1
|
Janitzek H, González Delgado J, Haag N, Seemann E, Nietzsche S, Sigusch B, Qualmann B, Kessels MM. The Evolutionary Young Actin Nucleator Cobl Is Important for Proper Amelogenesis. Cells 2025; 14:359. [PMID: 40072087 PMCID: PMC11898890 DOI: 10.3390/cells14050359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/15/2025] Open
Abstract
The actin cytoskeleton plays an important role in morphological changes of ameloblasts during the formation of enamel, which is indispensable for teeth to withstand wear, fracture and caries progression. This study reveals that the actin nucleator Cobl is expressed in ameloblasts of mandibular molars during amelogenesis. Cobl expression was particularly pronounced during the secretory phase of the enamel-forming cells. Cobl colocalized with actin filaments at the cell cortex. Importantly, our analyses show an influence of Cobl on both ameloblast morphology and cytoskeletal organization as well as on enamel composition. At P0, Cobl knock-out causes an increased height of ameloblasts and an increased F-actin content at the apical membrane. During the maturation phase, the F-actin density at the apical membrane was instead significantly reduced when compared to WT mice. At the same time, Cobl-deficient mice showed an increased carbon content of the enamel and an increased enamel surface of mandibular molars. These findings demonstrate a decisive influence of the actin nucleator Cobl on the actin cytoskeleton and the morphology of ameloblasts during amelogenesis. Our work thus expands the understanding of the regulation of the actin cytoskeleton during amelogenesis and helps to further elucidate the complex processes of enamel formation during tooth development.
Collapse
Affiliation(s)
- Hannes Janitzek
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany; (H.J.); (J.G.D.); (N.H.); (E.S.)
| | - Jule González Delgado
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany; (H.J.); (J.G.D.); (N.H.); (E.S.)
| | - Natja Haag
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany; (H.J.); (J.G.D.); (N.H.); (E.S.)
| | - Eric Seemann
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany; (H.J.); (J.G.D.); (N.H.); (E.S.)
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University Hospital—Friedrich Schiller University Jena, Ziegelmühlenweg 1, 07743 Jena, Germany;
| | - Bernd Sigusch
- Department of Conservative Dentistry and Periodontology, Jena University Hospital—Friedrich Schiller University Jena, An der alten Post 4, 07743 Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany; (H.J.); (J.G.D.); (N.H.); (E.S.)
| | - Michael Manfred Kessels
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany; (H.J.); (J.G.D.); (N.H.); (E.S.)
| |
Collapse
|
2
|
Nishikawa S. Cytoskeleton, intercellular junctions, planar cell polarity, and cell movement in amelogenesis. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Otsu K, Ida-Yonemochi H, Fujiwara N, Harada H. The Semaphorin 4D-RhoA-Akt Signal Cascade Regulates Enamel Matrix Secretion in Coordination With Cell Polarization During Ameloblast Differentiation. J Bone Miner Res 2016; 31:1943-1954. [PMID: 27218883 DOI: 10.1002/jbmr.2876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/08/2022]
Abstract
During tooth development, oral epithelial cells differentiate into ameloblasts in order to form the most mineralized tissue in the vertebrate body: enamel. During this process, ameloblasts directionally secrete enamel matrix proteins and morphologically change from low columnar cells to polarized tall columnar cells, both of which are essential for the proper formation of enamel. In this study, we elucidated the molecular mechanism that integrates ameloblast function and morphology. Immunohistochemistry revealed that the restricted expression of semaphorin 4D (Sema4D) and RhoA activation status are closely associated with ameloblast differentiation in mouse incisors. In addition, in vitro gain-of-function and loss-of-function experiments demonstrated that Sema4D acts upstream of RhoA to regulate cell polarity and amelogenin expression via the Plexin B1/Leukemia-associated RhoGEF (LARG) complex during ameloblast differentiation. Experiments in transgenic mice demonstrated that expression of a dominant-negative form of RhoA in dental epithelium hindered ameloblast differentiation and subsequent enamel formation, as well as perturbing the establishment of polarized cell morphology and vectorial amelogenin expression. Finally, we showed that spatially restricted Akt mediates between Sema4D-RhoA signaling and these downstream cellular events. Collectively, our results reveal a novel signaling network, the Sema4D-RhoA-Akt signal cascade, that coordinates cellular function and morphology and highlights the importance of specific spatiotemporally restricted components of a signaling pathway in the regulation of ameloblast differentiation. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Fujiwara
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| |
Collapse
|
4
|
Otsu K, Harada H. Rho GTPases in ameloblast differentiation. JAPANESE DENTAL SCIENCE REVIEW 2015; 52:32-40. [PMID: 28408954 PMCID: PMC5382790 DOI: 10.1016/j.jdsr.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/04/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
During tooth development, ameloblasts differentiate from inner enamel epithelial cells to enamel-forming cells by modulating the signal pathways mediating epithelial–mesenchymal interaction and a cell-autonomous gene network. The differentiation process of epithelial cells is characterized by marked changes in their morphology and polarity, accompanied by dynamic cytoskeletal reorganization and changes in cell–cell and cell–matrix adhesion over time. Functional ameloblasts are tall, columnar, polarized cells that synthesize and secrete enamel-specific proteins. After deposition of the full thickness of enamel matrix, ameloblasts become smaller and regulate enamel maturation. Recent significant advances in the fields of molecular biology and genetics have improved our understanding of the regulatory mechanism of the ameloblast cell life cycle, mediated by the Rho family of small GTPases. They act as intracellular molecular switch that transduce signals from extracellular stimuli to the actin cytoskeleton and the nucleus. In our review, we summarize studies that provide current evidence for Rho GTPases and their involvement in ameloblast differentiation. In addition to the Rho GTPases themselves, their downstream effectors and upstream regulators have also been implicated in ameloblast differentiation.
Collapse
Affiliation(s)
- Keishi Otsu
- Corresponding author. Tel.: +81 19 651 5111x5881; fax: +81 19 908 8017.
| | | |
Collapse
|
5
|
Greenblatt MB, Kim JM, Oh H, Park KH, Choo MK, Sano Y, Tye CE, Skobe Z, Davis RJ, Park JM, Bei M, Glimcher LH, Shim JH. p38α MAPK is required for tooth morphogenesis and enamel secretion. J Biol Chem 2014; 290:284-95. [PMID: 25406311 DOI: 10.1074/jbc.m114.599274] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An improved understanding of the molecular pathways that drive tooth morphogenesis and enamel secretion is needed to generate teeth from organ cultures for therapeutic implantation or to determine the pathogenesis of primary disorders of dentition (Abdollah, S., Macias-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L., and Wrana, J. L. (1997) J. Biol. Chem. 272, 27678-27685). Here we present a novel ectodermal dysplasia phenotype associated with conditional deletion of p38α MAPK in ectodermal appendages using K14-cre mice (p38α(K14) mice). These mice display impaired patterning of dental cusps and a profound defect in the production and biomechanical strength of dental enamel because of defects in ameloblast differentiation and activity. In the absence of p38α, expression of amelogenin and β4-integrin in ameloblasts and p21 in the enamel knot was significantly reduced. Mice lacking the MAP2K MKK6, but not mice lacking MAP2K MKK3, also show the enamel defects, implying that MKK6 functions as an upstream kinase of p38α in ectodermal appendages. Lastly, stimulation with BMP2/7 in both explant culture and an ameloblast cell line confirm that p38α functions downstream of BMPs in this context. Thus, BMP-induced activation of the p38α MAPK pathway is critical for the morphogenesis of tooth cusps and the secretion of dental enamel.
Collapse
Affiliation(s)
- Matthew B Greenblatt
- From the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115,
| | - Jung-Min Kim
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Hwanhee Oh
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Kwang Hwan Park
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065, the Department of Microbiology, Brain Korea 21 PLUS Project for Medical Sciences and Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Kyung Choo
- the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Yasuyo Sano
- the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Coralee E Tye
- the Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, 05405
| | | | - Roger J Davis
- the Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Jin Mo Park
- the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Marianna Bei
- the Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Laurie H Glimcher
- the Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Jae-Hyuck Shim
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065,
| |
Collapse
|
6
|
Pugach MK, Ozer F, Mulmadgi R, Li Y, Suggs C, Wright JT, Bartlett JD, Gibson CW, Lindemeyer RG. Shear bond strength of dentin and deproteinized enamel of amelogenesis imperfecta mouse incisors. Pediatr Dent 2014; 36:130-136. [PMID: 25303500 PMCID: PMC4196710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
PURPOSE The purposes of this study were to: (1) investigate adhesion through shear bond strength (SBS) testing of a resin composite bonded with a self-etching bonding system (SEB) to amelogenesis imperfecta (AI)-affected deproteinized mouse enamel or dentin; and (2) compare wild-type (WT), amelogenin null (AmelxKO), and matrix metalloproteinase-20 null (Mmp20KO) enamel and dentin phenotypes using micro-CT and nanoindentation. METHODS Enamel incisor surfaces of WT, AmelxKO, and Mmp20KO mice were treated with SEB with and without sodium hypochlorite and tested for SBS. Incisor dentin was also treated with SEB and tested for SBS. These surfaces were further examined by scanning electron miscroscopy. Micro-CT and nanoindentation analyses were performed on mouse dentin and enamel. Data were analyzed for significance by analysis of variance. RESULTS Deproteinization did not improve SBS of SEB to these AI-affected enamel surfaces. SBS of AmelxKO teeth was similar in dentin and enamel; however, it was higher in Mmp20KO dentin. The nanohardness of knockout enamel was significantly lower than WT, while knockout dentin nanohardness was not different from WT. CONCLUSIONS Using animal amelogenesis imperfecta models, enamel sodium hypochlorite deproteinization of hypoplastic and hypoplastic-hypomaturation enamel did not increase shear bond strength, while removal of the defective enamel allowed optimal dentin bonding.
Collapse
Affiliation(s)
- Megan K Pugach
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, Mass., USA; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Mass., USA
| | - Fusun Ozer
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pa, USA
| | - Raj Mulmadgi
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pa, USA
| | - Yong Li
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pa, USA
| | - Cynthia Suggs
- Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, N.C., USA
| | - J Timothy Wright
- Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, N.C., USA
| | - John D Bartlett
- Mineralized Tissue Biology, The Forsyth Institute, Cambridge, Mass., USA
| | - Carolyn W Gibson
- Department of Anatomy and Cell Biology, at the School of Dental Medicine, University of Pennsylvania, Philadelphia, Pa, USA
| | - Rochelle G Lindemeyer
- Department of Pediatric Dentistry, at the School of Dental Medicine, University of Pennsylvania, Philadelphia, Pa, USA.
| |
Collapse
|
7
|
Yuan X, Nishikawa S. Angular distribution of cross-sectioned cell boundaries at the distal terminal web in differentiating preameloblasts, inner enamel secretory ameloblasts and outer enamel secretory ameloblasts. Microscopy (Oxf) 2013; 63:33-9. [PMID: 24285861 DOI: 10.1093/jmicro/dft044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cross-sectioned profiles of differentiating preameloblasts, inner enamel secretory ameloblasts and outer enamel secretory ameloblasts at the distal terminal web were quantitatively compared. First, the angles of each line constituting the sectioned cell polygons were measured, and the patterns of angular distribution histograms were compared. Second, all groups of line angles from one differentiating preameloblast population, two inner enamel secretory ameloblast and one outer enamel secretory ameloblast populations at the distal terminal web were compared statistically by the χ(2)-test using the multiple comparison method. The results showed that cell shapes between differentiating preameloblasts and inner enamel secretory ameloblasts were similar, but that those between differentiating preameloblasts and outer enamel secretory ameloblasts and between inner enamel secretory ameloblasts and outer enamel secretory ameloblasts were significantly different. Third, F-actin fluorescence microscopy in the distal terminal web was performed and was consistent with the angular distribution. These results suggest that cell shapes of inner enamel secretory ameloblasts and differentiating preameloblasts at the distal terminal web are specialized for sideways cell movement during decussating tooth enamel formation.
Collapse
Affiliation(s)
- Xiaohong Yuan
- Department of Biology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | | |
Collapse
|
8
|
Xue H, Li Y, Everett ET, Ryan K, Peng L, Porecha R, Yan Y, Lucchese AM, Kuehl MA, Pugach MK, Bouchard J, Gibson CW. Ameloblasts require active RhoA to generate normal dental enamel. Eur J Oral Sci 2013; 121:293-302. [PMID: 23841780 DOI: 10.1111/eos.12059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2013] [Indexed: 12/20/2022]
Abstract
RhoA plays a fundamental role in regulation of the actin cytoskeleton, intercellular attachment, and cell proliferation. During amelogenesis, ameloblasts (which produce the enamel proteins) undergo dramatic cytoskeletal changes and the RhoA protein level is up-regulated. Transgenic mice were generated that express a dominant-negative RhoA transgene in ameloblasts using amelogenin gene-regulatory sequences. Transgenic and wild-type (WT) molar tooth germs were incubated with sodium fluoride (NaF) or sodium chloride (NaCl) in organ culture. Filamentous actin (F-actin) stained with phalloidin was elevated significantly in WT ameloblasts treated with NaF compared with WT ameloblasts treated with NaCl or with transgenic ameloblasts treated with NaF, thereby confirming a block in the RhoA/Rho-associated protein kinase (ROCK) pathway in the transgenic mice. Little difference in quantitative fluorescence (an estimation of fluorosis) was observed between WT and transgenic incisors from mice provided with drinking water containing NaF. We subsequently found reduced transgene expression in incisors compared with molars. Transgenic molar teeth had reduced amelogenin, E-cadherin, and Ki67 compared with WT molar teeth. Hypoplastic enamel in transgenic mice correlates with reduced expression of the enamel protein, amelogenin, and E-cadherin and cell proliferation are regulated by RhoA in other tissues. Together these findings reveal deficits in molar ameloblast function when RhoA activity is inhibited.
Collapse
Affiliation(s)
- Hui Xue
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hu JCC, Chan HC, Simmer SG, Seymen F, Richardson AS, Hu Y, Milkovich RN, Estrella NMRP, Yildirim M, Bayram M, Chen CF, Simmer JP. Amelogenesis imperfecta in two families with defined AMELX deletions in ARHGAP6. PLoS One 2012; 7:e52052. [PMID: 23251683 PMCID: PMC3522662 DOI: 10.1371/journal.pone.0052052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/12/2012] [Indexed: 11/18/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a group of inherited conditions featuring isolated enamel malformations. About 5% of AI cases show an X-linked pattern of inheritance, which are caused by mutations in AMELX. In humans there are two, non-allelic amelogenin genes: AMELX (Xp22.3) and AMELY (Yp11.2). About 90% of amelogenin expression is from AMELX, which is nested within intron 1 of the gene encoding Rho GTPase activating protein 6 (ARHGAP6). We recruited two AI families and determined that their disease-causing mutations were partial deletions in ARHGAP6 that completely deleted AMELX. Affected males in both families had a distinctive enamel phenotype resembling "snow-capped" teeth. The 96,240 bp deletion in family 1 was confined to intron 1 of ARHGAP6 (g.302534_398773del96240), but removed alternative ARHGAP6 promoters 1c and 1d. Analyses of developing teeth in mice showed that ARHGAP6 is not expressed from these promoters in ameloblasts. The 52,654 bp deletion in family 2 (g.363924_416577del52654insA) removed ARHGAP6 promoter 1d and exon 2, precluding normal expression of ARHGAP6. The male proband of family 2 had slightly thinner enamel with greater surface roughness, but exhibited the same pattern of enamel malformations characteristic of males in family 1, which themselves showed minor variations in their enamel phenotypes. We conclude that the enamel defects in both families were caused by amelogenin insufficiency, that deletion of AMELX results in males with a characteristic snow-capped enamel phenotype, and failed ARHGAP6 expression did not appreciably alter the severity of enamel defects when AMELX was absent.
Collapse
Affiliation(s)
- Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Huang Z, Kim J, Lacruz RS, Bringas P, Glogauer M, Bromage TG, Kaartinen VM, Snead ML. Epithelial-specific knockout of the Rac1 gene leads to enamel defects. Eur J Oral Sci 2012; 119 Suppl 1:168-76. [PMID: 22243243 DOI: 10.1111/j.1600-0722.2011.00904.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Ras-related C3 botulinum toxin substrate 1 (Rac1) gene encodes a 21-kDa GTP-binding protein belonging to the RAS superfamily. RAS members play important roles in controlling focal adhesion complex formation and cytoskeleton contraction, activities with consequences for cell growth, adhesion, migration, and differentiation. To examine the role(s) played by RAC1 protein in cell-matrix interactions and enamel matrix biomineralization, we used the Cre/loxP binary recombination system to characterize the expression of enamel matrix proteins and enamel formation in Rac1 knockout mice (Rac1(-/-)). Mating between mice bearing the floxed Rac1 allele and mice bearing a cytokeratin 14-Cre transgene generated mice in which Rac1 was absent from epithelial organs. Enamel of the Rac1 conditional knockout mouse was characterized by light microscopy, backscattered electron imaging in the scanning electron microscope, microcomputed tomography, and histochemistry. Enamel matrix protein expression was analyzed by western blotting. Major findings showed that the Tomes' processes of Rac1(-/-) ameloblasts lose contact with the forming enamel matrix in unerupted teeth, the amounts of amelogenin and ameloblastin are reduced in Rac1(-/-) ameloblasts, and after eruption, the enamel from Rac1(-/-) mice displays severe structural defects with a complete loss of enamel. These results support an essential role for RAC1 in the dental epithelium involving cell-matrix interactions and matrix biomineralization.
Collapse
Affiliation(s)
- Zhan Huang
- The Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Peng L, Li Y, Shusterman K, Kuehl M, Gibson CW. Wnt-RhoA signaling is involved in dental enamel development. Eur J Oral Sci 2012; 119 Suppl 1:41-9. [PMID: 22243225 DOI: 10.1111/j.1600-0722.2011.00880.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transgenic mice that express dominant-negative RhoA (RhoA(DN) ) in ameloblasts have hypoplastic enamel with defects in molar cusps. β-catenin and Wnt5a were up-regulated in enamel organs of RhoA(DN) transgenic mice, which indicated that both canonical and non-canonical Wnt pathways are implicated in the process of enamel defect formation. It was hypothesized that expression of RhoA(DN) in ameloblasts interfered with normal enamel development through the pathways that were induced by fluoride. The Wnt and RhoA pathways were further investigated in an ameloblast-lineage cell line (ALC) by treatment with sodium fluoride (NaF). The activities of RhoA and Rho-associated protein kinase (ROCK) II decreased significantly by 8-12 hours, similar to decreased activity in RhoA(DN) transgenic mice. Both canonical and non-canonical Wnt pathways were activated by treatment with NaF, which was verified by western blotting and the β-catenin-TCF/LEF (T cell factor lymphanoid/enhancer factor) reporter gene (TOPflash) assay. β-catenin localization to both cytoplasm and nucleus was up-regulated in NaF-treated ALC, while Gsk-3β, the negative regulator of the Wnt pathway, showed a decreased pattern of expression. The current results indicate that both Wnt and RhoA pathways are implicated in fluoride-induced signaling transductions in the ALC as well as in the development of enamel defects in RhoA(DN) transgenic mice.
Collapse
Affiliation(s)
- Li Peng
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA
| | | | | | | | | |
Collapse
|
12
|
Nishikawa S, Kawamoto T. Planar cell polarity protein localization in the secretory ameloblasts of rat incisors. J Histochem Cytochem 2012; 60:376-85. [PMID: 22378702 DOI: 10.1369/0022155412438887] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The localization of the planar cell polarity proteins Vang12, frizzled-3, Vang11, and Celsr1 in the rat incisors was examined using immunocytochemistry. The results showed that Vang12 was localized at two regions of the Tomes' processes of inner enamel-secretory ameloblasts in rat incisors: a proximal and a distal region. In contrast, frizzled-3 was localized at adherens junctions of the proximal and distal areas of inner enamel- and outer enamel-secretory ameloblasts, where N-cadherin and β-catenin were localized. frizzled-3 was also localized in differentiating inner enamel epithelial cells. Vang11 was localized sparsely in differentiating preameloblasts and extensively at the cell boundary of stratum intermedium. Celsr1 was not localized in ameloblasts but localized in odontoblasts extensively. These results suggest the involvement of planar cell polarity proteins in odontogenesis.
Collapse
Affiliation(s)
- Sumio Nishikawa
- Department of Biology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | | |
Collapse
|