1
|
Jiménez-Castillo V, Illescas-Barbosa D, Zenteno E, Ávila-Curiel BX, Castañeda-Patlán MC, Robles-Flores M, De Oca DMM, Pérez-Campos E, Torres-Rivera A, Bouaboud A, Pagesy P, Solórzano-Mata CJ, Issad T. Increased O-GlcNAcylation promotes IGF-1 receptor/PhosphatidyI Inositol-3 kinase/Akt pathway in cervical cancer cells. Sci Rep 2022; 12:4464. [PMID: 35296731 PMCID: PMC8927345 DOI: 10.1038/s41598-022-08445-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/04/2022] [Indexed: 12/28/2022] Open
Abstract
O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification on serine and threonine residues of cytosolic, nuclear and mitochondrial proteins. O-GlcNAcylation level is regulated by OGT (O-GlcNAc transferase), which adds GlcNAc on proteins, and OGA (O-GlcNAcase), which removes it. Abnormal level of protein O-GlcNAcylation has been observed in numerous cancer cell types, including cervical cancer cells. In the present study, we have evaluated the effect of increasing protein O-GlcNAcylation on cervical cancer-derived CaSki cells. We observed that pharmacological enhancement of protein O-GlcNAcylation by Thiamet G (an inhibitor of OGA) and glucosamine (which provides UDP-GlcNAc substrate to OGT) increases CaSki cells proliferation, migration and survival. Moreover, we showed that increased O-GlcNAcylation promotes IGF-1 receptor (IGF1R) autophosphorylation, possibly through inhibition of protein tyrosine-phosphatase 1B activity. This was associated with increased IGF-1-induced phosphatidyl-Inositol 3-phosphate production at the plasma membrane and increased Akt activation in CaSki cells. Finally, we showed that protein O-GlcNAcylation and Akt phosphorylation levels were higher in human cervical cancer samples compared to healthy cervix tissues, and a highly positive correlation was observed between O-GlcNAcylation level and Akt phosphorylation in theses tissues. Together, our results indicate that increased O-GlcNAcylation, by activating IGF1R/ Phosphatidyl inositol 3-Kinase (PI-3K)/Akt signaling, may participate in cervical cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Victoria Jiménez-Castillo
- National Technology of Mexico/IT.Oaxaca, Oaxaca, Mexico
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Daniela Illescas-Barbosa
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Beatriz Xóchitl Ávila-Curiel
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | | | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | | | | | - Patrick Pagesy
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Carlos Josué Solórzano-Mata
- Faculty of Medicine and Surgery, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.
- Faculty of Dentistry, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.
| | - Tarik Issad
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| |
Collapse
|
2
|
Chamorro ME, Maltaneri R, Schiappacasse A, Nesse A, Vittori D. Role of protein tyrosine phosphatase 1B (PTP1B) in the increased sensitivity of endothelial cells to a promigratory effect of erythropoietin in an inflammatory environment. Biol Chem 2020; 401:1167-1180. [PMID: 32386183 DOI: 10.1515/hsz-2020-0136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/04/2020] [Indexed: 11/15/2022]
Abstract
The proliferation and migration of endothelial cells are vascular events of inflammation, a process which can also potentiate the effects of promigratory factors. With the aim of investigating possible modifications in the activity of erythropoietin (Epo) in an inflammatory environment, we found that Epo at a non-promigratory concentration was capable of stimulating EA.hy926 endothelial cell migration when TNF-α was present. VCAM-1 and ICAM-1 expression, as well as adhesion of monocytic THP-1 cells to endothelial layers were also increased. Structurally modified Epo (carbamylation or N-homocysteinylation) did not exhibit these effects. The sensitizing effect of TNF-α on Epo activity was mediated by the Epo receptor. Inhibition assays targeting the PI3K/mTOR/NF-κB pathway, shared by Epo and TNF-α, show a cross-talk between both cytokines. As observed in assays using antioxidants, cell migration elicited by TNF-α + Epo depended on TNF-α-generated reactive oxygen species (ROS). ROS-mediated inactivation of protein tyrosine phosphatase 1B (PTP1B), involved in Epo signaling termination, could explain the synergistic effect of these cytokines. Our results suggest that ROS generated by inflammation inactivate PTP1B, causing the Epo signal to last longer. This mechanism, along with the cross-talk between both cytokines, could explain the sensitizing action of TNF-α on the migratory effect of Epo.
Collapse
Affiliation(s)
- María Eugenia Chamorro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
| | - Romina Maltaneri
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
| | - Agustina Schiappacasse
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
| | - Alcira Nesse
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
| | - Daniela Vittori
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
| |
Collapse
|
3
|
Merelli A, Rodríguez JCG, Folch J, Regueiro MR, Camins A, Lazarowski A. Understanding the Role of Hypoxia Inducible Factor During Neurodegeneration for New Therapeutics Opportunities. Curr Neuropharmacol 2018; 16:1484-1498. [PMID: 29318974 PMCID: PMC6295932 DOI: 10.2174/1570159x16666180110130253] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/24/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022] Open
Abstract
Neurodegeneration (NDG) is linked with the progressive loss of neural function with intellectual and/or motor impairment. Several diseases affecting older individuals, including Alzheimer's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Parkinson's disease, stroke, Multiple Sclerosis and many others, are the most relevant disorders associated with NDG. Since other pathologies such as refractory epilepsy, brain infections, or hereditary diseases such as "neurodegeneration with brain iron accumulation", also lead to chronic brain inflammation with loss of neural cells, NDG can be said to affect all ages. Owing to an energy and/or oxygen supply imbalance, different signaling mechanisms including MAPK/PI3K-Akt signaling pathways, glutamatergic synapse formation, and/or translocation of phosphatidylserine, might activate some central executing mechanism common to all these pathologies and also related to oxidative stress. Hypoxia inducible factor 1-α (HIF-1α) plays a twofold role through gene activation, in the sense that this factor has to "choose" whether to protect or to kill the affected cells. Most of the afore-mentioned processes follow a protracted course and are accompanied by progressive iron accumulation in the brain. We hypothesize that the neuroprotective effects of iron chelators are acting against the generation of free radicals derived from iron, and also induce sufficient -but not excessive- activation of HIF-1α, so that only the hypoxia-rescue genes will be activated. In this regard, the expression of the erythropoietin receptor in hypoxic/inflammatory neurons could be the cellular "sign" to act upon by the nasal administration of pharmacological doses of Neuro-EPO, inducing not only neuroprotection, but eventually, neurorepair as well.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Lazarowski
- Address correspondence to this author at the Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires-Argentina, Junín 954, Buenos Aires-Argentina; Tel: +54-11-5950-8674;, E-mail:
| |
Collapse
|
4
|
Maltaneri RE, Chamorro ME, Schiappacasse A, Nesse AB, Vittori DC. Differential effect of erythropoietin and carbamylated erythropoietin on endothelial cell migration. Int J Biochem Cell Biol 2017; 85:25-34. [DOI: 10.1016/j.biocel.2017.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/27/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023]
|
5
|
Protein tyrosine phosphatase 1B (PTP1B) is involved in the defective erythropoietic function of carbamylated erythropoietin. Int J Biochem Cell Biol 2015; 61:63-71. [DOI: 10.1016/j.biocel.2015.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/19/2014] [Accepted: 01/30/2015] [Indexed: 01/02/2023]
|
6
|
Differential erythropoietin action upon cells induced to eryptosis by different agents. Cell Biochem Biophys 2013; 65:145-57. [PMID: 22903352 DOI: 10.1007/s12013-012-9408-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Eryptosis is a process by which mature erythrocytes can undergo self-destruction sharing several features with apoptosis. Premature programmed erythrocyte death may be induced by different agents. In this study, we compared mechanisms involved in two eryptotic models (oxidative stress and cell calcium overload) so as to distinguish whether they share signaling pathways and could be prevented by erythropoietin (Epo). Phosphatidylserine (PS) translocation and increased calcium content were common signs in erythrocytes exposed to sodium nitrite plus hydrogen peroxide or calcium ionophore A23187 (CaI), while increased ROS and decreased GSH levels were detected in the oxidative model. Protein kinase activation seemed to be an outstanding feature in eryptosis induced by oxidative stress, whereas phosphatase activation was favored in the CaI model. Cell morphology and membrane protein modifications were also differential signs between both models. Epo was able to prevent cell oxidative imbalance, thus blunting PS translocation. However, the hormone favored intracellular calcium influx which could be the reason why it could not completely counteract the induction of eryptosis. Instead, Epo was unable to inhibit PS externalization in the CaI model. The different mechanisms involved in the eryptotic models may explain the differential action of Epo upon erythrocytes induced to eryptosis by different agents.
Collapse
|
7
|
Andraos R, Qian Z, Bonenfant D, Rubert J, Vangrevelinghe E, Scheufler C, Marque F, Régnier CH, De Pover A, Ryckelynck H, Bhagwat N, Koppikar P, Goel A, Wyder L, Tavares G, Baffert F, Pissot-Soldermann C, Manley PW, Gaul C, Voshol H, Levine RL, Sellers WR, Hofmann F, Radimerski T. Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent. Cancer Discov 2012; 2:512-523. [PMID: 22684457 DOI: 10.1158/2159-8290.cd-11-0324] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Janus kinase (JAK) inhibitors are being developed for the treatment of rheumatoid arthritis, psoriasis, myeloproliferative neoplasms, and leukemias. Most of these drugs target the ATP-binding pocket and stabilize the active conformation of the JAK kinases. This type I binding mode can lead to an increase in JAK activation loop phosphorylation, despite blockade of kinase function. Here we report that stabilizing the inactive state via type II inhibition acts in the opposite manner, leading to a loss of activation loop phosphorylation. We used X-ray crystallography to corroborate the binding mode and report for the first time the crystal structure of the JAK2 kinase domain in an inactive conformation. Importantly, JAK inhibitor-induced activation loop phosphorylation requires receptor interaction, as well as intact kinase and pseudokinase domains. Hence, depending on the respective conformation stabilized by a JAK inhibitor, hyperphosphorylation of the activation loop may or may not be elicited.
Collapse
Affiliation(s)
- Rita Andraos
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Zhiyan Qian
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Débora Bonenfant
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Joëlle Rubert
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Eric Vangrevelinghe
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Clemens Scheufler
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Fanny Marque
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Catherine H Régnier
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Alain De Pover
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hugues Ryckelynck
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Neha Bhagwat
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center.,Gerstner Sloan Kettering Graduate School of Biomedical Sciences
| | - Priya Koppikar
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center
| | - Aviva Goel
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center
| | - Lorenza Wyder
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Gisele Tavares
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Fabienne Baffert
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Paul W Manley
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christoph Gaul
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hans Voshol
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center
| | - William R Sellers
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Francesco Hofmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Radimerski
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
8
|
Cytosolic lysine residues enhance anterograde transport and activation of the erythropoietin receptor. Biochem J 2011; 435:509-18. [PMID: 21291419 DOI: 10.1042/bj20101876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lysine residues are key residues in many cellular processes, in part due to their ability to accept a wide variety of post-translational modifications. In the present study, we identify the EPO-R [EPO (erythropoietin) receptor] cytosolic lysine residues as enhancers of receptor function. EPO-R drives survival, proliferation and differentiation of erythroid progenitor cells via binding of its ligand EPO. We mutated the five EPO-R cytosolic lysine residues to arginine residues (5KR EPO-R), eliminating putative lysine-dependent modifications. Overexpressed 5KR EPO-R displayed impaired ubiquitination and improved stability compared with wt (wild-type) EPO-R. Unexpectedly, fusion proteins consisting of VSVGtsO45 (vesicular stomatitis virus glycoprotein temperature-sensitive folding mutant) with wt or 5KR EPO-R cytosolic domains demonstrated delayed glycan maturation kinetics upon substitution of the lysine residues. Moreover, VSVG-wt EPO-R, but not VSVG-5KR EPO-R, displayed endoplasmic reticulum-associated ubiquitination. Despite similar cell-surface EPO-binding levels of both receptors and the lack of EPO-induced ubiquitination by 5KR EPO-R, the lysine-less mutant produced weaker receptor activation and signalling than the wt receptor. We thus propose that EPO-R cytosolic lysine residues enhance receptor function, most probably through ubiquitination and/or other post-translational modifications.
Collapse
|
9
|
Calcium as a mediator between erythropoietin and protein tyrosine phosphatase 1B. Arch Biochem Biophys 2011; 505:242-9. [DOI: 10.1016/j.abb.2010.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/28/2010] [Accepted: 10/02/2010] [Indexed: 01/09/2023]
|
10
|
White CL, Whittington A, Barnes MJ, Wang Z, Bray GA, Morrison CD. HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms. Am J Physiol Endocrinol Metab 2009; 296:E291-9. [PMID: 19017730 PMCID: PMC2645015 DOI: 10.1152/ajpendo.90513.2008] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) contributes to leptin resistance by inhibiting intracellular leptin receptor signaling. Mice with whole body or neuron-specific deletion of PTP1B are hypersensitive to leptin and resistant to diet-induced obesity. Here we report a significant increase in PTP1B protein levels in the mediobasal hypothalamus (P = 0.003) and a concomitant reduction in leptin sensitivity following 28 days of high-fat (HF) feeding in rats. A significant increase in PTP1B mRNA levels was also observed in rats chronically infused with leptin (3 microg/day icv) for 14 days (P = 0.01) and in leptin-deficient ob/ob mice infused with leptin (5 microg/day sc for 14 days; P = 0.003). When saline-infused ob/ob mice were placed on a HF diet for 14 days, an increase in hypothalamic PTP1B mRNA expression was detected (P = 0.001) despite the absence of circulating leptin. In addition, although ob/ob mice were much more sensitive to leptin on a low-fat (LF) diet, a reduction in this sensitivity was still observed following exposure to a HF diet. Taken together, these data indicate that hypothalamic PTP1B is specifically increased during HF diet-induced leptin resistance. This increase in PTP1B is due in part to chronic hyperleptinemia, suggesting that hyperleptinemia is one mechanism contributing to the development of leptin resistance. However, these data also indicate that leptin is not required for the increase in hypothalamic PTP1B or the development of leptin resistance. Therefore, additional, leptin-independent mechanisms must exist that increase hypothalamic PTP1B and contribute to leptin resistance.
Collapse
Affiliation(s)
- Christy L White
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | | | |
Collapse
|
11
|
Bogacheva O, Bogachev O, Menon M, Dev A, Houde E, Valoret EI, Prosser HM, Creasy CL, Pickering SJ, Grau E, Rance K, Livi GP, Karur V, Erickson-Miller CL, Wojchowski DM. DYRK3 dual-specificity kinase attenuates erythropoiesis during anemia. J Biol Chem 2008; 283:36665-75. [PMID: 18854306 DOI: 10.1074/jbc.m807844200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During anemia erythropoiesis is bolstered by several factors including KIT ligand, oncostatin-M, glucocorticoids, and erythropoietin. Less is understood concerning factors that limit this process. Experiments performed using dual-specificity tyrosine-regulated kinase-3 (DYRK3) knock-out and transgenic mice reveal that erythropoiesis is attenuated selectively during anemia. DYRK3 is restricted to erythroid progenitor cells and testes. DYRK3-/- mice exhibited essentially normal hematological profiles at steady state and reproduced normally. In response to hemolytic anemia, however, reticulocyte production increased severalfold due to DYRK3 deficiency. During 5-fluorouracil-induced anemia, both reticulocyte and red cell formation in DYRK3-/- mice were elevated. In short term transplant experiments, DYRK3-/- progenitors also supported enhanced erythroblast formation, and erythropoietic advantages due to DYRK3-deficiency also were observed in 5-fluorouracil-treated mice expressing a compromised erythropoietin receptor EPOR-HM allele. As analyzed ex vivo, DYRK3-/- erythroblasts exhibited enhanced CD71posTer119pos cell formation and 3HdT incorporation. Transgenic pA2gata1-DYRK3 mice, in contrast, produced fewer reticulocytes during hemolytic anemia, and pA2gata1-DYRK3 progenitors were compromised in late pro-erythroblast formation ex vivo. Finally, as studied in erythroid K562 cells, DYRK3 proved to effectively inhibit NFAT (nuclear factor of activated T cells) transcriptional response pathways and to co-immunoprecipitate with NFATc3. Findings indicate that DYRK3 attenuates (and possibly apportions) red cell production selectively during anemia.
Collapse
Affiliation(s)
- Olga Bogacheva
- Stem and Progenitor Cell Biology Program, Molecular Medicine Division, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|