1
|
Imoto Y, Xue J, Luo L, Raychaudhuri S, Itoh K, Ma Y, Craft GE, Kwan AH, Ogunmowo TH, Ho A, Mackay JP, Ha T, Watanabe S, Robinson PJ. Dynamin 1xA interacts with Endophilin A1 via its spliced long C-terminus for ultrafast endocytosis. EMBO J 2024; 43:3327-3357. [PMID: 38907032 PMCID: PMC11329700 DOI: 10.1038/s44318-024-00145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024] Open
Abstract
Dynamin 1 mediates fission of endocytic synaptic vesicles in the brain and has two major splice variants, Dyn1xA and Dyn1xB, which are nearly identical apart from the extended C-terminal region of Dyn1xA. Despite a similar set of binding partners, only Dyn1xA is enriched at endocytic zones and accelerates vesicle fission during ultrafast endocytosis. Here, we report that Dyn1xA achieves this localization by preferentially binding to Endophilin A1 through a newly defined binding site within its long C-terminal tail extension. Endophilin A1 binds this site at higher affinity than the previously reported site, and the affinity is determined by amino acids within the Dyn1xA tail but outside the binding site. This interaction is regulated by the phosphorylation state of two serine residues specific to the Dyn1xA variant. Dyn1xA and Endophilin A1 colocalize in patches near the active zone, and mutations disrupting Endophilin A binding to the long tail cause Dyn1xA mislocalization and stalled endocytic pits on the plasma membrane during ultrafast endocytosis. Together, these data suggest that the specificity for ultrafast endocytosis is defined by the phosphorylation-regulated interaction of Endophilin A1 with the C-terminal extension of Dyn1xA.
Collapse
Affiliation(s)
- Yuuta Imoto
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jing Xue
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Locked Bag 23, Wentworthville, 2145, NSW, Australia
| | - Lin Luo
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ye Ma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - George E Craft
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Locked Bag 23, Wentworthville, 2145, NSW, Australia
| | - Ann H Kwan
- School of Life and Environmental Sciences and Sydney Nano Institute, University of Sydney, Camperdown, NSW, Australia
| | - Tyler H Ogunmowo
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Annie Ho
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Taekjip Ha
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Locked Bag 23, Wentworthville, 2145, NSW, Australia.
| |
Collapse
|
2
|
Kontaxi C, Ivanova D, Davenport EC, Kind PC, Cousin MA. Epilepsy-Related CDKL5 Deficiency Slows Synaptic Vesicle Endocytosis in Central Nerve Terminals. J Neurosci 2023; 43:2002-2020. [PMID: 36759195 PMCID: PMC10027047 DOI: 10.1523/jneurosci.1537-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe early-onset epileptic encephalopathy resulting mainly from de novo mutations in the X-linked CDKL5 gene. To determine whether loss of presynaptic CDKL5 function contributes to CDD, we examined synaptic vesicle (SV) recycling in primary hippocampal neurons generated from Cdkl5 knockout rat males. Using a genetically encoded reporter, we revealed that CDKL5 is selectively required for efficient SV endocytosis. We showed that CDKL5 kinase activity is both necessary and sufficient for optimal SV endocytosis, since kinase-inactive mutations failed to correct endocytosis in Cdkl5 knockout neurons, whereas the isolated CDKL5 kinase domain fully restored SV endocytosis kinetics. Finally, we demonstrated that CDKL5-mediated phosphorylation of amphiphysin 1, a putative presynaptic target, is not required for CDKL5-dependent control of SV endocytosis. Overall, our findings reveal a key presynaptic role for CDKL5 kinase activity and enhance our insight into how its dysfunction may culminate in CDD.SIGNIFICANCE STATEMENT Loss of cyclin-dependent kinase like 5 (CDKL5) function is a leading cause of monogenic childhood epileptic encephalopathy. However, information regarding its biological role is scarce. In this study, we reveal a selective presynaptic role for CDKL5 in synaptic vesicle endocytosis and that its protein kinase activity is both necessary and sufficient for this role. The isolated protein kinase domain is sufficient to correct this loss of function, which may facilitate future gene therapy strategies if presynaptic dysfunction is proven to be central to the disorder. It also reveals that a CDKL5-specific substrate is located at the presynapse, the phosphorylation of which is required for optimal SV endocytosis.
Collapse
Affiliation(s)
- Christiana Kontaxi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Daniela Ivanova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| |
Collapse
|
3
|
Atas-Ozcan H, Brault V, Duchon A, Herault Y. Dyrk1a from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome. Genes (Basel) 2021; 12:1833. [PMID: 34828439 PMCID: PMC8624927 DOI: 10.3390/genes12111833] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Down syndrome is the main cause of intellectual disabilities with a large set of comorbidities from developmental origins but also that appeared across life span. Investigation of the genetic overdosage found in Down syndrome, due to the trisomy of human chromosome 21, has pointed to one main driver gene, the Dual-specificity tyrosine-regulated kinase 1A (Dyrk1a). Dyrk1a is a murine homolog of the drosophila minibrain gene. It has been found to be involved in many biological processes during development and in adulthood. Further analysis showed its haploinsufficiency in mental retardation disease 7 and its involvement in Alzheimer's disease. DYRK1A plays a role in major developmental steps of brain development, controlling the proliferation of neural progenitors, the migration of neurons, their dendritogenesis and the function of the synapse. Several strategies targeting the overdosage of DYRK1A in DS with specific kinase inhibitors have showed promising evidence that DS cognitive conditions can be alleviated. Nevertheless, providing conditions for proper temporal treatment and to tackle the neurodevelopmental and the neurodegenerative aspects of DS across life span is still an open question.
Collapse
Affiliation(s)
- Helin Atas-Ozcan
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
- Université de Strasbourg, CNRS, INSERM, Celphedia, Phenomin-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| |
Collapse
|
4
|
Zhang P, Zhang Z, Fu Y, Zhang Y, Washburn MP, Florens L, Wu M, Huang C, Hou Z, Mohan M. K63-linked ubiquitination of DYRK1A by TRAF2 alleviates Sprouty 2-mediated degradation of EGFR. Cell Death Dis 2021; 12:608. [PMID: 34117217 PMCID: PMC8196033 DOI: 10.1038/s41419-021-03887-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Dual specificity tyrosine phosphorylation regulated kinase 1A, DYRK1A, functions in multiple cellular pathways, including signaling, endocytosis, synaptic transmission, and transcription. Alterations in dosage of DYRK1A leads to defects in neurogenesis, cell growth, and differentiation, and may increase the risk of certain cancers. DYRK1A localizes to a number of subcellular structures including vesicles where it is known to phosphorylate a number of proteins and regulate vesicle biology. However, the mechanism by which it translocates to vesicles is poorly understood. Here we report the discovery of TRAF2, an E3 ligase, as an interaction partner of DYRK1A. Our data suggest that TRAF2 binds to PVQE motif residing in between the PEST and histidine repeat domain (HRD) of DYRK1A protein, and mediates K63-linked ubiquitination of DYRK1A. This results in translocation of DYRK1A to the vesicle membrane. DYRK1A increases phosphorylation of Sprouty 2 on vesicles, leading to the inhibition of EGFR degradation, and depletion of TRAF2 expression accelerates EGFR degradation. Further, silencing of DYRK1A inhibits the growth of glioma cells mediated by TRAF2. Collectively, these findings suggest that the axis of TRAF2-DYRK1A-Sprouty 2 can be a target for new therapeutic development for EGFR-mediated human pathologies.
Collapse
Affiliation(s)
- Pengshan Zhang
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yinkun Fu
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MI, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MI, USA
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Min Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhaoyuan Hou
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Man Mohan
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Martínez-Cué C, Rueda N. Signalling Pathways Implicated in Alzheimer's Disease Neurodegeneration in Individuals with and without Down Syndrome. Int J Mol Sci 2020; 21:E6906. [PMID: 32962300 PMCID: PMC7555886 DOI: 10.3390/ijms21186906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Down syndrome (DS), the most common cause of intellectual disability of genetic origin, is characterized by alterations in central nervous system morphology and function that appear from early prenatal stages. However, by the fourth decade of life, all individuals with DS develop neuropathology identical to that found in sporadic Alzheimer's disease (AD), including the development of amyloid plaques and neurofibrillary tangles due to hyperphosphorylation of tau protein, loss of neurons and synapses, reduced neurogenesis, enhanced oxidative stress, and mitochondrial dysfunction and neuroinflammation. It has been proposed that DS could be a useful model for studying the etiopathology of AD and to search for therapeutic targets. There is increasing evidence that the neuropathological events associated with AD are interrelated and that many of them not only are implicated in the onset of this pathology but are also a consequence of other alterations. Thus, a feedback mechanism exists between them. In this review, we summarize the signalling pathways implicated in each of the main neuropathological aspects of AD in individuals with and without DS as well as the interrelation of these pathways.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain;
| | | |
Collapse
|
6
|
Bonnycastle K, Davenport EC, Cousin MA. Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle. J Neurochem 2020; 157:179-207. [PMID: 32378740 DOI: 10.1111/jnc.15035] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
The activity-dependent fusion, retrieval and recycling of synaptic vesicles is essential for the maintenance of neurotransmission. Until relatively recently it was believed that most mutations in genes that were essential for this process would be incompatible with life, because of this fundamental role. However, an ever-expanding number of mutations in this very cohort of genes are being identified in individuals with neurodevelopmental disorders, including autism, intellectual disability and epilepsy. This article will summarize the current state of knowledge linking mutations in presynaptic genes to neurodevelopmental disorders by sequentially covering the various stages of the synaptic vesicle life cycle. It will also discuss how perturbations of specific stages within this recycling process could translate into human disease. Finally, it will also provide perspectives on the potential for future therapy that are targeted to presynaptic function.
Collapse
Affiliation(s)
- Katherine Bonnycastle
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
De Toma I, Ortega M, Aloy P, Sabidó E, Dierssen M. DYRK1A Overexpression Alters Cognition and Neural-Related Proteomic Pathways in the Hippocampus That Are Rescued by Green Tea Extract and/or Environmental Enrichment. Front Mol Neurosci 2019; 12:272. [PMID: 31803016 PMCID: PMC6873902 DOI: 10.3389/fnmol.2019.00272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, is the most common genetic cause of intellectual disability. We recently discovered that green tea extracts containing epigallocatechin-3-gallate (EGCG) improve cognition in mice transgenic for Dyrk1a (TgDyrk1A) and in a trisomic DS mouse model (Ts65Dn). Interestingly, paired with cognitive stimulation, green tea has beneficial pro-cognitive effects in DS individuals. Dual Specificity Tyrosine-Phosphorylation-Regulated Kinase 1A (DYRK1A) is a major candidate to explain the cognitive phenotypes of DS, and inhibiting its activity is a promising pro-cognitive therapy. DYRK1A kinase activity can be normalized in the hippocampus of transgenic DYRK1A mice administering green tea extracts, but also submitting the animals to environmental enrichment (EE). However, many other mechanisms could also explain the pro-cognitive effects of green tea extracts and EE. To underpin the overall alterations arising upon DYRK1A overexpression and the molecular processes underneath the pro-cognitive effects, we used quantitative proteomics. We investigated the hippocampal (phospho)proteome in basal conditions and after treatment with a green tea extract containing EGCG and/or EE in TgDyrk1A and control mice. We found that Dyrk1A overexpression alters protein and phosphoprotein levels of key postsynaptic and plasticity-related pathways and that these alterations were rescued upon the cognitive enhancer treatments.
Collapse
Affiliation(s)
- Ilario De Toma
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mireia Ortega
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Proteomic Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mara Dierssen
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| |
Collapse
|
8
|
Neuronal overexpression of Alzheimer's disease and Down's syndrome associated DYRK1A/minibrain gene alters motor decline, neurodegeneration and synaptic plasticity in Drosophila. Neurobiol Dis 2019; 125:107-114. [PMID: 30703437 PMCID: PMC6419573 DOI: 10.1016/j.nbd.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/12/2018] [Accepted: 01/25/2019] [Indexed: 11/24/2022] Open
Abstract
Down syndrome (DS) is characterised by abnormal cognitive and motor development, and later in life by progressive Alzheimer's disease (AD)-like dementia, neuropathology, declining motor function and shorter life expectancy. It is caused by trisomy of chromosome 21 (Hsa21), but how individual Hsa21 genes contribute to various aspects of the disorder is incompletely understood. Previous work has demonstrated a role for triplication of the Hsa21 gene DYRK1A in cognitive and motor deficits, as well as in altered neurogenesis and neurofibrillary degeneration in the DS brain, but its contribution to other DS phenotypes is unclear. Here we demonstrate that overexpression of minibrain (mnb), the Drosophila ortholog of DYRK1A, in the Drosophila nervous system accelerated age-dependent decline in motor performance and shortened lifespan. Overexpression of mnb in the eye was neurotoxic and overexpression in ellipsoid body neurons in the brain caused age-dependent neurodegeneration. At the larval neuromuscular junction, an established model for mammalian central glutamatergic synapses, neuronal mnb overexpression enhanced spontaneous vesicular transmitter release. It also slowed recovery from short-term depression of evoked transmitter release induced by high-frequency nerve stimulation and increased the number of boutons in one of the two glutamatergic motor neurons innervating the muscle. These results provide further insight into the roles of DYRK1A triplication in abnormal aging and synaptic dysfunction in DS. Overexpression of minibrain (DYRK1A) causes Down's relevant phenotypes including: Age-dependent degeneration of brain neurons Accelerated age-dependent decline in motor performance and shorted lifespan Modified presynaptic structure and enhanced spontaneous transmitter release Slowed recovery from short-term depression of synaptic transmission
Collapse
|
9
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
10
|
Singh R, Lauth M. Emerging Roles of DYRK Kinases in Embryogenesis and Hedgehog Pathway Control. J Dev Biol 2017; 5:E13. [PMID: 29615569 PMCID: PMC5831797 DOI: 10.3390/jdb5040013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh)/GLI signaling is an important instructive cue in various processes during embryonic development, such as tissue patterning, stem cell maintenance, and cell differentiation. It also plays crucial roles in the development of many pediatric and adult malignancies. Understanding the molecular mechanisms of pathway regulation is therefore of high interest. Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) comprise a group of protein kinases which are emerging modulators of signal transduction, cell proliferation, survival, and cell differentiation. Work from the last years has identified a close regulatory connection between DYRKs and the Hh signaling system. In this manuscript, we outline the mechanistic influence of DYRK kinases on Hh signaling with a focus on the mammalian situation. We furthermore aim to bring together what is known about the functional consequences of a DYRK-Hh cross-talk and how this might affect cellular processes in development, physiology, and pathology.
Collapse
Affiliation(s)
- Rajeev Singh
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor and Immune Biology (ZTI), Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| | - Matthias Lauth
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor and Immune Biology (ZTI), Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| |
Collapse
|
11
|
Wang P, Wang L, Chen L, Sun X. Dual-specificity tyrosine-phosphorylation regulated kinase 1A Gene Transcription is regulated by Myocyte Enhancer Factor 2D. Sci Rep 2017; 7:7240. [PMID: 28775333 PMCID: PMC5543054 DOI: 10.1038/s41598-017-07655-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/30/2017] [Indexed: 12/19/2022] Open
Abstract
Dual-specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A) is localized in the Down syndrome critical region of chromosome 21. As a candidate gene responsible for learning defects associated with Down syndrome and Alzheimer's disease (AD), DYRK1A has been implied to play pivotal roles in cell proliferation and brain development. MEF2D, a member of the myocyte-specific enhancer factor 2 (MEF2) family of transcription factors, was proved to be in control of neuronal cell differentiation and development. Here we demonstrated that MEF2D could upregulate DYRK1A gene expression through specific activation of DYRK1A isoform 5 gene transcription. A MEF2D responsive element from -268 to -254 bp on promoter region of DYRK1A isoform 5 was identified and confirmed by luciferase assay, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). The coordinated expression of DYRK1A and MEF2D in mouse brain development indicated a possibility of the cross-interaction of these two genes during neurodevelopment. The DYRK1A kinase activity was also affected by MEF2D's transcriptional regulation of DYRK1A. Therefore, the molecular regulation of DYRK1A by MEF2D further supported their involvement in neurodevelopment.
Collapse
Affiliation(s)
- Pin Wang
- Otolaryngology Key Lab, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Luanluan Wang
- Otolaryngology Key Lab, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Long Chen
- Otolaryngology Key Lab, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Xiulian Sun
- Brain Research Institute, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
12
|
Li JJ, Tian YL, Zhai HL, Lv M, Zhang XY. Insights into mechanism of pyrido[2,3-d]pyrimidines as DYRK1A inhibitors based on molecular dynamic simulations. Proteins 2016; 84:1108-23. [PMID: 27119584 DOI: 10.1002/prot.25056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/07/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022]
Abstract
DYRK1A is characterized by the early development and regulation of neuronal proliferation, and its over expression gives rise to neurological abnormalities. As the promising DYRK1A inhibitors, the binding mechanism between DYRK1A and pyrido[2,3-d]pyrimidines derivatives at molecular level are still veiled. In this article, it was achieved to get the structural insights into pyrido[2,3-d]pyrimidines derivatives as DYRK1A inhibitors by means of comprehensive computational approaches involving molecular docking, molecular dynamics simulation, free energy calculation, and energy decomposition analysis. The calculated energy values were highly consistent with the experimental activities. Based on the individual energy terms analysis, the van der Waals interaction was the major leading force in the DYRK1A-ligand interaction. Lys188 was the important residue that formed the hydrogen bond, which improved the inhibitory activity. Furthermore, four novel inhibitors with higher predicted activity were designed based on the obtained findings and confirmed by molecular simulations. Our study is expected to provide significant drug design strategy for the development of more promising DYRK1A inhibitors. Proteins 2016; 84:1108-1123. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jiao Jiao Li
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yue Li Tian
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hong Lin Zhai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Min Lv
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xiao Yun Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
13
|
Duchon A, Herault Y. DYRK1A, a Dosage-Sensitive Gene Involved in Neurodevelopmental Disorders, Is a Target for Drug Development in Down Syndrome. Front Behav Neurosci 2016; 10:104. [PMID: 27375444 PMCID: PMC4891327 DOI: 10.3389/fnbeh.2016.00104] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/17/2016] [Indexed: 01/12/2023] Open
Abstract
Down syndrome (DS) is one of the leading causes of intellectual disability, and patients with DS face various health issues, including learning and memory deficits, congenital heart disease, Alzheimer's disease (AD), leukemia, and cancer, leading to huge medical and social costs. Remarkable advances on DS research have been made in improving cognitive function in mouse models for future therapeutic approaches in patients. Among the different approaches, DYRK1A inhibitors have emerged as promising therapeutics to reduce DS cognitive deficits. DYRK1A is a dual-specificity kinase that is overexpressed in DS and plays a key role in neurogenesis, outgrowth of axons and dendrites, neuronal trafficking and aging. Its pivotal role in the DS phenotype makes it a prime target for the development of therapeutics. Recently, disruption of DYRK1A has been found in Autosomal Dominant Mental Retardation 7 (MRD7), resulting in severe mental deficiency. Recent advances in the development of kinase inhibitors are expected, in the near future, to remove DS from the list of incurable diseases, providing certain conditions such as drug dosage and correct timing for the optimum long-term treatment. In addition the exact molecular and cellular mechanisms that are targeted by the inhibition of DYRK1A are still to be discovered.
Collapse
Affiliation(s)
- Arnaud Duchon
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirch, France; UMR7104, Centre National de la Recherche ScientifiqueIllkirch, France; U964, Institut National de la Santé et de la Recherche MédicaleIllkirch, France; Université de StrasbourgIllkirch, France
| | - Yann Herault
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirch, France; UMR7104, Centre National de la Recherche ScientifiqueIllkirch, France; U964, Institut National de la Santé et de la Recherche MédicaleIllkirch, France; Université de StrasbourgIllkirch, France; PHENOMIN, Institut Clinique de la Souris, Groupement d'Intérêt Économique-Centre Européen de Recherche en Biologie et en Médecine, CNRS, INSERMIllkirch-Graffenstaden, France
| |
Collapse
|
14
|
Marland JRK, Smillie KJ, Cousin MA. Synaptic Vesicle Recycling Is Unaffected in the Ts65Dn Mouse Model of Down Syndrome. PLoS One 2016; 11:e0147974. [PMID: 26808141 PMCID: PMC4726538 DOI: 10.1371/journal.pone.0147974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 01/11/2016] [Indexed: 01/08/2023] Open
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability, and arises from trisomy of human chromosome 21. Accumulating evidence from studies of both DS patient tissue and mouse models has suggested that synaptic dysfunction is a key factor in the disorder. The presence of several genes within the DS trisomy that are either directly or indirectly linked to synaptic vesicle (SV) endocytosis suggested that presynaptic dysfunction could underlie some of these synaptic defects. Therefore we determined whether SV recycling was altered in neurons from the Ts65Dn mouse, the best characterised model of DS to date. We found that SV exocytosis, the size of the SV recycling pool, clathrin-mediated endocytosis, activity-dependent bulk endocytosis and SV generation from bulk endosomes were all unaffected by the presence of the Ts65Dn trisomy. These results were obtained using battery of complementary assays employing genetically-encoded fluorescent reporters of SV cargo trafficking, and fluorescent and morphological assays of fluid-phase uptake in primary neuronal culture. The absence of presynaptic dysfunction in central nerve terminals of the Ts65Dn mouse suggests that future research should focus on the established alterations in excitatory / inhibitory balance as a potential route for future pharmacotherapy.
Collapse
Affiliation(s)
- Jamie R. K. Marland
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Karen J. Smillie
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Michael A. Cousin
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Grau C, Arató K, Fernández-Fernández JM, Valderrama A, Sindreu C, Fillat C, Ferrer I, de la Luna S, Altafaj X. DYRK1A-mediated phosphorylation of GluN2A at Ser(1048) regulates the surface expression and channel activity of GluN1/GluN2A receptors. Front Cell Neurosci 2014; 8:331. [PMID: 25368549 PMCID: PMC4201086 DOI: 10.3389/fncel.2014.00331] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/30/2014] [Indexed: 11/17/2022] Open
Abstract
N-methyl-D-aspartate glutamate receptors (NMDARs) play a pivotal role in neural development and synaptic plasticity, as well as in neurological disease. Since NMDARs exert their function at the cell surface, their density in the plasma membrane is finely tuned by a plethora of molecules that regulate their production, trafficking, docking and internalization in response to external stimuli. In addition to transcriptional regulation, the density of NMDARs is also influenced by post-translational mechanisms like phosphorylation, a modification that also affects their biophysical properties. We previously described the increased surface expression of GluN1/GluN2A receptors in transgenic mice overexpressing the Dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), suggesting that DYRK1A regulates NMDARs. Here we have further investigated whether the density and activity of NMDARs were modulated by DYRK1A phosphorylation. Accordingly, we show that endogenous DYRK1A is recruited to GluN2A-containing NMDARs in the adult mouse brain, and we identify a DYRK1A phosphorylation site at Ser1048 of GluN2A, within its intracellular C-terminal domain. Mechanistically, the DYRK1A-dependent phosphorylation of GluN2A at Ser1048 hinders the internalization of GluN1/GluN2A, causing an increase of surface GluN1/GluN2A in heterologous systems, as well as in primary cortical neurons. Furthermore, GluN2A phosphorylation at Ser1048 increases the current density and potentiates the gating of GluN1/GluN2A receptors. We conclude that DYRK1A is a direct regulator of NMDA receptors and we propose a novel mechanism for the control of NMDAR activity in neurons.
Collapse
Affiliation(s)
- Cristina Grau
- Institute of Neuropathology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat Barcelona, Spain
| | - Krisztina Arató
- Gene Regulation, Stem Cell and Cancer Programme, UPF and Center for Genomic Regulation (CRG) Barcelona, Spain ; CIBER de Enfermedades Raras (CIBERER) Barcelona, Spain
| | - José M Fernández-Fernández
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Pompeu Fabra University Barcelona, Spain
| | - Aitana Valderrama
- Institute of Neuropathology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat Barcelona, Spain
| | - Carlos Sindreu
- Department of Anatomical Pathology, Pharmacology and Microbiology, University of Barcelona Barcelona, Spain
| | - Cristina Fillat
- CIBER de Enfermedades Raras (CIBERER) Barcelona, Spain ; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat Barcelona, Spain
| | - Susana de la Luna
- Gene Regulation, Stem Cell and Cancer Programme, UPF and Center for Genomic Regulation (CRG) Barcelona, Spain ; CIBER de Enfermedades Raras (CIBERER) Barcelona, Spain ; Institució Catalana de Recerca i Estudis Avançats (ICREA) Barcelona, Spain
| | - Xavier Altafaj
- Institute of Neuropathology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat Barcelona, Spain
| |
Collapse
|
16
|
Chai YJ, Kim D, Park J, Zhao H, Lee SJ, Chang S. The secreted oligomeric form of α-synuclein affects multiple steps of membrane trafficking. FEBS Lett 2013; 587:452-9. [PMID: 23333298 DOI: 10.1016/j.febslet.2013.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/10/2012] [Accepted: 01/02/2013] [Indexed: 01/05/2023]
Abstract
α-Synuclein (α-syn) can be secreted from neurons into the extracellular space, affecting the homeostasis of neighboring cells, but the pathophysiology of secreted α-syn remains largely unknown. We found that when exogenously applied to COS-7 cells, α-syn secreted from differentiated SH-SY5Y cells was taken up by dynamin-dependent endocytosis. Upon internalization, α-syn significantly increased the rate of transferrin receptor (TfR) internalization and recycling, and subsequently the surface levels of TfR. The effects are attributable to the oligomeric form, but not monomeric or fibrillar form, of extracellular α-syn. Together, multiple alterations in membrane trafficking by secreted oligomeric α-syn may contribute to the early stages of pathogenesis in Parkinson's disease.
Collapse
Affiliation(s)
- Ye-Jin Chai
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
17
|
Brierley DI, Davidson C. Developments in harmine pharmacology--implications for ayahuasca use and drug-dependence treatment. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:263-72. [PMID: 22691716 DOI: 10.1016/j.pnpbp.2012.06.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/16/2012] [Accepted: 06/03/2012] [Indexed: 12/14/2022]
Abstract
Ayahuasca is a hallucinogenic botanical mixture originating in the Amazon area where it is used ritually, but is now being taken globally. The 2 main constituents of ayahuasca are N,N-dimethyltryptamine (DMT), a hallucinogen, and harmine, a monoamine oxidase inhibitor (MAOI) which attenuates the breakdown of DMT, which would otherwise be broken down very quickly after oral consumption. Recent developments in ayahuasca use include the sale of these compounds on the internet and the substitution of related botanical (anahuasca) or synthetic (pharmahuasca) compounds to achieve the same desired hallucinogenic effects. One intriguing result of ayahuasca use appears to be improved mental health and a reduction in recidivism to alternate (alcohol, cocaine) drug use. In this review we discuss the pharmacology of ayahuasca, with a focus on harmine, and suggest pharmacological mechanisms for the putative reduction in recidivism to alcohol and cocaine misuse. These pharmacological mechanisms include MAOI, effects at 5-HT(2A) and imidazoline receptors and inhibition of dual-specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A) and the dopamine transporter. We also speculate on the therapeutic potential of harmine in other CNS conditions.
Collapse
Affiliation(s)
- Daniel I Brierley
- Pharmacology & Cell Physiology, Division of Biomedical Science, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | | |
Collapse
|
18
|
Park JH, Jung MS, Kim YS, Song WJ, Chung SH. Phosphorylation of Munc18-1 by Dyrk1A regulates its interaction with Syntaxin 1 and X11α. J Neurochem 2012; 122:1081-91. [PMID: 22765017 DOI: 10.1111/j.1471-4159.2012.07861.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dual-specificity tyrosine(Y)-phosphorylation-regulated kinase 1A (Dyrk1A) is a protein kinase that might be responsible for mental retardation and early onset of Alzheimer's disease in Down's syndrome patients. Dyrk1A plays a role in many cellular pathways through phosphorylation of diverse substrate proteins; however, its role in synaptic vesicle exocytosis is poorly understood. Munc18-1, a central regulator of neurotransmitter release, interacts with Syntaxin 1 and X11α. Syntaxin 1 is a key soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein involved in synaptic vesicle docking/fusion events, and X11α modulates amyloid precursor protein processing and β amyloid generation. In this study, we demonstrate that Dyrk1A interacts with and phosphorylates Munc18-1 at the Thr(479) residue. The phosphorylation of Munc18-1 at Thr(479) by Dyrk1A stimulated binding of Munc18-1 to Syntaxin 1 and X11α. Furthermore, the levels of phospho-Thr(479) -Munc18-1 were enhanced in the brains of transgenic mice over-expressing Dyrk1A protein, providing in vivo evidence of Munc18-1 phosphorylation by Dyrk1A. These results reveal a link between Munc18-1 and Dyrk1A in synaptic vesicle trafficking and amyloid precursor protein processing, suggesting that up-regulated Dyrk1A in Down's syndrome and Alzheimer's disease brains may contribute to some pathological features, including synaptic dysfunction and cognitive defect through abnormal phosphorylation of Munc18-1.
Collapse
Affiliation(s)
- Jung-Hwa Park
- Graduate Program in Neuroscience, Institute for Brain Science and Technology (IBST), FIRST Research Group, Inje University, Busan, South Korea
| | | | | | | | | |
Collapse
|
19
|
Xie W, Adayev T, Zhu H, Wegiel J, Wieraszko A, Hwang YW. Activity-Dependent Phosphorylation of Dynamin 1 at Serine 857. Biochemistry 2012; 51:6786-96. [DOI: 10.1021/bi2017798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wen Xie
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York 10314,
United States
| | | | | | | | - Andrzej Wieraszko
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York 10314,
United States
| | | |
Collapse
|
20
|
Molecular and cellular alterations in Down syndrome: toward the identification of targets for therapeutics. Neural Plast 2012; 2012:171639. [PMID: 22848846 PMCID: PMC3403492 DOI: 10.1155/2012/171639] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/25/2022] Open
Abstract
Down syndrome is a complex disease that has challenged molecular and cellular research for more than 50 years. Understanding the molecular bases of morphological, cellular, and functional alterations resulting from the presence of an additional complete chromosome 21 would aid in targeting specific genes and pathways for rescuing some phenotypes. Recently, progress has been made by characterization of brain alterations in mouse models of Down syndrome. This review will highlight the main molecular and cellular findings recently described for these models, particularly with respect to their relationship to Down syndrome phenotypes.
Collapse
|
21
|
Meng X, Tian X, Wang X, Gao P, Zhang C. A novel binding protein of single-minded 2: the mitotic arrest-deficient protein MAD2B. Neurogenetics 2012; 13:251-60. [DOI: 10.1007/s10048-012-0333-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/22/2012] [Indexed: 11/30/2022]
|
22
|
Cossec JC, Lavaur J, Berman DE, Rivals I, Hoischen A, Stora S, Ripoll C, Mircher C, Grattau Y, Olivomarin JC, de Chaumont F, Lecourtois M, Antonarakis SE, Veltman JA, Delabar JM, Duyckaerts C, Di Paolo G, Potier MC. Trisomy for synaptojanin1 in Down syndrome is functionally linked to the enlargement of early endosomes. Hum Mol Genet 2012; 21:3156-72. [PMID: 22511594 DOI: 10.1093/hmg/dds142] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Enlarged early endosomes have been observed in neurons and fibroblasts in Down syndrome (DS). These endosome abnormalities have been implicated in the early development of Alzheimer's disease (AD) pathology in these subjects. Here, we show the presence of enlarged endosomes in blood mononuclear cells and lymphoblastoid cell lines (LCLs) from individuals with DS using immunofluorescence and confocal microscopy. Genotype-phenotype correlations in LCLs carrying partial trisomies 21 revealed that triplication of a 2.56 Mb locus in 21q22.11 is associated with the endosomal abnormalities. This locus contains the gene encoding the phosphoinositide phosphatase synaptojanin 1 (SYNJ1), a key regulator of the signalling phospholipid phosphatidylinositol-4,5-biphosphate that has been shown to regulate clathrin-mediated endocytosis. We found that SYNJ1 transcripts are increased in LCLs from individuals with DS and that overexpression of SYNJ1 in a neuroblastoma cell line as well as in transgenic mice leads to enlarged endosomes. Moreover, the proportion of enlarged endosomes in fibroblasts from an individual with DS was reduced after silencing SYNJ1 expression with RNA interference. In LCLs carrying amyloid precursor protein (APP) microduplications causing autosomal dominant early-onset AD, enlarged endosomes were absent, suggesting that APP overexpression alone is not involved in the modification of early endosomes in this cell type. These findings provide new insights into the contribution of SYNJ1 overexpression to the endosomal changes observed in DS and suggest an attractive new target for rescuing endocytic dysfunction and lipid metabolism in DS and in AD.
Collapse
Affiliation(s)
- Jack-Christophe Cossec
- Centre de Recherche de l’Institut du Cerveau et de la Moelle, CNRS UMR7225, UPMC, INSERM UMRS975, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Murakami N, Bolton DC, Kida E, Xie W, Hwang YW. Phosphorylation by Dyrk1A of clathrin coated vesicle-associated proteins: identification of the substrate proteins and the effects of phosphorylation. PLoS One 2012; 7:e34845. [PMID: 22514676 PMCID: PMC3325943 DOI: 10.1371/journal.pone.0034845] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 03/08/2012] [Indexed: 11/26/2022] Open
Abstract
Dyrk1A phosphorylated multiple proteins in the clathrin-coated vesicle (CCV) preparations obtained from rat brains. Mass spectrometric analysis identified MAP1A, MAP2, AP180, and α- and β-adaptins as the phosphorylated proteins in the CCVs. Each protein was subsequently confirmed by [(32)P]-labeling and immunological methods. The Dyrk1A-mediated phosphorylation released the majority of MAP1A and MAP2 and enhanced the release of AP180 and adaptin subunits from the CCVs. Furthermore, Dyrk1A displaced adaptor proteins physically from CCVs in a kinase-concentration dependent manner. The clathrin heavy chain release rate, in contrast, was not affected by Dyrk1A. Surprisingly, the Dyrk1A-mediated phosphorylation of α- and β-adaptins led to dissociation of the AP2 complex, and released only β-adaptin from the CCVs. AP180 was phosphorylated by Dyrk1A also in the membrane-free fractions, but α- and β-adaptins were not. Dyrk1A was detected in the isolated CCVs and was co-localized with clathrin in neurons from mouse brain sections and from primary cultured rat hippocampus. Previously, we proposed that Dyrk1A inhibits the onset of clathrin-mediated endocytosis in neurons by phosphorylating dynamin 1, amphiphysin 1, and synaptojanin 1. Current results suggest that besides the inhibition, Dyrk1A promotes the uncoating process of endocytosed CCVs.
Collapse
Affiliation(s)
- Noriko Murakami
- Laboratory of Molecular Regulation, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America. . gov
| | | | | | | | | |
Collapse
|
24
|
Garner CC, Wetmore DZ. Synaptic Pathology of Down Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:451-68. [DOI: 10.1007/978-3-7091-0932-8_20] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Bartesaghi R, Guidi S, Ciani E. Is it possible to improve neurodevelopmental abnormalities in Down syndrome? Rev Neurosci 2011; 22:419-55. [DOI: 10.1515/rns.2011.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|