1
|
Cilloni D, Maffeo B, Savi A, Danzero AC, Bonuomo V, Fava C. Detection of KIT Mutations in Systemic Mastocytosis: How, When, and Why. Int J Mol Sci 2024; 25:10885. [PMID: 39456668 PMCID: PMC11507058 DOI: 10.3390/ijms252010885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
More than 90% of patients affected by mastocytosis are characterized by a somatic point mutation of KIT, which induces ligand-independent activation of the receptor and downstream signal triggering, ultimately leading to mast cell accumulation and survival. The most frequent mutation is KIT p.D816V, but other rarer mutations can also be found. These mutations often have a very low variant allele frequency (VAF), well below the sensitivity of common next-generation sequencing (NGS) methods used in routine diagnostic panels. Highly sensitive methods are developing for detecting mutations. This review summarizes the current indications on the recommended methods and on how to manage and interpret molecular data for the diagnosis and follow-up of patients with mastocytosis.
Collapse
Affiliation(s)
- Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Mauriziano Hospital, 10128 Turin, Italy; (B.M.); (A.S.); (A.C.D.); (V.B.); (C.F.)
| | | | | | | | | | | |
Collapse
|
2
|
Isolation, characterization and cold storage of cells isolated from diseased explanted livers. Int J Artif Organs 2017; 40:294-306. [PMID: 28574111 DOI: 10.5301/ijao.5000594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Livers discarded after standard organ retrieval are commonly used as a cell source for hepatocyte transplantation. Due to the scarcity of organ donors, this leads to a shortage of suitable cells for transplantation. Here, the isolation of liver cells from diseased livers removed during liver transplantation is studied and compared to the isolation of cells from liver specimens obtained during partial liver resection. METHODS Hepatocytes from 20 diseased explanted livers (Ex-group) were isolated, cultured and stored at 4°C for up to 48 hours, and compared to hepatocytes isolated from the normal liver tissue of 14 liver lobe resections (Rx-group). The nonparenchymal cell fraction (NPC) was analyzed by flow cytometry to identify potential liver progenitor cells, and OptiPrep™ (Sigma-Aldrich) density gradient centrifugation was used to enrich the progenitor cells for immediate transplantation. RESULTS There were no differences in viability, cell integrity and metabolic activity in cell culture and survival after cold storage when comparing the hepatocytes from the Rx-group and the Ex-group. In some cases, the latter group showed tendencies of increased resistance to isolation and storage procedures. The NPC of the Ex-group livers contained considerably more EpCAM+ and significantly more CD90+ cells than the Rx-group. Progenitor cell enrichment was not sufficient for clinical application. CONCLUSIONS Hepatocytes isolated from diseased explanted livers showed the essential characteristics of being adequate for cell transplantation. Increased numbers of liver progenitor cells can be isolated from diseased explanted livers. These results support the feasibility of using diseased explanted livers as a cell source for liver cell transplantation.
Collapse
|
3
|
Mavila N, James D, Utley S, Cu N, Coblens O, Mak K, Rountree CB, Kahn M, Wang KS. Fibroblast growth factor receptor-mediated activation of AKT-β-catenin-CBP pathway regulates survival and proliferation of murine hepatoblasts and hepatic tumor initiating stem cells. PLoS One 2012; 7:e50401. [PMID: 23308088 PMCID: PMC3540100 DOI: 10.1371/journal.pone.0050401] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/19/2012] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Fibroblast Growth Factor (FGF)-10 promotes the proliferation and survival of murine hepatoblasts during early stages of hepatogenesis through a Wnt-β-catenin dependent pathway. To determine the mechanism by which this occurs, we expanded primary culture of hepatoblasts enriched for progenitor markers CD133 and CD49f from embryonic day (E) 12.5 fetal liver and an established tumor initiating stem cell line from Mat1a(-/-) livers in media conditioned with recombinant (r) FGF10 or rFGF7. FGF Receptor (R) activation resulted in the downstream activation of MAPK, PI3K-AKT, and β-catenin pathways, as well as cellular proliferation. Additionally, increased levels of nuclear β-catenin phosphorylated at Serine-552 in cultured primary hepatoblasts, Mat1a(-/-) cells, and also in ex vivo embryonic liver explants indicate AKT-dependent activation of β-catenin downstream of FGFR activation; conversely, the addition of AKT inhibitor Ly294002 completely abrogated β-catenin activation. FGFR activation-induced cell proliferation and survival were also inhibited by the compound ICG-001, a small molecule inhibitor of β-catenin-CREB Binding Protein (CBP) in hepatoblasts, further indicating a CBP-dependent regulatory mechanism of β-catenin activity. CONCLUSION FGF signaling regulates the proliferation and survival of embryonic and transformed progenitor cells in part through AKT-mediated activation of β-catenin and downstream interaction with the transcriptional co-activator CBP.
Collapse
Affiliation(s)
- Nirmala Mavila
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - David James
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Sarah Utley
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Nguyen Cu
- Department of Biochemistry and Molecular Biology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Orly Coblens
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Katrina Mak
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - C. Bart Rountree
- Pediatric Gastroenterology, Bon Secours St. Mary’s Hospital, Richmond, Virginia, United States of America
| | - Michael Kahn
- Department of Biochemistry and Molecular Biology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kasper S. Wang
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Kehr D, Raschzok N, Sauer I. A Novel Cannulation Technique for Isolation of Human Hepatocytes from Explanted Diseased Whole Livers. Transplant Proc 2012; 44:999-1001. [DOI: 10.1016/j.transproceed.2012.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Li J, Wu W, Xin J, Guo J, Jiang L, Tao R, Cao H, Hong X, Li L. Acute hepatic failure-derived bone marrow mesenchymal stem cells express hepatic progenitor cell genes. Cells Tissues Organs 2011; 194:371-381. [PMID: 21293100 DOI: 10.1159/000322604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Indexed: 12/26/2022] Open
Abstract
Hepatic progenitor cell (HPC) transplantation is a promising alternative to liver transplantation for patients with end-stage liver disease. However, the precise origin of HPCs is unclear. This study aimed to determine whether bone marrow mesenchymal stem cells (BMSCs) isolated from rats in acute hepatic failure (AHF) possess hepatic potential and/or characteristics. BMSCs were isolated from normal rats as well as rats in which AHF was induced by D-galactosamine. HPCs and primary hepatocytes were isolated from normal rats for comparison. The Affymetrix GeneChip Rat Genome 230 2.0 Array was used to perform transcriptome profiling of the AHF-derived BMSCs and HPCs. The results showed that AHF-derived BMSCs had a gene expression profile significantly different from that of control BMSCs. More than 87.7% of the genes/probe sets that were upregulated more than 2-fold in AHF-derived BMSCs were expressed by HPCs, including 12 genes involved in liver development, early hepatocyte differentiation and hepatocyte metabolism. Confirmatory quantitative RT-PCR analysis yielded similar results. In addition, 940 probe sets/genes were expressed in both AHF-derived BMSCs and HPCs but were absent in control cells. Compared to the control cells, AHF-derived BMSCs shared more commonly expressed genes with HPCs. AHF-derived BMSCs have a hepatic transcriptional profile and express many of the same genes expressed by HPCs, strongly suggesting that BMSCs may be a resource for hepatocyte regeneration, and further confirming their potential as a strong source of hepatocyte regeneration during severe hepatic damage.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tumor-intrinsic and -extrinsic roles of c-Kit: mast cells as the primary off-target of tyrosine kinase inhibitors. Oncogene 2010; 30:757-69. [DOI: 10.1038/onc.2010.494] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Gehling UM, Willems M, Schlagner K, Benndorf RA, Dandri M, Petersen J, Sterneck M, Pollok JM, Hossfeld DK, Rogiers X. Mobilization of hematopoietic progenitor cells in patients with liver cirrhosis. World J Gastroenterol 2010. [PMID: 20066741 DOI: 10.3748/wjg.v16.i2.217.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
AIM To test the hypothesis that liver cirrhosis is associated with mobilization of hematopoietic progenitor cells. METHODS Peripheral blood samples from 72 patients with liver cirrhosis of varying etiology were analyzed by flow cytometry. Identified progenitor cell subsets were immunoselected and used for functional assays in vitro. Plasma levels of stromal cell-derived factor-1 (SDF-1) were measured using an enzyme linked immunosorbent assay. RESULTS Progenitor cells with a CD133(+)/CD45(+)/CD14(+) phenotype were observed in 61% of the patients. Between 1% and 26% of the peripheral blood mononuclear cells (MNCs) displayed this phenotype. Furthermore, a distinct population of c-kit(+) progenitor cells (between 1% and 38% of the MNCs) could be detected in 91% of the patients. Additionally, 18% of the patients showed a population of progenitor cells (between 1% and 68% of the MNCs) that was characterized by expression of breast cancer resistance protein-1. Further phenotypic analysis disclosed that the circulating precursors expressed CXC chemokine receptor 4, the receptor for SDF-1. In line with this finding, elevated plasma levels of SDF-1 were present in all patients and were found to correlate with the number of mobilized CD133(+) progenitor cells. CONCLUSION These data indicate that in humans, liver cirrhosis leads to recruitment of various populations of hematopoietic progenitor cells that display markers of intrahepatic progenitor cells.
Collapse
Affiliation(s)
- Ursula M Gehling
- Department of Hepatobiliary Surgery and Transplant Surgery, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gehling UM, Willems M, Schlagner K, Benndorf RA, Dandri M, Petersen J, Sterneck M, Pollok JM, Hossfeld DK, Rogiers X. Mobilization of hematopoietic progenitor cells in patients with liver cirrhosis. World J Gastroenterol 2010; 16:217-24. [PMID: 20066741 PMCID: PMC2806560 DOI: 10.3748/wjg.v16.i2.217] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To test the hypothesis that liver cirrhosis is associated with mobilization of hematopoietic progenitor cells.
METHODS: Peripheral blood samples from 72 patients with liver cirrhosis of varying etiology were analyzed by flow cytometry. Identified progenitor cell subsets were immunoselected and used for functional assays in vitro. Plasma levels of stromal cell-derived factor-1 (SDF-1) were measured using an enzyme linked immunosorbent assay.
RESULTS: Progenitor cells with a CD133+/CD45+/CD14+ phenotype were observed in 61% of the patients. Between 1% and 26% of the peripheral blood mononuclear cells (MNCs) displayed this phenotype. Furthermore, a distinct population of c-kit+ progenitor cells (between 1% and 38 % of the MNCs) could be detected in 91% of the patients. Additionally, 18% of the patients showed a population of progenitor cells (between 1% and 68% of the MNCs) that was characterized by expression of breast cancer resistance protein-1. Further phenotypic analysis disclosed that the circulating precursors expressed CXC chemokine receptor 4, the receptor for SDF-1. In line with this finding, elevated plasma levels of SDF-1 were present in all patients and were found to correlate with the number of mobilized CD133+ progenitor cells.
CONCLUSION: These data indicate that in humans, liver cirrhosis leads to recruitment of various populations of hematopoietic progenitor cells that display markers of intrahepatic progenitor cells.
Collapse
|
9
|
Gerbal-Chaloin S, Duret C, Raulet E, Navarro F, Blanc P, Ramos J, Maurel P, Daujat-Chavanieu M. Isolation and culture of adult human liver progenitor cells: in vitro differentiation to hepatocyte-like cells. Methods Mol Biol 2010; 640:247-260. [PMID: 20645055 DOI: 10.1007/978-1-60761-688-7_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Highly differentiated normal human hepatocytes represent the gold standard cellular model for basic and applied research in liver physiopathology, pharmacology, toxicology, virology, and liver biotherapy. Nowadays, although livers from organ donors or medically required resections represent the current sources of hepatocytes, the possibility to generate hepatocytes from the differentiation of adult and embryonic stem cells represents a promising opportunity. The aim of this chapter is to describe our experience with the isolation from adult human liver and culture of non-parenchymal epithelial cells. Under appropriate conditions, these cells differentiate in vitro in hepatocyte-like cells and therefore appear to behave as liver progenitor cells.
Collapse
|
10
|
Tesei A, Zoli W, Arienti C, Storci G, Granato AM, Pasquinelli G, Valente S, Orrico C, Rosetti M, Vannini I, Dubini A, Dell'Amore D, Amadori D, Bonafè M. Isolation of stem/progenitor cells from normal lung tissue of adult humans. Cell Prolif 2009; 42:298-308. [PMID: 19438897 PMCID: PMC6495959 DOI: 10.1111/j.1365-2184.2009.00594.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 06/02/2008] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES This study aimed to isolate and characterize stem/progenitor cells, starting from normal airway epithelia, obtained from human adults. MATERIALS AND METHODS Cultures of multicellular spheroids were obtained from human lung tissue specimens after mechanical and enzymatic digestion. Tissue-specific markers were detected on their cells by immunohistochemical and immunofluorescent techniques. Ultrastructural morphology of the spheroids (termed as bronchospheres) was evaluated by electron microscopy, gene expression analysis was performed by reverse transcription-polymerase chain reaction, and gene down-regulation was analysed by an RNA interference technique. RESULTS Bronchospheres were found to be composed of cells with high expression of stem cell regulatory genes, which was not or was only weakly detectable in original tissues. Morphological analysis showed that bronchospheres were composed of mixed phenotype cells with type II alveolar and Clara cell features, highlighting their airway resident cell origin. In addition to displaying specific pulmonary and epithelial commitment, bronchospheres showed mesenchymal features. Silencing of the Slug gene, known to play a pivotal role in epithelial-mesenchymal transition processes and which was highly expressed in bronchospheres but not in original tissue, led bronchospheres to gain a differentiated bronchial/alveolar phenotype and to lose the stemness gene expression pattern. CONCLUSIONS Ours is the first study to describe ex vivo expansion of stem/progenitor cells resident in human lung epithelia, and our results suggest that the epithelial-mesenchymal transition process, still active in a subset of airway cells, may regulate transit of stem/progenitor cells towards epithelial differentiation.
Collapse
Affiliation(s)
- A Tesei
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Schubert W, Friedenberger M, Bode M, Krusche A, Hillert R. Functional architecture of the cell nucleus: Towards comprehensive toponome reference maps of apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2080-8. [DOI: 10.1016/j.bbamcr.2008.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 07/20/2008] [Indexed: 01/05/2023]
|
12
|
Hassan HT. c-Kit expression in human normal and malignant stem cells prognostic and therapeutic implications. Leuk Res 2008; 33:5-10. [PMID: 18639336 DOI: 10.1016/j.leukres.2008.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 06/06/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
Abstract
The human stem cell factor/c-Kit signaling pathway is pivotal for the survival of embryonic, foetal and adult stem cells and for their fundamental role in generating healthy functioning cell and tissue types during embryonic, foetal and adult life. Common biological features between human stem cells and cancer cells include (A) self-renewal, (B) extensive capacity of proliferation, (C) migration to and homing at distant sites and (D) resistance to toxic agents. Given these shared attributes, cancer was proposed to originate from transforming mutation(s) in normal stem cells that dysregulate their physiological programs. This theory has been recently supported by the findings that among all malignant cells within a particular tumour, only cell fraction expressing stem cell markers such as c-Kit named 'cancer stem cells' has the exclusive potential to generate tumour cell population. The involvement of c-Kit and its mutation in various haematological malignancies and solid tumours are reviewed. The impacts of dysregulated c-Kit as oncogenic tyrosine kinase on autocrine stimulation and resistance to chemotherapy of cancer stem cells are evaluated. The significance and efficacy of molecular therapeutic targeting of c-Kit signaling pathway in the management of patients with c-Kit-positive malignancies are appraised.
Collapse
|
13
|
Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, Wang H, Ge W, Bogin V, Chan KW, Thébaud B, Riordan NH. Endometrial regenerative cells: a novel stem cell population. J Transl Med 2007; 5:57. [PMID: 18005405 PMCID: PMC2212625 DOI: 10.1186/1479-5876-5-57] [Citation(s) in RCA: 414] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 11/15/2007] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is a critical component of the proliferative endometrial phase of the menstrual cycle. Thus, we hypothesized that a stem cell-like population exist and can be isolated from menstrual blood. Mononuclear cells collected from the menstrual blood contained a subpopulation of adherent cells which could be maintained in tissue culture for >68 doublings and retained expression of the markers CD9, CD29, CD41a, CD44, CD59, CD73, CD90 and CD105, without karyotypic abnormalities. Proliferative rate of the cells was significantly higher than control umbilical cord derived mesenchymal stem cells, with doubling occurring every 19.4 hours. These cells, which we termed "Endometrial Regenerative Cells" (ERC) were capable of differentiating into 9 lineages: cardiomyocytic, respiratory epithelial, neurocytic, myocytic, endothelial, pancreatic, hepatic, adipocytic, and osteogenic. Additionally, ERC produced MMP3, MMP10, GM-CSF, angiopoietin-2 and PDGF-BB at 10-100,000 fold higher levels than two control cord blood derived mesenchymal stem cell lines. Given the ease of extraction and pluripotency of this cell population, we propose ERC as a novel alternative to current stem cells sources.
Collapse
Affiliation(s)
- Xiaolong Meng
- Bio-Communications Research Institute, Wichita, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|