1
|
Zhou J, Huang Y, Wang W, Li J, Hou Y, Yi Z, Yang H, Hu K, Zhu Y, Wang Z, Ma S. Chronotoxici-Plate Containing Droplet-Engineered Rhythmic Liver Organoids for Drug Toxicity Evaluation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305925. [PMID: 38720476 PMCID: PMC11267367 DOI: 10.1002/advs.202305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Indexed: 07/25/2024]
Abstract
The circadian clock coordinates the daily rhythmicity of biological processes, and its dysregulation is associated with various human diseases. Despite the direct targeting of rhythmic genes by many prevalent and World Health Organization (WHO) essential drugs, traditional approaches can't satisfy the need of explore multi-timepoint drug administration strategies across a wide range of drugs. Here, droplet-engineered primary liver organoids (DPLOs) are generated with rhythmic characteristics in 4 days, and developed Chronotoxici-plate as an in vitro high-throughput automated rhythmic tool for chronotherapy assessment within 7 days. Cryptochrome 1 (Cry1) is identified as a rhythmic marker in DPLOs, providing insights for rapid assessment of organoid rhythmicity. Using oxaliplatin as a representative drug, time-dependent variations are demonstrated in toxicity on the Chronotoxici-plate, highlighting the importance of considering time-dependent effects. Additionally, the role of chronobiology is underscored in primary organoid modeling. This study may provide tools for both precision chronotherapy and chronotoxicity in drug development by optimizing administration timing.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Yi‐chun Huang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Wanlong Wang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Jiawei Li
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Yibo Hou
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Ziqi Yi
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Haowei Yang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Keer Hu
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Yu Zhu
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Zitian Wang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
- Key Lab of Industrial Biocatalysis Ministry of EducationTsinghua UniversityBeijing100084China
| |
Collapse
|
2
|
Hu Y, Wang R, An N, Li C, Wang Q, Cao Y, Li C, Liu J, Wang Y. Unveiling the power of microenvironment in liver regeneration: an in-depth overview. Front Genet 2023; 14:1332190. [PMID: 38152656 PMCID: PMC10751322 DOI: 10.3389/fgene.2023.1332190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
The liver serves as a vital regulatory hub for various physiological processes, including sugar, protein, and fat metabolism, coagulation regulation, immune system maintenance, hormone inactivation, urea metabolism, and water-electrolyte acid-base balance control. These functions rely on coordinated communication among different liver cell types, particularly within the liver's fundamental hepatic lobular structure. In the early stages of liver development, diverse liver cells differentiate from stem cells in a carefully orchestrated manner. Despite its susceptibility to damage, the liver possesses a remarkable regenerative capacity, with the hepatic lobule serving as a secure environment for cell division and proliferation during liver regeneration. This regenerative process depends on a complex microenvironment, involving liver resident cells, circulating cells, secreted cytokines, extracellular matrix, and biological forces. While hepatocytes proliferate under varying injury conditions, their sources may vary. It is well-established that hepatocytes with regenerative potential are distributed throughout the hepatic lobules. However, a comprehensive spatiotemporal model of liver regeneration remains elusive, despite recent advancements in genomics, lineage tracing, and microscopic imaging. This review summarizes the spatial distribution of cell gene expression within the regenerative microenvironment and its impact on liver regeneration patterns. It offers valuable insights into understanding the complex process of liver regeneration.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics, Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ni An
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Chen Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yannan Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chao Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Geervliet E, Terstappen LWMM, Bansal R. Hepatocyte survival and proliferation by fibroblast growth factor 7 attenuates liver inflammation, and fibrogenesis during acute liver injury via paracrine mechanisms. Biomed Pharmacother 2023; 167:115612. [PMID: 37797460 DOI: 10.1016/j.biopha.2023.115612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Hepatocyte damage during liver injury instigates activation of macrophages and hepatic stellate cells (HSCs) resulting in liver inflammation and fibrosis respectively. Improving hepatocyte survival and proliferation thereby ameliorating inflammation and fibrosis represents a promising approach for the treatment of liver injury. In the liver, fibroblast growth factors (FGFs) play a crucial role in promoting hepatocyte proliferation and tissue regeneration. Among 22 FGFs, FGF7 induces hepatocyte survival and liver regeneration as shown previously in mouse models of cholestatic liver injury and partial hepatectomy. We hypothesized that FGF7 promotes hepatocyte survival and proliferation by interacting with FGFR2b, expressed on hepatocytes, and ameliorates liver injury (inflammation and early fibrogenesis) via paracrine mechanisms. To prove this hypothesis and to study the effect of FGF7 on hepatocytes and liver injury, we administered FGF7 exogenously to mice with acute carbon tetrachloride (CCl4)-induced liver injury. We thereafter studied the underlying mechanisms and the effect of exogenous FGF7 on hepatocyte survival and proliferation, and the consequent paracrine effects on macrophage-induced inflammation, and HSCs activation in vitro and in vivo. We observed that the expression of FGF7 as well as FGFR2 is upregulated during acute liver injury. Co-immunostaining of FGF7 and collagen-I confirmed that FGF7 is expressed by HSCs and is possibly captured by the secreted ECM. Immunohistochemical analysis of liver sections showed increased hepatocyte proliferation upon exogenous FGF7 treatment as determined by Ki67 expression. Mechanistically, exogenous FGF7 improved hepatocyte survival (and increased drug detoxification) via AKT and ERK pathways while maintaining hepatocyte quiescence restricting hepatocarcinogenesis via P27 pathways. Flow cytometry analysis revealed that improved hepatocyte survival and proliferation leads to a decrease in infiltrated monocytes-derived macrophages, as a result of reduced CCL2 (and CXCL8) expression by hepatocytes. Moreover, conditioned medium studies showed reduced collagen-I secretion by HSCs (indicative of HSCs activation) upon treatment with FGF7-treated hepatocytes conditioned medium. Altogether, we show that exogenous administration of FGF7 induces hepatocyte survival and proliferation and leads to amelioration of inflammatory response and fibrosis in acute liver injury via paracrine mechanisms. Our study further demonstrates that FGF7, FGF7 derivatives, or nano-engineered FGF7 may benefit patients with hepatic dysfunction.
Collapse
Affiliation(s)
- Eline Geervliet
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, the Netherlands; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany
| | - Leon W M M Terstappen
- Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, the Netherlands
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, the Netherlands.
| |
Collapse
|
4
|
Suda T, Yokoo T, Kanefuji T, Kamimura K, Zhang G, Liu D. Hydrodynamic Delivery: Characteristics, Applications, and Technological Advances. Pharmaceutics 2023; 15:1111. [PMID: 37111597 PMCID: PMC10141091 DOI: 10.3390/pharmaceutics15041111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
The principle of hydrodynamic delivery was initially used to develop a method for the delivery of plasmids into mouse hepatocytes through tail vein injection and has been expanded for use in the delivery of various biologically active materials to cells in various organs in a variety of animal species through systemic or local injection, resulting in significant advances in new applications and technological development. The development of regional hydrodynamic delivery directly supports successful gene delivery in large animals, including humans. This review summarizes the fundamentals of hydrodynamic delivery and the progress that has been made in its application. Recent progress in this field offers tantalizing prospects for the development of a new generation of technologies for broader application of hydrodynamic delivery.
Collapse
Affiliation(s)
- Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiuonuma 949-7302, Niigata, Japan
| | - Takeshi Yokoo
- Department of Preemptive Medicine for Digestive Diseases and Healthy Active Life, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Tsutomu Kanefuji
- Department of Gastroenterology and Hepatology, Tsubame Rosai Hospital, Tsubame 959-1228, Niigata, Japan
| | - Kenya Kamimura
- Department of General Medicine, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Michna A, Pomorska A, Ozcan O. Biocompatible Macroion/Growth Factor Assemblies for Medical Applications. Biomolecules 2023; 13:biom13040609. [PMID: 37189357 DOI: 10.3390/biom13040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Growth factors are a class of proteins that play a role in the proliferation (the increase in the number of cells resulting from cell division) and differentiation (when a cell undergoes changes in gene expression becoming a more specific type of cell) of cells. They can have both positive (accelerating the normal healing process) and negative effects (causing cancer) on disease progression and have potential applications in gene therapy and wound healing. However, their short half-life, low stability, and susceptibility to degradation by enzymes at body temperature make them easily degradable in vivo. To improve their effectiveness and stability, growth factors require carriers for delivery that protect them from heat, pH changes, and proteolysis. These carriers should also be able to deliver the growth factors to their intended destination. This review focuses on the current scientific literature concerning the physicochemical properties (such as biocompatibility, high affinity for binding growth factors, improved bioactivity and stability of the growth factors, protection from heat, pH changes or appropriate electric charge for growth factor attachment via electrostatic interactions) of macroions, growth factors, and macroion-growth factor assemblies, as well as their potential uses in medicine (e.g., diabetic wound healing, tissue regeneration, and cancer therapy). Specific attention is given to three types of growth factors: vascular endothelial growth factors, human fibroblast growth factors, and neurotrophins, as well as selected biocompatible synthetic macroions (obtained through standard polymerization techniques) and polysaccharides (natural macroions composed of repeating monomeric units of monosaccharides). Understanding the mechanisms by which growth factors bind to potential carriers could lead to more effective delivery methods for these proteins, which are of significant interest in the diagnosis and treatment of neurodegenerative and civilization diseases, as well as in the healing of chronic wounds.
Collapse
|
6
|
Nandakumar M, Moin ASM, Ramanjaneya M, Qaissi AA, Sathyapalan T, Atkin SL, Butler AE. Severe iatrogenic hypoglycaemia modulates the fibroblast growth factor protein response. Diabetes Obes Metab 2022; 24:1483-1497. [PMID: 35415885 DOI: 10.1111/dom.14716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION There is evidence that fibroblast growth factor (FGF) levels may be implicated in hypoglycaemia, with FGF19 being a potential contributor to insulin-independent pathways driving postprandial hypoglycaemia following bariatric surgery and basic FGF (FGF2) being elevated following mild hypoglycaemia occurring after the glucose tolerance test. However, their response following severe iatrogenic hypoglycaemia is unknown and therefore this pilot exploratory study was undertaken. METHODS A case-control study of aged-matched type 2 diabetes (T2D; n = 23) and control (n = 23) subjects who underwent a hyperinsulinaemic clamp, initially to euglycaemia in T2D (5 mmol/L; 90 mg/dl), and then to hypoglycaemia (<2 mmol/L; <36 mg/dl) with subsequent follow-up time course to 24 h. FGF and FGF receptor proteins were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement. RESULTS At baseline, FGF12 (p = .006) was higher and FGF20 (p = .004) was lower in T2D versus controls. At hypoglycaemia, FGF7 was lower in T2D. Post-hypoglycaemic levels of FGF18, FGF19, FGF20 and FGF23 were lower while FGF12 and FGF16 were higher in T2D versus control at different time points. No differences between T2D and controls were seen for FGF1, FGF2, FGF4, FGF6, FGF8, FGF9, FGF10, FGF21 or any of the FGF receptors. At 24 h post-hypoglycaemia, FGF20 (p = .01) differed between controls and T2D, while the levels for the other proteins measured returned to baseline. None of the FGF proteins altered from baseline to euglycaemia when clamped in T2D subjects. FGF23 negatively correlated with fasting blood glucose, but no FGFs correlated with body mass index in T2D. CONCLUSION Severe transient hypoglycaemia modulated FGF7, 16, 19, 20 and 23 (known to be associated with diabetes), together with FGF18 and 12, not previously reported to be associated with diabetes but that may be important in the pathophysiology of hypoglycaemia; FGF20 remained low at 24 h. Taken together, these data suggest that recurrent hypoglycaemia may contribute to the development of complications through changes in FGF proteins.
Collapse
Affiliation(s)
- Manjula Nandakumar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abu Saleh Md Moin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Al Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
| | | | - Stephen L Atkin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Alexandra E Butler
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| |
Collapse
|
7
|
Peng WC, Kraaier LJ, Kluiver TA. Hepatocyte organoids and cell transplantation: What the future holds. Exp Mol Med 2021; 53:1512-1528. [PMID: 34663941 PMCID: PMC8568948 DOI: 10.1038/s12276-021-00579-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Historically, primary hepatocytes have been difficult to expand or maintain in vitro. In this review, we will focus on recent advances in establishing hepatocyte organoids and their potential applications in regenerative medicine. First, we provide a background on the renewal of hepatocytes in the homeostatic as well as the injured liver. Next, we describe strategies for establishing primary hepatocyte organoids derived from either adult or fetal liver based on insights from signaling pathways regulating hepatocyte renewal in vivo. The characteristics of these organoids will be described herein. Notably, hepatocyte organoids can adopt either a proliferative or a metabolic state, depending on the culture conditions. Furthermore, the metabolic gene expression profile can be modulated based on the principles that govern liver zonation. Finally, we discuss the suitability of cell replacement therapy to treat different types of liver diseases and the current state of cell transplantation of in vitro-expanded hepatocytes in mouse models. In addition, we provide insights into how the regenerative microenvironment in the injured host liver may facilitate donor hepatocyte repopulation. In summary, transplantation of in vitro-expanded hepatocytes holds great potential for large-scale clinical application to treat liver diseases.
Collapse
Affiliation(s)
- Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Lianne J Kraaier
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
8
|
Seitz T, Hellerbrand C. Role of fibroblast growth factor signalling in hepatic fibrosis. Liver Int 2021; 41:1201-1215. [PMID: 33655624 DOI: 10.1111/liv.14863] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Fibrotic remodelling is a highly conserved protective response to tissue injury and it is essential for the maintenance of structural and functional tissue integrity. Also hepatic fibrosis can be considered as a wound-healing response to liver injury, reflecting a balance between liver repair and scar formation. In contrast, pathological fibrosis corresponds to impaired wound healing. Usually, the liver regenerates after acute injury. However, if the damaging mechanisms persist, the liver reacts with progressive and uncontrolled accumulation of extracellular matrix proteins. Eventually, excessive fibrosis can lead to cirrhosis and hepatic failure. Furthermore, cirrhosis is the major risk factor for the development of hepatocellular cancer (HCC). Therefore, hepatic fibrosis is the most critical pathological factor that determines the morbidity and mortality of patients with chronic liver disease. Still, no effective anti-fibrogenic therapies exist, despite the very high medical need. The regulation of fibroblast growth factor (FGF) signalling is a prerequisite for adequate wound healing, repair and homeostasis in various tissues and organs. The FGF family comprises 22 proteins that can be classified into paracrine, intracrine and endocrine factors. Most FGFs signal through transmembrane tyrosine kinase FGF receptors (FGFRs). Although FGFRs are promising targets for the treatment of HCC, the expression and function of FGFR-ligands in hepatic fibrosis is still poorly understood. This review summarizes the latest advances in our understanding of FGF signalling in hepatic fibrosis. Furthermore, the potential of FGFs as targets for the treatment of hepatic fibrosis and remaining challenges for the field are discussed.
Collapse
Affiliation(s)
- Tatjana Seitz
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Hoffmann K, Nagel AJ, Tanabe K, Fuchs J, Dehlke K, Ghamarnejad O, Lemekhova A, Mehrabi A. Markers of liver regeneration-the role of growth factors and cytokines: a systematic review. BMC Surg 2020; 20:31. [PMID: 32050952 PMCID: PMC7017496 DOI: 10.1186/s12893-019-0664-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Post-hepatectomy liver failure contributes significantly to postoperative mortality after liver resection. The prediction of the individual risk for liver failure is challenging. This review aimed to provide an overview of cytokine and growth factor triggered signaling pathways involved in liver regeneration after resection. METHODS MEDLINE and Cochrane databases were searched without language restrictions for articles from the time of inception of the databases till March 2019. All studies with comparative data on the effect of cytokines and growth factors on liver regeneration in animals and humans were included. RESULTS Overall 3.353 articles comprising 40 studies involving 1.498 patients and 101 animal studies were identified and met the inclusion criteria. All included trials on humans were retrospective cohort/observational studies. There was substantial heterogeneity across all included studies with respect to the analyzed cytokines and growth factors and the described endpoints. CONCLUSION High-level evidence on serial measurements of growth factors and cytokines in blood samples used to predict liver regeneration after resection is still lacking. To address the heterogeneity of patients and potential markers, high throughput serial analyses may offer a method to predict an individual's regenerative potential in the future.
Collapse
Affiliation(s)
- Katrin Hoffmann
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany.
| | - Alexander Johannes Nagel
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Kazukata Tanabe
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | | | - Karolin Dehlke
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Omid Ghamarnejad
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Anastasia Lemekhova
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Intrahepatic biliary strictures after liver transplantation are morphologically similar to primary sclerosing cholangitis but immunologically distinct. Eur J Gastroenterol Hepatol 2020; 32:276-284. [PMID: 31895887 DOI: 10.1097/meg.0000000000001649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Biliary strictures are an important cause of morbidity and mortality in primary hepatic disease and after liver transplantation (LT). We aimed to characterize inflammatory cytokines in biliary fluids in biliary strictures to investigate their immunological origin. METHODS We conducted a retrospective study on 72 patients with strictures after LT, eight patients with primary sclerosing cholangitis (PSC) and 15 patients with secondary sclerosing cholangitis (SSC). We measured cytokines interleukin (IL)-2, -4, -6, -10, -17, monocyte chemoattractant protein (MCP)-1, fibroblast growth factor (FGF)-2 and interferon (IFN)-γ as well as biochemical components such as protein and phospholipids in biliary fluid obtained from endoscopic retrograde cholangiography (ERC). Cell viability assays were performed on human cholangiocytes (H69) after being treated with IL-6, IL-4 and IFN-γ. RESULTS Bile of patients with diffuse strictures after LT or due to SSC showed low values of all measured cytokines except for IL-6 levels, which were largely elevated in patients with diffuse strictures after LT. Patients high in biliary IL-6 showed an increase in profibrotic markers FGF-2 and MCP-1. In contrast, PSC bile was dominated by a Th1/Th17 profile with elevated IL-2, IL-17 and IFN-γ. In LT patients with biliary strictures, biliary IL-6 negatively predicted retransplantation-free survival after ERC. CONCLUSION PSC patients showed a biliary Th1/Th17 cytokine profile, while SSC and diffuse strictures showed low values of cytokines except IL-6. In diffuse intrahepatic strictures after LT, biliary IL-6 is strongly associated with retransplantation-free survival after ERC.
Collapse
|
11
|
Rohilla S, Dureja H, Chawla V. Cytoprotective Agents to Avoid Chemotherapy Induced Sideeffects on Normal Cells: A Review. Curr Cancer Drug Targets 2019; 19:765-781. [PMID: 30914026 DOI: 10.2174/1568009619666190326120457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 01/16/2023]
Abstract
Anticancer agents play a vital role in the cure of patients suffering from malignancy. Though, the chemotherapeutic agents are associated with various adverse effects which produce significant toxic symptoms in the patients. But this therapy affects both the malignant and normal cells and leads to constricted therapeutic index of antimalignant drugs which adversely impacts the quality of patients’ life. Due to these adversities, sufficient dose of drug is not delivered to patients leading to delay in treatment or improper treatment. Chemoprotective agents have been developed either to minimize or to mitigate the toxicity allied with chemotherapeutic agents. Without any concession in the therapeutic efficacy of anticancer drugs, they provide organ specific guard to normal tissues.
Collapse
Affiliation(s)
- Seema Rohilla
- Department of Pharmaceutics, Hindu College of Pharmacy, Sonepat- 131001, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Vinay Chawla
- Institute of Pharmaceutical Sciences, Baba Farid University of Health Sciences, Faridkot-151203, India
| |
Collapse
|
12
|
Singhal G, Kumar G, Chan S, Fisher FM, Ma Y, Vardeh HG, Nasser IA, Flier JS, Maratos-Flier E. Deficiency of fibroblast growth factor 21 (FGF21) promotes hepatocellular carcinoma (HCC) in mice on a long term obesogenic diet. Mol Metab 2018; 13:56-66. [PMID: 29753678 PMCID: PMC6026320 DOI: 10.1016/j.molmet.2018.03.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/28/2018] [Accepted: 03/04/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver (NAFL) associated with obesity is a major cause of liver diseases which can progress to non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Fibroblast growth factor 21 (FGF21) plays an important role in liver metabolism and is also a potential marker for NAFL. Here we aimed to test the effect of FGF21 deficiency on liver pathology in mice consuming a conventional high fat, high sucrose (HFHS) obesogenic diet for up to 52 weeks. METHODS C57BL6 WT and FGF21 KO mice were fed a conventional obesogenic diet and were evaluated at 16 and 52 weeks. Evaluation included metabolic assessment, liver pathology, and transcriptomic analysis. RESULTS With consumption of HFHS diet, FGF21 deficient mice (FGF21 KO) develop excess fatty liver within 16 weeks. Hepatic pathology progresses and at 52 weeks FGF21 KO mice show significantly worse fibrosis and 78% of mice develop HCC; in contrast only 6% of WT mice develop HCC. Well differentiated hepatocellular carcinomas in FGF21 KO mice were characterized by expanded hepatic plates, loss of reticulin network, cytologic atypia, and positive immunostaining for glutamine synthetase. Microarray analysis reveals enrichment of several fibroblast growth factor signaling pathways in the tumors. CONCLUSIONS In addition to attenuating inflammation and fibrosis in mice under a number of dietary challenges, we show here that FGF21 is required to limit the progression from NAFL to HCC in response to prolonged exposure to an obesogenic diet. The induction of hepatic FGF21 in response to the high fat, high sucrose obesogenic diet may play an important role in limiting progression of liver pathology from NAFL to HCC.
Collapse
Affiliation(s)
- Garima Singhal
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Gaurav Kumar
- Emory Integrated Computational Core, Emory University, Atlanta, GA, 30322, USA
| | - Suzanne Chan
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ffolliott M Fisher
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yong Ma
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Hilde G Vardeh
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Imad A Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jeffrey S Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, 02215, USA
| | - Eleftheria Maratos-Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
13
|
Liu M, Chen Z, Huang S, Chu S, Issaro N, Tian H, Hu H, Jiang C. Effective Protection on Acute Liver Injury by Halo Tag-Flanked Recombinant Fibroblast Growth Factor 7. Biotechnol J 2018; 13:e1700411. [PMID: 29504693 DOI: 10.1002/biot.201700411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 02/24/2018] [Indexed: 11/10/2022]
Abstract
The drug development of FGF7 has been restricted by its toxicity to the host, low expression, poor stability, and easy degradation. Recent studies have shown that Halo-tag-flanked recombinant human FGF7 can solve the problem of toxicity; however, its biological activity is unknown. This study aimed to explore the activity of Halo-rhFGF7 and rhFGF7 on acute liver injury in vitro and in vivo. The rhFGF7 is expressed with a N-terminal Halo-tag, followed by a tobacco etch virus (TEV) protease cleavage site, in Escherichia coli BL21 (DE3) pLysS in this study. The products could stimulate the proliferation of carbon tetrachloride-damaged L-O2 cells (normal human liver cells); they also inhibited cell apoptosis. Due to the use of the Halo, the protein could be tracked using fluorescence localization. Recombinant protein exerted a protective effect on the acute liver injury model in vitro and in vivo. The MTT assay and Western blot analysis showed that this protective effect is realized through various paths, including promoting proliferation, inhibiting cell apoptosis and anti-inflammatory. In conclusion, Halo-rhFGF7 and rhFGF7 displayed an excellent protective effect on acute liver injury. The present study provided an experimental basis and data support for further research on rhFGF7.
Collapse
Affiliation(s)
- Min Liu
- School of Pharmaceutical Science, Key Laboratory of Biothechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiyu Chen
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang 324000, China
| | - Sisi Huang
- School of Pharmaceutical Science, Key Laboratory of Biothechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shenghui Chu
- School of Pharmaceutical Science, Key Laboratory of Biothechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Nipatha Issaro
- School of Pharmaceutical Science, Key Laboratory of Biothechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haishan Tian
- School of Pharmaceutical Science, Key Laboratory of Biothechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haiyan Hu
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chao Jiang
- School of Pharmaceutical Science, Key Laboratory of Biothechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
14
|
Translational Advances of Hydrofection by Hydrodynamic Injection. Genes (Basel) 2018; 9:genes9030136. [PMID: 29494564 PMCID: PMC5867857 DOI: 10.3390/genes9030136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
Hydrodynamic gene delivery has proven to be a safe and efficient procedure for gene transfer, able to mediate, in murine model, therapeutic levels of proteins encoded by the transfected gene. In different disease models and targeting distinct organs, it has been demonstrated to revert the pathologic symptoms and signs. The therapeutic potential of hydrofection led different groups to work on the clinical translation of the procedure. In order to prevent the hemodynamic side effects derived from the rapid injection of a large volume, the conditions had to be moderated to make them compatible with its use in mid-size animal models such as rat, hamster and rabbit and large animals as dog, pig and primates. Despite the different approaches performed to adapt the conditions of gene delivery, the results obtained in any of these mid-size and large animals have been poorer than those obtained in murine model. Among these different strategies to reduce the volume employed, the most effective one has been to exclude the vasculature of the target organ and inject the solution directly. This procedure has permitted, by catheterization and surgical procedures in large animals, achieving protein expression levels in tissue close to those achieved in gold standard models. These promising results and the possibility of employing these strategies to transfer gene constructs able to edit genes, such as CRISPR, have renewed the clinical interest of this procedure of gene transfer. In order to translate the hydrodynamic gene delivery to human use, it is demanding the standardization of the procedure conditions and the molecular parameters of evaluation in order to be able to compare the results and establish a homogeneous manner of expressing the data obtained, as ‘classic’ drugs.
Collapse
|
15
|
Abstract
Liver regeneration is a fascinating and complex process with many medical implications. An important component of this regenerative process is the hepatic progenitor cell (HPC). These appealing cells are able to participate in the renewal of hepatocytes and cholangiocytes when the normal homeostatic regeneration is exhausted. Moreover, the HPC niche is of vital importance toward the activation, differentiation, and proliferation of the HPC. This niche provides a rich microenvironment for the regulation of the HPC, thanks to the intercellular secretion of molecules. New findings indicate that the regenerative possibilities in the liver could provide a diverse basis for therapeutic targets.
Collapse
Affiliation(s)
- Matthias Van Haele
- Liver Research Unit, Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Minderbroederstraat 12, 3000 Leuven, Belgium
| | - Tania Roskams
- Liver Research Unit, Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Minderbroederstraat 12, 3000 Leuven, Belgium.
| |
Collapse
|
16
|
Fukuda T, Takayama K, Hirata M, Liu YJ, Yanagihara K, Suga M, Mizuguchi H, Furue MK. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions. Exp Cell Res 2017; 352:333-345. [PMID: 28215634 DOI: 10.1016/j.yexcr.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022]
Abstract
Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells.
Collapse
Affiliation(s)
- Takayuki Fukuda
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; K-CONNEX, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuhi Hirata
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yu-Jung Liu
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kana Yanagihara
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; iPS Cell-based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miho K Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
17
|
Yokoo T, Kamimura K, Abe H, Kobayashi Y, Kanefuji T, Ogawa K, Goto R, Oda M, Suda T, Terai S. Liver-targeted hydrodynamic gene therapy: Recent advances in the technique. World J Gastroenterol 2016; 22:8862-8868. [PMID: 27833377 PMCID: PMC5083791 DOI: 10.3748/wjg.v22.i40.8862] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/03/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
One of the major research focuses in the field of gene therapy is the development of clinically applicable, safe, and effective gene-delivery methods. Since the first case of human gene therapy was performed in 1990, a number of gene-delivery methods have been developed, evaluated for efficacy and safety, and modified for human application. To date, viral-vector-mediated deliveries have shown effective therapeutic results. However, the risk of lethal immune response and carcinogenesis have been reported, and it is still controversial to be applied as a standard therapeutic option. On the other hand, delivery methods for nonviral vector systems have been developed, extensively studied, and utilized in in vivo gene-transfer studies. Compared to viral-vector mediated gene transfer, nonviral systems have less risk of biological reactions. However, the lower gene-transfer efficiency was a critical hurdle for applying them to human gene therapy. Among a number of nonviral vector systems, our studies focus on hydrodynamic gene delivery to utilize physical force to deliver naked DNA into the cells in the living animals. This method achieves a high gene-transfer level by DNA solution injections into the tail vein of rodents, especially in the liver. With the development of genome editing methods, in vivo gene-transfer therapy using this method is currently the focus in this research field. This review explains the method principle, efficiency, safety, and procedural modifications to achieve a high level of reproducibility in large-animal models.
Collapse
|
18
|
Schumacher JD, Guo GL. Regulation of Hepatic Stellate Cells and Fibrogenesis by Fibroblast Growth Factors. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8323747. [PMID: 27699175 PMCID: PMC5028827 DOI: 10.1155/2016/8323747] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/03/2016] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factors (FGFs) are a family of growth factors critically involved in developmental, physiological, and pathological processes, including embryogenesis, angiogenesis, wound healing, and endocrine functions. In the liver, several FGFs are produced basally by hepatocytes and hepatic stellate cells (HSCs). Upon insult to the liver, expression of FGFs in HSCs is greatly upregulated, stimulating hepatocyte regeneration and growth. Various FGF isoforms have also been shown to directly induce HSC proliferation and activation thereby enabling autocrine and paracrine regulation of HSC function. Regulation of HSCs by the endocrine FGFs, namely, FGF15/19 and FGF21, has also recently been identified. With the ability to modulate HSC proliferation and transdifferentiation, targeting FGF signaling pathways constitutes a promising new therapeutic strategy to treat hepatic fibrosis.
Collapse
Affiliation(s)
- Justin D. Schumacher
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
- *Grace L. Guo:
| |
Collapse
|
19
|
El Agha E, Kosanovic D, Schermuly RT, Bellusci S. Role of fibroblast growth factors in organ regeneration and repair. Semin Cell Dev Biol 2015; 53:76-84. [PMID: 26459973 DOI: 10.1016/j.semcdb.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023]
Abstract
In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases.
Collapse
Affiliation(s)
- Elie El Agha
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Djuro Kosanovic
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
20
|
Kamimura K, Yokoo T, Abe H, Kobayashi Y, Ogawa K, Shinagawa Y, Inoue R, Terai S. Image-Guided Hydrodynamic Gene Delivery: Current Status and Future Directions. Pharmaceutics 2015; 7:213-223. [PMID: 26308044 PMCID: PMC4588196 DOI: 10.3390/pharmaceutics7030213] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022] Open
Abstract
Hydrodynamics-based delivery has been used as an experimental tool to express transgene in small animals. This in vivo gene transfer method is useful for functional analysis of genetic elements, therapeutic effect of oligonucleotides, and cancer cells to establish the metastatic cancer animal model for experimental research. Recent progress in the development of image-guided procedure for hydrodynamics-based gene delivery in large animals directly supports the clinical applicability of this technique. This review summarizes the current status and recent progress in the development of hydrodynamics-based gene delivery and discusses the future directions for its clinical application.
Collapse
Affiliation(s)
- Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Yuji Kobayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Kohei Ogawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Yoko Shinagawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Ryosuke Inoue
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| |
Collapse
|
21
|
Abstract
Hydrodynamic delivery (HD) is a broadly used procedure for DNA and RNA delivery in rodents, serving as a powerful tool for gene/protein drug discovery, gene function analysis, target validation, and identification of elements in regulating gene expression in vivo. HD involves a pressurized injection of a large volume of solution into a vasculature. New procedures are being developed to satisfy the need for a safe and efficient gene delivery in clinic. Here, we summarize the fundamentals of HD, its applications, and future perspectives for clinical use.
Collapse
Affiliation(s)
- Takeshi Suda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, School of Pharmacy, Athens, GA, USA
| |
Collapse
|
22
|
Utley S, James D, Mavila N, Nguyen MV, Vendryes C, Salisbury SM, Phan J, Wang KS. Fibroblast growth factor signaling regulates the expansion of A6-expressing hepatocytes in association with AKT-dependent β-catenin activation. J Hepatol 2014; 60:1002-9. [PMID: 24365171 PMCID: PMC3995894 DOI: 10.1016/j.jhep.2013.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 12/08/2013] [Accepted: 12/10/2013] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Fibroblast Growth Factors (FGFs) promote the proliferation and survival of hepatic progenitor cells (HPCs) via AKT-dependent β-catenin activation. Moreover, the emergence of hepatocytes expressing the HPC marker A6 during 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver injury is mediated partly by FGF and β-catenin signaling. Herein, we investigate the role of FGF signaling and AKT-mediated β-catenin activation in acute DDC liver injury. METHODS Transgenic mice were fed DDC chow for 14days concurrent with either Fgf10 over-expression or inhibition of FGF signaling via expression of soluble dominant-negative FGF Receptor (R)-2IIIb. RESULTS After 14days of DDC treatment, there was an increase in periportal cells expressing FGFR1, FGFR2, and AKT-activated phospho-Serine 552 (pSer552) β-Catenin in association with up-regulation of genes encoding the FGFR2IIIb ligands, Fgf7, Fgf10, and Fgf22. In response to Fgf10 over-expression, there was an increase in the number of pSer552-β-Catenin((positive)+ive) periportal cells as well as cells co-positive for A6 and hepatocyte marker, Hepatocyte Nuclear Factor-4α (HNF4α). A similar expansion of A6(+ive) cells was observed after Fgf10 over-expression with regular chow and after partial hepatectomy during ethanol toxicity. Inhibition of FGF signaling increased the periportal A6(+ive)HNF4α(+ive) cell population while reducing centrolobular A6(+ive) HNF4α(+ive) cells. AKT inhibition with Wortmannin attenuated FGF10-mediated A6(+ive)HNF4α(+ive) cell expansion. In vitro analyses using FGF10 treated HepG2 cells demonstrated AKT-mediated β-Catenin activation but not enhanced cell migration. CONCLUSIONS During acute DDC treatment, FGF signaling promotes the expansion of A6-expressing liver cells partly via AKT-dependent activation of β-Catenin expansion of A6(+ive) periportal cells and possibly by reprogramming of centrolobular hepatocytes.
Collapse
Affiliation(s)
- Sarah Utley
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
,Integrative Biology of Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - David James
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Nirmala Mavila
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Marie V. Nguyen
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Christopher Vendryes
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - S. Michael Salisbury
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jennifer Phan
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Kasper S. Wang
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
23
|
Feng ZG, Pang SF, Guo DJ, Yang YT, Liu B, Wang JW, Zheng KQ, Lin Y. Recombinant keratinocyte growth factor 1 in tobacco potentially promotes wound healing in diabetic rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:579632. [PMID: 24783215 PMCID: PMC3982250 DOI: 10.1155/2014/579632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/20/2014] [Indexed: 11/17/2022]
Abstract
Keratinocyte growth factor 1 (KGF1) is a growth factor that promotes epidermal cell proliferation, migration, differentiation, and wound repair. It is expressed at low levels in a form of inclusion body in E. coli. In order to increase its expression and activity, we produced tobacco plants expressing KGF1 via Agrobacterium-mediated transformation using a potato virus X (PVX)-based vector (pgR107). The vector contained the sequence encoding the KGF1 gene fused with a green florescence protein. The recombinant plasmid was introduced into leaf cells of Nicotiana benthamiana (a wild Australian tobacco) via Agrobacterium-mediated agroinfiltration. As determined by fluorescence and Western blot of leaf extracts, the KGF1 gene was correctly translated into the tobacco plants. The recombinant KGF1 was purified from plant tissues by heparin affinity chromatography, and cell proliferation in NIH/3T3 cells was stimulated by the purified KGF1. The purified KGF1 was also applied to the wounds of type-II diabetic rats. KGF1 had accumulated to levels as high as 530 μ g/g fresh weight in the leaves of agroinfected plants. We show that plant-derived KGF1 can promote the proliferation of NIH/3T3 cells and have significant effects on the type-II diabetic rat. The present findings indicated that KGF1 from tobacco maintains its biological activity, implying prospective industrial production in a plant bioreactor.
Collapse
Affiliation(s)
- Zhi-Guo Feng
- College of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Shi-Feng Pang
- Department of Biology, Guangdong Medical College, Dongguang 523808, China
| | - Ding-Jiong Guo
- Department of General Surgery, Cixi People's Hospital, Ningbo 315300, China
| | - Yue-Tao Yang
- Traumatic Medicine Center, Lishui People's Hospital, Lishui 315300, China
| | - Bin Liu
- Traumatic Medicine Center, Lishui People's Hospital, Lishui 315300, China
| | - Ji-Wei Wang
- Traumatic Medicine Center, Lishui People's Hospital, Lishui 315300, China
| | - Ke-Qin Zheng
- Department of Biology, Guangdong Medical College, Dongguang 523808, China
| | - Yi Lin
- College of Life Science, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
24
|
Highly efficient expression of functional recombinant human keratinocyte growth factor 1 and its protective effects on hepatocytes. Appl Microbiol Biotechnol 2014; 98:3933-45. [DOI: 10.1007/s00253-014-5520-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 12/30/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
|
25
|
The expression of embryonic liver development genes in hepatitis C induced cirrhosis and hepatocellular carcinoma. Cancers (Basel) 2013; 4:945-68. [PMID: 23667740 PMCID: PMC3650861 DOI: 10.3390/cancers4030945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a difficult disease to study even after a decade of genomic analysis. Patient and disease heterogeneity, differences in statistical methods and multiple testing issues have resulted in a fragmented understanding of the molecular basis of tumor biology. Some researchers have suggested that HCC appears to share pathways with embryonic development. Therefore we generated targeted hypotheses regarding changes in developmental genes specific to the liver in HCV-cirrhosis and HCV-HCC. We obtained microarray studies from 30 patients with HCV-cirrhosis and 49 patients with HCV-HCC and compared to 12 normal livers. Genes specific to non-liver development have known associations with other cancer types but none were expressed in either adult liver or tumor tissue, while 98 of 179 (55%) genes specific to liver development had differential expression between normal and cirrhotic or HCC samples. We found genes from each developmental stage dysregulated in tumors compared to normal and cirrhotic samples. Although there was no single tumor marker, we identified a set of genes (Bone Morphogenetic Protein inhibitors GPC3, GREM1, FSTL3, and FST) in which at least one gene was over-expressed in 100% of the tumor samples. Only five genes were differentially expressed exclusively in late-stage tumors, indicating that while developmental genes appear to play a profound role in cirrhosis and malignant transformation, they play a limited role in late-stage HCC.
Collapse
|
26
|
Lönne M, Lavrentieva A, Walter JG, Kasper C. Analysis of oxygen-dependent cytokine expression in human mesenchymal stem cells derived from umbilical cord. Cell Tissue Res 2013; 353:117-22. [DOI: 10.1007/s00441-013-1597-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/15/2013] [Indexed: 01/14/2023]
|
27
|
Tsai SM, Liu DW, Wang WP. Fibroblast growth factor (Fgf) signaling pathway regulates liver homeostasis in zebrafish. Transgenic Res 2012; 22:301-14. [DOI: 10.1007/s11248-012-9636-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/05/2012] [Indexed: 02/08/2023]
|
28
|
Fibroblast growth factor 7 inhibits cholesterol 7α-hydroxylase gene expression in hepatocytes. Biochem Biophys Res Commun 2012; 423:775-80. [DOI: 10.1016/j.bbrc.2012.06.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/11/2012] [Indexed: 11/20/2022]
|
29
|
Cheng YM, Chou CY, Hsu YC, Chen MJ. Influence of HPV16 E6/7 on the Expression of FGF2 and FGFR Type B in Cervical Carcinogenesis. Reprod Sci 2012; 19:580-6. [DOI: 10.1177/1933719111432874] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ya-Min Cheng
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Chiang Hsu
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
- Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Ming-Jenn Chen
- Division of Traumatology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|