1
|
Sadri S, Aghajani A, Soleimani H, Ghorbani Kalkhajeh S, Nazari H, Brouki Milan P, Peyravian N, Pezeshkian Z, Malekzadeh Kebria M, Shirazi F, Shams E, Naderi Noukabadi F, Nazemalhosseini-Mojarad E, Salehi Z. Exploring the Role of the TGF-β Signaling Pathway in Colorectal Precancerous Polyps Biochemical Genetics. Biochem Genet 2025; 63:1116-1148. [PMID: 39636332 DOI: 10.1007/s10528-024-10988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Colorectal cancer (CRC) is an important public health issue and is the third most common cancer, accounting for approximately 10% of all cancer cases worldwide. CRC results from the accumulation of multiple genetic and epigenetic alterations in the normal epithelial cells of the colon and rectum, leading to the development of colorectal polyps and invasive carcinomas. The transforming growth factor-beta (TGF-β) pathway is regulated in many diseases, such as cancer. This factor can show tumor suppressant function in the early stages in healthy and cancer cells. It can be regulated and affected by different factors, including noncoding RNAs, which are the remarkable regulators for this pathway. The most prominent functions of this factor are cell cycle arrest and apoptosis in cancer cells. However, activating at the final stages of the cell cycle can cause tumor metastasis. Thus, the dual function of TGF-β and the pleiotropic nature of this signaling make it a crucial challenge for cancer treatment. Accurately studying the TGF-β signaling pathway is critical to determine its role. One of the roles of TGF-β signaling is its significant effect on colorectal polyp malignancy and cancer. In this article, we review the published scientific papers regarding the TGF-β signaling pathway, its related genes, and their contribution to precancerous conditions and colorectal cancer progression. The complex interaction of the TGF-β signaling pathway with noncoding RNAs, such as lncRNA TUG1 and miR-21, significantly influences colorectal polyp and cancer progression. Identifying dysregulated TGF-β-related noncoding RNAs offers promising therapeutic avenues for colorectal cancer. Comprehending TGF-β's connection to other molecular mechanisms is crucial for advancing effective therapeutic strategies.
Collapse
Affiliation(s)
- Shadi Sadri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Ali Aghajani
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hiva Soleimani
- Department of General Biology, Faculty of Fundamental Science, Islamic Azad University of Shahr-E Qods, Tehran, 37515-374, Iran
| | - Sourena Ghorbani Kalkhajeh
- Department of Radiologic Technology, School of Allied Medical Sciences, Ahvaz Jundi-Shapour University of Medical Sciences, Ahvaz, Iran
| | - Haniyeh Nazari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, 19395-1495, Iran
| | - Peiman Brouki Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Noshad Peyravian
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Pezeshkian
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Maziar Malekzadeh Kebria
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Shirazi
- Division of Genetics, Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, 817467344, Iran
| | - Elahe Shams
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Fatemeh Naderi Noukabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| | - Zahra Salehi
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, 14114, Iran.
| |
Collapse
|
2
|
Lee GH, Kim YH, Woo SM, Lee WJ, Han SS, Park SJ, Price S, Tembo P, Hébert JR, Kim MK. The Impact of the Dietary Inflammatory Index, Fasting Blood Glucose, and Smoking Status on the Incidence and Survival of Pancreatic Cancer: A Retrospective Case-Control Study and a Prospective Study. Nutrients 2024; 16:3941. [PMID: 39599726 PMCID: PMC11597200 DOI: 10.3390/nu16223941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PC), a highly malignant cancer with a poor diagnosis, may be influenced by diet-related inflammation. This study examined the association between dietary inflammatory index (DII) scores and the incidence and prognosis of PC in Korea. METHODS A total of 55 patients with PC were matched with 280 healthy controls (HCs) by age and sex. We also analyzed the combined effects of DII scores and fasting blood glucose (FBG) levels or smoking status on the risk of PC and performed a survival analysis using the Cox proportional hazards method. RESULTS The DII scores were higher in the patients with PC than those in HCs (odds ratio [OR] = 3.36, confidence interval [CI] = 1.16-9.73, p = 0.03), and the effect was larger in women (OR = 6.13, CI = 1.11-33.82, p = 0.04). A high DII score was jointly associated with FBG ≥ 126 mg/dL in raising PC risk [OR = 32.5, relative excess risk due to interaction/synergy (RERI/S) index = 24.2/4.34, p-interaction = 0.04], indicating a multiplicative interaction. A high DII score combined with ex/current smoker status increased PC risk through an additive interaction (RERI/S = 1.01/1.54, p-interaction = 0.76). However, DII scores did not influence disease-free survival. CONCLUSIONS The consumption of an anti-inflammatory diet, coupled with maintaining normal FBG levels and abstaining from smoking, may help reduce the risk of PC by mitigating pancreatic inflammation.
Collapse
Affiliation(s)
- Ga Hyun Lee
- Cancer Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, Ilsandong-gu, Goyang-si 10408, Republic of Korea; (G.H.L.); (Y.H.K.)
| | - Yeon Hee Kim
- Cancer Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, Ilsandong-gu, Goyang-si 10408, Republic of Korea; (G.H.L.); (Y.H.K.)
| | - Sang Myung Woo
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Ilsandong-gu, Goyang-si 10408, Republic of Korea; (S.M.W.); (W.J.L.); (S.-S.H.); (S.-J.P.)
| | - Woo Jin Lee
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Ilsandong-gu, Goyang-si 10408, Republic of Korea; (S.M.W.); (W.J.L.); (S.-S.H.); (S.-J.P.)
| | - Sung-Sik Han
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Ilsandong-gu, Goyang-si 10408, Republic of Korea; (S.M.W.); (W.J.L.); (S.-S.H.); (S.-J.P.)
| | - Sang-Jae Park
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Ilsandong-gu, Goyang-si 10408, Republic of Korea; (S.M.W.); (W.J.L.); (S.-S.H.); (S.-J.P.)
| | - Sherry Price
- Department of Epidemiology and Biostatistics and Cancer Prevention and Control Program, University of South Carolina, Columbia, SC 29208, USA; (S.P.); (P.T.); (J.R.H.)
| | - Penias Tembo
- Department of Epidemiology and Biostatistics and Cancer Prevention and Control Program, University of South Carolina, Columbia, SC 29208, USA; (S.P.); (P.T.); (J.R.H.)
| | - James R. Hébert
- Department of Epidemiology and Biostatistics and Cancer Prevention and Control Program, University of South Carolina, Columbia, SC 29208, USA; (S.P.); (P.T.); (J.R.H.)
- Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC 29201, USA
| | - Mi Kyung Kim
- Cancer Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, Ilsandong-gu, Goyang-si 10408, Republic of Korea; (G.H.L.); (Y.H.K.)
| |
Collapse
|
3
|
Swain S, Narayan RK, Mishra PR. Unraveling the interplay: exploring signaling pathways in pancreatic cancer in the context of pancreatic embryogenesis. Front Cell Dev Biol 2024; 12:1461278. [PMID: 39239563 PMCID: PMC11374643 DOI: 10.3389/fcell.2024.1461278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Pancreatic cancer continues to be a deadly disease because of its delayed diagnosis and aggressive tumor biology. Oncogenes and risk factors are being reported to influence the signaling pathways involved in pancreatic embryogenesis leading to pancreatic cancer genesis. Although studies using rodent models have yielded insightful information, the scarcity of human pancreatic tissue has made it difficult to comprehend how the human pancreas develops. Transcription factors like IPF1/PDX1, HLXB9, PBX1, MEIS, Islet-1, and signaling pathways, including Hedgehog, TGF-β, and Notch, are directing pancreatic organogenesis. Any derangements in the above pathways may lead to pancreatic cancer. TP53: and CDKN2A are tumor suppressor genes, and the mutations in TP53 and somatic loss of CDKN2A are the drivers of pancreatic cancer. This review clarifies the complex signaling mechanism involved in pancreatic cancer, the same signaling pathways in pancreas development, the current therapeutic approach targeting signaling molecules, and the mechanism of action of risk factors in promoting pancreatic cancer.
Collapse
|
4
|
Liao KL, Wieler AJ, Gascon PML. Mathematical modeling and analysis of cancer treatment with radiation and anti-PD-L1. Math Biosci 2024; 374:109218. [PMID: 38797473 DOI: 10.1016/j.mbs.2024.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
In cancer treatment, radiation therapy (RT) induces direct tumor cell death due to DNA damage, but it also enhances the deaths of radiosensitive immune cells and is followed by local relapse and up-regulation of immune checkpoint ligand PD-L1. Since the binding between PD-1 and PD-L1 curtails anti-tumor immunities, combining RT and PD-L1 inhibitor, anti-PD-L1, is a potential method to improve the treatment efficacy by RT. Some experiments support this hypothesis by showing that the combination of ionizing irradiation (IR) and anti-PD-L1 improves tumor reduction comparing to the monotherapy of IR or anti-PD-L1. In this work, we create a simplified ODE model to study the order of tumor growths under treatments of IR and anti-PD-L1. Our synergy analysis indicates that both IR and anti-PD-L1 improve the tumor reduction of each other, when IR and anti-PD-L1 are given simultaneously. When giving IR and anti-PD-L1 separately, a high dosage of IR should be given first to efficiently reduce tumor load and then followed by anti-PD-L1 with strong efficacy to maintain the tumor reduction and slow down the relapse. Increasing the duration of anti-PD-L1 improves the tumor reduction, but it cannot prolong the duration that tumor relapses to the level of the control case. Under some simplification, we also prove that the model has an unstable tumor free equilibrium and a locally asymptotically stable tumor persistent equilibrium. Our bifurcation diagram reveals a transition from tumor elimination to tumor persistence, as the tumor growth rate increases. In the tumor persistent case, both anti-PD-L1 and IR can reduce tumor amount in the long term.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Adam J Wieler
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Pedro M Lopez Gascon
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
5
|
Tolue Ghasaban F, Ghanei M, Mahmoudian RA, Taghehchian N, Abbaszadegan MR, Moghbeli M. MicroRNAs as the critical regulators of epithelial mesenchymal transition in pancreatic tumor cells. Heliyon 2024; 10:e30599. [PMID: 38726188 PMCID: PMC11079401 DOI: 10.1016/j.heliyon.2024.e30599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer (PC), as one of the main endocrine and digestive systems malignancies has the highest cancer related mortality in the world. Lack of the evident clinical symptoms and appropriate diagnostic markers in the early stages of tumor progression are the main reasons of the high mortality rate among PC patients. Therefore, it is necessary to investigate the molecular pathways involved in the PC progression, in order to introduce novel early diagnostic methods. Epithelial mesenchymal transition (EMT) is a critical cellular process associated with pancreatic tumor cells invasion and distant metastasis. MicroRNAs (miRNAs) are also important regulators of EMT process. In the present review, we discussed the role of miRNAs in regulation of EMT process during PC progression. It has been reported that the miRNAs mainly regulate the EMT process in pancreatic tumor cells through the regulation of EMT-specific transcription factors and several signaling pathways such as WNT, NOTCH, TGF-β, JAK/STAT, and PI3K/AKT. Considering the high stability of miRNAs in body fluids and their role in regulation of EMT process, they can be introduced as the non-invasive diagnostic markers in the early stages of malignant pancreatic tumors. This review paves the way to introduce a non-invasive EMT based panel marker for the early tumor detection among PC patients.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Liao KL, Bai XF, Friedman A. IL-27 in combination with anti-PD-1 can be anti-cancer or pro-cancer. J Theor Biol 2024; 579:111704. [PMID: 38104658 DOI: 10.1016/j.jtbi.2023.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Interleukin-27 (IL-27) is known to play opposing roles in immunology. The present paper considers, specifically, the role IL-27 plays in cancer immunotherapy when combined with immune checkpoint inhibitor anti-PD-1. We first develop a mathematical model for this combination therapy, by a system of Partial Differential Equations, and show agreement with experimental results in mice injected with melanoma cells. We then proceed to simulate tumor volume with IL-27 injection at a variable dose F and anti-PD-1 at a variable dose g. We show that in some range of "small" values of g, as f increases tumor volume decreases as long as fFc(g), where Fc(g) is a monotone increasing function of g. This demonstrates that IL-27 can be both anti-cancer and pro-cancer, depending on the ranges of both anti-PD-1 and IL-27.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada.
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Avner Friedman
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, United States of America; Department of Mathematics, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
7
|
Liao KL, Watt KD, Protin T. Different mechanisms of CD200-CD200R induce diverse outcomes in cancer treatment. Math Biosci 2023; 365:109072. [PMID: 37734537 DOI: 10.1016/j.mbs.2023.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
The CD200 is a cell membrane protein expressed by tumor cells, and its receptor CD200 receptor (CD200R) is expressed by immune cells including macrophages and dendritic cells. The formation of CD200-CD200R inhibits the cellular functions of the targeted immune cells, so CD200 is one type of the immune checkpoint and blockade CD200-CD200R formation is a potential cancer treatment. However, the CD200 blockade has opposite treatment outcomes in different types of cancers. For instance, the CD200R deficient mice have a higher tumor load than the wild type (WT) mice in melanoma suggesting that CD200-CD200R inhibits melanoma. On the other hand, the antibody anti-CD200 treatment in pancreatic ductal adenocarcinoma (PDAC) and head and neck squamous cell carcinoma (HNSCC) significantly reduces the tumor load indicating that CD200-CD200R promotes PDAC and HNSCC. In this work, we hypothesize that different mechanisms of CD200-CD200R in tumor microenvironment could be one of the reasons for the diverse treatment outcomes of CD200 blockade in different types of cancers. We create one Ordinary Differential Equations (ODEs) model for melanoma including the inhibition of CCL8 and regulatory T cells and the switching from M2 to M1 macrophages by CD200-CD200R to capture the tumor inhibition by CD200-CD200R. We also create another ODEs model for PDAC and HNSCC including the promotion of the polarization and suppressive activities of M2 macrophages by CD200-CD200R to generate the tumor promotion by CD200-CD200R. Furthermore, we use these two models to investigate the treatment efficacy of the combination treatment between the CD200-CD200R blockade and the other immune checkpoint inhibitor, anti-PD-1. Our result shows that different mechanisms of CD200-CD200R can induce different treatment outcomes in combination treatments, namely, only the CD200-CD200R blockade reduces tumor load in melanoma and only the anti-PD-1 and CD200 knockout decrease tumor load in PDAC and HNSCC. Moreover, in melanoma, the CD200-CD200R mainly utilizes the inhibitions on M1 macrophages and dendritic cells to inhibit tumor growth, instead of M2 macrophages.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Kenton D Watt
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Tom Protin
- Department of Applied Mathematics, INSA Rennes, France
| |
Collapse
|
8
|
Matsuoka T, Yashiro M. The Role of the Transforming Growth Factor-β Signaling Pathway in Gastrointestinal Cancers. Biomolecules 2023; 13:1551. [PMID: 37892233 PMCID: PMC10605301 DOI: 10.3390/biom13101551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Transforming growth factor-β (TGF-β) has attracted attention as a tumor suppressor because of its potent growth-suppressive effect on epithelial cells. Dysregulation of the TGF-β signaling pathway is considered to be one of the key factors in carcinogenesis, and genetic alterations affecting TGF-β signaling are extraordinarily common in cancers of the gastrointestinal system, such as hereditary nonpolyposis colon cancer and pancreatic cancer. Accumulating evidence suggests that TGF-β is produced from various types of cells in the tumor microenvironment and mediates extracellular matrix deposition, tumor angiogenesis, the formation of CAFs, and suppression of the anti-tumor immune reaction. It is also being considered as a factor that promotes the malignant transformation of cancer, particularly the invasion and metastasis of cancer cells, including epithelial-mesenchymal transition. Therefore, elucidating the role of TGF-β signaling in carcinogenesis, cancer invasion, and metastasis will provide novel basic insight for diagnosis and prognosis and the development of new molecularly targeted therapies for gastrointestinal cancers. In this review, we outline an overview of the complex mechanisms and functions of TGF-β signaling. Furthermore, we discuss the therapeutic potentials of targeting the TGF-β signaling pathway for gastrointestinal cancer treatment and discuss the remaining challenges and future perspectives on targeting this pathway.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
9
|
Zhao Z, Yang W, Kong R, Zhang Y, Li L, Song Z, Chen H, Luo Y, Zhang T, Cheng C, Li G, Liu D, Geng X, Chen H, Wang Y, Pan S, Hu J, Sun B. circEIF3I facilitates the recruitment of SMAD3 to early endosomes to promote TGF-β signalling pathway-mediated activation of MMPs in pancreatic cancer. Mol Cancer 2023; 22:152. [PMID: 37689715 PMCID: PMC10492306 DOI: 10.1186/s12943-023-01847-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/22/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Among digestive tract tumours, pancreatic ductal adenocarcinoma (PDAC) shows the highest mortality trend. Moreover, although PDAC metastasis remains a leading cause of cancer-related deaths, the biological mechanism is poorly understood. Recent evidence demonstrates that circular RNAs (circRNAs) play important roles in PDAC progression. METHODS Differentially expressed circRNAs in normal and PDAC tissues were screened via bioinformatics analysis. Sanger sequencing, RNase R and actinomycin D assays were performed to confirm the loop structure of circEIF3I. In vitro and in vivo functional experiments were conducted to assess the role of circEIF3I in PDAC. MS2-tagged RNA affinity purification, mass spectrometry, RNA immunoprecipitation, RNA pull-down assay, fluorescence in situ hybridization, immunofluorescence and RNA-protein interaction simulation and analysis were performed to identify circEIF3I-interacting proteins. The effects of circEIF3I on the interactions of SMAD3 with TGFβRI or AP2A1 were measured through co-immunoprecipitation and western blotting. RESULTS A microarray data analysis showed that circEIF3I was highly expressed in PDAC cells and correlated with TNM stage and poor prognosis. Functional experiments in vitro and in vivo revealed that circEIF3I accelerated PDAC cells migration, invasion and metastasis by increasing MMPs expression and activity. Mechanistic research indicated that circEIF3I binds to the MH2 domain of SMAD3 and increases SMAD3 phosphorylation by strengthening the interactions between SMAD3 and TGFβRI on early endosomes. Moreover, AP2A1 binds with circEIF3I directly and promotes circEIF3I-bound SMAD3 recruitment to TGFβRI on early endosomes. Finally, we found that circEif3i exerts biological functions in mice similar to those of circEIF3I in humans PDAC. CONCLUSIONS Our study reveals that circEIF3I promotes pancreatic cancer progression. circEIF3I is a molecular scaffold that interacts with SMAD3 and AP2A1 to form a ternary complex, that facilitates the recruitment of SMAD3 to early endosomes and then activates the TGF-β signalling pathway. Hence, circEIF3I is a potential prognostic biomarker and therapeutic target in PDAC.
Collapse
Affiliation(s)
- Zhongjie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Wenbo Yang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yangyang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zengfu Song
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, HarbinHeilongjiang, 150001, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yan Luo
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Tao Zhang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Chundong Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Danxi Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
10
|
Bubin R, Uljanovs R, Strumfa I. Cancer Stem Cells in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24087030. [PMID: 37108193 PMCID: PMC10138709 DOI: 10.3390/ijms24087030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The first discovery of cancer stem cells (CSCs) in leukaemia triggered active research on stemness in neoplastic tissues. CSCs represent a subpopulation of malignant cells, defined by unique properties: a dedifferentiated state, self-renewal, pluripotency, an inherent resistance to chemo- and radiotherapy, the presence of certain epigenetic alterations, as well as a higher tumorigenicity in comparison with the general population of cancer cells. A combination of these features highlights CSCs as a high-priority target during cancer treatment. The presence of CSCs has been confirmed in multiple malignancies, including pancreatic ductal adenocarcinoma, an entity that is well known for its dismal prognosis. As the aggressive course of pancreatic carcinoma is partly attributable to treatment resistance, CSCs could contribute to adverse outcomes. The aim of this review is to summarize the current information regarding the markers and molecular features of CSCs in pancreatic ductal adenocarcinoma and the therapeutic options to remove them.
Collapse
Affiliation(s)
- Roman Bubin
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Romans Uljanovs
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Ilze Strumfa
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| |
Collapse
|
11
|
Pourali G, Zafari N, Velayati M, Mehrabadi S, Maftooh M, Hassanian SM, Mobarhan MG, Ferns GA, Avan A, Khazaei M. Therapeutic Potential of Targeting Transforming Growth Factor-beta (TGF-β) and Programmed Death-ligand 1 (PD-L1) in Pancreatic Cancer. Curr Drug Targets 2023; 24:1335-1345. [PMID: 38053355 DOI: 10.2174/0113894501264450231129042256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
Pancreatic cancer (PC) is one the most lethal malignancies worldwide affecting around half a million individuals each year. The treatment of PC is relatively difficult due to the difficulty in making an early diagnosis. Transforming growth factor-beta (TGF-β) is a multifunctional factor acting as both a tumor promoter in early cancer stages and a tumor suppressor in advanced disease. Programmed death-ligand 1 (PD-L1) is a ligand of programmed death-1 (PD-1), an immune checkpoint receptor, allowing tumor cells to avoid elimination by immune cells. Recently, targeting the TGF-β signaling and PD-L1 pathways has emerged as a strategy for cancer therapy. In this review, we have summarized the current knowledge regarding these pathways and their contribution to tumor development with a focus on PC. Moreover, we have reviewed the role of TGF-β and PD-L1 blockade in the treatment of various cancer types, including PC, and discussed the clinical trials evaluating TGF-β and PD-L1 antagonists in PC patients.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Doctor, Mashhad University of Medical Science, Mashhad, Iran
| | - Nima Zafari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Velayati
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Mehrabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
12
|
Zhang T, Ren Y, Yang P, Wang J, Zhou H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Cell Death Dis 2022; 13:897. [PMID: 36284087 PMCID: PMC9596464 DOI: 10.1038/s41419-022-05351-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a prominent extracellular matrix (ECM) deposition and poor prognosis. High levels of ECM proteins derived from tumour cells reduce the efficacy of conventional cancer treatment paradigms and contribute to tumour progression and metastasis. As abundant tumour-promoting cells in the ECM, cancer-associated fibroblasts (CAFs) are promising targets for novel anti-tumour interventions. Nonetheless, related clinical trials are hampered by the lack of specific markers and elusive differences between CAF subtypes. Here, we review the origins and functional diversity of CAFs and show how they create a tumour-promoting milieu, focusing on the crosstalk between CAFs, tumour cells, and immune cells in the tumour microenvironment. Furthermore, relevant clinical advances and potential therapeutic strategies relating to CAFs are discussed.
Collapse
Affiliation(s)
- Tianyi Zhang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yanxian Ren
- grid.412643.60000 0004 1757 2902Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Pengfei Yang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jufang Wang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Heng Zhou
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
13
|
Bertrand-Chapel A, Caligaris C, Fenouil T, Savary C, Aires S, Martel S, Huchedé P, Chassot C, Chauvet V, Cardot-Ruffino V, Morel AP, Subtil F, Mohkam K, Mabrut JY, Tonon L, Viari A, Cassier P, Hervieu V, Castets M, Mauviel A, Sentis S, Bartholin L. SMAD2/3 mediate oncogenic effects of TGF-β in the absence of SMAD4. Commun Biol 2022; 5:1068. [PMID: 36207615 PMCID: PMC9546935 DOI: 10.1038/s42003-022-03994-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
TGF-β signaling is involved in pancreatic ductal adenocarcinoma (PDAC) tumorigenesis, representing one of the four major pathways genetically altered in 100% of PDAC cases. TGF-β exerts complex and pleiotropic effects in cancers, notably via the activation of SMAD pathways, predominantly SMAD2/3/4. Though SMAD2 and 3 are rarely mutated in cancers, SMAD4 is lost in about 50% of PDAC, and the role of SMAD2/3 in a SMAD4-null context remains understudied. We herein provide evidence of a SMAD2/3 oncogenic effect in response to TGF-β1 in SMAD4-null human PDAC cancer cells. We report that inactivation of SMAD2/3 in SMAD4-negative PDAC cells compromises TGF-β-driven collective migration mediated by FAK and Rho/Rac signaling. Moreover, RNA-sequencing analyses highlight a TGF-β gene signature related to aggressiveness mediated by SMAD2/3 in the absence of SMAD4. Using a PDAC patient cohort, we reveal that SMAD4-negative tumors with high levels of phospho-SMAD2 are more aggressive and have a poorer prognosis. Thus, loss of SMAD4 tumor suppressive activity in PDAC leads to an oncogenic gain-of-function of SMAD2/3, and to the onset of associated deleterious effects. In pancreatic ductal adenocarcinoma cells and patient tissue, SMAD2/3 is shown to mediate oncogenic effects of TGF-β in the absence of SMAD4.
Collapse
Affiliation(s)
- Adrien Bertrand-Chapel
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Cassandre Caligaris
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Tanguy Fenouil
- Hospices Civils de Lyon, Institute of Pathology, Groupement Hospitalier Est, Bron, France.,Ribosome, Translation and Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Clara Savary
- Cell Death and Childhood Cancers Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Labex DevWeCan, Institut Convergence Plascan, Lyon, France
| | - Sophie Aires
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sylvie Martel
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Paul Huchedé
- Cell Death and Childhood Cancers Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Labex DevWeCan, Institut Convergence Plascan, Lyon, France
| | - Christelle Chassot
- EMT and Cancer Cell Plasticity Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Véronique Chauvet
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Victoire Cardot-Ruffino
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Pierre Morel
- EMT and Cancer Cell Plasticity Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Fabien Subtil
- Service de Biostatistiques, Hospices Civils de Lyon, Lyon France, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Villeurbanne, France
| | - Kayvan Mohkam
- Hospices Civils de Lyon, Croix-Rousse University Hospital, Claude Bernard Lyon 1 University, Department of General Surgery & Liver Transplantation, Lyon, France
| | - Jean-Yves Mabrut
- Hospices Civils de Lyon, Croix-Rousse University Hospital, Claude Bernard Lyon 1 University, Department of General Surgery & Liver Transplantation, Lyon, France
| | - Laurie Tonon
- Plateforme de bioinformatique Gilles Thomas, Fondation Lyon Synergie Cancer, Centre Léon Bérard, Lyon, France
| | - Alain Viari
- Plateforme de bioinformatique Gilles Thomas, Fondation Lyon Synergie Cancer, Centre Léon Bérard, Lyon, France
| | - Philippe Cassier
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Département d'oncologie Médicale, unité de phase 1, Centre Léon Bérard, Lyon, France
| | - Valérie Hervieu
- Hospices Civils de Lyon, Institute of Pathology, Groupement Hospitalier Est, Bron, France
| | - Marie Castets
- Cell Death and Childhood Cancers Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Labex DevWeCan, Institut Convergence Plascan, Lyon, France.
| | - Alain Mauviel
- Team "TGF-ß and Oncogenesis", Institut Curie, PSL Research University, INSERM 1021, CNRS 3347, Equipe Labellisée Ligue 2016, 91400, Orsay, France
| | - Stéphanie Sentis
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurent Bartholin
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
14
|
Mathematical modeling for the combination treatment of IFN- γ and anti-PD-1 in cancer immunotherapy. Math Biosci 2022; 353:108911. [PMID: 36150452 DOI: 10.1016/j.mbs.2022.108911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
When the immune-checkpoint programmed death-1 (PD-1) binds to its ligand programmed death ligand 1 (PD-L1) to form the complex PD-1-PD-L1, this complex inactivates immune cells resulting in cell apoptosis, downregulation of immune reaction, and tumor evasion. The antibody, anti-PD-1 or anti-PD-L1, blocks the PD-1-PD-L1 complex formation to restore the functions of T cells. Combination of anti-PD-1 with other treatment shows promising in different types of cancer treatments. Interferon-gamma (IFN-γ) plays an important role in immune responses. It is mainly regarded as a pro-inflammatory cytokine that promotes the proliferation of CD8+ T cell and cytotoxic T cell, enhances the activation of Th1 cells and CD8+ T cells, and enhances tumor elimination. However, recent studies have been discovering many anti-inflammatory functions of IFN-γ, such as promotion of the PD-L1 expression, T cell apoptosis, and tumor metastasis, as well as inhibition of the immune recognition and the killing rates by T cells. In this work, we construct a mathematical model incorporating pro-inflammatory and anti-inflammatory functions of IFN-γ to capture tumor growth under anti-PD-1 treatment in the wild type and IFN-γ null mutant melanoma. Our simulation results qualitatively fit experimental data that IFN-γ null mutant with anti-PD-1 obtains the highest tumor reduction comparing to IFN-γ null mutant without anti-PD-1 and wild type tumor with anti-PD-1 therapy. Moreover, our synergy analysis indicates that, in the combination treatment, the tumor volume decreases as either the dosage of anti-PD-1 increases or the IFN-γ production efficiency decreases. Thus, the combination of anti-PD-1 and IFN-γ blockade improves the tumor reduction comparing to the monotherapy of anti-PD-1 or the monotherapy of IFN-γ blockade. We also find a threshold curve of the minimal dosage of anti-PD-1 corresponding to the IFN-γ production efficiency to ensure the tumor reduction under the presence of IFN-γ.
Collapse
|
15
|
Nisar M, Paracha RZ, Adil S, Qureshi SN, Janjua HA. An Extensive Review on Preclinical and Clinical Trials of Oncolytic Viruses Therapy for Pancreatic Cancer. Front Oncol 2022; 12:875188. [PMID: 35686109 PMCID: PMC9171400 DOI: 10.3389/fonc.2022.875188] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy resistance and peculiar tumor microenvironment, which diminish or mitigate the effects of therapies, make pancreatic cancer one of the deadliest malignancies to manage and treat. Advanced immunotherapies are under consideration intending to ameliorate the overall patient survival rate in pancreatic cancer. Oncolytic viruses therapy is a new type of immunotherapy in which a virus after infecting and lysis the cancer cell induces/activates patients’ immune response by releasing tumor antigen in the blood. The current review covers the pathways and molecular ablation that take place in pancreatic cancer cells. It also unfolds the extensive preclinical and clinical trial studies of oncolytic viruses performed and/or undergoing to design an efficacious therapy against pancreatic cancer.
Collapse
Affiliation(s)
- Maryum Nisar
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sidra Adil
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | | | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
16
|
The Synergistic Cooperation between TGF-β and Hypoxia in Cancer and Fibrosis. Biomolecules 2022; 12:biom12050635. [PMID: 35625561 PMCID: PMC9138354 DOI: 10.3390/biom12050635] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β (TGF-β) is a multifunctional cytokine regulating homeostasis and immune responses in adult animals and humans. Aberrant and overactive TGF-β signaling promotes cancer initiation and fibrosis through epithelial–mesenchymal transition (EMT), as well as the invasion and metastatic growth of cancer cells. TGF-β is a key factor that is active during hypoxic conditions in cancer and is thereby capable of contributing to angiogenesis in various types of cancer. Another potent role of TGF-β is suppressing immune responses in cancer patients. The strong tumor-promoting effects of TGF-β and its profibrotic effects make it a focus for the development of novel therapeutic strategies against cancer and fibrosis as well as an attractive drug target in combination with immune regulatory checkpoint inhibitors. TGF-β belongs to a family of cytokines that exert their function through signaling via serine/threonine kinase transmembrane receptors to intracellular Smad proteins via the canonical pathway and in combination with co-regulators such as the adaptor protein and E3 ubiquitin ligases TRAF4 and TRAF6 to promote non-canonical pathways. Finally, the outcome of gene transcription initiated by TGF-β is context-dependent and controlled by signals exerted by other growth factors such as EGF and Wnt. Here, we discuss the synergistic cooperation between TGF-β and hypoxia in development, fibrosis and cancer.
Collapse
|
17
|
Peng H, Shen J, Long X, Zhou X, Zhang J, Xu X, Huang T, Xu H, Sun S, Li C, Lei P, Wu H, Zhao J. Local Release of TGF-β Inhibitor Modulates Tumor-Associated Neutrophils and Enhances Pancreatic Cancer Response to Combined Irreversible Electroporation and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105240. [PMID: 35128843 PMCID: PMC8981446 DOI: 10.1002/advs.202105240] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/11/2022] [Indexed: 05/09/2023]
Abstract
Pancreatic cancer is a deadly disease with little response to standard therapies. Irreversible electroporation (IRE) has emerged as a novel ablative technique for the clinical treatment of pancreatic cancer. Combinations of IRE and immunotherapies, including anti-programmed death 1 (αPD1) immune checkpoint blockade, have shown promising efficacy in both preclinical and clinical studies. However, tumor recurrence remains an obstacle that needs to be overcome. It herein is shown that IRE induces a substantial infiltration of neutrophils into pancreatic tumors. These neutrophils are then polarized into a protumor phenotype by immunosuppressive cues, in particular transforming growth factor β (TGF-β). Using glutathione-responsive degradable mesoporous silica nanoparticles loaded with SB525334, an inhibitor of TGF-β1 receptor, it is demonstrated that local inhibition of TGF-β within the tumor microenvironment promotes neutrophil polarization into an antitumor phenotype, enhances pancreatic cancer response to combined IRE and αPD1 therapy, and induces long-term antitumor memory. The therapeutic efficacy is also attributed to tumor infiltration by CD8+ cytotoxic T cells, depletion of regulatory T cells, and maturation of antigen-presenting dendritic cells. Thus, modulating neutrophil polarization with nanomedicine is a promising strategy for treating pancreatic cancer.
Collapse
Affiliation(s)
- Huiming Peng
- Department of AnatomySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Jian Shen
- Department of Pancreatic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430022China
| | - Xin Long
- Department of Histology and EmbryologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Xiaoqi Zhou
- Department of ImmunologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Jiaqi Zhang
- Department of AnatomySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Xina Xu
- Department of AnatomySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Teng Huang
- Department of AnatomySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Hui Xu
- Ultrastructural Pathology LaboratoryDepartment of PathologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Shuguo Sun
- Department of AnatomySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Chun Li
- Department of Cancer Systems ImagingUniversity of Texas MD Anderson CancerHoustonTX77030USA
| | - Ping Lei
- Department of ImmunologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Heshui Wu
- Department of Pancreatic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430022China
| | - Jun Zhao
- Department of AnatomySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
- Department of Nuclear Medicine and PETTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
- Cell Architecture Research CenterHuazhong University of Science and TechnologyWuhanHubei Province430030China
| |
Collapse
|
18
|
Antibody therapy in pancreatic cancer: mAb-ye we're onto something? Biochim Biophys Acta Rev Cancer 2021; 1876:188557. [PMID: 33945846 DOI: 10.1016/j.bbcan.2021.188557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer remains an extremely deadly disease, with little improvement seen in treatment or outcomes over the last 40 years. Targeted monoclonal antibody therapy is one area that has been explored in attempts to tackle this disease. This review examines antibodies that have undergone clinical evaluation in pancreatic cancer. These antibodies target a wide variety of molecules, including tumour cell surface, stromal, immune and embryonic pathway targets. We discuss the therapeutic utility of these therapies both as monotherapeutics and in combination with other treatments such as chemotherapy. While antibody therapy for pancreatic cancer has yet to yield significant success, lessons learned from research thus far highlights future directions that may help overcome observed hurdles to yield clinically efficacious results.
Collapse
|
19
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer (PCa) and is expected to be the second most common cause of cancer-associated deaths. The high mortality rate is due to the asymptomatic progression of the clinical features until the advanced stages of the disease and the limited effectiveness of the current therapeutics. Aberrant expression of several microRNAs (miRs/miRNAs) has been related to PDAC progression and thus they could be potential early diagnostic, prognostic, and/or therapeutic predictors for PDAC. miRs are small (18 to 24 nucleotides long) non-coding RNAs, which regulate the expression of key genes by targeting their 3′-untranslated mRNA region. Increased evidence has also suggested that the chemoresistance of PDAC cells is associated with metabolic alterations. Metabolic stress and the dysfunctionality of systems to compensate for the altered metabolic status of PDAC cells is the foundation for cellular damage. Current data have implicated multiple systems as hallmarks of PDAC development, such as glutamine redox imbalance, oxidative stress, and mitochondrial dysfunction. Hence, both the aberrant expression of miRs and dysregulation in metabolism can have unfavorable effects in several biological processes, such as apoptosis, cell proliferation, growth, survival, stress response, angiogenesis, chemoresistance, invasion, and migration. Therefore, due to these dismal statistics, it is crucial to develop beneficial therapeutic strategies based on an improved understanding of the biology of both miRs and metabolic mediators. This review focuses on miR-mediated pathways and therapeutic resistance mechanisms in PDAC and evaluates the impact of metabolic alterations in the progression of PDAC.
Collapse
|
20
|
Peptidylarginine Deiminase Inhibitor Application, Using Cl-Amidine, PAD2, PAD3 and PAD4 Isozyme-Specific Inhibitors in Pancreatic Cancer Cells, Reveals Roles for PAD2 and PAD3 in Cancer Invasion and Modulation of Extracellular Vesicle Signatures. Int J Mol Sci 2021; 22:ijms22031396. [PMID: 33573274 PMCID: PMC7866560 DOI: 10.3390/ijms22031396] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with limited survival rate. Roles for peptidylarginine deiminases (PADs) have been studied in relation to a range of cancers with roles in epigenetic regulation (including histone modification and microRNA regulation), cancer invasion, and extracellular vesicle (EV) release. Hitherto though, knowledge on PADs in PDAC is limited. In the current study, two PDAC cell lines (Panc-1 and MiaPaCa-2) were treated with pan-PAD inhibitor Cl-amidine as well as PAD2, PAD3, and PAD4 isozyme-specific inhibitors. Effects were assessed on changes in EV signatures, including EV microRNA cargo (miR-21, miR-126, and miR-221), on changes in cellular protein expression relevant for pancreatic cancer progression and invasion (moesin), for mitochondrial housekeeping (prohibitin, PHB), and gene regulation (deiminated histone H3, citH3). The two pancreatic cancer cell lines were found to predominantly express PAD2 and PAD3, which were furthermore expressed at higher levels in Panc-1, compared with MiaPaCa-2 cells. PAD2 isozyme-specific inhibitor had the strongest effects on reducing Panc-1 cell invasion capability, which was accompanied by an increase in moesin expression, which in pancreatic cancer is found to be reduced and associated with pancreatic cancer aggressiveness. Some reduction, but not significant, was also found on PHB levels while effects on histone H3 deimination were variable. EV signatures were modulated in response to PAD inhibitor treatment, with the strongest effects observed for PAD2 inhibitor, followed by PAD3 inhibitor, showing significant reduction in pro-oncogenic EV microRNA cargo (miR-21, miR-221) and increase in anti-oncogenic microRNA cargo (miR-126). While PAD2 inhibitor, followed by PAD3 inhibitor, had most effects on reducing cancer cell invasion, elevating moesin expression, and modulating EV signatures, PAD4 inhibitor had negligible effects and pan-PAD inhibitor Cl-amidine was also less effective. Compared with MiaPaCa-2 cells, stronger modulatory effects for the PAD inhibitors were observed in Panc-1 cells, which importantly also showed strong response to PAD3 inhibitor, correlating with previous observations that Panc-1 cells display neuronal/stem-like properties. Our findings report novel PAD isozyme regulatory roles in PDAC, highlighting roles for PAD isozyme-specific treatment, depending on cancer type and cancer subtypes, including in PDAC.
Collapse
|
21
|
Stoica AF, Chang CH, Pauklin S. Molecular Therapeutics of Pancreatic Ductal Adenocarcinoma: Targeted Pathways and the Role of Cancer Stem Cells. Trends Pharmacol Sci 2020; 41:977-993. [PMID: 33092892 DOI: 10.1016/j.tips.2020.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in humans due to late detection and highly metastatic characteristics. PDAC cells vary in their tumorigenic capabilities with the presence of a subset of PDAC cells known as pancreatic cancer stem cells (CSCs), which are more resistant to currently used therapeutics. Here, we describe the role of CSCs and tumour stroma in developing therapeutic strategies for PDAC and suggest that developmental plasticity could be considered a hallmark of cancers. We provide an overview of the molecular targets in PDAC treatments, including targeted therapies of cellular processes such as proliferation, evasion of growth suppressors, activating metastasis, and metabolic effects. Since PDAC is an inflammation-driven cancer, we also revisit therapeutic strategies targeting inflammation and immunotherapy. Lastly, we suggest that targeting epigenetic mechanisms opens therapeutic routes for heterogeneous cancer cell populations, including CSCs.
Collapse
Affiliation(s)
- Andrei-Florian Stoica
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
22
|
Garcia PE, Scales MK, Allen BL, Pasca di Magliano M. Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells 2020; 9:E2464. [PMID: 33198201 PMCID: PMC7698149 DOI: 10.3390/cells9112464] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extensive fibroinflammatory microenvironment that accumulates from the onset of disease progression. Cancer-associated fibroblasts (CAFs) are a prominent cellular component of the stroma, but their role during carcinogenesis remains controversial, with both tumor-supporting and tumor-restraining functions reported in different studies. One explanation for these contradictory findings is the heterogeneous nature of the fibroblast populations, and the different roles each subset might play in carcinogenesis. Here, we review the current literature on the origin and function of pancreatic fibroblasts, from the developing organ to the healthy adult pancreas, and throughout the initiation and progression of PDA. We also discuss clinical approaches to targeting fibroblasts in PDA.
Collapse
Affiliation(s)
- Paloma E. Garcia
- Program in Molecular and Cellular Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Sakamoto T, Yagyu T, Uchinaka E, Miyatani K, Hanaki T, Kihara K, Matsunaga T, Yamamoto M, Tokuyasu N, Honjo S, Fujiwara Y. Sarcopenia as a prognostic factor in patients with recurrent pancreatic cancer: a retrospective study. World J Surg Oncol 2020; 18:221. [PMID: 32828127 PMCID: PMC7443294 DOI: 10.1186/s12957-020-01981-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Background Sarcopenia is a prognostic factor in various cancers. However, the impact of sarcopenia in patients with recurrent pancreatic cancer remains unclear. This study evaluated the prognostic significance of sarcopenia in patients with recurrent pancreatic cancer. Methods Seventy-four patients who developed postoperative recurrence of pancreatic cancer after undergoing pancreatectomies were enrolled. Sarcopenia in these patients was defined according to the psoas muscle index (PMI) measured via computed tomography at the third vertebra. Results The mean PMIs at the time of recurrence were 4.47 ± 1.27 cm2/m2 for men and 3.26 ± 0.70 cm2/m2 for women. Of the 74 patients, 65 (87.8%) were diagnosed with sarcopenia with low PMI. The 2-year post-recurrence survival curve in the sarcopenia group was significantly worse than that in the non-sarcopenia group (P = 0.034). Multivariate analysis revealed that sarcopenia at the time of recurrence was an independent prognostic factor (P = 0.043) along with a high neutrophil-to-lymphocyte ratio (P = 0.004), early recurrence (P = 0.001), and chemotherapy after recurrence (P = 0.005) in patients with recurrent pancreatic cancer. Furthermore, the area under the curve (AUC) of the combination of sarcopenia and time to recurrence for predicting 2-year survival was 0.763, which was much higher than that of sarcopenia alone (AUC = 0.622). Conclusions Sarcopenia is a useful prognostic factor in patients with recurrent pancreatic cancer. The combination of sarcopenia and time of recurrence may more accurately predict post-recurrence survival than can sarcopenia alone.
Collapse
Affiliation(s)
- Teruhisa Sakamoto
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan.
| | - Takuki Yagyu
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Ei Uchinaka
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Kozo Miyatani
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Takehiko Hanaki
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Kyoichi Kihara
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Tomoyuki Matsunaga
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Manabu Yamamoto
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Naruo Tokuyasu
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Soichiro Honjo
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Yoshiyuki Fujiwara
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| |
Collapse
|
24
|
R269C variant of ESR1: high prevalence and differential function in a subset of pancreatic cancers. BMC Cancer 2020; 20:531. [PMID: 32513126 PMCID: PMC7282172 DOI: 10.1186/s12885-020-07005-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background Estrogen receptor α (ESR1) plays a critical role in promoting growth of various cancers. Yet, its role in the development of pancreatic cancer is not well-defined. A less studied region of ESR1 is the hinge region, connecting the ligand binding and DNA domains. rs142712646 is a rare SNP in ESR1, which leads to a substitution of arginine to cysteine at amino acid 269 (R269C). The mutation is positioned in the hinge region of ESR1, hence may affect the receptor structure and function. We aimed to characterize the activity of R269C-ESR1 and study its role in the development of pancreatic cancer. Methods Transcriptional activity was evaluated by E2-response element (ERE) and AP1 –luciferase reporter assays and qRT-PCR. Proliferation and migration were assessed using MTT and wound healing assays. Gene-expression analysis was performed using RNAseq. Results We examined the presence of this SNP in various malignancies, using the entire database of FoundationOne and noted enrichment of it in a subset of pancreatic non-ductal adenocarcinoma (n = 2800) compared to pancreatic ductal adenocarcinoma (PDAC) as well as other tumor types (0.53% vs 0.29%, p = 0.02). Studies in breast and pancreatic cancer cells indicated cell type-dependent activity of ESR1 harboring R269C. Thus, expression of R269C-ESR1 enhanced proliferation and migration of PANC-1 and COLO-357 pancreatic cancer cells but not of MCF-7 breast cancer cells. Moreover, R269C-ESR1 enhanced E2-response elements (ERE) and AP1-dependent transcriptional activity and increased mRNA levels of ERE and AP1-regulated genes in pancreatic cancer cell lines, but had a modest effect on MCF-7 breast cancer cells. Accordingly, whole transcriptome analysis indicated alterations of genes associated with tumorigenicity in pancreatic cancer cells and upregulation of genes associated with cell metabolism and hormone biosynthesis in breast cancer cells. Conclusions Our study shed new light on the role of the hinge region in regulating transcriptional activity of the ER and indicates cell-type specific activity, namely increased activity in pancreatic cancer cells but reduced activity in breast cancer cells. While rare, the presence of rs142712646 may serve as a novel genetic risk factor, and a possible target for therapy in a subset of non-ductal pancreatic cancers.
Collapse
|
25
|
Weidle UH, Birzele F, Nopora A. Pancreatic Ductal Adenocarcinoma: MicroRNAs Affecting Tumor Growth and Metastasis in Preclinical In Vivo Models. Cancer Genomics Proteomics 2020; 16:451-464. [PMID: 31659100 DOI: 10.21873/cgp.20149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023] Open
Abstract
Patients with pancreatic ductal adenocarcinoma have a dismall prognosis because at the time of diagnosis, in the vast majority of patients the tumor has already disseminated to distant organs and the therapeutic benefit of approved agents such as gemcitabine is limited. Therefore, the identification and preclinical and clinical validation of therapeutic agents covering new targets is of paramount importance. In this review we have summarized microRNAs and corresponding targets which affect growth and metastasis of pancreatic tumors in preclinical mouse in vivo models. We identified four up-regulated and 16 down-regulated miRs in PDAC in comparison to corresponding normal tissues. Three sub-categories of miRs have emerged: miRs affecting tumor growth and miRs with an impact on both, tumor growth and metastasis or metastasis only. Finally, we discuss technical and therapeutic aspects of miR-related therapeutic agents for the treatment of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Adam Nopora
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
26
|
Manda G, Rojo AI, Martínez-Klimova E, Pedraza-Chaverri J, Cuadrado A. Nordihydroguaiaretic Acid: From Herbal Medicine to Clinical Development for Cancer and Chronic Diseases. Front Pharmacol 2020; 11:151. [PMID: 32184727 PMCID: PMC7058590 DOI: 10.3389/fphar.2020.00151] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Nordihydroguaiaretic acid (NDGA) is a phenolic lignan obtained from Larrea tridentata, the creosote bush found in Mexico and USA deserts, that has been used in traditional medicine for the treatment of numerous diseases such as cancer, renal, cardiovascular, immunological, and neurological disorders, and even aging. NDGA presents two catechol rings that confer a very potent antioxidant activity by scavenging oxygen free radicals and this may explain part of its therapeutic action. Additional effects include inhibition of lipoxygenases (LOXs) and activation of signaling pathways that impinge on the transcription factor Nuclear Factor Erythroid 2-related Factor (NRF2). On the other hand, the oxidation of the catechols to the corresponding quinones my elicit alterations in proteins and DNA that raise safety concerns. This review describes the current knowledge on NDGA, its targets and side effects, and its synthetic analogs as promising therapeutic agents, highlighting their mechanism of action and clinical projection towards therapy of neurodegenerative, liver, and kidney disease, as well as cancer.
Collapse
Affiliation(s)
- Gina Manda
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| | - Elena Martínez-Klimova
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Antonio Cuadrado
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| |
Collapse
|
27
|
Park H, Bang J, Nam A, Park JE, Jin MH, Bang Y, Oh D. The prognostic role of soluble TGF-beta and its dynamics in unresectable pancreatic cancer treated with chemotherapy. Cancer Med 2020; 9:43-51. [PMID: 31701645 PMCID: PMC6943145 DOI: 10.1002/cam4.2677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/22/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Transforming growth factor-beta (TGF-β) is a multifunctional regulatory factor. Here we measured serum soluble TGF-β (sTGF-β) levels and evaluated its dynamics and prognostic capabilities during chemotherapy in unresectable pancreatic cancer patients. METHODS We prospectively enrolled 60 patients treated with FOLFIRINOX as the first-line palliative chemotherapy. We collected blood samples at the time of diagnosis, first response assessment, and disease progression and measured serum sTGF-β using an enzyme-linked immunosorbent assay. RESULTS The patients' median overall survival (OS) and progression-free survival (PFS) were 10.3 (95% confidence interval [CI], 8.5-12.1) and 6.5 (95% CI, 4.9-8.1) months, respectively. Patients with low sTGF-β at diagnosis (<31.2 ng/mL) had better OS and PFS than patients with high sTGF-β, respectively, (OS, 13.7 vs 9.2 months; hazard ratio [HR], 2.602; P = .004; PFS, 9.0 vs 5.8 months; HR, 2.010; P = .034). At the time of disease progression, sTGF-β was increased compared with that of diagnosis (mean, 26.4 vs 23.9 ng/mL). In particular, sTGF-β was significantly increased at disease progression in patients with a partial response (mean, 25.7 vs 31.0 ng/mL; P = .049). CONCLUSIONS Pretreatment sTGF-β levels can serve as a prognostic indicator in unresectable pancreatic cancer patients treated with FOLFIRINOX chemotherapy. Likewise, the dynamics of sTGF-β during chemotherapy have prognostic value.
Collapse
Affiliation(s)
- Hyunkyung Park
- Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
| | - Ju‐Hee Bang
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
| | - Ah‐Rong Nam
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
| | - Ji Eun Park
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
| | - Mei Hua Jin
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
| | - Yung‐Jue Bang
- Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
| | - Do‐Youn Oh
- Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
| |
Collapse
|
28
|
Correlation of TNF-α and TGF-β polymorphisms with protein levels in pancreatic ductal adenocarcinoma and colorectal cancer. Contemp Oncol (Pozn) 2019; 23:214-219. [PMID: 31992953 PMCID: PMC6978761 DOI: 10.5114/wo.2019.91537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/22/2019] [Indexed: 01/19/2023] Open
Abstract
Aim of the study To determine the correlation of protein serum levels of two cytokines and their polymorphisms, which have an influence on their expression. Material and methods The study group consisted of 65 patients (33 men, 31 women) who met the criteria for inclusion and exclusion of pancreatic cancer, and 41 patients (25 men, 16 women) with colorectal cancer. The control group consisted of 100 healthy volunteers (63 men, 37 women). Detection of polymorphisms was performed using TaqMan probes, and concentration of proteins by ELISA method. Results The mean TNF-α concentration in patients with colorectal cancer was significantly higher compared to the control group, p< 0.0001. A statistically significant difference was noted when comparing both study groups, p = 0.0009. The analyses show that the occurrence of the polymorphic genotype -308AA of the TNF-α gene was not correlated with the increased concentration of the examined protein in patients with both pancreatic and colorectal cancer. It was also noted that the concentration of TGF-β protein was significantly higher in patients with colorectal cancer than in patients with pancreatic cancer. These results also proved to be statistically significant, p = 0.0353. Conclusions The only statistically significant effects were the correlations between patients belonging to a specific group (pancreatic cancer/colorectal cancer/control) and average protein levels. There was no effect of sex or genotype on the occurrence of elevated levels of TNF-α and TGF-β protein control, despite their variability in particular types of cancer.
Collapse
|
29
|
Boguslawska J, Kryst P, Poletajew S, Piekielko-Witkowska A. TGF-β and microRNA Interplay in Genitourinary Cancers. Cells 2019; 8:E1619. [PMID: 31842336 PMCID: PMC6952810 DOI: 10.3390/cells8121619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Genitourinary cancers (GCs) include a large group of different types of tumors localizing to the kidney, bladder, prostate, testis, and penis. Despite highly divergent molecular patterns, most GCs share commonly disturbed signaling pathways that involve the activity of TGF-β (transforming growth factor beta). TGF-β is a pleiotropic cytokine that regulates key cancer-related molecular and cellular processes, including proliferation, migration, invasion, apoptosis, and chemoresistance. The understanding of the mechanisms of TGF-β actions in cancer is hindered by the "TGF-β paradox" in which early stages of cancerogenic process are suppressed by TGF-β while advanced stages are stimulated by its activity. A growing body of evidence suggests that these paradoxical TGF-β actions could result from the interplay with microRNAs: Short, non-coding RNAs that regulate gene expression by binding to target transcripts and inducing mRNA degradation or inhibition of translation. Here, we discuss the current knowledge of TGF-β signaling in GCs. Importantly, TGF-β signaling and microRNA-mediated regulation of gene expression often act in complicated feedback circuits that involve other crucial regulators of cancer progression (e.g., androgen receptor). Furthermore, recently published in vitro and in vivo studies clearly indicate that the interplay between microRNAs and the TGF-β signaling pathway offers new potential treatment options for GC patients.
Collapse
Affiliation(s)
- Joanna Boguslawska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education; 01-813 Warsaw, Poland;
| | - Piotr Kryst
- II Department of Urology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (P.K.); (S.P.)
| | - Slawomir Poletajew
- II Department of Urology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (P.K.); (S.P.)
| | | |
Collapse
|
30
|
Mok L, Kim Y, Lee S, Choi S, Lee S, Jang JY, Park T. HisCoM-PAGE: Hierarchical Structural Component Models for Pathway Analysis of Gene Expression Data. Genes (Basel) 2019; 10:E931. [PMID: 31739607 PMCID: PMC6896173 DOI: 10.3390/genes10110931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023] Open
Abstract
Although there have been several analyses for identifying cancer-associated pathways, based on gene expression data, most of these are based on single pathway analyses, and thus do not consider correlations between pathways. In this paper, we propose a hierarchical structural component model for pathway analysis of gene expression data (HisCoM-PAGE), which accounts for the hierarchical structure of genes and pathways, as well as the correlations among pathways. Specifically, HisCoM-PAGE focuses on the survival phenotype and identifies its associated pathways. Moreover, its application to real biological data analysis of pancreatic cancer data demonstrated that HisCoM-PAGE could successfully identify pathways associated with pancreatic cancer prognosis. Simulation studies comparing the performance of HisCoM-PAGE with other competing methods such as Gene Set Enrichment Analysis (GSEA), Global Test, and Wald-type Test showed HisCoM-PAGE to have the highest power to detect causal pathways in most simulation scenarios.
Collapse
Affiliation(s)
- Lydia Mok
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Yongkang Kim
- Department of Statistics, Seoul National University, Seoul 08826, Korea
| | - Sungyoung Lee
- Center for Precision Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Sungkyoung Choi
- Department of Applied Mathematics, Hanyang University (ERICA), Ansan 15588, Korea
| | - Seungyeoun Lee
- Department of Mathematics and Statistics, Sejong University, Seoul 05006, Korea
| | - Jin-Young Jang
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
- Department of Statistics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
31
|
Huang H, Zhang Y, Gallegos V, Sorrelle N, Zaid MM, Toombs J, Du W, Wright S, Hagopian M, Wang Z, Hosein AN, Sathe AA, Xing C, Koay EJ, Driscoll KE, Brekken RA. Targeting TGFβR2-mutant tumors exposes vulnerabilities to stromal TGFβ blockade in pancreatic cancer. EMBO Mol Med 2019; 11:e10515. [PMID: 31609088 PMCID: PMC6835203 DOI: 10.15252/emmm.201910515] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022] Open
Abstract
TGFβ is important during pancreatic ductal adenocarcinoma (PDA) progression. Canonical TGFβ signaling suppresses epithelial pancreatic cancer cell proliferation; as a result, inhibiting TGFβ has not been successful in PDA. In contrast, we demonstrate that inhibition of stromal TGFβR2 reduces IL‐6 production from cancer‐associated fibroblasts, resulting in a reduction of STAT3 activation in tumor cells and reversion of the immunosuppressive landscape. Up to 7% of human PDA have tumor cell‐specific deficiency in canonical TGFβ signaling via loss of TGFβR2. We demonstrate that in PDA that harbors epithelial loss of TGFβR2, inhibition of TGFβ signaling is selective for stromal cells and results in a therapeutic benefit. Our study highlights the potential benefit of TGFβ blockade in PDA and the importance of stratifying PDA patients who might benefit from such therapy.
Collapse
Affiliation(s)
- Huocong Huang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuqing Zhang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Valerie Gallegos
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Noah Sorrelle
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohamed Medhat Zaid
- Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Toombs
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wenting Du
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven Wright
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Moriah Hagopian
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhaoning Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Abdel Nasser Hosein
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adwait Amod Sathe
- McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eugene J Koay
- Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
32
|
Alvarez MA, Freitas JP, Mazher Hussain S, Glazer ES. TGF-β Inhibitors in Metastatic Pancreatic Ductal Adenocarcinoma. J Gastrointest Cancer 2019; 50:207-213. [PMID: 30891677 DOI: 10.1007/s12029-018-00195-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancerrelated mortality in the USA, and the overall incidence of the disease is increasing such that it is expected to be the third leading cause of cancer-related deaths in the next decade. Minimal improvements in therapy have not changed the overall mortality rate over the past decade for patients with PDAC. The purpose of this review is to identify new data regardign the role of Transforming growth factor beta (TGF-β) based therapeuics in patients with PDAC. METHODS The literature was searched for peer reviewed manuscripts regarding the use of TGF-β inhibitors in PDAC therapy and the mechanism in which TGF-β intracellular signaling effects patient survival. RESULTS TGF-β plays a vital, context-dependent role as both a tumor suppressor and promoter of PDAC. The downstream effects of this duality play a significant role in the immunologic response of the tumor microenvironment (TME), epithelial-mesenchymal transformation (EMT), and the development of metastatic disease. Immunologic pathways have been shown to be successful targets in the treatment of other diseases, though they have not been shown efficacious in PDAC. TGF-β-mediated EMT does play a critical role in PDAC progression in the development of metastases. The use of anti-TGF-β-based therapies in phase I and II clinical trials for metastatic PDAC demonstrate the importance of understanding the role of TGF-β in PDAC progression. CONCLUSION This review clarifies the recent literature investigating the role of anti-TGF-β-based therapy in PDAC and areas ripe for targeted investigations and therapies.
Collapse
Affiliation(s)
- Marcus A Alvarez
- Department of Surgery, University of Tennessee Health Science Center, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | - Júlia Pedó Freitas
- Department of Surgery, University of Tennessee Health Science Center, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | - S Mazher Hussain
- Department of Surgery, University of Tennessee Health Science Center, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | - Evan S Glazer
- Department of Surgery, University of Tennessee Health Science Center, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA.
| |
Collapse
|
33
|
LncRNA XIST enhanced TGF-β2 expression by targeting miR-141-3p to promote pancreatic cancer cells invasion. Biosci Rep 2019; 39:BSR20190332. [PMID: 31213574 PMCID: PMC6603275 DOI: 10.1042/bsr20190332] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/30/2019] [Accepted: 06/12/2019] [Indexed: 11/17/2022] Open
Abstract
The level of expression of long non-coding RNA (LncRNA) X-inactive specific transcript (XIST) is up-regulated in pancreatic cancer (PC). However, the role of XIST in PC and the underlying mechanism are still unknown. The present study aimed to elucidate how XIST participates in PC and its potential target, miR-141-3p. We detected the XIST expression in PC tissues and cells by qRT-PCR. Cell proliferation was measured using a CCK8 kit, and the migration and invasion of cells was measured by Transwell assay. Silencing XIST and miR-141-3p was performed with transfection by Lipofectamine kit. Binding assay was conducted by luciferase reporter assay. Protein expression was examined by Western blot. These results indicate that (i) XIST is highly expressed in tumor tissues while miR-141-3p is down-regulated. (ii) Silencing XIST inhibits the pancreatic cell proliferation, migration and invasion. (iii) MiR-141-3p inhibitor alleviates the inhibitory effect by siXIST in PC cell lines. (iv) MiR-141-3p directly interacts with XIST and also negatively regulates transforming growth factor-β 2 (TGF-β2) expression. (v) Overexpression of XIST attenuates the inhibition of TGF-β2 expression by miR-141-3p. The conclusion, is that XIST could promote proliferation, migration and invasion of PC cells via miR-141-5p/TGF-β2 axis.
Collapse
|
34
|
Weng CC, Hsieh MJ, Wu CC, Lin YC, Shan YS, Hung WC, Chen LT, Cheng KH. Loss of the transcriptional repressor TGIF1 results in enhanced Kras-driven development of pancreatic cancer. Mol Cancer 2019; 18:96. [PMID: 31109321 PMCID: PMC6526617 DOI: 10.1186/s12943-019-1023-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/02/2019] [Indexed: 02/23/2023] Open
Abstract
Background The TG-interacting factor 1 (TGIF1) gene, which encodes a nuclear transcriptional corepressor of the TGFβ1/Smad signaling pathway, has been implicated in the pathogenesis of various types of human cancer; however, its role in pancreatic ductal adenocarcinoma (PDAC) has yet to be elucidated. Methods The expression of TGIF1 in human and murine PDAC specimens were detected by IHC analysis. The functions of TGIF1 in in vivo PDAC growth, dissemination, and metastasis were assessed using conditional inactivation of TGIF1 in well-established autochthonous mouse models of PDAC. Primary cells from TGIF1 null or wild type PDAC mice were examined by assays for cell proliferation, migration, invasion, soft agar and xenograft tumorigenesis. Gene expression profiling, pathway analyses, epigenetic changes associated with TGIF1 loss, and in vitro and in vivo effects of 4-MU were assessed. Results Conditional deletion of TGIF1 in the mouse pancreas had no discernible effect on pancreatic development or physiology. Notably, TGIF1 loss induced KrasG12D-driven PDAC models exhibited shorter latency and greater propensity for distant metastases. Deciphering the molecular mechanisms highlighted the TGIF1 loss-induced activation of the hyaluronan synthase 2 (HAS2)-CD44 signaling pathway and upregulation of the immune checkpoint regulator PD-L1 to facilitate the epithelial–mesenchymal transition (EMT) and tumor immune suppression. We also founded that TGIF1 might function as an epigenetic regulator and response for aberrant EMT gene expression during PDAC progression. Conclusions Our results imply that targeting the HAS2 pathway in TGIF1 loss of PDAC could be a promising therapeutic strategy for improving the clinical efficacy against PDAC metastasis. Electronic supplementary material The online version of this article (10.1186/s12943-019-1023-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ching-Chieh Weng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Mei-Jen Hsieh
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.,Division of Neurology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, 802, Taiwan
| | - Chia-Chen Wu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Yu-Chun Lin
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Yan-Shen Shan
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan. .,National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan. .,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
35
|
Zou C, Fan J, He M, Xu Y, Wang K, Cai Y, Li M. Epigenetic silencing of Rab39a promotes epithelial to mesenchymal transition of cervical cancer through AKT signaling. Exp Cell Res 2019; 378:139-148. [PMID: 30826396 DOI: 10.1016/j.yexcr.2019.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 11/24/2022]
Abstract
The objective of this study was to investigate the functional role of Rab39a in human cervical cancer (CC) and the underlying molecular mechanisms. We first measured Rab39a mRNA expression in CC tissues and paired non-tumor tissues by quantitative real-time PCR (QRT-PCR). Overall survival of CC patients with different mRNA levels of Rab39a in The Cancer Genome Atlas (TCGA) database was assessed by Kaplan-Meier survival curves analysis. Next methylation-specific PCR (MSP) was performed to determine the expression mechanism of Rab39a. Then cell proliferation, migration and invasion of Rab39a-transfected or mock-transfected cervical cancer cells were determined by CCK-8, flow cytometry, wound healing, transwell migration and invasion assays, respectively. Finally, the molecular mechanism by which Rab39a modulated CC cell epithelial-mesenchymal transition (EMT) was explored. It was found that Rab39a mRNA was significantly down-regulated in the high-risk patients compared to the low-risk patients (p = 0.0054). Six of seven cancer tissues with lymph node metastasis express low Rab39a mRNA compared to the surrounding non-tumor tissues. Cervical cancer patients with low level of Rab39a were showed a poorly clinical outcome (p = 0.004). Loss of Rab39a expression in cervical cancer tissues was associated with the aberrant DNA methylation in the promoter of Rab39a gene. Disrupted Rab39a expression in cervical cancer cells could be restored after treatment with the demethylated agent 5-Aza-2'-deoxycytidine. Furthermore, it was found that Rab39a hardly influenced cell growth but significantly suppressed cell migration, invasion and EMT process. Rab39a exerted its potential suppressor functions through inhibiting AKT phosphorylation. The inhibition effects of Rab39a could be blocked by AKT pathway inhibitor. Collectively, our data shows that Rab39a is a potential epigenetic silenced tumor suppressor inhibiting cancer invasion and migration through modulating the AKT signaling.
Collapse
Affiliation(s)
- Chun Zou
- Department of Immunology, College of Basic Medical Science, Central South University, Changsha, Hunan 410008, PR China
| | - Jielin Fan
- Department of Gynecologic Tumor, Affiliated Cancer Hospital of Central South University, Changsha, Hunan 410013, PR China
| | - Mei He
- Department of Immunology, College of Basic Medical Science, Central South University, Changsha, Hunan 410008, PR China
| | - Yan Xu
- Department of Immunology, College of Basic Medical Science, Central South University, Changsha, Hunan 410008, PR China
| | - Kangtao Wang
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yubo Cai
- Department of Immunology, College of Basic Medical Science, Central South University, Changsha, Hunan 410008, PR China
| | - Ming Li
- Department of Immunology, College of Basic Medical Science, Central South University, Changsha, Hunan 410008, PR China.
| |
Collapse
|
36
|
Liao QS, Du Q, Lou J, Xu JY, Xie R. Roles of Na +/Ca 2+ exchanger 1 in digestive system physiology and pathophysiology. World J Gastroenterol 2019; 25:287-299. [PMID: 30686898 PMCID: PMC6343099 DOI: 10.3748/wjg.v25.i3.287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023] Open
Abstract
The Na+/Ca2+ exchanger (NCX) protein family is a part of the cation/Ca2+ exchanger superfamily and participates in the regulation of cellular Ca2+ homeostasis. NCX1, the most important subtype in the NCX family, is expressed widely in various organs and tissues in mammals and plays an especially important role in the physiological and pathological processes of nerves and the cardiovascular system. In the past few years, the function of NCX1 in the digestive system has received increasing attention; NCX1 not only participates in the healing process of gastric ulcer and gastric mucosal injury but also mediates the development of digestive cancer, acute pancreatitis, and intestinal absorption. This review aims to explore the roles of NCX1 in digestive system physiology and pathophysiology in order to guide clinical treatments.
Collapse
Affiliation(s)
- Qiu-Shi Liao
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Jing-Yu Xu
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
37
|
Abstract
Several challenges present themselves when discussing current approaches to the prevention or treatment of pancreatic cancer. Up to 45% of the risk of pancreatic cancer is attributed to unknown causes, making effective prevention programs difficult to design. The most common type of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), is generally diagnosed at a late stage, leading to a poor prognosis and 5-year survival estimate. PDAC tumors are heterogeneous, leading to many identified cell subtypes within one patient’s primary tumor. This explains why there is a high frequency of tumors that are resistant to standard treatments, leading to high relapse rates. This review will discuss how epigenetic technologies and epigenome-wide association studies have been used to address some of these challenges and the future promises these approaches hold.
Collapse
Affiliation(s)
- Rahul R Singh
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; (R.R.S.); (K.M.R.)
| | - Katie M Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; (R.R.S.); (K.M.R.)
| | - Rick J Jansen
- Department of Public Health, North Dakota State University, Fargo, ND 58102, USA
- Biostatistics Core Facility, North Dakota State University, Fargo, ND 58102, USA
- Center for Immunization Research and Education, North Dakota State University, Fargo, ND 58102, USA
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
38
|
Neutralizing TGF-β promotes anti-tumor immunity of dendritic cells against pancreatic cancer by regulating T lymphocytes. Cent Eur J Immunol 2018; 43:123-131. [PMID: 30135623 PMCID: PMC6102619 DOI: 10.5114/ceji.2018.77381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022] Open
Abstract
Previous fundamental or clinical trials of dendritic cell (DC) vaccine against pancreatic ductal adenocarcinoma (PDAC) revealed the burgeoning neoadjuvant immunotherapy. Microarray studies indicated that multiple ingredients of the transfer growth factor beta (TGF-β) pathway were overexpressed in PDAC, which inhibited the intratumoral immune response. To explore whether the DC volume in tumor microenvironment contributes to the differentiation of T cell cohort and test the hypothesis that combining DC vaccine with TGF-β inhibitors will elevate the anti-tumor immune response, we managed to co-culture T cells in vitro with pancreatic cancer cells and DCs in different concentrations, and combine TGF-β blockage with DC vaccine therapy in a murine model of pancreatic cancer. In in vitro studies, we discovered that CD8+ T cytotoxic cell (Tc) presented a significant advantage and lower volume of CD4+ T helper cell (Th) existed with a certain elevated DC concentration (p < 0.05), associated with declined interleukin (IL)-10 and increased interferon (IFN)-γ, which suggested with the DC volume increasing, the enhancing immune effect may represent a great advantage in such a system (p < 0.05). When interfered with anti-TGF-β antibody or TGF-β cytokine, respectively, in the co-culture system, we found IFN-γ producing was extremely higher and T cell apoptosis relatively descent with TGF-β blockage (p < 0.05). The murine PDAC model demonstrated a survival advantage treated with anti-TGF-β antibody combined with DC vaccine when compared with monotherapy controls (p < 0.05). Therefore, these findings indicated that, through neutralizing TGF-β associated with DC vaccine, the anti-tumor immunity is highly elevated and this combinational therapy will provide an efficacious prospect.
Collapse
|
39
|
Yang T, Zhang X, Ma C, Chen Y. TGF-β/Smad3 pathway enhances the cardio-protection of S1R/SIPR1 in in vitro ischemia-reperfusion myocardial cell model. Exp Ther Med 2018; 16:178-184. [PMID: 29896238 PMCID: PMC5995059 DOI: 10.3892/etm.2018.6192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023] Open
Abstract
Ischemia-reperfusion (IR) injury is usually associated with a high risk of cardiomyocyte death in patients with acute myocardial infarction. Sphingosine 1-phosphate (S1P) and transforming growth factor (TGF)-β are thought to be involved in the protection of cardiomyocyte and heart function following IR-induced injury. However, the possible association of S1P and S1P receptor 1 (S1PR1) with the TGF-β/Smad3 pathway as the potential protective mechanism has remained to be investigated. In the present study, an in vitro ischemia/reperfusion injury model was established and evaluated by analysis of apoptosis, lactate dehydrogenase (LDH) release and caspase3 activity. The mRNA and protein levels of S1PR1, TGF-β and Smad3 after treatment with 1 µM S1P alone or combined with 0.4 µM W146 (a specific S1PR1 antagonist) were assessed. The mRNA expression of five S1PRs (S1PR1-5) and the protein levels of S1PR1 were also assayed following treatment with 1 ng/ml TGF-β for 0, 4 or 24 h. The mRNA expression of S1PR1 and the levels of S1P were further assessed following exposure to 10 µM SB4 (TGFβR1 inhibitor) plus 1 ng/ml TGF-β and 2 µM SIS3 (Smad3 inhibitor) plus 1 ng/ml TGF-β. The results indicated that apoptosis, LDH release and caspase3 activity were all increased in the established IR model. Exogenous S1P increased the mRNA and protein levels of S1PR1, TGF-β and Smad3, which was abolished by addition of W146. Extraneous TGF-β resulted in the stimulation of several S1PRs, most prominently of S1PR1, while supplementation with SB4 and SIS3 offset the stimulation by TGF-β. These results suggested that the TGF-β/Smad3 pathway was closely associated with S1P/S1PR1 in the protection of myocardial cells from IR injury.
Collapse
Affiliation(s)
- Tingfang Yang
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Xianfeng Zhang
- Department of Psychiatry, Jining Mental Health Hospital/Daizhuang Hospital of Shandong, Jining, Shandong 272051, P.R. China
| | - Cuimei Ma
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yan Chen
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
40
|
Papapanagiotou A, Sgourakis G, Karkoulias K, Raptis D, Parkin E, Brotzakis P, Panchal S, Papavassiliou AG. Osteonectin as a screening marker for pancreatic cancer: A prospective study. J Int Med Res 2018; 46:2769-2779. [PMID: 29756486 PMCID: PMC6124255 DOI: 10.1177/0300060518772413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective Osteonectin plays a central role in various processes during the development of pancreatic adenocarcinoma. This prospective pilot study was performed to determine the feasibility of serum osteonectin as a screening tool for pancreatic cancer. Methods Blood samples were collected from 15 consecutive patients with newly diagnosed pancreatic cancer and 30 matched healthy controls. Serum osteonectin was measured using an osteonectin enzyme-linked immunosorbent assay kit. The primary outcomes were the diagnostic performance of serum osteonectin and the threshold value for differentiation of patients from controls. Results The median/quartile range of serum osteonectin in patients and controls were 306.8/288.5 ng/mL and 67.5/39.8 ng/mL, respectively. Osteonectin concentrations significantly differed among the study groups. A plasma osteonectin concentration of >100.18 ng/mL as selected by the receiver operating characteristic curves demonstrated an estimated area under the curve of 86% for prediction of pancreatic cancer. Tumour size was a significant predictor of serum osteonectin. A statistically significant difference in serum osteonectin between T1/T2 and T3/T4 tumours was found. Post-hoc comparisons revealed statistically significant differences in the serum osteonectin among the control, T1/T2, and T3/T4 groups. Conclusion Osteonectin may be used as a screening tool for pancreatic cancer, although this must be validated in prospective studies.
Collapse
Affiliation(s)
- Angeliki Papapanagiotou
- 1 National and Kapodistrian University of Athens, Medical School, Department of Biological Chemistry, Athens, Greece
| | - George Sgourakis
- 2 2nd Department of Surgery and Surgical Oncology Unit of Red Cross Hospital, Athens, Greece.,3 Department of Surgery, Furness General Hospital, University Hospitals of Morecambe Bay, Barrow-in-Furness, UK
| | - Kyriakos Karkoulias
- 2 2nd Department of Surgery and Surgical Oncology Unit of Red Cross Hospital, Athens, Greece
| | - Dimitris Raptis
- 2 2nd Department of Surgery and Surgical Oncology Unit of Red Cross Hospital, Athens, Greece
| | - Edward Parkin
- 4 Faculty of Health and Medicine, Furness College, Lancaster University, Lancaster, UK
| | - Pantelis Brotzakis
- 2 2nd Department of Surgery and Surgical Oncology Unit of Red Cross Hospital, Athens, Greece
| | - Sanjay Panchal
- 3 Department of Surgery, Furness General Hospital, University Hospitals of Morecambe Bay, Barrow-in-Furness, UK
| | - Athanasios G Papavassiliou
- 1 National and Kapodistrian University of Athens, Medical School, Department of Biological Chemistry, Athens, Greece
| |
Collapse
|
41
|
Park S, Yang KM, Park Y, Hong E, Hong CP, Park J, Pang K, Lee J, Park B, Lee S, An H, Kwak MK, Kim J, Kang JM, Kim P, Xiao Y, Nie G, Ooshima A, Kim SJ. Identification of Epithelial-Mesenchymal Transition-related Target Genes Induced by the Mutation of Smad3 Linker Phosphorylation. J Cancer Prev 2018; 23:1-9. [PMID: 29629343 PMCID: PMC5886489 DOI: 10.15430/jcp.2018.23.1.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/02/2022] Open
Abstract
Background Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. Methods We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. Results In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2, SNAI1, and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B, CTGF, and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. Conclusions These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B, CTGF, and JUNB genes in various cancers.
Collapse
Affiliation(s)
- Sujin Park
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Kyung-Min Yang
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Yuna Park
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea.,Department of Biomedical Science, College of Life Science, CHA University, CHA Bio Complex, Seongnam, Korea
| | - Eunji Hong
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | | | - Jinah Park
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Kyoungwha Pang
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea.,Department of Biomedical Science, College of Life Science, CHA University, CHA Bio Complex, Seongnam, Korea
| | - Jihee Lee
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea.,Department of Biomedical Science, College of Life Science, CHA University, CHA Bio Complex, Seongnam, Korea
| | - Bora Park
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Siyoung Lee
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Haein An
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Mi-Kyung Kwak
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Junil Kim
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Jin Muk Kang
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Pyunggang Kim
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea.,Department of Biomedical Science, College of Life Science, CHA University, CHA Bio Complex, Seongnam, Korea
| | - Yang Xiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Akira Ooshima
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea.,Theragen Etex Bio Institute, Suwon, Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Korea
| |
Collapse
|
42
|
Matkar PN, Singh KK, Rudenko D, Kim YJ, Kuliszewski MA, Prud'homme GJ, Hedley DW, Leong-Poi H. Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget 2018; 7:69489-69506. [PMID: 27542226 PMCID: PMC5342493 DOI: 10.18632/oncotarget.11060] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an intense fibrotic reaction termed tumor desmoplasia, which is in part responsible for its aggressiveness. Endothelial cells have been shown to display cellular plasticity in the form of endothelial-to-mesenchymal transition (EndMT) that serves as an important source of fibroblasts in pathological disorders, including cancer. Angiogenic co-receptor, neuropilin-1 (NRP-1) actively binds TGFβ1, the primary mediator of EndMT and is involved in oncogenic processes like epithelial-to-mesenchymal transition (EMT). NRP-1 and TGFβ1 signaling have been shown to be aberrantly up-regulated in PDAC. We report herein a positive correlation between NRP-1 levels, EndMT and fibrosis in human PDAC xenografts. Loss of NRP-1 in HUVECs limited TGFβ1-induced EndMT as demonstrated by gain of endothelial and loss of mesenchymal markers, while maintaining endothelial cell architecture. Knockdown of NRP-1 down-regulated TGFβ canonical signaling (pSMAD2) and associated pro-fibrotic genes. Overexpression of NRP-1 exacerbated TGFβ1-induced EndMT and up-regulated TGFβ signaling and expression of pro-fibrotic genes. In vivo, loss of NRP-1 attenuated tumor perfusion and size, accompanied by reduction in EndMT and fibrosis. This study defines a previously unrecognized role of NRP-1 in regulating TGFβ1-induced EndMT and fibrosis, and advocates NRP-1 as a therapeutic target to reduce tumor fibrosis and PDAC progression.
Collapse
Affiliation(s)
- Pratiek N Matkar
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Krishna Kumar Singh
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada.,Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Dmitriy Rudenko
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Yu Jin Kim
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Michael A Kuliszewski
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Gerald J Prud'homme
- Division of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - David W Hedley
- Division of Medical Oncology and Hematology, Ontario Cancer Institute, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, Toronto, Canada
| | - Howard Leong-Poi
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
43
|
Grover P, Nath S, Nye MD, Zhou R, Ahmad M, Mukherjee P. SMAD4-independent activation of TGF-β signaling by MUC1 in a human pancreatic cancer cell line. Oncotarget 2018; 9:6897-6910. [PMID: 29467938 PMCID: PMC5805524 DOI: 10.18632/oncotarget.23966] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) has a mortality rate that nearly matches its incidence rate. Transforming Growth Factor Beta (TGF-β) is a cytokine with a dual role in tumor development switching from a tumor suppressor to a tumor promoter. There is limited knowledge of how TGF-β function switches during tumorigenesis. Mucin 1 (MUC1) is an aberrantly glycosylated, membrane-bound, glycoprotein that is overexpressed in >80% of PDA cases and is associated with poor prognosis. In PDA, MUC1 promotes tumor progression and metastasis via signaling through its cytoplasmic tail (MUC1-CT) and interacting with other oncogenic signaling molecules. We hypothesize that high levels of MUC1 in PDA may be partly responsible for the TGF-β functional switch during oncogenesis. We report that overexpression of MUC1 in BxPC3 human PDA cells (BxPC3.MUC1) enhances the induction of epithelial to mesenchymal transition leading to increased invasiveness in response to exogenous TGF-β1. Simultaneously, these cells resist TGF-β induced apoptosis by downregulating levels of cleaved caspases. We show that mutating the tyrosines in MUC1-CT to phenylalanine reverses the TGF-β induced invasiveness. This suggests that the tyrosine residues in MUC1-CT are required for TGF-β induced invasion. Some of these tyrosines are phosphorylated by the tyrosine kinase c-Src. Thus, treatment of BxPC3.MUC1 cells with a c-Src inhibitor (PP2) significantly reduces TGF-β induced invasiveness. Similar observations were confirmed in the Chinese hamster ovarian (CHO) cell line. Data strongly suggests that MUC1 may regulate TGF-β function in PDA cells and thus have potential clinical relevance in the use of TGF-β inhibitors in clinical trials.
Collapse
Affiliation(s)
- Priyanka Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Sritama Nath
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Monica D. Nye
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Mohammad Ahmad
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| |
Collapse
|
44
|
Mazza T, Copetti M, Capocefalo D, Fusilli C, Biagini T, Carella M, De Bonis A, Mastrodonato N, Piepoli A, Pazienza V, Maiello E, di Mola FF, di Sebastiano P, Andriulli A, Tavano F. MicroRNA co-expression networks exhibit increased complexity in pancreatic ductal compared to Vater's papilla adenocarcinoma. Oncotarget 2017; 8:105320-105339. [PMID: 29285254 PMCID: PMC5739641 DOI: 10.18632/oncotarget.22184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/11/2017] [Indexed: 01/06/2023] Open
Abstract
MiRNA expression abnormalities in adenocarcinoma arising from pancreatic ductal system (PDAC) and Vater's papilla (PVAC) could be associated with distinctive pathologic features and clinical cancer behaviours. Our previous miRNA expression profiling data on PDAC (n=9) and PVAC (n=4) were revaluated to define differences/similarities in miRNA expression patterns. Afterwards, in order to uncover target genes and core signalling pathways regulated by specific miRNAs in these two tumour entities, miRNA interaction networks were wired for each tumour entity, and experimentally validated target genes underwent pathways enrichment analysis. One hundred and one miRNAs were altered, mainly over-expressed, in PDAC samples. Twenty-six miRNAs were deregulated in PVAC samples, where more miRNAs were down-expressed in tumours compared to normal tissues. Four miRNAs were significantly altered in both subgroups of patients, while 27 miRNAs were differentially expressed between PDAC and PVAC. Although miRNA interaction networks were more complex and dense in PDAC than in PVAC, pathways enrichment analysis uncovered a functional overlapping between PDAC and PVAC. However, shared signalling events were influenced by different miRNA and/or genes in the two tumour entities. Overall, specific miRNA expression patterns were involved in the regulation of a limited core signalling pathways in the biology landscape of PDAC and PVAC.
Collapse
Affiliation(s)
- Tommaso Mazza
- Unit of Bioinformatics, Research Hospital, San Giovanni Rotondo 71013, Italy
| | | | - Daniele Capocefalo
- Unit of Bioinformatics, Research Hospital, San Giovanni Rotondo 71013, Italy
- Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Rome 00161, Italy
| | - Caterina Fusilli
- Unit of Bioinformatics, Research Hospital, San Giovanni Rotondo 71013, Italy
| | - Tommaso Biagini
- Unit of Bioinformatics, Research Hospital, San Giovanni Rotondo 71013, Italy
| | - Massimo Carella
- Medical Genetics Unit, Research Hospital, San Giovanni Rotondo 71013, Italy
| | - Antonio De Bonis
- Department of Surgery, Research Hospital, San Giovanni Rotondo 71013, Italy
| | | | - Ada Piepoli
- Division of Gastroenterology and Research Laboratory, San Giovanni Rotondo 71013, Italy
| | - Valerio Pazienza
- Division of Gastroenterology and Research Laboratory, San Giovanni Rotondo 71013, Italy
| | - Evaristo Maiello
- Department of Oncology IRCCS “Casa Sollievo della Sofferenza”, Research Hospital, San Giovanni Rotondo 71013, Italy
| | | | | | - Angelo Andriulli
- Division of Gastroenterology and Research Laboratory, San Giovanni Rotondo 71013, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, San Giovanni Rotondo 71013, Italy
| |
Collapse
|
45
|
Elaskalani O, Falasca M, Moran N, Berndt MC, Metharom P. The Role of Platelet-Derived ADP and ATP in Promoting Pancreatic Cancer Cell Survival and Gemcitabine Resistance. Cancers (Basel) 2017; 9:cancers9100142. [PMID: 29064388 PMCID: PMC5664081 DOI: 10.3390/cancers9100142] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022] Open
Abstract
Platelets have been demonstrated to be vital in cancer epithelial-mesenchymal transition (EMT), an important step in metastasis. Markers of EMT are associated with chemotherapy resistance. However, the association between the development of chemoresistance, EMT, and the contribution of platelets to the process, is still unclear. Here we report that platelets regulate the expression of (1) human equilibrative nucleoside transporter 1 (hENT1) and (2) cytidine deaminase (CDD), markers of gemcitabine resistance in pancreatic cancer. Human ENT1 (hENT1) is known to enable cellular uptake of gemcitabine while CDD deactivates gemcitabine. Knockdown experiments demonstrate that Slug, a mesenchymal transcriptional factor known to be upregulated during EMT, regulates the expression of hENT1 and CDD. Furthermore, we demonstrate that platelet-derived ADP and ATP regulate Slug and CDD expression in pancreatic cancer cells. Finally, we demonstrate that pancreatic cancer cells express the purinergic receptor P2Y12, an ADP receptor found mainly on platelets. Thus ticagrelor, a P2Y12 inhibitor, was used to examine the potential therapeutic effect of an ADP receptor antagonist on cancer cells. Our data indicate that ticagrelor negated the survival signals initiated in cancer cells by platelet-derived ADP and ATP. In conclusion, our results demonstrate a novel role of platelets in modulating chemoresistance in pancreatic cancer. Moreover, we propose ADP/ATP receptors as additional potential drug targets for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Omar Elaskalani
- Platelet Research Laboratory, School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia.
| | - Niamh Moran
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Michael C Berndt
- Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia.
| | - Pat Metharom
- Platelet Research Laboratory, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia.
| |
Collapse
|
46
|
TGF-β in pancreatic cancer initiation and progression: two sides of the same coin. Cell Biosci 2017; 7:39. [PMID: 28794854 PMCID: PMC5545849 DOI: 10.1186/s13578-017-0168-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is highly lethal malignant tumor with characterised rapid progression, invasiveness and resistance to radiochemotherapy. Transforming growth factor-β (TGF-β) signaling plays a dual role in both pro-tumorigenic and tumor suppressive of pancreatic cancer, depending on tumor stage and microenvironment. TGF-β signaling components alteration are common in pancreatic cancer, and its leading role in tumor formation and metastases has received increased attention. Many therapies have investigated to target TGF-β signaling in the preclinical and clinical setting. In this review, we highlight the dual roles of TGF-β and touch upon the perspectives on therapeutic target of TGF-β signaling in pancreatic cancer.
Collapse
|
47
|
Amar D, Izraeli S, Shamir R. Utilizing somatic mutation data from numerous studies for cancer research: proof of concept and applications. Oncogene 2017; 36:3375-3383. [PMID: 28092680 PMCID: PMC5485176 DOI: 10.1038/onc.2016.489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
Large cancer projects measure somatic mutations in thousands of samples, gradually assembling a catalog of recurring mutations in cancer. Many methods analyze these data jointly with auxiliary information with the aim of identifying subtype-specific results. Here, we show that somatic gene mutations alone can reliably and specifically predict cancer subtypes. Interpretation of the classifiers provides useful insights for several biomedical applications. We analyze the COSMIC database, which collects somatic mutations from The Cancer Genome Atlas (TCGA) as well as from many smaller scale studies. We use multi-label classification techniques and the Disease Ontology hierarchy in order to identify cancer subtype-specific biomarkers. Cancer subtype classifiers based on TCGA and the smaller studies have comparable performance, and the smaller studies add a substantial value in terms of validation, coverage of additional subtypes, and improved classification. The gene sets of the classifiers are used for threefold contribution. First, we refine the associations of genes to cancer subtypes and identify novel compelling candidate driver genes. Second, using our classifiers we successfully predict the primary site of metastatic samples. Third, we provide novel hypotheses regarding detection of subtype-specific synthetic lethality interactions. From the cancer research community perspective, our results suggest that curation efforts, such as COSMIC, have great added and complementary value even in the era of large international cancer projects.
Collapse
Affiliation(s)
- D Amar
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - S Izraeli
- Department of Pediatric Hematology-Oncology, Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - R Shamir
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
48
|
Zeng Y, Rucki AA, Che X, Zheng L. Shifting paradigm of developing biologics for the treatment of pancreatic adenocarcinoma. J Gastrointest Oncol 2017; 8:441-448. [PMID: 28736631 DOI: 10.21037/jgo.2016.10.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pancreatic adenocarcinoma is still widely considered as a deadly disease even though there are substantial therapeutic developments in the past decade. Using combinational chemotherapy regimens, represented by gemcitabine plus nab-paclitaxel and FOLFIRINOX, was able to improve overall survival in patients with advanced disease to a limited extent. It has been a challenge to develop targeted therapies that are focused on the neoplasm cells of pancreatic adenocarcinoma. Recently, targeting the stroma and immune compartments of pancreatic adenocarcinoma has shown promising results. The paradigm of biologics drug development therefore has been shifted by extending to these exciting areas. Although some of the preclinical and clinical researches in targeting the tumor microenvironment of pancreatic adenocarcinoma have shown promising results, others have resulted in controversial findings. Both comprehensive and in-depth researches on the basic science of the tumor microenvironment of pancreatic adenocarcinoma are thus warranted for the development of effective biologics that target the tumor microenvironment. Moreover, an ideal treatment for pancreatic adenocarcinoma shall be a combination of targeting both neoplastic cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Medical Oncology, Geisinger Medical Center, Danville, PA 17822, USA
| | - Agnieszka A Rucki
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xu Che
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Abdominal Surgery, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
49
|
Allam A, Thomsen AR, Gothwal M, Saha D, Maurer J, Brunner TB. Pancreatic stellate cells in pancreatic cancer: In focus. Pancreatology 2017; 17:514-522. [PMID: 28601475 DOI: 10.1016/j.pan.2017.05.390] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
Abstract
Pancreatic stellate cells are stromal cells that have multiple physiological functions such as the production of extracellular matrix, stimulation of amylase secretion, phagocytosis and immunity. In pancreatic cancer, stellate cells exhibit a different myofibroblastic-like morphology with the expression of alpha-smooth muscle actin, the activated form is engaged in several mechanisms that support tumorigenesis and cancer invasion and progression. In contrast to the aforementioned observations, eliminating the stromal cells that are positive for alpha-smooth muscle actin resulted in immune-evasion of the cancer cells and resulted in worse prognosis in animal models. Understanding the cancer-stromal signaling in pancreatic adenocarcinoma will provide novel strategies for therapy. Here we provide an updated review of studies that handle the topic "pancreatic stellate cells in cancer" and recent experimental approaches that can be the base for future directions in therapy.
Collapse
Affiliation(s)
- A Allam
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; Clinical Oncology and Nuclear Medicine Department, Assiut University Hospitals, Egypt
| | - A R Thomsen
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Gothwal
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - D Saha
- Department of Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - J Maurer
- Department of Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - T B Brunner
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
50
|
Mody HR, Hung SW, Pathak RK, Griffin J, Cruz-Monserrate Z, Govindarajan R. miR-202 Diminishes TGFβ Receptors and Attenuates TGFβ1-Induced EMT in Pancreatic Cancer. Mol Cancer Res 2017; 15:1029-1039. [PMID: 28373289 DOI: 10.1158/1541-7786.mcr-16-0327] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/24/2016] [Accepted: 03/29/2017] [Indexed: 12/15/2022]
Abstract
Previous studies in our laboratory identified that 3-deazaneplanocin A (DZNep), a carbocyclic adenosine analog and histone methyl transferase inhibitor, suppresses TGFβ-induced epithelial-to-mesenchymal (EMT) characteristics. In addition, DZNep epigenetically reprograms miRNAs to regulate endogenous TGFβ1 levels via miR-663/4787-mediated RNA interference (Mol Cancer Res. 2016 Sep 13. pii: molcanres.0083.2016) (1). Although DZNep also attenuates exogenous TGFβ-induced EMT response, the mechanism of this inhibition was unclear. Here, DZNep induced miR-202-5p to target both TGFβ receptors, TGFBR1 and TGFBR2, for RNA interference and thereby contributes to the suppression of exogenous TGFβ-induced EMT in pancreatic cancer cells. Lentiviral overexpression of miR-202 significantly reduced the protein levels of both TGFβ receptors and suppressed TGFβ signaling and EMT phenotypic characteristics of cultured parenchymal pancreatic cancer cells. Consistently, transfection of anti-miRNAs against miR-202-5p resulted in increased TGFBR1 and TGFBR2 protein expressions and induced EMT characteristics in these cells. In stellate pancreatic cells, miR-202 overexpression slowed growth as well as reduced stromal extracellular membrane matrix protein expression. In orthotopic pancreatic cancer mouse models, both immunodeficient and immunocompetent, miR-202 reduced tumor burden and metastasis. Together, these findings demonstrate an alternative mechanism of DZNep in suppressing TGFβ signaling at the receptor level and uncover the EMT-suppressing role of miR-202 in pancreatic cancer.Implications: These findings support the possibility of combining small molecule-based (e.g., DZNep analogs) or large molecule-based (e.g., miRNAs) epigenetic modifiers with conventional nucleoside analogs (e.g., gemcitabine, capecitabine) to improve the antimetastatic potential of current pancreatic cancer therapy. Mol Cancer Res; 15(8); 1029-39. ©2017 AACR.
Collapse
Affiliation(s)
- Hardik R Mody
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, Ohio.,Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia
| | - Sau Wai Hung
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia
| | - Rakesh K Pathak
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, Ohio
| | - Jazmine Griffin
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia
| | - Zobeida Cruz-Monserrate
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, Ohio. .,Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia.,The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|