1
|
Zhang J, Wang Q, Zhou N, Liu J, Tao L, Peng Z, Hu G, Wang H, Fu L, Peng S. Fluorofenidone attenuates choline-deficient, l-amino acid-defined, high-fat diet-induced metabolic dysfunction-associated steatohepatitis in mice. Sci Rep 2025; 15:9863. [PMID: 40118958 PMCID: PMC11928590 DOI: 10.1038/s41598-025-94401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/13/2025] [Indexed: 03/24/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD), involves hepatic lipid accumulation, inflammation, and fibrosis. It can progress to cirrhosis or hepatocellular carcinoma without timely treatment. Current treatment options for MASH are limited. This study explores the therapeutic effects of fluorofenidone (AKF-PD), a novel small-molecule compound with antifibrotic and anti-inflammatory properties, on MASH in mouse model. Mice fed a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) were treated with AKF-PD, resulting in reduced serum ALT, AST, hepatic lipid accumulation, liver inflammation, and fibrosis. Network pharmacology and RNA-sequencing analyses suggested that AKF-PD influenced multiple metabolic, inflammatory, and fibrosis-related pathways. Further experiments verified that AKF-PD activated hepatic AMPK signaling, leading to the inhibition of the downstream SREBF1/SCD1 pathway and the activation of autophagy. Additionally, AKF-PD suppressed the expression of various inflammatory factors, reduced macrophage infiltration, and inhibited NLRP3 inflammasome activation. Moreover, AKF-PD attenuated liver fibrosis by inhibiting TGFβ1/SMAD signaling. In conclusion, this study reveals that AKF-PD effectively decreases hepatic lipid accumulation, liver inflammation and fibrosis in a CDAHFD-induced MASH model, positioning AKF-PD as a promising candidate for the treatment of MASH.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qianbing Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Nianqi Zhou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jinqing Liu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Gaoyun Hu
- Faculty of Pharmaceutical Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Huiwen Wang
- Department of Infection Control Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Huang L, Chen Y, Fan X, Zhang X, Wang X, Liu L, Liu T, Wang P, Xu A, Zhao X, Cong M. Fluorofenidone mitigates liver fibrosis through GSK-3β modulation and hepatocyte protection in a 3D tissue-engineered model. Int Immunopharmacol 2025; 149:114209. [PMID: 39919455 DOI: 10.1016/j.intimp.2025.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
Liver fibrosis, a critical stage in chronic liver disease progression, presents a significant global health challenge. This study investigates the antifibrotic and hepatoprotective properties of fluorofenidone (AKF-PD) using a 3D tissue-engineered model. A 3D in vitro liver fibrosis model was developed using decellularized rat liver scaffolds seeded with hepatocytes, hepatic stellate cells (HSCs), and sinusoidal endothelial cells to replicate the multicellular liver microenvironment. The model was stimulated with carbon tetrachloride (CCl4) to induce fibrotic conditions, resulting in collagen deposition, HSC activation, and elevated fibrosis markers. Parallel in vivo studies employed C57BL/6J mice with CCl4-induced liver fibrosis. The antifibrotic and hepatoprotective effects of AKF-PD were evaluated by assessing collagen deposition, fibrosis markers, and hepatocyte apoptosis. Oxidative stress markers and inflammation-related proteins were also measured. Molecular docking identified GSK-3β as a target protein of AKF-PD, and subsequent analyses explored the GSK-3β/β-catenin and Nrf2/HO-1 signaling pathways. AKF-PD demonstrated significant efficacy in reducing fibrosis markers and protecting hepatocytes by inhibiting apoptosis and oxidative stress. Mechanistically, AKF-PD targets the GSK-3β/β-catenin pathway, suppressing β-catenin-mediated pro-fibrotic gene expression, while activating the Nrf2/HO-1 pathway to mitigate oxidative stress, thereby reducing hepatocyte apoptosis. These findings are consistent with results from CCl4-induced mouse fibrosis models, validating the 3D model's applicability for preclinical drug evaluation. This 3D liver fibrosis model provides a physiologically relevant platform for studying fibrosis and anti-fibrotic mechanisms, highlighting AKF-PD's promise as a therapeutic agent and advancing liver fibrosis research.
Collapse
Affiliation(s)
- Long Huang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Yu Chen
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Xu Fan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Xiaohui Zhang
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Xue Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Lin Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Tianhui Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Anjian Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China.
| |
Collapse
|
3
|
Liu W, Zhou H, Dong H, Xing D, Lu M. Fluorofenidone Attenuates Renal Interstitial Fibrosis by Enhancing Autophagy and Retaining Mitochondrial Function. Cell Biochem Biophys 2023; 81:777-785. [PMID: 37735328 DOI: 10.1007/s12013-023-01176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Fluorofenidone (AKF-PD) is a novel pyridone agent and has potent anti-NLRP3 inflammasome and anti-fibrotic activities. However, the mechanisms underlying its pharmacological actions are not fully understood. METHODS A renal fibrosis rat model was established by the unilateral ureteral obstruction (UUO) procedure and the rats were randomized and treated with, or without, AKF-PD for 3 and 7 days. The levels of renal fibrosis, NLRP3 inflammasome activation, mitochondrial function, and autophagy were tested in rat kidney tissues. Macrophages following lipopolysaccharides (LPS) and adenosine 5'-triphosphate (ATP) stimulation were examined by Western blot, spectrophotometry, and TEM. RESULTS Compared with the untreated UUO rats, AKF-PD treatment significantly mitigated the UUO procedure-induced renal fibrosis in rats. AKF-PD treatment decreased mitochondrial dysfunction and IL-Iβ and caspase-1 expression in rat kidney tissues and reduced mitochondrial reactive oxygen species production in activated macrophages. Mechanistically, AKF-PD treatment significantly attenuated the PI3K/AKT/mTOR signaling, increased Beclin-1 and LC3 II expression and autophagosome formation, and ameliorated the mitochondrial damage in renal tissues and activated macrophages. CONCLUSION The results indicated that AKF-PD treatment inhibited renal interstitial fibrosis by regulating the autophagy-mitochondria-NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Wenlin Liu
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Hongli Zhou
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Haonan Dong
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Di Xing
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Miaomiao Lu
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
4
|
Tu S, Jiang Y, Cheng H, Yuan X, He Y, Peng Y, Peng X, Peng Z, Tao L, Yang H. Fluorofenidone protects liver against inflammation and fibrosis by blocking the activation of NF-κB pathway. FASEB J 2021; 35:e21497. [PMID: 34152015 DOI: 10.1096/fj.202002402r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 01/18/2023]
Abstract
Despite the increasing understanding of the pathophysiology of hepatic fibrosis, the therapies to combat it remain inadequate. Fluorofenidone (AKF-PD) is a novel pyridone agent able to ameliorate hepatic fibrosis in an experimental hepatic fibrosis model induced by dimethylnitrosamine. However, the underlying mechanism remains to be further elucidated. In light of the critical role of the NF-κB pathway in inflammation and hepatic fibrosis, together with the preliminary finding that AKF-PD decreases the release of proinflammatory cytokines in the endotoxemia and unilateral ureteral occlusion model, the aim of this study was to explore whether AKF-PD exerts an antifibrotic effect in hepatic fibrosis by inhibiting inflammation and suppressing the activation of the NF-κB pathway in vivo and in vitro. To test this possibility, the effect of AKF-PD on hepatic fibrosis models induced by both carbon tetrachloride (CCL4 ) and porcine serum (PS) was investigated. Our results showed that AKF-PD treatment ameliorated hepatic injury and fibrosis in both models. Furthermore, the administration of AKF-PD induced a robust anti-inflammatory reaction revealed by the downregulation of the proinflammatory cytokines as well as the suppression of the infiltration of inflammatory cells in the fibrotic liver. The analysis of the mechanism of action demonstrated that the attenuation of the production of proinflammatory cytokines and chemokines mediated by AKF-PD in vivo and in vitro were accompanied by the suppression in the activation of the NF-κB signaling pathway. In conclusion, AKF-PD might be considered as an antifibrotic agent attenuating hepatic inflammation and fibrosis potentially through the suppression of the NF-κB pathway.
Collapse
Affiliation(s)
- Sha Tu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, P.R. China
| | - Yanzhi Jiang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Haihua Cheng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiangning Yuan
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, P.R. China
| | - Ying He
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yu Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiongqun Peng
- Department of Gastroenterology, Changsha Central Hospital, Changsha, P.R. China
| | - Zhangzhe Peng
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, P.R. China.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Lijian Tao
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, P.R. China.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, P.R. China
| |
Collapse
|
5
|
Small molecules against the origin and activation of myofibroblast for renal interstitial fibrosis therapy. Biomed Pharmacother 2021; 139:111386. [PMID: 34243594 DOI: 10.1016/j.biopha.2021.111386] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Renal interstitial fibrosis (RIF) is a common pathological response in a broad range of prevalent chronic kidney diseases and ultimately leads to renal failure and death. Although RIF causes a high morbi-mortality worldwide, effective therapeutic drugs are urgently needed. Myofibroblasts are identified as the main effector during the process of RIF. Multiple types of cells, including fibroblasts, epithelial cells, endothelial cells, macrophages and pericytes, contribute to renal myofibroblasts origin, and lots of mediators, including signaling pathways (Transforming growth factor-β1, mammalian target of rapamycin and reactive oxygen species) and epigenetic modifications (Histone acetylation, microRNA and long non-coding RNA) are participated in renal myofibroblasts activation during renal fibrogenesis, suggesting that these mediators may be the promising targets for treating RIF. In addition, many small molecules show profound therapeutic effects on RIF by suppressing the origin and activation of renal myofibroblasts. Taken together, the review focuses on the mechanisms of the origin and activation of renal myofibroblasts in RIF and the small molecules against them improving RIF, which will provide a new insight for RIF therapy.
Collapse
|
6
|
Xie M, Wan J, Zhang F, Zhang R, Zhou Z, You D. Influence of hepatocyte growth factor-transfected bone marrow-derived mesenchymal stem cells towards renal fibrosis in rats. Indian J Med Res 2020; 149:508-516. [PMID: 31411175 PMCID: PMC6676852 DOI: 10.4103/ijmr.ijmr_1527_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background & objectives: Hepatocyte growth factor (HGF) produced by endothelial cells, fibroblasts, fat cells and other interstitial cells, can promote angiogenesis, repair damaged tissues and resist fibrosis. Mesenchymal stem cells (MSCs) are located in bone marrow and secrete a variety of cytokines and are often used in the repair and regeneration of damaged tissues. This study was aimed to investigate the influence of HGF-transfected bone marrow-derived MSCs towards renal fibrosis in rats. Methods: The HGF gene-carrying adenoviral vector (Ad-HGF) was transfected into MSCs, and the Ad-HGF-modified MSCs were transplanted into rats with unilateral ureteral obstruction (UUO). The localization of renal transplanted cells in the frozen section was observed with fluorescence microscope. The Masson's trichrome staining was performed to observe the renal collagen deposition, and the immunohistochemistry was performed to detect the expressions of α-smooth muscle actin (α-SMA) and HGF in renal tissues. Reverse transcription (RT)-PCR was used to detect the mRNA expressions of α-SMA, HGF and fibronectin (FN). Results: Ad-HGF-modified MSCs could highly express HGF in vitro. On the post-transplantation 3rd, 7th and 14th day, the 4',6-diamidino-2-phenylindole (DAP)-labelled transplanted cells were seen inside renal tissues. Compared with UUO group, the renal collagen deposition in transplantation group was significantly reduced, and the expressions of α-SMA mRNA and protein were significantly decreased, while the expressions of HGF mRNA and protein were significantly increased, and the expression of FN mRNA was significantly decreased (P<0.001). Interpretation & conclusions: Trans-renal artery injection of HGF-modified MSCs can effectively reduce the renal interstitial fibrosis in UUO rat model.
Collapse
Affiliation(s)
- Mingbu Xie
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Jianxin Wan
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Fengxia Zhang
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Ruifang Zhang
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Zhenhuan Zhou
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Danyou You
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| |
Collapse
|
7
|
Wang Y, Xing QQ, Tu JK, Tang WB, Yuan XN, Xie YY, Wang W, Peng ZZ, Huang L, Xu H, Qin J, Xiao XC, Tao LJ, Yuan QJ. Involvement of hydrogen sulfide in the progression of renal fibrosis. Chin Med J (Engl) 2019; 132:2872-2880. [PMID: 31856060 PMCID: PMC6940064 DOI: 10.1097/cm9.0000000000000537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Renal fibrosis is the most common manifestation of chronic kidney disease (CKD). Noting that existing treatments of renal fibrosis only slow disease progression but do not cure it, there is an urgent need to identify novel therapies. Hydrogen sulfide (H2S) is a newly discovered endogenous small gas signaling molecule exerting a wide range of biologic actions in our body. This review illustrates recent experimental findings on the mechanisms underlying the therapeutic effects of H2S against renal fibrosis and highlights its potential in future clinical application. DATA SOURCES Literature was collected from PubMed until February 2019, using the search terms including "Hydrogen sulfide," "Chronic kidney disease," "Renal interstitial fibrosis," "Kidney disease," "Inflammation factor," "Oxidative stress," "Epithelial-to-mesenchymal transition," "H2S donor," "Hypertensive kidney dysfunction," "Myofibroblasts," "Vascular remodeling," "transforming growth factor (TGF)-beta/Smads signaling," and "Sulfate potassium channels." STUDY SELECTION Literature was mainly derived from English articles or articles that could be obtained with English abstracts. Article type was not limited. References were also identified from the bibliographies of identified articles and the authors' files. RESULTS The experimental data confirmed that H2S is widely involved in various renal pathologies by suppressing inflammation and oxidative stress, inhibiting the activation of fibrosis-related cells and their cytokine expression, ameliorating vascular remodeling and high blood pressure, stimulating tubular cell regeneration, as well as reducing apoptosis, autophagy, and hypertrophy. Therefore, H2S represents an alternative or additional therapeutic approach for renal fibrosis. CONCLUSIONS We postulate that H2S may delay the occurrence and progress of renal fibrosis, thus protecting renal function. Further experiments are required to explore the precise role of H2S in renal fibrosis and its application in clinical treatment.
Collapse
Affiliation(s)
- Yu Wang
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qi-Qi Xing
- Division of Orthopedics, Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jing-Ke Tu
- Regenerative Medicine Clinic, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300041, China
| | - Wen-Bin Tang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiang-Ning Yuan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan-Yun Xie
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Wang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhang-Zhe Peng
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ling Huang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hui Xu
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao Qin
- Division of Nephrology, Department of Internal Medicine, Changsha Central Hospital, Changsha, Hunan 410008, China
| | - Xiang-Cheng Xiao
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Li-Jian Tao
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiong-Jing Yuan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
8
|
Jiang Y, Quan J, Chen Y, Liao X, Dai Q, Lu R, Yu Y, Hu G, Li Q, Meng J, Xie Y, Peng Z, Tao L. Fluorofenidone protects against acute kidney injury. FASEB J 2019; 33:14325-14336. [DOI: 10.1096/fj.201901468rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- YuPeng Jiang
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jiao Quan
- Department of Nutriology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yang Chen
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaohua Liao
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qin Dai
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Rong Lu
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yue Yu
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Gaoyun Hu
- Department of Pharmaceutical Chemistry, Xiangya Hospital, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qianbin Li
- Department of Pharmaceutical Chemistry, Xiangya Hospital, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Meng
- Department of Respirology, Xiangya Hospital, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
9
|
Yang H, Zhang W, Xie T, Wang X, Ning W. Fluorofenidone inhibits apoptosis of renal tubular epithelial cells in rats with renal interstitial fibrosis. ACTA ACUST UNITED AC 2019; 52:e8772. [PMID: 31664306 PMCID: PMC6826897 DOI: 10.1590/1414-431x20198772] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the mechanism of fluorofenidone (AKF-PD) in treating renal interstitial fibrosis in rats with unilateral urinary obstruction (UUO). Thirty-two male Sprague-Dawley rats were randomly divided into sham, UUO, UUO + enalapril, and UUO + AKF-PD groups. All rats, except sham, underwent left urethral obstruction surgery to establish the animal model. Rats were sacrificed 14 days after surgery, and serum was collected for renal function examination. Kidneys were collected to observe pathological changes. Immunohistochemistry was performed to assess collagen I (Col I) protein expression, and terminal deoxynucleotidyl transferase-mediated nick end-labeling staining to observe the apoptosis of renal tubular epithelial cells. The expression of Fas-associated death domain (FADD), apoptotic protease activating factor-1 (Apaf-1), and C/EBP homologous protein (CHOP) proteins was evaluated by immunohistochemistry and western blot analysis. AKF-PD showed no significant effect on renal function in UUO rats. The pathological changes were alleviated significantly after enalapril or AKF-PD treatment, but with no significant differences between the two groups. Col I protein was overexpressed in the UUO group, which was inhibited by both enalapril and AKF-PD. The number of apoptotic renal tubular epithelial cells was much higher in the UUO group, and AKF-PD significantly inhibited epithelial cells apoptosis. The expression of FADD, Apaf-1, and CHOP proteins was significantly upregulated in the UUO group and downregulated by enalapril and AKF-PD. In conclusion, AKF-PD improved renal interstitial fibrosis by inhibiting apoptosis of renal tubular epithelial cells in rats with UUO.
Collapse
Affiliation(s)
- Hui Yang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiru Zhang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Xie
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Wangbin Ning
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Chen Y, Wang N, Yuan Q, Qin J, Hu G, Li Q, Tao L, Xie Y, Peng Z. The Protective Effect of Fluorofenidone against Cyclosporine A-Induced Nephrotoxicity. Kidney Blood Press Res 2019; 44:656-668. [PMID: 31387101 DOI: 10.1159/000500924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/10/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/AIMS Cyclosporine A (CsA) is an immunosuppressant drug that is used during organ transplants. However, its utility is limited by its nephrotoxic potential. This study aimed to investigate whether fluorofenidone (AKF-PD) could provide protection against CsA-induced nephrotoxicity. METHODS Eighty-five male Sprague-Dawley rats were divided into 5 groups: drug solvent, CsA, CsA with AKF-PD (250, 500 mg/kg/day), and CsA with pirfenidone (PFD, 250 mg/kg/day). Tubulointerstitial injury index, extracellular matrix (ECM) deposition, expression of type I and IV collagen, transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF), Fas ligand (FASL), cleaved-caspase-3, cleaved-poly(ADP-ribose) polymerase (PARP)-1, and the number of transferase-mediated nick end-labeling (TUNEL)-positive renal tubule cells were determined. In addition, levels of TGF-β1, FASL, cleaved-caspase-3, cleaved-PARP-1, and number of annexin V-positive cells were determined in rat proximal tubular epithelial cells (NRK-52E) treated with CsA (20 μmol/L), AKF-PD (400 μg/mL), PFD (400 μg/mL), and GW788388 (5 μmol/L). RESULTS AKF-PD (250, 500 mg/kg/day) significantly reduced tubulointerstitial injury, ECM deposition, expression of type I and IV collagen, TGF-β1, PDGF, FASL, cleaved-caspase-3, cleaved-PARP-1, and number of TUNEL-positive renal tubule cells in the CsA-treated kidneys. In addition, AKF-PD (400 μg/mL) significantly decreased TGF-β1, FASL, cleaved-caspase-3, and PARP-1 expression in NRK-52E cells and further reduced the number of annexin V-positive cells. CONCLUSION AKF-PD protect kidney from fibrosis and apoptosis in CsA-induced kidney injury.
Collapse
Affiliation(s)
- Yang Chen
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Nasui Wang
- Division of Endocrinology and Metabolism, Department of Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Qin
- Department of Nephrology, Changsha Central Hospital, Changsha, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmacy, Central South University, Changsha, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmacy, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,
| |
Collapse
|
11
|
Yuan X, Zhang J, Xie F, Tan W, Wang S, Huang L, Tao L, Xing Q, Yuan Q. Loss of the Protein Cystathionine β-Synthase During Kidney Injury Promotes Renal Tubulointerstitial Fibrosis. Kidney Blood Press Res 2017; 42:428-443. [PMID: 28750410 DOI: 10.1159/000479295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/12/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Renal tubulointerstitial fibrosis (TIF) is the common pathway of progressive chronic kidney disease. Inflammation has been widely accepted as the major driving force of TIF. Cystathionine β-synthase (CBS) is the first and rate-limiting enzyme in the transsulfuration pathway. CBS is considered to play protective role in liver and pulmonary fibrosis, but its role in TIF remains unknown. The purpose of this study was to investigate the potential role and mechanism of CBS in renal inflammation and TIF. METHODS Renal function, tubulointerstitium damage index score, extracellular matrix (ECM) deposition, and the expressions of collagen I, collagen III, fibronectin, CD3, CD68, IL-1β, TNF-α were measured in sham operation and unilateral ureteral obstruction (UUO) rats. Proteomics and gene array analysis were performed to screen differentially expressed molecules in the development of renal inflammation and TIF in UUO rats. The expression of CBS was detected in patients with obstructive nephropathy and UUO rats. We confirmed the expression of CBS using western blot and real-time PCR in HK-2 cells. Overexpression plasmid and siRNA were transfected specifically to study the possible function of CBS in HK-2 cells. RESULTS Abundant expression of CBS, localized in renal tubular epithelial cells, was revealed in human and rat renal tissue, which correlated negatively with the progression of fibrotic disease. Expression of CBS was dramatically decreased in the obstructed kidney from UUO rats as compared with the sham group (SHM). In addition, knocking down CBS exacerbated extracellular matrix (ECM) deposition, whereas CBS overexpression attenuated TGF-β1-induced ECM deposition in vitro. Inflammatory and chemotactic factors were also increased in CBS knockdown HK-2 cells stimulated by IL-1β. CONCLUSIONS These findings establish CBS as a novel inhibitor in renal fibrosis and as a new therapeutic target in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Xiangning Yuan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Jin Zhang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Feifei Xie
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Wenqing Tan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Shuting Wang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Ling Huang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Lijian Tao
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Qiqi Xing
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiongjing Yuan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| |
Collapse
|
12
|
Deng ZH, Meng J, Tang J, Hu GY, Tao LJ. Fluorofenidone Inhibits the Proliferation of Lung Adenocarcinoma Cells. J Cancer 2017; 8:1917-1926. [PMID: 28819390 PMCID: PMC5556656 DOI: 10.7150/jca.18040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/08/2017] [Indexed: 12/11/2022] Open
Abstract
Background: Lung carcinoma is the leading cause of malignant tumor related mortality in China in recent decades, and the development of new and effective therapies for patients with advanced lung carcinoma is needed. We recently found that fluorofenidone (FD), a newly developed pyridine compound, reduced the activation of Stat3 (Signal transducer and activator of transcription 3) in fibroblasts. Stat3 plays a crucial role in the development of lung cancer and may represent a new therapeutic target. In this study, we examined the effect of FD on human lung adenocarcinoma cells in vivo and in vitro. Methods: The effect of FD on the growth of lung cancer cells was measured with a CCK-8 assay, colony formation assay and xenograft tumor model. A flow cytometry analysis was performed to study cell cycle arrest and apoptosis. Western blotting and immunohistochemistry were used to observe the expression of Stat3. Changes in the expression of RNA induced by FD were assessed using gene chip and real-time RT-PCR assays. Results: In vitro, FD inhibited the growth of lung adenocarcinoma A549 and SPC-A1 cells in a dose-dependent manner. After treatment with FD, the A549 and SPC-A1 cells were arrested in the G1 phase, and apoptosis was induced. In vivo, this compound significantly inhibited the growth of tumors that were subcutaneously implanted in mice. Moreover, FD decreased Stat3 activity in lung cancer cells and xenograft tumor tissue, and microarray chip results showed that FD altered the gene expression profile of lung cancer cells. Specifically, NUPR1, which plays a significant role in cancer development, was down-regulated by FD in lung cancer cells. Conclusion: Our study supports the clinical evaluation of FD as a potential lung adenocarcinoma therapy.
Collapse
Affiliation(s)
- Zheng-Hao Deng
- Department of pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Department of pathology, School of basic medicine, Central South University, Changsha, Hunan, 410078, China
| | - Jie Meng
- Department of pulmonary Medicine, XiangYa Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Juan Tang
- Department of Nephropathy, XiangYa Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Gao-Yun Hu
- Faculty of Pharmaceutical Sciences, Central South University, Changsha Hunan 410013, China
| | - Li-Jian Tao
- Department of Nephropathy, XiangYa Hospital, Central South University, Changsha, Hunan, 410008, China.,State Key Laboratory of Medical Genetics of China, Changsha, Hunan 410078, China
| |
Collapse
|
13
|
Manresa MC, Tambuwala MM, Radhakrishnan P, Harnoss JM, Brown E, Cavadas MA, Keogh CE, Cheong A, Barrett KE, Cummins EP, Schneider M, Taylor CT. Hydroxylase inhibition regulates inflammation-induced intestinal fibrosis through the suppression of ERK-mediated TGF-β1 signaling. [corrected]. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1076-G1090. [PMID: 27789456 DOI: 10.1152/ajpgi.00229.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/09/2016] [Indexed: 01/31/2023]
Abstract
Fibrosis is a complication of chronic inflammatory disorders such as inflammatory bowel disease, a condition which has limited therapeutic options and often requires surgical intervention. Pharmacologic inhibition of oxygen-sensing prolyl hydroxylases, which confer oxygen sensitivity upon the hypoxia-inducible factor pathway, has recently been shown to have therapeutic potential in colitis, although the mechanisms involved remain unclear. Here, we investigated the impact of hydroxylase inhibition on inflammation-driven fibrosis in a murine colitis model. Mice exposed to dextran sodium sulfate, followed by a period of recovery, developed intestinal fibrosis characterized by alterations in the pattern of collagen deposition and infiltration of activated fibroblasts. Treatment with the hydroxylase inhibitor dimethyloxalylglycine ameliorated fibrosis. TGF-β1 is a key regulator of fibrosis that acts through the activation of fibroblasts. Hydroxylase inhibition reduced TGF-β1-induced expression of fibrotic markers in cultured fibroblasts, suggesting a direct role for hydroxylases in TGF-β1 signaling. This was at least in part due to inhibition of noncanonical activation of extracellular signal-regulated kinase (ERK) signaling. In summary, pharmacologic hydroxylase inhibition ameliorates intestinal fibrosis through suppression of TGF-β1-dependent ERK activation in fibroblasts. We hypothesize that in addition to previously reported immunosupressive effects, hydroxylase inhibitors independently suppress profibrotic pathways.
Collapse
Affiliation(s)
- Mario C Manresa
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland.,School of Medicine and Medical Science, Charles Institute of Dermatology, University College Dublin, Dublin, Ireland
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northerm Ireland
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Eric Brown
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Miguel A Cavadas
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland.,Systems Biology Ireland, University College Dublin, Dublin, Ireland; and
| | - Ciara E Keogh
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Alex Cheong
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland.,Systems Biology Ireland, University College Dublin, Dublin, Ireland; and
| | - Kim E Barrett
- Department of Medicine and Biomedical Sciences Ph.D. Program, University of California, San Diego, School of Medicine, La Jolla, California
| | - Eoin P Cummins
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Cormac T Taylor
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland; .,Systems Biology Ireland, University College Dublin, Dublin, Ireland; and
| |
Collapse
|
14
|
Zhang J, Zheng L, Yuan X, Liu C, Yuan Q, Xie F, Qiu S, Peng Z, Tang Y, Meng J, Qin J, Hu G, Tao L. Mefunidone ameliorates renal inflammation and tubulointerstitial fibrosis via suppression of IKKβ phosphorylation. Int J Biochem Cell Biol 2016; 80:109-118. [DOI: 10.1016/j.biocel.2016.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
|
15
|
Xu Q, Jiang X, Zhu W, Chen C, Hu G, Li Q. Synthesis, preliminary biological evaluation and 3D-QSAR study of novel 1,5-disubstituted-2(1H)-pyridone derivatives as potential anti-lung cancer agents. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2015.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Qin J, Mei WJ, Xie YY, Huang L, Yuan QJ, Hu GY, Tao LJ, Peng ZZ. Fluorofenidone attenuates oxidative stress and renal fibrosis in obstructive nephropathy via blocking NOX2 (gp91phox) expression and inhibiting ERK/MAPK signaling pathway. Kidney Blood Press Res 2016; 40:89-99. [PMID: 26029782 DOI: 10.1159/000368485] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS We evaluated the therapeutic effects of fluorofenidone (AKF-PD), a novel pyridone agent, targeting oxidative stress and fibrosis in obstructive nephropathy. METHODS AKF-PD was used to treat renal interstitial fibrosis in unilateral ureteral obstruction (UUO) obstructive nephropathy in rats. The expression of NOX2 (gp91phox), fibronectin and extracellular signal regulated kinase (ERK) were detected by western blot. A level of Malondialdehyde (MDA), an oxidative stress marker, was measured by ELISA. In addition, ROS and the expressions of NOX2, collagen I (a1), fibronectin and p-ERK were measured in angiotensin (Ang) II-stimulated rat proximal tubular epithelial cells (NRK-52E) in culture. RESULTS In NRK-52E cells, AKF-PD reduced AngII induced expressions of ROS, NOX2, fibronectin, collagen I (a1) and p-ERK. In UUO kidney cortex, AKF-PD attenuated the degree of renal interstitial fibrosis, which was associated with reduced the expressions of collagen I (a1) and fibronectin. Furthermore, AKF-PD downregulated the expressions of NOX2, MDA and p-ERK. CONCLUSION AKF-PD treatment inhibits the progression of renal interstitial fibrosis by suppressing oxidative stress and ERK/MAPK signaling pathway.
Collapse
|
17
|
The Protective Mechanism of Fluorofenidone in Renal Interstitial Inflammation and Fibrosis. Am J Med Sci 2015; 350:195-203. [PMID: 26035627 DOI: 10.1097/maj.0000000000000501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Deregulated inflammation has been implicated in the development of renal interstitial fibrosis and progressive renal failure. Previous work has established that fluorofenidone, a pyridone agent, attenuates renal fibrosis. However, the mechanism by which fluorofenidone prevents renal fibrosis remains unclear. The aim of this study was to investigate the in vivo effects of fluorofenidone on unilateral ureteral obstruction-induced fibrosis and the involved molecular mechanism in mouse peritoneal macrophages. METHODS Renal fibrosis was induced in rat by unilateral ureteral obstruction for 3, 7 or 14 days. Ipsilateral kidneys were harvested for morphologic analysis. Leukocyte infiltration was assessed by immunohistochemistry staining. The expression of chemokines (MCP-1, RANTAS, IP-10, MIP-1α and MIP-1β) and pro-inflammatory cytokines (TNF-α and IL-1β) was measured by enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Mouse peritoneal macrophages and HK-2 cells were incubated with necrotic MES-13 cells or TNF-α in the presence or absence of fluorofenidone. The production of MCP-1 was measured by enzyme-linked immunosorbent assay, and phosphorylation of ERK1/2, p38 and JNK was quantified by Western blot. RESULTS Fluorofenidone treatment hampered renal pathologic change and interstitial collagen deposition. Leukocyte infiltration and the expression of chemokines (MCP-1, RANTES, IP-10, MIP-1α and MIP-1β) and pro-inflammatory cytokines (IL-1α) in kidney were significantly reduced by fluorofenidone treatment. Mechanistically, fluorofenidone significantly inhibited TNF-α or necrotic cell-induced activation of MAP kinase pathways in vitro. CONCLUSIONS Fluorofenidone serves as a novel anti-inflammatory agent that attenuates ureteral obstruction-induced renal interstitial inflammation and fibrosis, possibly through the inhibition of the microtubule-associated protein kinase pathways.
Collapse
|
18
|
Liu RM, Desai LP. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol 2015; 6:565-577. [PMID: 26496488 PMCID: PMC4625010 DOI: 10.1016/j.redox.2015.09.009] [Citation(s) in RCA: 476] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is the most potent pro-fibrogenic cytokine and its expression is increased in almost all of fibrotic diseases. Although signaling through Smad pathway is believed to play a central role in TGF-β's fibrogenesis, emerging evidence indicates that reactive oxygen species (ROS) modulate TGF-β's signaling through different pathways including Smad pathway. TGF-β1 increases ROS production and suppresses antioxidant enzymes, leading to a redox imbalance. ROS, in turn, induce/activate TGF-β1 and mediate many of TGF-β's fibrogenic effects, forming a vicious cycle (see graphic flow chart on the right). Here, we review the current knowledge on the feed-forward mechanisms between TGF-β1 and ROS in the development of fibrosis. Therapeutics targeting TGF-β-induced and ROS-dependent cellular signaling represents a novel approach in the treatment of fibrotic disorders. TGF-β1 is the most potent ubiquitous profibrogenic cytokine. TGF- β 1 induces redox imbalance by ↑ ROS production and ↓ anti-oxidant defense system Redox imbalance, in turn, activates latent TGF-β1 and induces TGF-β1 expression. Redox imbalance also mediates many of TGF-β1’s profibrogenic effects
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmi ngham, Birmingham, AL, USA.
| | - Leena P Desai
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmi ngham, Birmingham, AL, USA
| |
Collapse
|
19
|
Mei W, Peng Z, Lu M, Liu C, Deng Z, Xiao Y, Liu J, He Y, Yuan Q, Yuan X, Tang D, Yang H, Tao L. Peroxiredoxin 1 inhibits the oxidative stress induced apoptosis in renal tubulointerstitial fibrosis. Nephrology (Carlton) 2015; 20:832-42. [PMID: 25989822 DOI: 10.1111/nep.12515] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Wenjuan Mei
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Zhangzhe Peng
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Miaomiao Lu
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Chunyan Liu
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Zhenghao Deng
- Division of Pathology; Xiangya Hospital; Central South University; Changsha China
| | - Yun Xiao
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Jishi Liu
- Division of Nephrology; The Third Xiangya Hospital; Central South University; Changsha China
| | - Ying He
- Division of Gastroenterology; Xiangya Hospital; Central South University; Changsha China
| | - Qiongjing Yuan
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Xiangning Yuan
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Damu Tang
- Division of Nephrology; Department of Medicine; McMaster University; Hamilton Ontario Canada
| | - Huixiang Yang
- Division of Gastroenterology; Xiangya Hospital; Central South University; Changsha China
| | - Lijian Tao
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
- State Key Laboratory of Medical Genetics of China; Central South University; Changsha China
| |
Collapse
|
20
|
Liu C, Mei W, Tang J, Yuan Q, Huang L, Lu M, Wu L, Peng Z, Meng J, Yang H, Shen H, Lv B, Hu G, Tao L. Mefunidone attenuates tubulointerstitial fibrosis in a rat model of unilateral ureteral obstruction. PLoS One 2015; 10:e0129283. [PMID: 26042668 PMCID: PMC4456380 DOI: 10.1371/journal.pone.0129283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inflammation has a crucial role in renal interstitial fibrosis, which is the common pathway of chronic kidney diseases. Mefunidone (MFD) is a new compound which could effectively inhibit the proliferation of renal fibroblasts in vitro. However, the overall effect of Mefunidone in renal fibrosis remains unknown. METHODS Sprague-Dawley rats were randomly divided intro 6 groups: sham operation, unilateral ureteral obstruction (UUO), UUO/Mefunidone (25, 50, 100mg/kg/day) and UUO/PFD (500mg/kg/day). The rats were sacrificed respectively on days 3, 7, and 14 after the operation. Tubulointerstitial injury index, interstitial collagen deposition, expression of fibronectin (FN), α-smooth muscle actin (α-SMA), type I and III collagen and the number of CD3+ and CD68+ cells were determined. The expressions of proinflammatory cytokines, p-ERK, p-IκB, and p-STAT3 were measured in human renal proximal tubular epithelial cells of HK-2 or macrophages. RESULTS Mefunidone treatment significantly attenuated tubulointerstitial injury, interstitial collagen deposition, expression of FN, α-SMA, type I and III collagen in the obstructive kidneys, which correlated with significantly reduced the number of T cells and macrophages in the obstructive kidneys. Mechanistically, Mefunidone significantly inhibited tumor necrosis factor-α (TNF-α-) or lipopolysaccharide (LPS)-induced production of proinflammatory cytokines. This effect is possibly due to the inhibition of phosphorylation of ERK, IκB, and STAT3. CONCLUSION Mefunidone treatment attenuated tubulointerstitial fibrosis in a rat model of UUO, at least in part, through inhibition of inflammation.
Collapse
Affiliation(s)
- Chunyan Liu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenjuan Mei
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miaomiao Lu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Wu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Meng
- Department of Respiration, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Shen
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ben Lv
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gaoyun Hu
- Department of Medical Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
21
|
Tang J, Liu CY, Lu MM, Zhang J, Mei WJ, Yang WJ, Xie YY, Huang L, Peng ZZ, Yuan QJ, Liu JS, Hu GY, Tao LJ. Fluorofenidone protects against renal fibrosis by inhibiting STAT3 tyrosine phosphorylation. Mol Cell Biochem 2015; 407:77-87. [PMID: 26033204 DOI: 10.1007/s11010-015-2456-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/16/2015] [Indexed: 12/17/2022]
Abstract
Signaling through the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, especially JAK2/STAT3, is involved in renal fibrosis. Fluorofenidone (FD), a novel pyridone agent, exerts anti-fibrotic effects in vitro and in vivo. Herein, we sought to investigate whether FD demonstrates its inhibitory function through preventing JAK2/STAT3 pathway. In this study, we examined the effect of FD on activation of rat renal interstitial fibroblasts, glomerular mesangial cells (GMC), and expression of JAK2/STAT3. Moreover, we explored the histological protection effects of FD in UUO rats, db/db mice, and phosphorylation of JAK2/STAT3 cascade. Our studies found that pretreatment with FD resulted in blockade of activation of fibroblast and GMC manifested by fibronectin (FN) and α-smooth muscle actin (α-SMA) protein expression and decline of STAT3 tyrosine phosphorylation induced by IL-6 or high glucose. In unilateral ureteral obstruction rats and a murine model of spontaneous type 2 diabetes (db/db mice), treatment with FD blocked the expression of FN and α-SMA, prevented renal fibrosis progression, and attenuated STAT3 activation. However, FD administration did not interfere with JAK2 activation both in vivo and in vitro. In summary, the molecular mechanism by which FD exhibits renoprotective effects appears to involve the inhibition of STAT3 phosphorylation.
Collapse
Affiliation(s)
- Juan Tang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fluorofenidone inhibits macrophage IL-1β production by suppressing inflammasome activity. Int Immunopharmacol 2015; 27:148-53. [PMID: 25983199 DOI: 10.1016/j.intimp.2015.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/22/2015] [Accepted: 05/04/2015] [Indexed: 11/23/2022]
Abstract
Interleukin-1 beta (IL-1β) is a potent pro-inflammatory and pro-fibrotic cytokine that plays an important role in renal fibrosis. Fluorofenidone (AKF-PD) is a novel pyridone agent that exerts a strong renal anti-fibrotic effect. We previously found that administration of AKF-PD could significantly attenuate IL-1β production in vitro and in vivo. However, the underlying mechanism is not fully understood. Here we show that AKF-PD has no effect on the expression of pro-IL-1β in activated mouse macrophages in vitro. Instead, AKF-PD inhibits the inflammasome, lowering caspase-1 levels and thereby decreasing cleavage of pro-IL-1β into IL-1β. AKF-PD was found to block inflammasome activity induced by various signals, including ATP, alum crystals, and Salmonella typhimurium. These results provide a novel mechanistic insight into how AKF-PD exerts its anti-inflammatory and anti-fibrotic activities, and suggest that AKF-PD might block IL-1β production via suppression of inflammasomes in renal fibrosis. In addition, the results suggest that AKF-PD may be of therapeutic potential in other inflammasome-related diseases.
Collapse
|
23
|
Therapeutic strategies of diabetic nephropathy: recent progress and future perspectives. Drug Discov Today 2014; 20:332-46. [PMID: 25448752 DOI: 10.1016/j.drudis.2014.10.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/20/2014] [Accepted: 10/22/2014] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes with high mortality rates worldwide. The treatment of DN has posed a formidable challenge to the scientific community. Simple control of risk factors has been insufficient to cope with the progression of DN. During the process of anti-DN drug discovery, multiple pathogeneses such as oxidative stress, inflammation and fibrosis should all be considered. In this review, the pathogenesis of DN is summarized. The major context focuses on a few small molecules toward the pathogenesis available in animal models and clinical trials for the treatment of DN. The perspectives of novel anti-DN agents and the future directions for the prevention of DN are discussed.
Collapse
|
24
|
Liu J, Qin J, Mei W, Zhang H, Yuan Q, Peng Z, Luo R, Yuan X, Huang L, Tao L. Expression of Niban in renal interstitial fibrosis. Nephrology (Carlton) 2014; 19:479-89. [PMID: 24750539 DOI: 10.1111/nep.12266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Jishi Liu
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Jiao Qin
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Wenjuan Mei
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Hao Zhang
- Division of Nephrology; The Third Xiangya Hospital; Central South University; Changsha China
| | - Qiongjing Yuan
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Zhangzhe Peng
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Renna Luo
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Xiangning Yuan
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Ling Huang
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Lijian Tao
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
- State Key Laboratory of Medical Genetics of China; Central South University; Changsha China
| |
Collapse
|
25
|
|
26
|
Peng Y, Yang H, Wang N, Ouyang Y, Yi Y, Liao L, Shen H, Hu G, Wang Z, Tao L. Fluorofenidone attenuates hepatic fibrosis by suppressing the proliferation and activation of hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2014; 306:G253-63. [PMID: 24337009 DOI: 10.1152/ajpgi.00471.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorofenidone (AKF-PD) is a novel pyridone agent. The purpose of this study is to investigate the inhibitory effects of AKF-PD on liver fibrosis in rats and the involved molecular mechanism related to hepatic stellate cells (HSCs). Rats treated with dimethylnitrosamine or CCl4 were randomly divided into normal, model, AKF-PD treatment, and pirfenidone (PFD) treatment groups. The isolated primary rat HSCs were treated with AKF-PD and PFD respectively. Cell proliferation and cell cycle distribution were analyzed by bromodeoxyuridine and flow cytometry, respectively. The expression of collagen I and α-smooth muscle actin (α-SMA) were determined by Western blot, immunohistochemical staining, and real-time RT-PCR. The expression of cyclin D1, cyclin E, and p27(kip1) and phosphorylation of MEK, ERK, Akt, and 70-kDa ribosomal S6 kinase (p70S6K) were detected by Western blot. AKF-PD significantly inhibited PDGF-BB-induced HSC proliferation and activation by attenuating the expression of collagen I and α-SMA, causing G0/G1 phase cell cycle arrest, reducing expression of cyclin D1 and cyclin E, and promoting expression of p27(kip1). AKF-PD also downregulated PDGF-BB-induced MEK, ERK, Akt, and p70S6K phosphorylation in HSCs. In rat liver fibrosis, AKF-PD alleviated hepatic fibrosis by decreasing necroinflammatory score and semiquantitative score, and reducing expression of collagen I and α-SMA. AKF-PD attenuated the progression of hepatic fibrosis by suppressing HSCs proliferation and activation via the ERK/MAPK and PI3K/Akt signaling pathways. AKF-PD may be used as a potential novel therapeutic agent against liver fibrosis.
Collapse
Affiliation(s)
- Yu Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fluorofenidone Attenuates Bleomycin-Induced Pulmonary Inflammation and Fibrosis in Mice Via Restoring Caveolin 1 Expression and Inhibiting Mitogen-Activated Protein Kinase Signaling Pathway. Shock 2012; 38:567-73. [DOI: 10.1097/shk.0b013e31826fe992] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Wu L, Liu B, Li Q, Chen J, Tao L, Hu G. Design, synthesis and anti-fibrosis activity study of N₁-substituted phenylhydroquinolinone derivatives. Molecules 2012; 17:1373-87. [PMID: 22301723 PMCID: PMC6269057 DOI: 10.3390/molecules17021373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 01/20/2012] [Accepted: 01/21/2012] [Indexed: 02/06/2023] Open
Abstract
Pirfenidone (5-methyl-1-phenyl-2(1H)-pyridone, PFD) is a small-molecule compound acting on multiple targets involved in pathological fibrogenesis and is effective to increase the survival of patients with fibrosis, such as idiopathic pulmonary fibrosis. However, PFD is not active enough, requiring a high daily dose. In this study, to keep the multiple target profiles, N1-substituted phenylhydroquinolinone derivatives, which retain the 1-phenyl-2(1H)-pyridone scaffold were designed and synthesized. The preliminary anti-fibrosis activities for all target compounds were evaluated on a NIH3T3 fibroblast cell line using MTT assay methods. Most compounds showed significant inhibition on NIH3T3 cell proliferation with a IC50 range of 0.09–26 mM, among which 5-hydroxy-1-(4'-bromophenyl)-5,6,7,8-tetrahydroquinolin-2(1H)-one (6j) displayed 13 times higher potency (IC50 = 0.3 mM) than that of AKF-PD (IC50 = 4.2 mM). These results suggest that N1-substituted phenylhydroquinolinone is a promising scaffold which can be applied for further investigation and for developing novel anti-fibrosis agents.
Collapse
Affiliation(s)
- Ling Wu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; (L.W.); (Q.L.); (J.C.)
| | - Bin Liu
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; (B.L.); (L.T.)
| | - Qianbin Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; (L.W.); (Q.L.); (J.C.)
| | - Jun Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; (L.W.); (Q.L.); (J.C.)
| | - Lijian Tao
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; (B.L.); (L.T.)
| | - Gaoyun Hu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; (L.W.); (Q.L.); (J.C.)
- Author to whom correspondence should be addressed; ; Tel.: +86-731-8265-0371; Fax: +86-731-8265-0370
| |
Collapse
|