evidence for an organic framework, biological and biochemical processes observed during amelogenesis provided limited information on how extracellular matrix proteins control the development of the complex fibrous architecture of human enamel. Over a decade ago, amelogenin nanoribbons were first observed from recombinant proteins during in vitro mineralization experiments in our laboratory. In enamel from mice lacking the enzyme kallikrein 4 (KLK4), we later uncovered ribbon-like protein structures that matched the morphology, width, and thickness of the nanoribbons assembled by recombinant proteins. Interestingly, similar structures had already been described since the 1960s, when enamel sections from various mammals were demineralized and stained for transmission electron microscopy analysis. However, at that time, researchers were not aware of the ability of amelogenin to form nanoribbons and instead associated the filamentous nanostructures with possible imprints of mineral ribbons in the gel-like matrix of developing enamel. Further evidence for the significance of amelogenin nanoribbons for enamel development was stipulated when recent mineralization experiments succeeded in templating and orienting the growth of apatite ribbons along the protein nanoribbon framework. This article provides a brief historical review of the discovery of amelogenin nanoribbons in our laboratory in the context of reports by others on similar structures in the developing enamel matrix.
Collapse
Affiliation(s)
- Y Bai
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - J Bonde
- Division of Pure and Applied Biochemistry, Center of Applied Life Science, Lund University, Lund, Sweden
| | - K M M Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Y Zhang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - W Li
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - S Habelitz
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| |
Collapse
|
9
|
Koohpeima F, Derakhshan M, Mokhtari MJ. AMELX Gene Association with Dental Caries in Iranian Adults. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 8:294-300. [PMID: 32587839 PMCID: PMC7305461 DOI: 10.22088/ijmcm.bums.8.4.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dental decay is a disease that is greatly affected by environmental components, but recently there have been an increasing number of documents supporting a genetic factor in the development of caries. The purpose of this study was to examine the association between dental caries and single-nucleotide polymorphisms in the AMELX gene. This research was carried out on 360 individuals of both sexes, who were referred to the dental school at the Shiraz University of Medical Sciences. In this research, individuals aged 20–65 years were divided into two groups: controls (decayed, missed, or filled teeth (DMFT) ≤ 5; n = 180) and cases (DMFT ≥ 14; n = 180). The tetra-primer ARMS-PCR technique was performed for genotyping the DNA extracted from blood cells. Analysis of the AMELX rs946252 polymorphism showed that the T allele of rs946252 was a significant protective factor against dental caries in Iranian adults (T vs. C: OR = 0.70, 95% CI: 0.49–0.98, P = 0.04). We demonstrated the significant differences in the genotype frequencies under two genetic models: overdominant (TC vs. TT + CC: OR 0.35, 95% CI 0.19–0.64, P = 0.0006) and recessive (CC vs. TC + TT: OR 2.57, 95% CI 1.39–4.76, P = 0.002). Our results show that the SNPs of the AMELX gene may be related with susceptibility to dental caries in Iranian adults.
Collapse
Affiliation(s)
- Fatemeh Koohpeima
- Department of Operative Dentistry, Biomaterial Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Derakhshan
- Department of Operative Dentistry, Biomaterial Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Mokhtari
- Young Researchers and Elite Club, Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran
| |
Collapse
|
10
|
|
11
|
Cappellini E, Welker F, Pandolfi L, Ramos-Madrigal J, Samodova D, Rüther PL, Fotakis AK, Lyon D, Moreno-Mayar JV, Bukhsianidze M, Rakownikow Jersie-Christensen R, Mackie M, Ginolhac A, Ferring R, Tappen M, Palkopoulou E, Dickinson MR, Stafford TW, Chan YL, Götherström A, Nathan SKSS, Heintzman PD, Kapp JD, Kirillova I, Moodley Y, Agusti J, Kahlke RD, Kiladze G, Martínez-Navarro B, Liu S, Sandoval Velasco M, Sinding MHS, Kelstrup CD, Allentoft ME, Orlando L, Penkman K, Shapiro B, Rook L, Dalén L, Gilbert MTP, Olsen JV, Lordkipanidze D, Willerslev E. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature 2019; 574:103-107. [PMID: 31511700 PMCID: PMC6894936 DOI: 10.1038/s41586-019-1555-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 08/12/2019] [Indexed: 11/10/2022]
Abstract
Ancient DNA (aDNA) sequencing has enabled reconstruction of speciation, migration, and admixture events for extinct taxa1. Outside the permafrost, however, irreversible aDNA post-mortem degradation2 has so far limited aDNA recovery to the past ~0.5 million years (Ma)3. Contrarily, tandem mass spectrometry (MS) allowed sequencing ~1.5 million year (Ma) old collagen type I (COL1)4 and suggested the presence of protein residues in Cretaceous fossil remains5, although with limited phylogenetic use6. In the absence of molecular evidence, the speciation of several Early and Middle Pleistocene extinct species remain contentious. In this study, we address the phylogenetic relationships of the Eurasian Pleistocene Rhinocerotidae7–9 using a ~1.77 Ma old dental enamel proteome of a Stephanorhinus specimen from the Dmanisi archaeological site in Georgia (South Caucasus)10. Molecular phylogenetic analyses place the Dmanisi Stephanorhinus as a sister group to the woolly (Coelodonta antiquitatis) and Merck’s rhinoceros (S. kirchbergensis) clade. We show that Coelodonta evolved from an early Stephanorhinus lineage and that the latter includes at least two distinct evolutionary lines. As such, the genus Stephanorhinus is currently paraphyletic and its systematic revision is therefore needed. We demonstrate that Early Pleistocene dental enamel proteome sequencing overcomes the limits of ancient collagen- and aDNA-based phylogenetic inference. It also provides additional information about the sex and taxonomic assignment of the specimens analysed. Dental enamel, the hardest tissue in vertebrates11, is highly abundant in the fossil record. Our findings reveal that palaeoproteomic investigation of this material can push biomolecular investigation further back into the Early Pleistocene.
Collapse
Affiliation(s)
- Enrico Cappellini
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark. .,Evolutionary Genomics Section, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Frido Welker
- Evolutionary Genomics Section, Globe Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Luca Pandolfi
- Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Florence, Italy
| | - Jazmín Ramos-Madrigal
- Evolutionary Genomics Section, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Diana Samodova
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick L Rüther
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Anna K Fotakis
- Evolutionary Genomics Section, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - David Lyon
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - J Víctor Moreno-Mayar
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Meaghan Mackie
- Evolutionary Genomics Section, Globe Institute, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Aurélien Ginolhac
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Reid Ferring
- Department of Geography and Environment, University of North Texas, Denton, TX, USA
| | - Martha Tappen
- Department of Anthropology, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | - Yvonne L Chan
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | | | - Peter D Heintzman
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.,Tromsø University Museum, The Arctic University of Norway (UiT), Tromsø, Norway
| | - Joshua D Kapp
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Irina Kirillova
- Ice Age Museum, National Alliance of Shidlovskiy 'Ice Age', Moscow, Russia
| | - Yoshan Moodley
- Department of Zoology, University of Venda, Thohoyandou, South Africa
| | - Jordi Agusti
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Institut Català de Paleoecologia Humana i Evolució Social, Universitat Rovira i Virgili, Tarragona, Spain
| | | | - Gocha Kiladze
- Geology Department, Tbilisi State University, Tbilisi, Georgia
| | - Bienvenido Martínez-Navarro
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Institut Català de Paleoecologia Humana i Evolució Social, Universitat Rovira i Virgili, Tarragona, Spain.,Departament d'Història i Geografia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Shanlin Liu
- Evolutionary Genomics Section, Globe Institute, University of Copenhagen, Copenhagen, Denmark.,BGI Shenzhen, Shenzen, China
| | | | - Mikkel-Holger S Sinding
- Evolutionary Genomics Section, Globe Institute, University of Copenhagen, Copenhagen, Denmark.,Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Christian D Kelstrup
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ludovic Orlando
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.,Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, Université Paul Sabatier, Toulouse, France
| | | | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.,Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Lorenzo Rook
- Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Florence, Italy
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - M Thomas P Gilbert
- Evolutionary Genomics Section, Globe Institute, University of Copenhagen, Copenhagen, Denmark.,University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| | | | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark. .,Department of Zoology, University of Cambridge, Cambridge, UK. .,Wellcome Trust Sanger Institute, Hinxton, UK. .,Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
12
|
Towle I, Irish JD. A probable genetic origin for pitting enamel hypoplasia on the molars of Paranthropus robustus. J Hum Evol 2019; 129:54-61. [DOI: 10.1016/j.jhevol.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 01/12/2023]
|
13
|
Abstract
In this chapter we discuss the potential of preparative SDS-PAGE for use in purifying native developing enamel matrix proteins. We believe that the methodology has the potential to provide the relatively large-scale single-step purification of any enamel protein that can be resolved as a single band during analytical SDS-PAGE. Of course, a single band on analytical SDS-PAGE does not guarantee absolute purity as the band may be comprised of two or more proteins migrating at the same apparent molecular weight on the gel. Where absolute purity is required, the methodology can be used in conjunction with other techniques such as ion-exchange chromatography or reverse-phase chromatography. We do not see preparative SDS-PAGE replacing chromatographic methodologies but believe that it can provide another powerful tool to add to the battery of purification techniques already available to researchers in the field.
Collapse
|
14
|
Yan WJ, Ma P, Tian Y, Wang JY, Qin CL, Feng JQ, Wang XF. The importance of a potential phosphorylation site in enamelin on enamel formation. Int J Oral Sci 2017; 9:e4. [PMID: 29593332 PMCID: PMC5775333 DOI: 10.1038/ijos.2017.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 01/31/2023] Open
Abstract
Enamelin (ENAM) has three putative phosphoserines (pSers) phosphorylated by a Golgi-associated secretory pathway kinase (FAM20C) based on their distinctive Ser-x-Glu (S-x-E) motifs. Fam20C-knockout mice show severe enamel defects similar to those in the Enam-knockout mice, implying an important role of the pSers in ENAM. To determine the role of pSer55 in ENAM, we characterized ENAMRgsc514 mice, in which Ser55 cannot be phosphorylated by FAM20C due to an E57>G57 mutation in the S-x-E motif. The enamel microstructure of 4-week-old mice was examined by scanning electron microscopy. The teeth of 6-day-old mice were characterized by histology and immunohistochemistry. The protein lysates of the first lower molars of 4-day-old mice were analyzed by Western immunoblotting using antibodies against ENAM, ameloblastin and amelogenin. ENAMRgsc514 heterozygotes showed a disorganized enamel microstructure, while the homozygotes had no enamel on the dentin surface. The N-terminal fragments of ENAM in the heterozygotes were detained in the ameloblasts and localized in the mineralization front of enamel matrix, while those in the WT mice were secreted out of ameloblasts and distributed evenly in the outer 1/2 of enamel matrix. Surprisingly, the ~15 kDa C-terminal fragments of ameloblastin were not detected in the molar lysates of the homozygotes. These results suggest that the phosphorylation of Ser55 may be an essential posttranslational modification of ENAM and is required for the interaction with other enamel matrix molecules such as ameloblastin in mediating the structural organization of enamel matrix and protein-mineral interactions during enamel formation.International Journal of Oral Science (2017) 9;e4; doi:10.1038/ijos.2017.41; published online 29 November 2017.
Collapse
Affiliation(s)
- Wen-Juan Yan
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, USA.,Department of Endodontics, Nanfan Hospital, Southern Medical University, Guangzhou, China
| | - Pan Ma
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, USA
| | - Ye Tian
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, USA
| | - Jing-Ya Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, USA
| | - Chun-Lin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, USA
| | - Jian Q Feng
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, USA
| | - Xiao-Fang Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, USA
| |
Collapse
|
15
|
Kim YJ, Kim YJ, Kang J, Shin TJ, Hyun HK, Lee SH, Lee ZH, Kim JW. A novel AMELX mutation causes hypoplastic amelogenesis imperfecta. Arch Oral Biol 2017; 76:61-65. [DOI: 10.1016/j.archoralbio.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/17/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
16
|
Dessombz A, Lignon G, Picaut L, Rouzière S, Berdal A. Mineral studies in enamel, an exemplary model system at the interface between physics, chemistry and medical sciences. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Ma P, Yan W, Tian Y, He J, Brookes SJ, Wang X. The Importance of Serine Phosphorylation of Ameloblastin on Enamel Formation. J Dent Res 2016; 95:1408-1414. [PMID: 27470066 DOI: 10.1177/0022034516661513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
FAM20C is a newly identified kinase on the secretory pathway responsible for the phosphorylation of serine residues in the Ser-x-Glu/pSer motifs in several enamel matrix proteins. Fam20C-knockout mice showed severe enamel defects very similar to those in the ameloblastin ( Ambn)-knockout mice, implying that phosphoserines may have a critical role in AMBN function. To test this hypothesis, we generated amelogenin ( Amel) promoter-driven Ambn-transgenic mice, in which Ser48, Ser226, and Ser227 were replaced by aspartic acid (designated as D-Tg) or alanines (designated as A-Tg). The negative charge of aspartic acid is believed to be able to mimic the phosphorylation state of serine, while alanine is a commonly used residue to substitute serine due to their similar structure. Using Western immunoblotting and quantitative polymerase chain reaction, the authors identified transgenic lines expressing transgenes somewhat higher (Tg+) or much higher (Tg++) than endogenous Ambn. The lower incisors collected from 7-d-old and 7-wk-old mice were analyzed by histology, scanning electron microscopy, immunohistochemistry, and Western immunoblotting to examine the morphology and microstructure changes in enamel, as well as the expression pattern of enamel matrix proteins. The A-Tg+ and A-Tg++ mice displayed severe enamel defects in spite of the expression level of transgenes, while the D-Tg+ and D-Tg++ mice showed minor to mild enamel defects, indicating that the D-Tg transgenes disturbed enamel formation less than the A-Tg transgenes did. Our results suggest that the phosphorylation state of serines is likely an essential component for the integrity of AMBN function.
Collapse
Affiliation(s)
- P Ma
- 1 Department of Oral Implantology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.,2 Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - W Yan
- 2 Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Y Tian
- 2 Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - J He
- 2 Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - S J Brookes
- 3 Department of Oral Biology, University of Leeds, St. James's University Hospital, Leeds, UK
| | - X Wang
- 2 Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| |
Collapse
|
18
|
Affiliation(s)
- M V Korolenkova
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| |
Collapse
|
19
|
Evolutionary analysis of selective constraints identifies ameloblastin (AMBN) as a potential candidate for amelogenesis imperfecta. BMC Evol Biol 2015. [PMID: 26223266 PMCID: PMC4518657 DOI: 10.1186/s12862-015-0431-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Ameloblastin (AMBN) is a phosphorylated, proline/glutamine-rich protein secreted during enamel formation. Previous studies have revealed that this enamel matrix protein was present early in vertebrate evolution and certainly plays important roles during enamel formation although its precise functions remain unclear. We performed evolutionary analyses of AMBN in order to (i) identify residues and motifs important for the protein function, (ii) predict mutations responsible for genetic diseases, and (iii) understand its molecular evolution in mammals. Results In silico searches retrieved 56 complete sequences in public databases that were aligned and analyzed computationally. We showed that AMBN is globally evolving under moderate purifying selection in mammals and contains a strong phylogenetic signal. In addition, our analyses revealed codons evolving under significant positive selection. Evidence for positive selection acting on AMBN was observed in catarrhine primates and the aye-aye. We also found that (i) an additional translation initiation site was recruited in the ancestral placental AMBN, (ii) a short exon was duplicated several times in various species including catarrhine primates, and (iii) several polyadenylation sites are present. Conclusions AMBN possesses many positions, which have been subjected to strong selective pressure for 200 million years. These positions correspond to several cleavage sites and hydroxylated, O-glycosylated, and phosphorylated residues. We predict that these conserved positions would be potentially responsible for enamel disorder if substituted. Some motifs that were previously identified as potentially important functionally were confirmed, and we found two, highly conserved, new motifs, the function of which should be tested in the near future. This study illustrates the power of evolutionary analyses for characterizing the functional constraints acting on proteins with yet uncharacterized structure. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0431-0) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: Tools and insights for the "omics" era. Matrix Biol 2015; 49:10-24. [PMID: 26163349 DOI: 10.1016/j.matbio.2015.06.003] [Citation(s) in RCA: 722] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022]
Abstract
The extracellular matrix (ECM) is a fundamental component of multicellular organisms that provides mechanical and chemical cues that orchestrate cellular and tissue organization and functions. Degradation, hyperproduction or alteration of the composition of the ECM cause or accompany numerous pathologies. Thus, a better characterization of ECM composition, metabolism, and biology can lead to the identification of novel prognostic and diagnostic markers and therapeutic opportunities. The development over the last few years of high-throughput ("omics") approaches has considerably accelerated the pace of discovery in life sciences. In this review, we describe new bioinformatic tools and experimental strategies for ECM research, and illustrate how these tools and approaches can be exploited to provide novel insights in our understanding of ECM biology. We also introduce a web platform "the matrisome project" and the database MatrisomeDB that compiles in silico and in vivo data on the matrisome, defined as the ensemble of genes encoding ECM and ECM-associated proteins. Finally, we present a first draft of an ECM atlas built by compiling proteomics data on the ECM composition of 14 different tissues and tumor types.
Collapse
Affiliation(s)
- Alexandra Naba
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Karl R Clauser
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Huiming Ding
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Barbara K. Ostrom Bioinformatics and Computing facility at the Swanson Biotechnology Center, Cambridge, MA 02139, USA
| | - Charles A Whittaker
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Barbara K. Ostrom Bioinformatics and Computing facility at the Swanson Biotechnology Center, Cambridge, MA 02139, USA
| | - Steven A Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Richard O Hynes
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
Lignon G, de la Dure-Molla M, Dessombz A, Berdal A, Babajko S. [Enamel: a unique self-assembling in mineral world]. Med Sci (Paris) 2015; 31:515-21. [PMID: 26059302 DOI: 10.1051/medsci/20153105013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Enamel is a unique tissue in vertebrates, acellular, formed on a labile scaffolding matrix and hypermineralized. The ameloblasts are epithelial cells in charge of amelogenesis. They secrete a number of matrix proteins degraded by enzymes during enamel mineralization. This ordered cellular and extracellular events imply that any genetic or environmental perturbation will produce indelible and recognizable defects. The specificity of defects will indicate the affected cellular process. Thus, depending on the specificity of alterations, the teratogenic event can be retrospectively established. Advances in the field allow to use enamel defects as diagnostic tools for molecular disorders. The multifunctionality of enamel peptides is presently identified from their chemical roles in mineralization to cell signaling, constituting a source of concrete innovations in regenerative medicine.
Collapse
Affiliation(s)
- Guilhem Lignon
- Laboratoire de physiopathologie orale moléculaire, Inserm UMRS 1138, centre de recherche des Cordeliers, université Paris Diderot-Paris 7, université Pierre et Marie Curie-Paris 6, université Paris Descartes-Paris 5, 15-21, rue de l'École de Médecine, 75270 Paris cedex 06, France
| | - Muriel de la Dure-Molla
- Laboratoire de physiopathologie orale moléculaire, Inserm UMRS 1138, centre de recherche des Cordeliers, université Paris Diderot-Paris 7, université Pierre et Marie Curie-Paris 6, université Paris Descartes-Paris 5, 15-21, rue de l'École de Médecine, 75270 Paris cedex 06, France - Centre de référence des malformations rares de la face et de la cavité buccale, CRMR-MAFACE, hôpital Rothschild, APHP, Paris, France
| | - Arnaud Dessombz
- Laboratoire de physiopathologie orale moléculaire, Inserm UMRS 1138, centre de recherche des Cordeliers, université Paris Diderot-Paris 7, université Pierre et Marie Curie-Paris 6, université Paris Descartes-Paris 5, 15-21, rue de l'École de Médecine, 75270 Paris cedex 06, France
| | - Ariane Berdal
- Laboratoire de physiopathologie orale moléculaire, Inserm UMRS 1138, centre de recherche des Cordeliers, université Paris Diderot-Paris 7, université Pierre et Marie Curie-Paris 6, université Paris Descartes-Paris 5, 15-21, rue de l'École de Médecine, 75270 Paris cedex 06, France - Centre de référence des malformations rares de la face et de la cavité buccale, CRMR-MAFACE, hôpital Rothschild, APHP, Paris, France
| | - Sylvie Babajko
- Laboratoire de physiopathologie orale moléculaire, Inserm UMRS 1138, centre de recherche des Cordeliers, université Paris Diderot-Paris 7, université Pierre et Marie Curie-Paris 6, université Paris Descartes-Paris 5, 15-21, rue de l'École de Médecine, 75270 Paris cedex 06, France
| |
Collapse
|
22
|
Pugach MK, Gibson CW. Analysis of enamel development using murine model systems: approaches and limitations. Front Physiol 2014; 5:313. [PMID: 25278900 PMCID: PMC4166228 DOI: 10.3389/fphys.2014.00313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/01/2014] [Indexed: 11/24/2022] Open
Abstract
A primary goal of enamel research is to understand and potentially treat or prevent enamel defects related to amelogenesis imperfecta (AI). Rodents are ideal models to assist our understanding of how enamel is formed because they are easily genetically modified, and their continuously erupting incisors display all stages of enamel development and mineralization. While numerous methods have been developed to generate and analyze genetically modified rodent enamel, it is crucial to understand the limitations and challenges associated with these methods in order to draw appropriate conclusions that can be applied translationally, to AI patient care. We have highlighted methods involved in generating and analyzing rodent enamel and potential approaches to overcoming limitations of these methods: (1) generating transgenic, knockout, and knockin mouse models, and (2) analyzing rodent enamel mineral density and functional properties (structure and mechanics) of mature enamel. There is a need for a standardized workflow to analyze enamel phenotypes in rodent models so that investigators can compare data from different studies. These methods include analyses of gene and protein expression, developing enamel histology, enamel pigment, degree of mineralization, enamel structure, and mechanical properties. Standardization of these methods with regard to stage of enamel development and sample preparation is crucial, and ideally investigators can use correlative and complementary techniques with the understanding that developing mouse enamel is dynamic and complex.
Collapse
Affiliation(s)
- Megan K Pugach
- Department of Mineralized Tissue Biology, The Forsyth Institute, Harvard School of Dental Medicine, Harvard University Cambridge, MA, USA
| | - Carolyn W Gibson
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
23
|
Oliveira FV, Dionísio TJ, Neves LT, Machado MAAM, Santos CF, Oliveira TM. Amelogenin gene influence on enamel defects of cleft lip and palate patients. Braz Oral Res 2014; 28:S1806-83242014000100245. [PMID: 25166767 DOI: 10.1590/1807-3107bor-2014.vol28.0035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/06/2014] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate the occurrence of mutations in the amelogenin gene (AMELX) in patients with cleft lip and palate (CLP) and enamel defects (ED). A total of 165 patients were divided into four groups: with CLP and ED (n=46), with CLP and without ED (n = 34), without CLP and with ED (n = 34), and without CLP or ED (n = 51). Genomic DNA was extracted from saliva followed by conducting a Polymerase Chain Reaction and direct DNA sequencing of exons 2 through 7 of AMELX. Mutations were found in 30% (n = 14), 35% (n = 12), 11% (n = 4) and 13% (n = 7) of the subjects from groups 1, 2, 3 and 4, respectively. Thirty seven mutations were detected and distributed throughout exons 2 (1 mutation - 2.7%), 6 (30 mutations - 81.08%) and 7 (6 mutations - 16.22%) of AMELX. No mutations were found in exons 3, 4 or 5. Of the 30 mutations found in exon 6, 43.34% (n = 13), 23.33% (n = 7), 13.33% (n = 4) and 20% (n = 6) were found in groups 1, 2, 3 and 4, respectively. c.261 C > T (rs2106416), a silent mutation, was detected in 26 subjects, and found more significantly (p = 0.003) in patients with CLP (groups 1 and 2 - 23.75%), compared with those without CLP (groups 3 and 4 - 8.23%). In the groups without ED, this silent mutation was also found more significantly (p = 0.032) among subjects with CLP (17.65% in group 2), compared with those without CLP (7.8% in group 4). In conclusion, this study suggested that AMELX may be a candidate gene for cleft lip and palate.
Collapse
Affiliation(s)
- Fernanda Veronese Oliveira
- Department of Pediatric Dentistry, Orthodontics and Community Health, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Thiago José Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Lucimara Teixeira Neves
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - Carlos Ferreira Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Thais Marchini Oliveira
- Department of Pediatric Dentistry, Orthodontics and Community Health, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| |
Collapse
|
24
|
Mazumder P, Prajapati S, Lokappa SB, Gallon V, Moradian-Oldak J. Analysis of co-assembly and co-localization of ameloblastin and amelogenin. Front Physiol 2014; 5:274. [PMID: 25120489 PMCID: PMC4110739 DOI: 10.3389/fphys.2014.00274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 12/17/2022] Open
Abstract
Epithelially-derived ameloblasts secrete extracellular matrix proteins including amelogenin, enamelin, and ameloblastin. Complex intermolecular interactions among these proteins are believed to be important in controlling enamel formation. Here we provide in vitro and in vivo evidence of co-assembly and co-localization of ameloblastin with amelogenin using both biophysical and immunohistochemical methods. We performed co-localization studies using immunofluorescence confocal microscopy with paraffin-embedded tissue sections from mandibular molars of mice at 1, 5, and 8 days of age. Commercially-available ameloblastin antibody (M300) against mouse ameloblastin residues 107-407 and an antibody against full-length recombinant mouse (rM179) amelogenin were used. Ameloblastin-M300 clearly reacted along the secretory face of ameloblasts from days 1-8. Quantitative co-localization was analyzed (QCA) in several configurations by choosing appropriate regions of interest (ROIs). Analysis of ROIs along the secretory face of ameloblasts revealed that at day 1, very high percentages of both the ameloblastin and amelogenin co-localized. At day 8 along the ameloblast cells the percentage of co-localization remained high for the ameloblastin whereas co-localization percentage was reduced for amelogenin. Analysis of the entire thickness on day 8 revealed no significant co-localization of amelogenin and ameloblastin. With the progress of amelogenesis and ameloblastin degradation, there was a segregation of ameloblastin and co-localization with the C-terminal region decreased. CD spectra indicated that structural changes in ameloblastin occurred upon addition of amelogenin. Our data suggest that amelogenin-ameloblastin complexes may be the functional entities at the early stage of enamel mineralization.
Collapse
Affiliation(s)
| | | | | | | | - Janet Moradian-Oldak
- Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
25
|
Horvath JE, Ramachandran GL, Fedrigo O, Nielsen WJ, Babbitt CC, St Clair EM, Pfefferle LW, Jernvall J, Wray GA, Wall CE. Genetic comparisons yield insight into the evolution of enamel thickness during human evolution. J Hum Evol 2014; 73:75-87. [PMID: 24810709 DOI: 10.1016/j.jhevol.2014.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/29/2013] [Accepted: 01/09/2014] [Indexed: 12/29/2022]
Abstract
Enamel thickness varies substantially among extant hominoids and is a key trait with significance for interpreting dietary adaptation, life history trajectory, and phylogenetic relationships. There is a strong link in humans between enamel formation and mutations in the exons of the four genes that code for the enamel matrix proteins and the associated protease. The evolution of thick enamel in humans may have included changes in the regulation of these genes during tooth development. The cis-regulatory region in the 5' flank (upstream non-coding region) of MMP20, which codes for enamelysin, the predominant protease active during enamel secretion, has previously been shown to be under strong positive selection in the lineages leading to both humans and chimpanzees. Here we examine evidence for positive selection in the 5' flank and 3' flank of AMELX, AMBN, ENAM, and MMP20. We contrast the human sequence changes with other hominoids (chimpanzees, gorillas, orangutans, gibbons) and rhesus macaques (outgroup), a sample comprising a range of enamel thickness. We find no evidence for positive selection in the protein-coding regions of any of these genes. In contrast, we find strong evidence for positive selection in the 5' flank region of MMP20 and ENAM along the lineage leading to humans, and in both the 5' flank and 3' flank regions of MMP20 along the lineage leading to chimpanzees. We also identify putative transcription factor binding sites overlapping some of the species-specific nucleotide sites and we refine which sections of the up- and downstream putative regulatory regions are most likely to harbor important changes. These non-coding changes and their potential for differential regulation by transcription factors known to regulate tooth development may offer insight into the mechanisms that allow for rapid evolutionary changes in enamel thickness across closely-related species, and contribute to our understanding of the enamel phenotype in hominoids.
Collapse
Affiliation(s)
- Julie E Horvath
- North Carolina Museum of Natural Sciences, Nature Research Center, Raleigh, NC 27601, USA; Department of Biology, North Carolina Central University, Durham, NC 27707, USA; Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA; Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | | | - Olivier Fedrigo
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | | | - Courtney C Babbitt
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | | | | | - Jukka Jernvall
- Institute for Biotechnology, University of Helsinki, Helsinki, Finland
| | - Gregory A Wray
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA; Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Christine E Wall
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
26
|
JÁGR M, ECKHARDT A, PATARIDIS S, BROUKAL Z, DUŠKOVÁ J, MIKŠÍK I. Proteomics of Human Teeth and Saliva. Physiol Res 2014; 63:S141-54. [DOI: 10.33549/physiolres.932702] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Teeth have been a focus of interest for many centuries – due to medical problems with them. They are the hardest part of the human body and are composed of three mineralized parts – enamel, dentin and cementum, together with the soft pulp. However, saliva also has a significant impact on tooth quality. Proteomic research of human teeth is now accelerating, and it includes all parts of the tooth. Some methodological problems still need to be overcome in this research field – mainly connected with calcified tissues. This review will provide an overview of the current state of research with focus on the individual parts of the tooth and pellicle layer as well as saliva. These proteomic results can help not only stomatology in terms of early diagnosis, identifying risk factors, and systematic control.
Collapse
Affiliation(s)
| | | | | | | | | | - I. MIKŠÍK
- Department of Analysis of Biologically Important Compounds, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
27
|
Guy F, Gouvard F, Boistel R, Euriat A, Lazzari V. Prospective in (Primate) dental analysis through tooth 3D topographical quantification. PLoS One 2013; 8:e66142. [PMID: 23826088 PMCID: PMC3691165 DOI: 10.1371/journal.pone.0066142] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/01/2013] [Indexed: 12/03/2022] Open
Abstract
The occlusal morphology of the teeth is mostly determined by the enamel-dentine junction morphology; the enamel-dentine junction plays the role of a primer and conditions the formation of the occlusal enamel reliefs. However, the accretion of the enamel cap yields thickness variations that alter the morphology and the topography of the enamel–dentine junction (i.e., the differential deposition of enamel by the ameloblasts create an external surface that does not necessarily perfectly parallel the enamel–dentine junction). This self-reliant influence of the enamel on tooth morphology is poorly understood and still under-investigated. Studies considering the relationship between enamel and dentine morphologies are rare, and none of them tackled this relationship in a quantitative way. Major limitations arose from: (1) the difficulties to characterize the tooth morphology in its comprehensive tridimensional aspect and (2) practical issues in relating enamel and enamel–dentine junction quantitative traits. We present new aspects of form representation based exclusively on 3D analytical tools and procedures. Our method is applied to a set of 21 unworn upper second molars belonging to eight extant anthropoid genera. Using geometrical analysis of polygonal meshes representatives of the tooth form, we propose a 3D dataset that constitutes a detailed characterization of the enamel and of the enamel–dentine junction morphologies. Also, for the first time, to our knowledge, we intend to establish a quantitative method for comparing enamel and enamel–dentine junction surfaces descriptors (elevation, inclination, orientation, etc.). New indices that allow characterizing the occlusal morphology are proposed and discussed. In this note, we present technical aspects of our method with the example of anthropoid molars. First results show notable individual variations and taxonomic heterogeneities for the selected topographic parameters and for the pattern and strength of association between enamel–dentine junction and enamel, the enamel cap altering in different ways the “transcription” of the enamel–dentine junction morphology.
Collapse
Affiliation(s)
- Franck Guy
- Centre National de la Recherche Scientifique, Institut Ecologie et Environnement, UMR 7262 - iPHEP: Institut de Paléoprimatologie et Paléontologie Humaine, Evolution et Paléoenvironnements, Université de Poitiers, Faculté des Sciences, Poitiers, France.
| | | | | | | | | |
Collapse
|
28
|
Tjäderhane L, Haapasalo M. The dentin-pulp border: a dynamic interface between hard and soft tissues. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00266.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Zhang X, Diekwisch TGH, Luan X. Structure and function of ameloblastin as an extracellular matrix protein: adhesion, calcium binding, and CD63 interaction in human and mouse. Eur J Oral Sci 2012; 119 Suppl 1:270-9. [PMID: 22243256 DOI: 10.1111/j.1600-0722.2011.00889.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The functional significance of extracellular matrix proteins in the life of vertebrates is underscored by a high level of sequence variability in tandem with a substantial degree of conservation in terms of cell-cell and cell-matrix adhesion interactions. Many extracellular matrix proteins feature multiple adhesion domains for successful attachment to substrates, such as integrin, CD63, and heparin. Here we have used homology and ab initio modeling algorithms to compare mouse ameloblastin (mAMBN) and human ameloblastin (hABMN) isoforms and to analyze their potential for cell adhesion and interaction with other matrix molecules as well as calcium binding. Sequence comparison between mAMBN and hAMBN revealed a 26-amino-acid deletion in mAMBN, corresponding to a helix-loop-helix frameshift. The human AMBN domain (174Q-201G), homologous to the mAMBN 157E-178I helix-loop-helix region, formed a helix-loop motif with an extended loop, suggesting a higher degree of flexibility of hAMBN compared with mAMBN, as confirmed by molecular dynamics simulation. Heparin-binding domains, CD63-interaction domains, and calcium-binding sites in both hAMBN and mAMBN support the concept of AMBN as an extracellular matrix protein. The high level of conservation between AMBN functional domains related to adhesion and differentiation was remarkable when compared with only 61% amino acid sequence homology.
Collapse
Affiliation(s)
- Xu Zhang
- Brodie Laboratory for Craniofacial Genetics, University of Illinois - Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
30
|
Abstract
Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principels of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties and the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth.
Collapse
Affiliation(s)
- Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
31
|
Rizell S, Barrenäs ML, Andlin-Sobocki A, Stecksén-Blicks C, Kjellberg H. Turner syndrome isochromosome karyotype correlates with decreased dental crown width. Eur J Orthod 2011; 34:213-8. [PMID: 21303812 DOI: 10.1093/ejo/cjq196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- S Rizell
- Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
32
|
Snead ML, Zhu DH, Lei Y, Luo W, Bringas PO, Sucov HM, Rauth RJ, Paine ML, White SN. A simplified genetic design for mammalian enamel. Biomaterials 2011; 32:3151-7. [PMID: 21295848 DOI: 10.1016/j.biomaterials.2011.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/08/2011] [Indexed: 01/30/2023]
Abstract
A biomimetic replacement for tooth enamel is urgently needed because dental caries is the most prevalent infectious disease to affect man. Here, design specifications for an enamel replacement material inspired by Nature are deployed for testing in an animal model. Using genetic engineering we created a simplified enamel protein matrix precursor where only one, rather than dozens of amelogenin isoforms, contributed to enamel formation. Enamel function and architecture were unaltered, but the balance between the competing materials properties of hardness and toughness was modulated. While the other amelogenin isoforms make a modest contribution to optimal biomechanical design, the enamel made with only one amelogenin isoform served as a functional substitute. Where enamel has been lost to caries or trauma a suitable biomimetic replacement material could be fabricated using only one amelogenin isoform, thereby simplifying the protein matrix parameters by one order of magnitude.
Collapse
Affiliation(s)
- Malcolm L Snead
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kang SW, Yoon I, Lee HW, Cho J. Association between AMELX polymorphisms and dental caries in Koreans. Oral Dis 2010; 17:399-406. [PMID: 21114591 DOI: 10.1111/j.1601-0825.2010.01766.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Dental caries is greatly influenced disease by environmental factors, but recently there are increasing evidences for a genetic component in caries susceptibility. AMELX is the gene coding amelogenin, which is the most important factor for normal enamel development. The aim of this study was to examine the relationship between dental caries and single nucleotide polymorphisms (SNPs) in AMELX. SUBJECTS AND METHODS For this study, we used DNA samples collected from 120 unrelated individuals older than 12 years of age. All of them were examined for their oral and dental status under the WHO recommended criteria, and clinical information such as DMFT and DMFS were evaluated. Individuals whose DMFT and DMFS index lower than 2 were designated 'very low caries experience' and higher than 3 were designated 'higher caries experience'. Genomic DNA was extracted from hair samples, and single nucleotide polymorphisms of AMELX were genotyped. Genotyping of three SNPs (rs17878486, rs5933871, rs5934997, intron) in AMELX gene was determined by direct sequencing and analyzed with SNPStats. RESULTS There were significant associations between rs5933871 and rs5934997 SNP and caries susceptibility in the water fluoridation group. CONCLUSIONS These results suggest that SNPs of AMELX might be associated with dental caries susceptibility in Korean population.
Collapse
Affiliation(s)
- S W Kang
- Department of Oral Pathology and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
34
|
Cao Z, Jiang B, Xie Y, Liu CJ, Feng JQ. GEP, a local growth factor, is critical for odontogenesis and amelogenesis. Int J Biol Sci 2010; 6:719-29. [PMID: 21152114 PMCID: PMC2999849 DOI: 10.7150/ijbs.6.719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 11/22/2010] [Indexed: 02/06/2023] Open
Abstract
Granulin epithelin precursor (GEP) is a new growth factor that functions in brain development, chondrogenesis, tissue regeneration, tumorigenesis, and inflammation. The goal of this study was to study whether GEP was critical for odontogenesis and amelogenesis both in vivo and in vitro. The in situ hybridization and immunohistochemistry data showed that GEP was expressed in both odontoblast and ameloblast cells postnatally. Knockdown of GEP by crossing U6-ploxPneo-GEP and Sox2-Cre transgenic mice led to a reduction of dentin thickness, an increase in predentin thickness, and a reduction in mineral content in enamel. The in vitro application of recombinant GEP up-regulated molecular markers important for odontogenesis (DMP1, DSPP, and ALP) and amelogenesis (ameloblastin, amelogenin and enamelin). In conclusion, both the in vivo and the in vivo data support an important role of GEP in tooth formation during postnatal development.
Collapse
Affiliation(s)
- Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, CHINA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Through cultural innovation and changes in habitat and ecology, there have been a number of major dietary shifts in human evolution, including meat eating, cooking, and those associated with plant and animal domestication. The identification of signatures of adaptations to such dietary changes in the genome of extant primates (including humans) may shed light not only on the evolutionary history of our species, but also on the mechanisms that underlie common metabolic diseases in modern human populations. In this review, we provide a brief overview of the major dietary shifts that occurred during hominin evolution, and we discuss the methods and approaches used to identify signals of natural selection in patterns of sequence variation. We then review the results of studies aimed at detecting the genetic loci that played a major role in dietary adaptations and conclude by outlining the potential of future studies in this area.
Collapse
Affiliation(s)
- F. Luca
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637
| | - G.H. Perry
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637
| | - A. Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
36
|
Al-Hashimi N, Lafont AG, Delgado S, Kawasaki K, Sire JY. The enamelin genes in lizard, crocodile, and frog and the pseudogene in the chicken provide new insights on enamelin evolution in tetrapods. Mol Biol Evol 2010; 27:2078-94. [PMID: 20403965 DOI: 10.1093/molbev/msq098] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Enamelin (ENAM) has been shown to be a crucial protein for enamel formation and mineralization. Previous molecular analyses have indicated a probable origin early in vertebrate evolution, which is supported by the presence of enamel/enameloid tissues in early vertebrates. In contrast to these hypotheses, ENAM was only characterized in mammals. Our aims were to 1) look for ENAM in representatives of nonmammalian tetrapods, 2) search for a pseudogene in the chicken genome, and 3) see whether the new sequences could bring new information on ENAM evolution. Using in silico approach and polymerase chain reaction, we obtained and characterized the messenger RNA sequences of ENAM in a frog, a lizard, and a crocodile; the genomic DNA sequences of ENAM in a frog and a lizard; and the putative sequence of chicken ENAM pseudogene. The comparison with mammalian ENAM sequences has revealed 1) the presence of an additional coding exon, named exon 8b, in sauropsids and marsupials, 2) a simpler 5'-untranslated region in nonmammalian ENAMs, 3) many sequence variations in the large exons while there are a few conserved regions in small exons, and 4) 25 amino acids that have been conserved during 350 million years of tetrapod evolution and hence of crucial biological importance. The chicken pseudogene was identified in a region that was not expected when considering the gene synteny in mammals. Together with the location of lizard ENAM in a homologous region, this result indicates that enamel genes were probably translocated in an ancestor of the sauropsid lineage. This study supports the origin of ENAM earlier in vertebrate evolution, confirms that tooth loss in modern birds led to the invalidation of enamel genes, and adds information on the important role played by, for example, the phosphorylated serines and the glycosylated asparagines for correct ENAM functions.
Collapse
Affiliation(s)
- Nawfal Al-Hashimi
- Université Pierre et Marie Curie, UMR 7138-Systématique-Adaptation-Evolution, Paris, France
| | | | | | | | | |
Collapse
|
37
|
Al-Hashimi N, Sire JY, Delgado S. Evolutionary analysis of mammalian enamelin, the largest enamel protein, supports a crucial role for the 32-kDa peptide and reveals selective adaptation in rodents and primates. J Mol Evol 2010; 69:635-56. [PMID: 20012271 DOI: 10.1007/s00239-009-9302-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 11/06/2009] [Indexed: 12/20/2022]
Abstract
Enamelin (ENAM) plays an important role in the mineralization of the forming enamel matrix. We have performed an evolutionary analysis of mammalian ENAM to identify highly conserved residues or regions that could have important function (selective pressure), to predict mutations that could be associated with amelogenesis imperfecta in humans, and to identify possible adaptive evolution of ENAM during 200 million years ago of mammalian evolution. In order to fulfil these objectives, we obtained 36-ENAM sequences that are representative of the mammalian lineages. Our results show a remarkably high conservation pattern in the region of the 32-kDa fragment of ENAM, especially its phosphorylation, glycosylation, and proteolytic sites. In primates and rodents we also identified several sites under positive selection, which could indicate recent evolutionary changes in ENAM function. Furthermore, the analysis of the unusual signal peptide provided new insights on the possible regulation of ENAM secretion, a hypothesis that should be tested in the near future. Taken together, these findings improve our understanding of ENAM evolution and provide new information that would be useful for further investigation of ENAM function as well as for the validation of mutations leading to amelogenesis imperfecta.
Collapse
Affiliation(s)
- Nawfal Al-Hashimi
- Université Pierre et Marie Curie, UMR 7138-Systématique, Adaptation, Evolution, Case 5, 7 Quai Saint-Bernard, Bâtiment A, 4e étage, 75005, Paris, France
| | | | | |
Collapse
|
38
|
Abstract
BACKGROUND The biological, chemical, behavioral and physical sciences provide the fuel for innovation, discovery and technology that continuously improves the quality of the human condition. Computer power derived from the dramatic breakthroughs of the digital revolution has made extraordinary computational capacity available for diagnostic imaging, bioinformatics (the science of information) and numerous aspects of how we practice dentistry in the 21st century. OVERVIEW The biological revolution was initiated by the identification of the structure for DNA in 1953, a discovery that continues to catalyze improvements in patient care through new and better diagnostics, treatments and biomaterials. Humanity's most basic and recognizable characteristics--including the face--are now better understood through the elucidation of our genome and proteome, the genes and proteins they encode. Health care providers are beginning to use personalized medicine that is based on a person's genetic makeup and predispositions to disease development. CONCLUSIONS Advances in the fields of genetics, developmental and stem cell biology, and many other disciplines continue to fuel innovative research findings that form the basis for new diagnostic tests, therapeutic interventions and procedures that improve the quality of life for patients. Scientists are on the threshold of applying knowledge in stem cell biology to regenerative medicine and dentistry, heralding an era when clinicians can consider using biological engineering to replace tissues and organs lost to disease or trauma.
Collapse
Affiliation(s)
- Malcolm L Snead
- Center for Craniofacial Molecular Biology, School of Dentistry, The University of Southern California, 2250 Alcazar St., Los Angeles, California 90033, USA.
| | | |
Collapse
|
39
|
Kang HY, Seymen F, Lee SK, Yildirim M, Tuna EB, Patir A, Lee KE, Kim JW. Candidate gene strategy reveals ENAM mutations. J Dent Res 2009; 88:266-9. [PMID: 19329462 DOI: 10.1177/0022034509333180] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a genetically and phenotypically heterogeneous genetic disorder affecting tooth enamel without other non-oral syndromic conditions. Based on a review of the literature, the authors constructed a candidate-gene-based mutational analysis strategy. To test the strategy, they identified two Turkish families with hypoplastic enamel without any other non-oral syndromic phenotype. The authors analyzed all exons and exon/intron boundaries of the enamelin (ENAM) gene for family 1 and the DLX3 and ENAM genes for family 2, to identify the underlying genetic etiology. The analysis revealed 2 ENAM mutations (autosomal-dominant g.14917delT and autosomal-recessive g.13185-13186insAG mutations). A single T deletion in exon 10 is a novel deletional mutation (g.14917delT, c.2991delT), which is predicted to result in a frameshift with a premature termination codon (p.L998fsX1062). This result supports the use of a candidate-gene-based strategy to study the genetic basis for AI.
Collapse
Affiliation(s)
- H-Y Kang
- Department of Cell and Developmental Biology, Dental Research Institute and BK21 Program, School of Dentistry, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Wazen RM, Moffatt P, Zalzal SF, Yamada Y, Nanci A. A mouse model expressing a truncated form of ameloblastin exhibits dental and junctional epithelium defects. Matrix Biol 2009; 28:292-303. [PMID: 19375505 DOI: 10.1016/j.matbio.2009.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/06/2009] [Accepted: 04/07/2009] [Indexed: 11/30/2022]
Abstract
Ameloblastin (AMBN) is the second most abundant extracellular matrix protein produced by the epithelial cells called ameloblasts and is found mainly in forming dental enamel. Inactivation of its expression by gene knockout results in absence of the enamel layer and its replacement by a thin layer of dysplastic mineralized matrix. The objective of this study was to further characterize the enamel organ and mineralized matrix produced in the AMBN knockout mouse. However, in the course of our study, we unexpectedly found that this mouse is in fact a mutant that does not express the full-length protein but that produces a truncated form of AMBN. Mandibles from wild type and mutant mice were processed for morphological analyses and immunolabeling. Microdissected enamel organs and associated matrix were also prepared for molecular and biochemical analyses. In incisors from mutants, ameloblasts lost their polarized organization and the enamel organ detached from the tooth surface and became disorganized. A thin layer of dysplastic mineralized material was deposited onto dentin, and mineralized masses were present within the enamel organ. These mineralized materials generated lower backscattered electron contrast than normal enamel, and immunocytochemistry with colloidal gold revealed the presence of amelogenin, bone sialoprotein and osteopontin. In addition, the height of the alveolar bone was reduced, and the junctional epithelium lost its integrity. Immunochemical and RT-PCR results revealed that the altered enamel organ in the mutant mice produced a shorter AMBN protein that is translated from truncated RNA missing exons 5 and 6. These results indicate that absence of full-length protein and/or expression of an incomplete protein have direct/indirect effects beyond structuring of mineral during enamel formation, and highlight potential functional regions on the AMBN molecule.
Collapse
Affiliation(s)
- Rima M Wazen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dentistry, Université de Montréal, Station Centre-Ville, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
41
|
Abukawa H, Zhang W, Young CS, Asrican R, Vacanti JP, Kaban LB, Troulis MJ, Yelick PC. Reconstructing mandibular defects using autologous tissue-engineered tooth and bone constructs. J Oral Maxillofac Surg 2009; 67:335-47. [PMID: 19138608 DOI: 10.1016/j.joms.2008.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 09/05/2008] [Indexed: 11/29/2022]
Abstract
PURPOSE Current strategies for jaw reconstruction require multiple operations to replace bone and teeth. To improve on these methods, we investigated simultaneous mandibular and tooth reconstruction, using a Yucatan minipig model. MATERIALS AND METHODS Tooth and bone constructs were prepared from third molar tooth tissue and iliac-crest bone marrow-derived osteoblasts isolated from, and implanted back into, the same pig as an autologous reconstruction. Implants were harvested after 12 and 20 weeks and evaluated by x-ray, ultrahigh-resolution volume computed tomographic (VCT), histological, and immunohistochemical analyses. RESULTS Small tooth structures were identified, and consisted of organized dentin, enamel, pulp, and periodontal ligament tissues, surrounded by new bone. No dental tissues formed in implants without tooth-bud cells, and bone regeneration was observed to a limited extent. Immunohistochemical analyses using tooth-specific and bone-specific antibodies confirmed the identity of regenerated tissues. CONCLUSIONS This pilot study supports the feasibility of tissue-engineering approaches for coordinated autologous tooth and mandible reconstruction, and provides a basis for future improvement of this technique for eventual clinical use in humans.
Collapse
Affiliation(s)
- Harutsugi Abukawa
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Severcan F, Gokduman K, Dogan A, Bolay S, Gokalp S. Effects of in-office and at-home bleaching on human enamel and dentin: an in vitro application of Fourier transform infrared study. APPLIED SPECTROSCOPY 2008; 62:1274-1279. [PMID: 19007472 DOI: 10.1366/000370208786401554] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In-office and at-home bleaching techniques are widely used methods for the whitening of teeth. However, the safety of these techniques has not been clarified yet. The aim of the current study is to investigate the in-office- and at-home-bleaching-induced structural and quantitative changes in human enamel and dentin at the molecular level, under in vitro conditions. The Fourier transform mid-infrared (mid-FT-IR) spectroscopic technique was used to monitor bleaching-induced structural changes. Band frequency and intensity values of major absorptions such as amide A, amide I, phosphate (PO(4)), and carbonate (CO(3)(-2)) bands, for treatment groups and control, were measured and compared. The results revealed that both procedures have negligible effects on dentin constituents. In office-bleached enamel, in addition to demineralization, a decrease in protein and polysaccharide concentrations, mineral-to-protein ratio, and the strength of hydrogen bonds around NH groups, as well as a change in protein secondary structure were observed. The protein structure changed from beta-sheet to random coil, which is an indication of protein denaturation. However, no significant variations were observed for at-home bleached enamel. The control, at-home, and in-office bleached enamel samples were differentiated with a high accuracy using cluster analysis based on FT-IR data. This study revealed that office bleaching caused deleterious alterations in the composition and structure of enamel that significantly affected the crystallinity and mineralization of the tissue. Therefore, at-home bleaching seems to be much safer than in-office bleaching in terms of molecular variations.
Collapse
Affiliation(s)
- Feride Severcan
- Department of Biology, Middle East Technical University, 06531 Ankara, Turkey.
| | | | | | | | | |
Collapse
|
43
|
Hu JCC, Hu Y, Smith CE, McKee MD, Wright JT, Yamakoshi Y, Papagerakis P, Hunter GK, Feng JQ, Yamakoshi F, Simmer JP. Enamel defects and ameloblast-specific expression in Enam knock-out/lacz knock-in mice. J Biol Chem 2008; 283:10858-71. [PMID: 18252720 PMCID: PMC2447669 DOI: 10.1074/jbc.m710565200] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 02/04/2008] [Indexed: 11/06/2022] Open
Abstract
Enamelin is critical for proper dental enamel formation, and defects in the human enamelin gene cause autosomal dominant amelogenesis imperfecta. We used gene targeting to generate a knock-in mouse carrying a null allele of enamelin (Enam) that has a lacZ reporter gene replacing the Enam translation initiation site and gene sequences through exon 7. Correct targeting of the transgene was confirmed by Southern blotting and PCR analyses. No enamelin protein could be detected by Western blotting in the Enam-null mice. Histochemical 5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside (X-gal) staining demonstrated ameloblast-specific expression of enamelin. The enamel of the Enam(+/-) mice was nearly normal in the maxillary incisors, but the mandibular incisors were discolored and tended to wear rapidly where they contacted the maxillary incisors. The Enam(-/-) mice showed no true enamel. Radiography, microcomputed tomography, and light and scanning electron microscopy were used to document changes in the enamel of Enam(-/-) mice but did not discern any perturbations of bone, dentin, or any other tissue besides the enamel layer. Although a thick layer of enamel proteins covered normal-appearing dentin of unerupted teeth, von Kossa staining revealed almost a complete absence of mineral formation in this protein layer. However, a thin, highly irregular, mineralized crust covered the dentin on erupted teeth, apparently arising from the formation and fusion of small mineralization foci (calcospherites) in the deeper part of the accumulated enamel protein layer. These results demonstrate ameloblast-specific expression of enamelin and reveal that enamelin is essential for proper enamel matrix organization and mineralization.
Collapse
Affiliation(s)
- Jan C-C Hu
- Department of Orthodontics and Pediatric Dentistry and Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vymetal J, Slabý I, Spahr A, Vondrásek J, Lyngstadaas SP. Bioinformatic analysis and molecular modelling of human ameloblastin suggest a two-domain intrinsically unstructured calcium-binding protein. Eur J Oral Sci 2008; 116:124-34. [PMID: 18353005 DOI: 10.1111/j.1600-0722.2008.00526.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ameloblastin (AMBN) was originally believed to be an enamel-specific extracellular matrix glycoprotein secreted by ameloblasts. Recently, AMBN expression was also detected in developing mesenchymal dental hard tissues, in trauma-induced reparative dentin, and during early craniofacial bone formation. The function and structure of AMBN still remain ambiguous, and there are no known proteins with similar primary sequences. We therefore performed a bio-informatic analysis of AMBN to model ab initio the three-dimensional structure of the molecule. The results suggest that AMBN is a two-domain, intrinsically unstructured protein (IUP). The analysis did not reveal any regions with structural similarity to known receptor-ligand systems, and did not identify any higher-order structures similar to functional regions in other known sequences. The AMBN model predicts 11 defined regions exposed on the surface, internalizing the rest of the molecule including a human-specific insert. Molecular dynamics analysis identified one specific and several non-specific calcium-binding regions, mostly at the C-terminal part of the molecule. The model is supported by previous observations that AMBN is a bipolar calcium-binding molecule and hints at a possible role in protein-protein interactions. The model provides information useful for further studies on the function of AMBN.
Collapse
Affiliation(s)
- Jirí Vymetal
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
45
|
Hu Y, Papagerakis P, Ye L, Feng JQ, Simmer JP, Hu JCC. Distal cis-regulatory elements are required for tissue-specific expression of enamelin (Enam). Eur J Oral Sci 2008; 116:113-23. [PMID: 18353004 DOI: 10.1111/j.1600-0722.2007.00519.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enamel formation is orchestrated by the sequential expression of genes encoding enamel matrix proteins; however, the mechanisms sustaining the spatio-temporal order of gene transcription during amelogenesis are poorly understood. The aim of this study was to characterize the cis-regulatory sequences necessary for normal expression of enamelin (Enam). Several enamelin transcription regulatory regions, showing high sequence homology among species, were identified. DNA constructs containing 5.2 or 3.9 kb regions upstream of the enamelin translation initiation site were linked to a LacZ reporter and used to generate transgenic mice. Only the 5.2-Enam-LacZ construct was sufficient to recapitulate the endogenous pattern of enamelin tooth-specific expression. The 3.9-Enam-LacZ transgenic lines showed no expression in dental cells, but ectopic beta-galactosidase activity was detected in osteoblasts. Potential transcription factor-binding sites were identified that may be important in controlling enamelin basal promoter activity and in conferring enamelin tissue-specific expression. Our study provides new insights into regulatory mechanisms governing enamelin expression.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48108, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Scans of the human genome have identified many loci as potential targets of recent selection, but exploration of these candidates is required to verify the accuracy of genomewide scans and clarify the importance of adaptive evolution in recent human history. We present analyses of one such candidate, enamelin, whose protein product operates in tooth enamel formation in 100 individuals from 10 populations. Evidence of a recent selective sweep at this locus confirms the signal of selection found by genomewide scans. Patterns of polymorphism in enamelin correspond with population-level differences in tooth enamel thickness, and selection on enamel thickness may drive adaptive enamelin evolution in human populations. We characterize a high-frequency nonsynonymous derived allele in non-African populations. The polymorphism occurs in codon 648, resulting in a nonconservative change from threonine to isoleucine, suggesting that the allele may affect enamelin function. Sequences of exons from 12 primate species show evidence of positive selection on enamelin. In primates, it has been documented that enamel thickness correlates with diet. Our work shows that bursts of adaptive enamelin evolution occur on primate lineages with inferred dietary changes. We hypothesize that among primate species the evolved differences in tooth enamel thickness are correlated with the adaptive evolution of enamelin.
Collapse
|
47
|
Kim JW, Lee SK, Lee ZH, Park JC, Lee KE, Lee MH, Park JT, Seo BM, Hu JCC, Simmer JP. FAM83H mutations in families with autosomal-dominant hypocalcified amelogenesis imperfecta. Am J Hum Genet 2008; 82:489-94. [PMID: 18252228 DOI: 10.1016/j.ajhg.2007.09.020] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 01/27/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a collection of diverse inherited disorders featuring dental-enamel defects in the absence of significant nondental symptoms. AI phenotypes vary and are categorized as hypoplastic, hypocalcified, and hypomaturation types. Phenotypic specificity to enamel has focused research on genes encoding enamel-matrix proteins. We studied two families with autosomal-dominant hypocalcified AI and have identified nonsense mutations (R325X and Q398X) in the FAM83H gene on chromosome 8q24.3. The mutations perfectly cosegregate with the disease phenotype and demonstrate that FAM83H is required for proper dental-enamel calcification.
Collapse
Affiliation(s)
- Jung-Wook Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Chongno-gu, Seoul 110-768, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hu JCC, Chun YHP, Al Hazzazzi T, Simmer JP. Enamel formation and amelogenesis imperfecta. Cells Tissues Organs 2007; 186:78-85. [PMID: 17627121 DOI: 10.1159/000102683] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dental enamel is the epithelial-derived hard tissue covering the crowns of teeth. It is the most highly mineralized and hardest tissue in the body. Dental enamel is acellular and has no physiological means of repair outside of the protective and remineralization potential provided by saliva. Enamel is comprised of highly organized hydroxyapatite crystals that form in a defined extracellular space, the contents of which are supplied and regulated by ameloblasts. The entire process is under genetic instruction. The genetic control of amelogenesis is poorly understood, but requires the activities of multiple components that are uniquely important for dental enamel formation. Amelogenesis imperfecta (AI) is a collective designation for the variety of inherited conditions displaying isolated enamel malformations, but the designation is also used to indicate the presence of an enamel phenotype in syndromes. Recently, genetic studies have demonstrated the importance of genes encoding enamel matrix proteins in the etiology of isolated AI. Here we review the essential elements of dental enamel formation and the results of genetic analyses that have identified disease-causing mutations in genes encoding enamel matrix proteins. In addition, we provide a fresh perspective on the roles matrix proteins play in catalyzing the biomineralization of dental enamel.
Collapse
Affiliation(s)
- Jan C-C Hu
- University of Michigan School of Dentistry, Ann Arbor, MI 48108, USA
| | | | | | | |
Collapse
|
49
|
Kawasaki K, Buchanan AV, Weiss KM. Gene Duplication and the Evolution of Vertebrate Skeletal Mineralization. Cells Tissues Organs 2007; 186:7-24. [PMID: 17627116 DOI: 10.1159/000102678] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mineralized skeleton is a critical innovation that evolved early in vertebrate history. The tissues found in dermal skeletons of ancient vertebrates are similar to the dental tissues of modern vertebrates; both consist of a highly mineralized surface hard tissue, enamel or enameloid, more resilient body dentin, and basal bone. Many proteins regulating mineralization of these tissues are evolutionarily related and form the secretory calcium-binding phosphoprotein (SCPP) family. We hypothesize here the duplication histories of SCPP genes and their common ancestors, SPARC and SPARCL1. At around the same time that Paleozoic jawless vertebrates first evolved mineralized skeleton, SPARCL1 arose from SPARC by whole genome duplication. Then both before and after the split of ray-finned fish and lobe-finned fish, tandem gene duplication created two types of SCPP genes, each residing on the opposite side of SPARCL1. One type was subsequently used in surface tissue and the other in body tissue. In tetrapods, these two types of SCPP genes were separated by intrachromosomal rearrangement. While new SCPP genes arose by duplication, some old genes were eliminated from the genome. As a consequence, phenogenetic drift occurred: while mineralized skeleton is maintained by natural selection, the underlying genetic basis has changed.
Collapse
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
50
|
Iwase M, Kaneko S, Kim H, Satta Y, Takahata N. Evolutionary History of Sex-Linked Mammalian Amelogenin Genes. Cells Tissues Organs 2007; 186:49-59. [PMID: 17627118 DOI: 10.1159/000102680] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Amelogenin (AMEL) arose prior to the emergence of tetrapods and transposed into an intron of the Rho GTPase-activating protein 6 gene. In the mammalian lineage leading to eutherians, a pair of homologous autosomes with this nested gene structure fused with the then already differentiating sex chromosomes by suppressing homologous recombination. As sex-chromosomal differentiation extended to the fused region, a pair of homologous AMEL genes too differentiated from each other in two steps; first in the 5' region (the promoter region to transposon MER5 in intron 2) and second in the remaining 3' region. This resulted in gametologous AMELX and AMELY in the eutherian sex chromosomes. Although the early differentiation of the 5' region between AMELX and AMELY is consistent with the lowered expression level of AMELY, there is no indication for deterioration of AMELY at the amino acid level. Rather, both AMELX and AMELY in particular lineages might undergo positive selection, followed by negative selection to preserve established function. Based on patterns and levels of AMELX and AMELY polymorphisms in the human population, it is also argued that a recombination cold spot near AMELX might be related to the cause of the ancient pseudoautosomal boundary.
Collapse
Affiliation(s)
- Mineyo Iwase
- Department of Biosystems Science, Graduate University for Advanced Studies, Hayama, Japan
| | | | | | | | | |
Collapse
|