1
|
Cylinder DM, van Zundert AA, Solt K, van Swinderen B. Time to Wake Up! The Ongoing Search for General Anesthetic Reversal Agents. Anesthesiology 2024; 140:610-627. [PMID: 38349760 PMCID: PMC10868874 DOI: 10.1097/aln.0000000000004846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
How general anesthetics work remains a topic of ongoing study. A parallel field of research has sought to identify methods to reverse general anesthesia. Reversal agents could shorten patients' recovery time and potentially reduce the risk of postoperative complications. An incomplete understanding of the mechanisms of general anesthesia has hampered the pursuit for reversal agents. Nevertheless, the search for reversal agents has furthered understanding of the mechanisms underlying general anesthesia. The study of potential reversal agents has highlighted the importance of rigorous criteria to assess recovery from general anesthesia in animal models, and has helped identify key arousal systems (e.g., cholinergic, dopaminergic, and orexinergic systems) relevant to emergence from general anesthesia. Furthermore, the effects of reversal agents have been found to be inconsistent across different general anesthetics, revealing differences in mechanisms among these drugs. The presynapse and glia probably also contribute to general anesthesia recovery alongside postsynaptic receptors. The next stage in the search for reversal agents will have to consider alternate mechanisms encompassing the tripartite synapse.
Collapse
Affiliation(s)
- Drew M. Cylinder
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - André A.J. van Zundert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, U.S.A
- Department of Anaesthesia, Harvard Medical School, Boston, MA, U.S.A
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Mizobuchi Y, Miyano K, Manabe S, Uezono E, Komatsu A, Kuroda Y, Nonaka M, Matsuoka Y, Sato T, Uezono Y, Morimatsu H. Ketamine Improves Desensitization of µ-Opioid Receptors Induced by Repeated Treatment with Fentanyl but Not with Morphine. Biomolecules 2022; 12:426. [PMID: 35327617 PMCID: PMC8946650 DOI: 10.3390/biom12030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The issue of tolerance to continuous or repeated administration of opioids should be addressed. The ability of ketamine to improve opioid tolerance has been reported in clinical studies, and its mechanism of tolerance may involve improved desensitization of μ-opioid receptors (MORs). We measured changes in MOR activity and intracellular signaling induced by repeated fentanyl and morphine administration and investigated the effects of ketamine on these changes with human embryonic kidney 293 cells expressing MOR using the CellKey™, cADDis cyclic adenosine monophosphate, and PathHunter® β-arrestin recruitment assays. Repeated administration of fentanyl or morphine suppressed the second MOR responses. Administration of ketamine before a second application of opioids within clinical concentrations improved acute desensitization and enhanced β-arrestin recruitment elicited by fentanyl but not by morphine. The effects of ketamine on fentanyl were suppressed by co-treatment with an inhibitor of G-protein-coupled receptor kinase (GRK). Ketamine may potentially reduce fentanyl tolerance but not that of morphine through modulation of GRK-mediated pathways, possibly changing the conformational changes of β-arrestin to MOR.
Collapse
Affiliation(s)
- Yusuke Mizobuchi
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kita-ku, Okayama-shi 700-8558, Japan; (Y.M.); (H.M.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.M.); (E.U.); (M.N.)
- Department of Anesthesiology and Critical Care Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.M.); (E.U.); (M.N.)
| | - Sei Manabe
- Department of Anesthesiology and Resuscitology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-shi 700-8558, Japan; (S.M.); (Y.M.)
| | - Eiko Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.M.); (E.U.); (M.N.)
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (A.K.); (Y.K.)
| | - Akane Komatsu
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (A.K.); (Y.K.)
| | - Yui Kuroda
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (A.K.); (Y.K.)
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.M.); (E.U.); (M.N.)
| | - Yoshikazu Matsuoka
- Department of Anesthesiology and Resuscitology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-shi 700-8558, Japan; (S.M.); (Y.M.)
| | - Tetsufumi Sato
- Department of Anesthesiology and Critical Care Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.M.); (E.U.); (M.N.)
- Supportive and Palliative Care Research Support Office, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi 277-8577, Japan
| | - Hiroshi Morimatsu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kita-ku, Okayama-shi 700-8558, Japan; (Y.M.); (H.M.)
- Department of Anesthesiology and Resuscitology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-shi 700-8558, Japan; (S.M.); (Y.M.)
| |
Collapse
|
3
|
Escape From Oblivion: Neural Mechanisms of Emergence From General Anesthesia. Anesth Analg 2019; 128:726-736. [PMID: 30883418 DOI: 10.1213/ane.0000000000004006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The question of how general anesthetics suppress consciousness has persisted since the mid-19th century, but it is only relatively recently that the field has turned its focus to a systematic understanding of emergence. Once assumed to be a purely passive process, spontaneously occurring as residual levels of anesthetics dwindle below a critical value, emergence from general anesthesia has been reconsidered as an active and controllable process. Emergence is driven by mechanisms that can be distinct from entry to the anesthetized state. In this narrative review, we focus on the burgeoning scientific understanding of anesthetic emergence, summarizing current knowledge of the neurotransmitter, neuromodulators, and neuronal groups that prime the brain as it prepares for its journey back from oblivion. We also review evidence for possible strategies that may actively bias the brain back toward the wakeful state.
Collapse
|
4
|
What is the main mechanism of tramadol? Naunyn Schmiedebergs Arch Pharmacol 2015; 388:999-1007. [DOI: 10.1007/s00210-015-1167-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 08/10/2015] [Indexed: 12/26/2022]
|
5
|
Minami K, Uezono Y. The recent progress in research on effects of anesthetics and analgesics on G protein-coupled receptors. J Anesth 2012; 27:284-92. [PMID: 23099434 DOI: 10.1007/s00540-012-1507-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 10/09/2012] [Indexed: 11/25/2022]
Abstract
The exact mechanisms of action behind anesthetics and analgesics are still unclear. Much attention was focused on ion channels in the central nervous system as targets for anesthetics and analgesics in the 1980s. During the 1990s, major advances were made in our understanding of the physiology and pharmacology of G protein coupled receptor (GPCR) signaling. Thus, several lines of studies have shown that G protein coupled receptors (GPCRs) are one of the targets for anesthetics and analgesics and especially, that some of them inhibit the functions of GPCRs, i.e,, muscarinic receptors and substance P receptors. However, these studies had been focused on only G(q) coupled receptors. There has been little work on G(s)- and G(i)-coupled receptors. In the last decade, a new assay system, using chimera G(i/o)-coupled receptor fused to Gq(i5), has been established and the effects of anesthetics and analgesics on the function of G(i)-coupled receptors is now more easily studied. This review highlights the recent progress of the studies regarding the effects of anesthetics and analgesics on GPCRs.
Collapse
Affiliation(s)
- Kouichiro Minami
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | | |
Collapse
|
6
|
|
7
|
Minami K, Sudo Y, Yokoyama T, Ogata J, Takeuchi M, Uezono Y. Sevoflurane inhibits the µ-opioid receptor function expressed in Xenopus oocytes. Pharmacology 2011; 88:127-32. [PMID: 21912198 DOI: 10.1159/000330096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/01/2011] [Indexed: 11/19/2022]
Abstract
Sevoflurane is widely used for anesthesia, and is commonly used together with opioids in clinical practice. However, the effects of sevoflurane on μ-opioid receptor (μOR) functions is still unclear. In this study, the effects of sevoflurane on μOR functions were analyzed by using Xenopus oocytes expressing a μOR fused to chimeric Gα protein G(qi5) (μOR-G(qi5)). Sevoflurane by itself did not elicit any currents in oocytes expressing μOR-G(qi5), whereas sevoflurane inhibited the [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO)-induced Cl(-) currents at clinically used concentrations. Sevoflurane did not affect the Cl(-) currents induced by AlF(4)(-), which directly led to activation of G proteins. The inhibitory effects of sevoflurane on the DAMGO-induced currents were not observed in oocytes pretreated with the protein kinase C (PKC) inhibitor GF109203X. These findings suggest that sevoflurane would inhibit μOR function. Further, the mechanism of inhibition by sevoflurane would be mediated by PKC.
Collapse
Affiliation(s)
- Kouichiro Minami
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
An emerging link between general anesthesia and sleep. Proc Natl Acad Sci U S A 2008; 105:2257-8. [PMID: 18272494 DOI: 10.1073/pnas.0711532105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
9
|
Kelz MB, Sun Y, Chen J, Cheng Meng Q, Moore JT, Veasey SC, Dixon S, Thornton M, Funato H, Yanagisawa M. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci U S A 2008; 105:1309-14. [PMID: 18195361 PMCID: PMC2234134 DOI: 10.1073/pnas.0707146105] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Indexed: 12/16/2022] Open
Abstract
The neural mechanisms through which the state of anesthesia arises and dissipates remain unknown. One common belief is that emergence from anesthesia is the inverse process of induction, brought about by elimination of anesthetic drugs from their CNS site(s) of action. Anesthetic-induced unconsciousness may result from specific interactions of anesthetics with the neural circuits regulating sleep and wakefulness. Orexinergic agonists and antagonists have the potential to alter the stability of the anesthetized state. In this report, we refine the role of the endogenous orexin system in impacting emergence from, but not entry into the anesthetized state, and in doing so, we distinguish mechanisms of induction from those of emergence. We demonstrate that isoflurane and sevoflurane, two commonly used general anesthetics, inhibit c-Fos expression in orexinergic but not adjacent melanin-concentrating hormone (MCH) neurons; suggesting that wake-active orexinergic neurons are inhibited by these anesthetics. Genetic ablation of orexinergic neurons, which causes acquired murine narcolepsy, delays emergence from anesthesia, without changing anesthetic induction. Pharmacologic studies with a selective orexin-1 receptor antagonist confirm a specific orexin effect on anesthetic emergence without an associated change in induction. We conclude that there are important differences in the neural substrates mediating induction and emergence. These findings support the concept that emergence depends, in part, on recruitment and stabilization of wake-active regions of brain.
Collapse
Affiliation(s)
- Max B Kelz
- Department of Anesthesiology and Critical Care, Mahoney Institute for Neurological Sciences, Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Takizuka A, Minami K, Uezono Y, Horishita T, Yokoyama T, Shiraishi M, Sakurai T, Shigematsu A, Ueta Y. Dexmedetomidine inhibits muscarinic type 3 receptors expressed in Xenopus oocytes and muscarine-induced intracellular Ca2+ elevation in cultured rat dorsal root ganglia cells. Naunyn Schmiedebergs Arch Pharmacol 2007; 375:293-301. [PMID: 17563882 DOI: 10.1007/s00210-007-0168-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
Dexmedetomidine, an alpha(2)-adrenoceptor agonist, has been approved for clinical use, although the mechanism of dexmedetomidine action has not been fully elucidated. Several studies have shown that G protein-coupled receptors (GPCRs) are recognized as targets for anesthetics and analgesics. Therefore, it is of interest to determine whether dexmedetomidine affects the function of GPCRs other than the alpha(2)-adrenoceptor. We examined the effects of dexmedetomidine on M(1), M(3), 5-HT(2C), substance P, and orexin 1 receptors in Xenopus oocytes expressing individual receptors. In addition, we investigated the effects of dexmedetomidine on muscarinic receptor-mediated changes in [Ca(2+)](i) in the dorsal root ganglia (DRG) of 3-week-old Wister rats. Dexmedetomidine did not affect the 5-HT(2C)-, or substance P-induced Cl(-) currents and had little inhibition on the orexin A-induced current in oocytes expressing the respective receptors. The compound also had little effect on the acetylcholine (ACh, 1 microM)-induced Ca(2+)-activated Cl(-) currents in Xenopus oocytes expressing M(1) receptors. In contrast, dexmedetomidine inhibited the ACh-induced currents in Xenopus oocytes expressing M(3) receptors; 1 nM, 10 nM, 100 nM, and 1 microM dexmedetomidine reduced the current to 66.5 +/- 4.8, 51.3 +/- 12, 34.6 +/- 11, and 26.8 +/- 6.4% of the control value, respectively (EC(50) = 3.5 +/- 0.7 nM). Dexmedetomidine reduced the ACh-induced Cl(-) currents after treatment with the selective protein kinase C inhibitor GF109203X. Moreover, the compound inhibited the muscarinic receptor-mediated increases in [Ca(2+)](i) in cultured DRG cells in a concentration-dependent manner. Dexmedetomidine inhibits the function of M(3) receptors, in addition to its agonistic effects on alpha(2)-adrenoceptors, which provides further insight into the pharmacological properties of dexmedetomidine.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Adrenergic alpha-Agonists/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Animals
- Calcium/metabolism
- Cells, Cultured
- Chloride Channels/physiology
- Dexmedetomidine/pharmacology
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Hypnotics and Sedatives/pharmacology
- Intracellular Fluid/metabolism
- Muscarine/pharmacology
- Oocytes/metabolism
- Orexin Receptors
- Patch-Clamp Techniques
- Rats
- Rats, Wistar
- Receptor, Muscarinic M1/drug effects
- Receptor, Muscarinic M1/metabolism
- Receptor, Muscarinic M3/antagonists & inhibitors
- Receptor, Muscarinic M3/metabolism
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2C/metabolism
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Neurokinin-1/drug effects
- Receptors, Neurokinin-1/metabolism
- Receptors, Neuropeptide/drug effects
- Receptors, Neuropeptide/metabolism
- Xenopus laevis
Collapse
Affiliation(s)
- Atsushi Takizuka
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu, 807-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|