1
|
Xu J, Fang L, Zhou J, Jiang H, Wu Y, Liang Y, Xiao C, Liu Q, Sun X, Lin Z. PEG 300 Promotes Mesodermal Differentiation in iPSC-Derived Embryoid Body Formation In Vitro. Adv Biol (Weinh) 2024; 8:e2400081. [PMID: 38977421 DOI: 10.1002/adbi.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/31/2024] [Indexed: 07/10/2024]
Abstract
Embryoid bodies (EB) are sensitive to changes in the culture conditions. Recent studies show that the addition of PEG 300 to culture medium affects cell growth and differentiation; however, its effect on the embryoid body is unclear. This study aims to understand the role of PEG 300 in the process of EB formation and germ layer differentiation. EBs formed more efficiently and differentiated toward the mesoderm when cultured in a medium supplemented with appropriate concentrations of PEG 300. The expression of T/Bry, a marker of mesodermal differentiation, increases in EBs in the PEG group, and the expression of TUBB3 generally decreases, showing a quantitative relationship with PEG. Furthermore, further differentiation of PEG-pretreated EB into vascular smooth muscle cells (VSMCs) by directional induction shows that PEG 300-pretreated induced VSMCs have higher expression of phenotypic markers and greater secretory and contractile functions. This study highlights the role of PEG 300 in the culture medium during EB differentiation, which can significantly enhance mesodermal gene expression and the efficiency of subsequent differentiation into smooth muscle cells and other target cells.
Collapse
Affiliation(s)
- Jianyi Xu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Lijun Fang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Jiahui Zhou
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Hongjing Jiang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yindi Wu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yuanfeng Liang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Cong Xiao
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Qing Liu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xuheng Sun
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Zhanyi Lin
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong, 528200, China
| |
Collapse
|
2
|
Weekes A, Wasielewska JM, Pinto N, Jenkins J, Patel J, Li Z, Klein TJ, Meinert C. Harnessing the Regenerative Potential of Fetal Mesenchymal Stem Cells and Endothelial Colony-Forming Cells in the Biofabrication of Tissue-Engineered Vascular Grafts (TEVGs). J Tissue Eng Regen Med 2024; 2024:8707377. [PMID: 40225752 PMCID: PMC11919237 DOI: 10.1155/2024/8707377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/08/2024] [Indexed: 04/15/2025]
Abstract
Tissue engineering is a promising approach for the production of small-diameter vascular grafts; however, there are limited data directly comparing the suitability of applicable cell types for vessel biofabrication. Here, we investigated the potential of adult smooth muscle cells (SMCs), placental mesenchymal stem cells (MSCs), placental endothelial colony-forming cells (ECFCs), and a combination of MSCs and ECFCs on highly porous biocompatible poly(ɛ-caprolactone) (PCL) scaffolds produced via melt electrowriting (MEW) for the biofabrication of tissue-engineered vascular grafts (TEVGs). Cellular attachment, proliferation, and deposition of essential extracellular matrix (ECM) components were analysed in vitro over four weeks. TEVGs cultured with MSCs accumulated the highest levels of collagenous components within a dense ECM, while SMCs and the coculture were more sparsely populated, ascertained via histological and immunofluorescence imaging, and biochemical assessment. Scanning electron microscopy (SEM) enabled visualisation of morphological differences in cell attachment and growth, with MSCs and SMCs infiltrating and covering scaffolds completely within the 28-day culture period. Coverage and matrix deposition by ECFCs was limited. However, ECFCs lined the ECM formed by MSCs in coculture, visualised via immunostaining. Thus, of cells investigated, placental MSCs were identified as the preferred cell source for the fabrication of tissue-engineered constructs, exhibiting extensive population of porous polymer scaffolds and production of ECM components; with the inclusion of ECFCs for luminal endothelialisation, an encouraging outcome warranting further consideration in future studies. In combination, these findings represent a substantial step toward the development of the next generation of small-diameter vascular grafts in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Angus Weekes
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
| | - Joanna M. Wasielewska
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Nigel Pinto
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
- Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Jason Jenkins
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
- Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Jatin Patel
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Woolloongabba, QLD, Australia
| | - Zhiyong Li
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Travis J. Klein
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
| |
Collapse
|
3
|
Li J, Chen X, Hu M, Wei J, Nie M, Chen J, Liu X. The application of composite scaffold materials based on decellularized vascular matrix in tissue engineering: a review. Biomed Eng Online 2023; 22:62. [PMID: 37337190 DOI: 10.1186/s12938-023-01120-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
Decellularized vascular matrix is a natural polymeric biomaterial that comes from arteries or veins which are removed the cellular contents by physical, chemical and enzymatic means, leaving only the cytoskeletal structure and extracellular matrix to achieve cell adhesion, proliferation and differentiation and creating a suitable microenvironment for their growth. In recent years, the decellularized vascular matrix has attracted much attention in the field of tissue repair and regenerative medicine due to its remarkable cytocompatibility, biodegradability and ability to induce tissue regeneration. Firstly, this review introduces its basic properties and preparation methods; then, it focuses on the application and research of composite scaffold materials based on decellularized vascular matrix in vascular tissue engineering in terms of current in vitro and in vivo studies, and briefly outlines its applications in other tissue engineering fields; finally, it looks into the advantages and drawbacks to be overcome in the application of decellularized vascular matrix materials. In conclusion, as a new bioactive material for building engineered tissue and repairing tissue defects, decellularized vascular matrix will be widely applied in prospect.
Collapse
Affiliation(s)
- Jingying Li
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xiao Chen
- Department of Stomatology Technology, School of Medical Technology, Sichuan College of Traditional Medicine, Mianyang, 621000, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, China
| | - Miaoling Hu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jian Wei
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Minhai Nie
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jiana Chen
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xuqian Liu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China.
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China.
| |
Collapse
|
4
|
Peng C, Shao X, Tian X, Li Y, Liu D, Yan C, Han Y. CREG ameliorates embryonic stem cell differentiation into smooth muscle cells by modulation of TGF-β expression. Differentiation 2022; 125:9-17. [DOI: 10.1016/j.diff.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
|
5
|
Luo J, Lin Y, Shi X, Li G, Kural MH, Anderson CW, Ellis MW, Riaz M, Tellides G, Niklason LE, Qyang Y. Xenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering. Acta Biomater 2021; 119:155-168. [PMID: 33130306 PMCID: PMC8168373 DOI: 10.1016/j.actbio.2020.10.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 01/30/2023]
Abstract
Development of mechanically advanced tissue-engineered vascular grafts (TEVGs) from human induced pluripotent stem cell (hiPSC)-derived vascular smooth muscle cells (hiPSC-VSMCs) offers an innovative approach to replace or bypass diseased blood vessels. To move current hiPSC-TEVGs toward clinical application, it is essential to obtain hiPSC-VSMC-derived tissues under xenogeneic-free conditions, meaning without the use of any animal-derived reagents. Many approaches in VSMC differentiation of hiPSCs have been reported, although a xenogeneic-free method for generating hiPSC-VSMCs suitable for vascular tissue engineering has yet to be established. Based on our previously established standard method of xenogeneic VSMC differentiation, we have replaced all animal-derived reagents with functional counterparts of human origin and successfully derived functional xenogeneic-free hiPSC-VSMCs (XF-hiPSC-VSMCs). Next, our group developed tissue rings via cellular self-assembly from XF-hiPSC-VSMCs, which exhibited comparable mechanical strength to those developed from xenogeneic hiPSC-VSMCs. Moreover, by seeding XF-hiPSC-VSMCs onto biodegradable polyglycolic acid (PGA) scaffolds, we generated engineered vascular tissues presenting effective collagen deposition which were suitable for implantation into an immunodeficient mice model. In conclusion, our xenogeneic-free conditions for generating hiPSC-VSMCs produce cells with the comparable capacity for vascular tissue engineering as standard xenogeneic protocols, thereby moving the hiPSC-TEVG technology one step closer to safe and efficacious clinical translation.
Collapse
Affiliation(s)
- Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Yuyao Lin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiangyu Shi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Guangxin Li
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, 110122, China
| | - Mehmet H Kural
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Christopher W Anderson
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, 06520 USA
| | - Matthew W Ellis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - George Tellides
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Laura E Niklason
- Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, 06520 USA.
| |
Collapse
|
6
|
Shi X, He L, Zhang SM, Luo J. Human iPS Cell-derived Tissue Engineered Vascular Graft: Recent Advances and Future Directions. Stem Cell Rev Rep 2020; 17:862-877. [PMID: 33230612 DOI: 10.1007/s12015-020-10091-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Tissue engineered vascular grafts (TEVGs) generated from human primary cells represent a promising vascular interventional therapy. However, generation and application of these TEVGs may be significantly hindered by the limited accessibility, finite expandability, donor-donor functional variation and immune-incompatibility of primary seed cells from donors. Alternatively, human induced pluripotent stem cells (hiPSCs) offer an infinite source to obtain functional vascular cells in large quantity and comparable quality for TEVG construction. To date, TEVGs (hiPSC-TEVGs) with significant mechanical strength and implantability have been generated using hiPSC-derived seed cells. Despite being in its incipient stage, this emerging field of hiPSC-TEVG research has achieved significant progress and presented promising future potential. Meanwhile, a series of challenges pertaining hiPSC differentiation, vascular tissue engineering technologies and future production and application await to be addressed. Herein, we have composed this review to introduce progress in TEVG generation using hiPSCs, summarize the current major challenges, and encapsulate the future directions of research on hiPSC-based TEVGs. Graphical abstract.
Collapse
Affiliation(s)
- Xiangyu Shi
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine , Yale School of Medicine, 300 George Street, Room 752, New Haven, CT, 06511, USA
| | - Lile He
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, 06520, New Haven, CT, USA
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine , Yale School of Medicine, 300 George Street, Room 752, New Haven, CT, 06511, USA. .,Yale Stem Cell Center, 06520, New Haven, CT, USA.
| |
Collapse
|
7
|
Zhang X, Bishawi M, Zhang G, Prasad V, Salmon E, Breithaupt JJ, Zhang Q, Truskey GA. Modeling early stage atherosclerosis in a primary human vascular microphysiological system. Nat Commun 2020; 11:5426. [PMID: 33110060 PMCID: PMC7591486 DOI: 10.1038/s41467-020-19197-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Novel atherosclerosis models are needed to guide clinical therapy. Here, we report an in vitro model of early atherosclerosis by fabricating and perfusing multi-layer arteriole-scale human tissue-engineered blood vessels (TEBVs) by plastic compression. TEBVs maintain mechanical strength, vasoactivity, and nitric oxide (NO) production for at least 4 weeks. Perfusion of TEBVs at a physiological shear stress with enzyme-modified low-density-lipoprotein (eLDL) with or without TNFα promotes monocyte accumulation, reduces vasoactivity, alters NO production, which leads to endothelial cell activation, monocyte accumulation, foam cell formation and expression of pro-inflammatory cytokines. Removing eLDL leads to recovery of vasoactivity, but not loss of foam cells or recovery of permeability, while pretreatment with lovastatin or the P2Y11 inhibitor NF157 reduces monocyte accumulation and blocks foam cell formation. Perfusion with blood leads to increased monocyte adhesion. This atherosclerosis model can identify the role of drugs on specific vascular functions that cannot be assessed in vivo.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Muath Bishawi
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, NC, 27708, USA
| | - Ge Zhang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, 116044, Dalian, China
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Varun Prasad
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ellen Salmon
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jason J Breithaupt
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- University of Miami Miller School of Medicine, Miami, FL, 33163, USA
| | - Qiao Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
8
|
Salmon EE, Breithaupt JJ, Truskey GA. Application of Oxidative Stress to a Tissue-Engineered Vascular Aging Model Induces Endothelial Cell Senescence and Activation. Cells 2020; 9:cells9051292. [PMID: 32455928 PMCID: PMC7290800 DOI: 10.3390/cells9051292] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Clinical studies have established a connection between oxidative stress, aging, and atherogenesis. These factors contribute to senescence and inflammation in the endothelium and significant reductions in endothelium-dependent vasoreactivity in aged patients. Tissue-engineered blood vessels (TEBVs) recapitulate the structure and function of arteries and arterioles in vitro. We developed a TEBV model for vascular senescence and examined the relative influence of endothelial cell and smooth muscle cell senescence on vasoreactivity. Senescence was induced in 2D endothelial cell cultures and TEBVs by exposure to 100 µM H2O2 for one week to model chronic oxidative stress. H2O2 treatment significantly increased senescence in endothelial cells and mural cells, human neonatal dermal fibroblasts (hNDFs), as measured by increased p21 levels and reduced NOS3 expression. Although H2O2 treatment induced senescence in both the endothelial cells (ECs) and hNDFs, the functional effects on the vasculature were endothelium specific. Expression of the leukocyte adhesion molecule vascular cell adhesion molecule 1 (VCAM-1) was increased in the ECs, and endothelium-dependent vasodilation decreased. Vasoconstriction and endothelium-independent vasodilation were preserved despite mural cell senescence. The results suggest that the functional effects of vascular cell senescence are dominated by the endothelium.
Collapse
Affiliation(s)
- Ellen E. Salmon
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA;
| | | | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA;
- Correspondence: ; Tel.: +01-919-660-5147
| |
Collapse
|
9
|
Dash BC, Setia O, Gorecka J, Peyvandi H, Duan K, Lopes L, Nie J, Berthiaume F, Dardik A, Hsia HC. A Dense Fibrillar Collagen Scaffold Differentially Modulates Secretory Function of iPSC-Derived Vascular Smooth Muscle Cells to Promote Wound Healing. Cells 2020; 9:E966. [PMID: 32295218 PMCID: PMC7226960 DOI: 10.3390/cells9040966] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022] Open
Abstract
The application of human-induced pluripotent stem cells (hiPSCs) to generate vascular smooth muscle cells (hiPSC-VSMCs) in abundance is a promising strategy for vascular regeneration. While hiPSC-VSMCs have already been utilized for tissue-engineered vascular grafts and disease modeling, there is a lack of investigations exploring their therapeutic secretory factors. The objective of this manuscript was to understand how the biophysical property of a collagen-based scaffold dictates changes in the secretory function of hiPSC-VSMCs while developing hiPSC-VSMC-based therapy for durable regenerative wound healing. We investigated the effect of collagen fibrillar density (CFD) on hiPSC-VSMC's paracrine secretion and cytokines via the construction of varying density of collagen scaffolds. Our study demonstrated that CFD is a key scaffold property that modulates the secretory function of hiPSC-VSMCs. This study lays the foundation for developing collagen-based scaffold materials for the delivery of hiPSC-VSMCs to promote regenerative healing through guiding paracrine signaling pathways.
Collapse
Affiliation(s)
- Biraja C. Dash
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (H.P.); (K.D.); (J.N.)
| | - Ocean Setia
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (O.S.); (J.G.); (L.L.); (A.D.)
| | - Jolanta Gorecka
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (O.S.); (J.G.); (L.L.); (A.D.)
| | - Hassan Peyvandi
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (H.P.); (K.D.); (J.N.)
| | - Kaiti Duan
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (H.P.); (K.D.); (J.N.)
| | - Lara Lopes
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (O.S.); (J.G.); (L.L.); (A.D.)
| | - James Nie
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (H.P.); (K.D.); (J.N.)
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, The State University New Jersey, Piscataway, NJ 08854, USA;
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (O.S.); (J.G.); (L.L.); (A.D.)
| | - Henry C. Hsia
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (H.P.); (K.D.); (J.N.)
| |
Collapse
|
10
|
Dayekh K, Mequanint K. Comparative Studies of Fibrin-Based Engineered Vascular Tissues and Notch Signaling from Progenitor Cells. ACS Biomater Sci Eng 2020; 6:2696-2706. [DOI: 10.1021/acsbiomaterials.0c00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Khalil Dayekh
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
| |
Collapse
|
11
|
Cong X, Zhang SM, Batty L, Luo J. Application of Human Induced Pluripotent Stem Cells in Generating Tissue-Engineered Blood Vessels as Vascular Grafts. Stem Cells Dev 2019; 28:1581-1594. [PMID: 31663439 DOI: 10.1089/scd.2019.0234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In pace with the advancement of tissue engineering during recent decades, tissue-engineered blood vessels (TEBVs) have been generated using primary seed cells, and their impressive success in clinical trials have demonstrated the great potential of these TEBVs as implantable vascular grafts in human regenerative medicine. However, the production, therapeutic efficacy, and readiness in emergencies of current TEBVs could be hindered by the accessibility, expandability, and donor-donor variation of patient-specific primary seed cells. Alternatively, using human induced pluripotent stem cells (hiPSCs) to derive seed vascular cells for vascular tissue engineering could fundamentally address this current dilemma in TEBV production. As an emerging research field with a promising future, the generation of hiPSC-based TEBVs has been reported recently with significant progress. Simultaneously, to further promote hiPSC-based TEBVs into vascular grafts for clinical use, several challenges related to the safety, readiness, and structural integrity of vascular tissue need to be addressed. Herein, this review will focus on the evolution and role of hiPSCs in vascular tissue engineering technology and summarize the current progress, challenges, and future directions of research on hiPSC-based TEBVs.
Collapse
Affiliation(s)
- Xiaoqiang Cong
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Department of Cardiology, Bethune First Hospital of Jilin University, ChangChun, China
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Luke Batty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Yale Stem Cell Center, School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
12
|
Yu S, Zuo X, Shen T, Duan Y, Mao Z, Gao C. A density gradient of VAPG peptides on a cell-resisting surface achieves selective adhesion and directional migration of smooth muscle cells over fibroblasts. Acta Biomater 2018; 72:70-81. [PMID: 29635070 DOI: 10.1016/j.actbio.2018.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 12/19/2022]
Abstract
Selective adhesion and migration of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. In this study, a uniform cell-resisting layer of poly(ethylene glycol) (PEG) with a density gradient of azide groups was generated on a substrate by immobilizing two kinds of PEG molecules in a gradient manner. A density gradient of alkynyl-functionalized Val-Ala-Pro-Gly (VAPG) peptides was then prepared on the PEG layer via click chemistry. The VAPG density gradient was characterized by fluorescence imaging, revealing the gradual enhancement of the fluorescent intensity along the substrate direction. The adhesion and mobility of SMCs were selectively enhanced on the VAPG density gradient, leading to directional migration toward the higher peptide density (up to 84%). In contrast, the adhesion and mobility of FIBs were significantly weakened. The net displacement of SMCs also significantly increased compared with that on tissue culture polystyrene (TCPS) and that of FIBs on the gradient. The mitogen-activated protein kinase (MAPK) signaling pathways related to cell migration were studied, showing higher expressions of functional proteins from SMCs on the VAPG-modified surface in a density-dependent manner. For the first time the selective adhesion and directional migration of SMCs over FIBs was achieved by an elaborative design of a gradient surface, leading to a new insight in design of novel vascular regenerative materials. STATEMENT OF SIGNIFICANCE Selective cell adhesion and migration guided by regenerative biomaterials are extremely important for the regeneration of targeted tissues, which can avoid the drawbacks of incorrect and uncontrolled responses of tissue cells to implants. For example, selectivity of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. Herein we prepare a uniform cell-repelling layer, on which SMCs-selective Val-Ala-Pro-Gly (VAPG) peptides are immobilized in a continuous manner. Selective adhesion and enhanced and directional migration of SMCs over FIBs are achieved by the interplay of cell-repelling layer and gradient SMCs-selective VAPG peptides, paving a new way for the design of novel vascular grafts with enhanced biological performance.
Collapse
|
13
|
Gasser M, Frank MH, Waaga-Gasser AM. [Stem cell-based strategies in vascular surgery]. GEFASSCHIRURGIE 2018. [PMID: 29527101 DOI: 10.1007/s00772-017-0349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Critical chronic ischemia in patients with underlying arterial occlusive disease requires vascular reconstructive surgery. The limited supply of suitable small-diameter autologous vascular grafts in many patients and obvious disadvantages of synthetic bypass material demand the development of clinically usable tissue-engineered blood vessel substitutes. Despite substantial progress in the field over the last two decades, their implementation into the clinical routine has been challenging. The limited replicative life span of human adult vascular cells and their slow rate of collagenous matrix production in vitro have posed important problems in the development of mechanically robust and biologically functional engineered grafts. With recent advances in stem cell research, new cell sources for vascular tissue engineering have become available. In particular, the discovery of human induced pluripotent stem (iPS) cells derived from adult differentiated cells, as well as of human multipotent adult mesenchymal stem cells without gene modification requirements and related safety concerns, may advance the development of novel autologous cell-based tissue engineering approaches. Here we discuss recent developments in the field of vascular progenitor cells and opportunities and challenges for the clinical translation of stem cell-engineered vascular tissue substitutes.
Collapse
Affiliation(s)
- M Gasser
- Chirurgische Klinik I, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - M H Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, USA.,School of Medical and Health Sciences, Edith Cowan University, Perth, Australien
| | - A M Waaga-Gasser
- Chirurgische Klinik I, Molekulare Onkologie und Immunologie, Universitätsklinikum Würzburg, Würzburg, Deutschland.,Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
14
|
Lau S, Eicke D, Carvalho Oliveira M, Wiegmann B, Schrimpf C, Haverich A, Blasczyk R, Wilhelmi M, Figueiredo C, Böer U. Low Immunogenic Endothelial Cells Maintain Morphological and Functional Properties Required for Vascular Tissue Engineering. Tissue Eng Part A 2018; 24:432-447. [DOI: 10.1089/ten.tea.2016.0541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Skadi Lau
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- Division for Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Dorothee Eicke
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
- Excellence Cluster “From Regenerative Biology to Reconstructive Therapy” (REBIRTH), Hannover Medical School, Hannover, Germany
| | - Marco Carvalho Oliveira
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
- Excellence Cluster “From Regenerative Biology to Reconstructive Therapy” (REBIRTH), Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Division for Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Claudia Schrimpf
- Division for Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- Division for Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Excellence Cluster “From Regenerative Biology to Reconstructive Therapy” (REBIRTH), Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
- Excellence Cluster “From Regenerative Biology to Reconstructive Therapy” (REBIRTH), Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- Division for Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Constança Figueiredo
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
- Excellence Cluster “From Regenerative Biology to Reconstructive Therapy” (REBIRTH), Hannover Medical School, Hannover, Germany
| | - Ulrike Böer
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- Division for Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Onwuka E, King N, Heuer E, Breuer C. The Heart and Great Vessels. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031922. [PMID: 28289246 DOI: 10.1101/cshperspect.a031922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cardiovascular disease is the leading cause of mortality worldwide. We have made large strides over the past few decades in management, but definitive therapeutic options to address this health-care burden are still limited. Given the ever-increasing need, much effort has been spent creating engineered tissue to replaced diseased tissue. This article gives a general overview of this work as it pertains to the development of great vessels, myocardium, and heart valves. In each area, we focus on currently studied methods, limitations, and areas for future study.
Collapse
Affiliation(s)
- Ekene Onwuka
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205.,College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Nakesha King
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205.,College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Eric Heuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Christopher Breuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205.,College of Medicine, The Ohio State University, Columbus, Ohio 43210.,Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio 43205
| |
Collapse
|
16
|
Song HHG, Rumma RT, Ozaki CK, Edelman ER, Chen CS. Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell 2018; 22:340-354. [PMID: 29499152 PMCID: PMC5849079 DOI: 10.1016/j.stem.2018.02.009] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although the clinical demand for bioengineered blood vessels continues to rise, current options for vascular conduits remain limited. The synergistic combination of emerging advances in tissue fabrication and stem cell engineering promises new strategies for engineering autologous blood vessels that recapitulate not only the mechanical properties of native vessels but also their biological function. Here we explore recent bioengineering advances in creating functional blood macro and microvessels, particularly featuring stem cells as a seed source. We also highlight progress in integrating engineered vascular tissues with the host after implantation as well as the exciting pre-clinical and clinical applications of this technology.
Collapse
Affiliation(s)
- H-H Greco Song
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Rowza T Rumma
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - C Keith Ozaki
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elazer R Edelman
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Cardiology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christopher S Chen
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Luo J, Qin L, Kural MH, Schwan J, Li X, Bartulos O, Cong XQ, Ren Y, Gui L, Li G, Ellis MW, Li P, Kotton DN, Dardik A, Pober JS, Tellides G, Rolle M, Campbell S, Hawley RJ, Sachs DH, Niklason LE, Qyang Y. Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials 2017; 147:116-132. [PMID: 28942128 PMCID: PMC5638652 DOI: 10.1016/j.biomaterials.2017.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/05/2017] [Accepted: 09/17/2017] [Indexed: 12/18/2022]
Abstract
Development of autologous tissue-engineered vascular constructs using vascular smooth muscle cells (VSMCs) derived from human induced pluripotent stem cells (iPSCs) holds great potential in treating patients with vascular disease. However, preclinical, large animal iPSC-based cellular and tissue models are required to evaluate safety and efficacy prior to clinical application. Herein, swine iPSC (siPSC) lines were established by introducing doxycycline-inducible reprogramming factors into fetal fibroblasts from a line of inbred Massachusetts General Hospital miniature swine that accept tissue and organ transplants without immunosuppression within the line. Highly enriched, functional VSMCs were derived from siPSCs based on addition of ascorbic acid and inactivation of reprogramming factor via doxycycline withdrawal. Moreover, siPSC-VSMCs seeded onto biodegradable polyglycolic acid (PGA) scaffolds readily formed vascular tissues, which were implanted subcutaneously into immunodeficient mice and showed further maturation revealed by expression of the mature VSMC marker, smooth muscle myosin heavy chain. Finally, using a robust cellular self-assembly approach, we developed 3D scaffold-free tissue rings from siPSC-VSMCs that showed comparable mechanical properties and contractile function to those developed from swine primary VSMCs. These engineered vascular constructs, prepared from doxycycline-inducible inbred siPSCs, offer new opportunities for preclinical investigation of autologous human iPSC-based vascular tissues for patient treatment.
Collapse
Affiliation(s)
- Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Lingfeng Qin
- Department of Surgery, Yale University, New Haven, CT 06520, USA
| | - Mehmet H Kural
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Xia Li
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Oscar Bartulos
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Xiao-Qiang Cong
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cardiology, Bethune First Hospital of Jilin University, ChangChun, 130021, China
| | - Yongming Ren
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Liqiong Gui
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Guangxin Li
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, 110122, China
| | - Matthew W Ellis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Peining Li
- Department of Genetics, Yale University, New Haven, CT 06519, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Alan Dardik
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jordan S Pober
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - George Tellides
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marsha Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Stuart Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Robert J Hawley
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
| | - David H Sachs
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Laura E Niklason
- Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
18
|
Li Y, Wen Y, Green M, Cabral EK, Wani P, Zhang F, Wei Y, Baer TM, Chen B. Cell sex affects extracellular matrix protein expression and proliferation of smooth muscle progenitor cells derived from human pluripotent stem cells. Stem Cell Res Ther 2017; 8:156. [PMID: 28676082 PMCID: PMC5496346 DOI: 10.1186/s13287-017-0606-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 12/18/2022] Open
Abstract
Background Smooth muscle progenitor cells (pSMCs) differentiated from human pluripotent stem cells (hPSCs) hold great promise for treating diseases or degenerative conditions involving smooth muscle pathologies. However, the therapeutic potential of pSMCs derived from men and women may be very different. Cell sex can exert a profound impact on the differentiation process of stem cells into somatic cells. In spite of advances in translation of stem cell technologies, the role of cell sex and the effect of sex hormones on the differentiation towards mesenchymal lineage pSMCs remain largely unexplored. Methods Using a standard differentiation protocol, two human embryonic stem cell lines (one male line and one female line) and three induced pluripotent stem cell lines (one male line and two female lines) were differentiated into pSMCs. We examined differences in the differentiation of male and female hPSCs into pSMCs, and investigated the effect of 17β-estradiol (E2) on the extracellular matrix (ECM) metabolisms and cell proliferation rates of the pSMCs. Statistical analyses were performed by using Student’s t test or two-way ANOVA, p < 0.05. Results Male and female hPSCs had similar differentiation efficiencies and generated morphologically comparable pSMCs under a standard differentiation protocol, but the derived pSMCs showed sex differences in expression of ECM proteins, such as MMP-2 and TIMP-1, and cell proliferation rates. E2 treatment induced the expression of myogenic gene markers and suppressed ECM degradation activities through reduction of MMP activity and increased expression of TIMP-1 in female pSMCs, but not in male pSMCs. Conclusions hPSC-derived pSMCs from different sexes show differential expression of ECM proteins and proliferation rates. Estrogen appears to promote maturation and ECM protein expression in female pSMCs, but not in male pSMCs. These data suggest that intrinsic cell-sex differences may influence progenitor cell biology. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0606-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanhui Li
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA.,Department of Obstetrics/Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yan Wen
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA.
| | - Morgaine Green
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Elise K Cabral
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Prachi Wani
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Fan Zhang
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Yi Wei
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Thomas M Baer
- Stanford Photonics Research Center, Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Bertha Chen
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| |
Collapse
|
19
|
Heydrick S, Roberts E, Kim J, Emani S, Wong JY. Pediatric cardiovascular grafts: historical perspective and future directions. Curr Opin Biotechnol 2016; 40:119-124. [PMID: 27046072 DOI: 10.1016/j.copbio.2016.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/03/2016] [Accepted: 03/15/2016] [Indexed: 11/19/2022]
Abstract
Tissue-engineered cardiovascular patches, cardiac valves, and great vessels are emerging solutions for the surgical treatment of congenital cardiovascular abnormalities due to their potential for adapting with the growing child. The ideal pediatric cardiovascular patch/graft is non-thrombogenic, phenotypically compatible, and matches the compliance and mechanical strength of the native tissue, both initially and throughout growth. Bottom-up tissue engineering approaches, in which three-dimensional tissue is built layer-by-layer from scaffold-less cell sheets in vitro, offer an exciting potential solution. Cell source variability, sheet patterning, and scaffold-less fabrication are promising advantages offered by this approach. Here we review the latest developments and next steps in bottom-up tissue engineering targeted at meeting the necessary design criteria for successful pediatric cardiac tissue-engineered grafts.
Collapse
Affiliation(s)
- Stanley Heydrick
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Erin Roberts
- Division of Materials Science and Engineering, Boston University, 15 St. Mary's Street, Boston, MA 02215, USA; Cardiac Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jaeyun Kim
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Sitaram Emani
- Cardiac Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA; Division of Materials Science and Engineering, Boston University, 15 St. Mary's Street, Boston, MA 02215, USA.
| |
Collapse
|
20
|
Combining cell sheet technology and electrospun scaffolding for engineered tubular, aligned, and contractile blood vessels. Biomaterials 2014; 35:2713-9. [DOI: 10.1016/j.biomaterials.2013.12.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/13/2013] [Indexed: 12/20/2022]
|
21
|
Gui L, Niklason LE. Vascular Tissue Engineering: Building Perfusable Vasculature for Implantation. Curr Opin Chem Eng 2014; 3:68-74. [PMID: 24533306 DOI: 10.1016/j.coche.2013.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tissue and organ replacement is required when there are no alternative therapies available. Although vascular tissue engineering was originally developed to meet the clinical demands of small-diameter vascular conduits as bypass grafts, it has evolved into a highly advanced field where perfusable vasculatures are generated for implantation. Herein, we review several cutting-edge techniques that have led to implantable human blood vessels in clinical trials, the novel approaches that build complex perfusable microvascular networks in functional tissues, the use of stem cells to generate endothelial cells for vascularization, as well as the challenges in bringing vascular tissue engineering technologies into the clinics.
Collapse
Affiliation(s)
- Liqiong Gui
- Department of Anesthesiology, Yale University, New Haven, CT ; The Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Laura E Niklason
- Department of Anesthesiology, Yale University, New Haven, CT ; The Vascular Biology and Therapeutics Program, Yale University, New Haven, CT ; Department of Biomedical Engineering, Yale University, New Haven, CT
| |
Collapse
|
22
|
Xu ZC, Zhang Q, Li H. Differentiation of human hair follicle stem cells into endothelial cells induced by vascular endothelial and basic fibroblast growth factors. Mol Med Rep 2013; 9:204-10. [PMID: 24247660 DOI: 10.3892/mmr.2013.1796] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 11/06/2022] Open
Abstract
Hair follicle stem cells (HFSCs) possess powerful expansion and multi‑differentiation potential, properties that place them at the forefront of the field of tissue engineering and stem cell‑based therapy. The aim of the present study was to investigate the differentiation of human HFSCs (hHFSCs) into cells of an endothelial lineage. hHFSCs were expanded to the second passage in vitro and then induced by the addition of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) to the culture medium. The expression levels of endothelial cell (EC)‑related markers, including von Willebrand factor (vWF), vascular endothelial cadherin (VE)‑cadherin and cluster of differentiation (CD)31, were detected by immunofluorescence staining, flow cytometric analysis and reverse transcription‑polymerase chain reaction. The hHFSCs expressed vWF, VE‑cadherin and CD31 when exposed to a differentiation medium, similar to the markers expressed by the human umbilical vein ECs. More significantly, differentiated cells were also able to take up low‑density lipoprotein. The data of the present study demonstrated that an efficient strategy may be developed for differentiating hHFSCs into ECs by stimulation with VEGF and bFGF. Thus, hHFSCs represent a novel cell source for vascular tissue engineering and studies regarding the treatment of various forms of ischaemic vascular disease.
Collapse
Affiliation(s)
- Zhi Cheng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, P.R. China
| | | | | |
Collapse
|
23
|
Tian XX, Kang J, Yan CH, Xu K, Tao J, Yang GT, Han YL. Purification and functional assessment of smooth muscle cells derived from mouse embryonic stem cells. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2013; 10:272-80. [PMID: 24133516 PMCID: PMC3796702 DOI: 10.3969/j.issn.1671-5411.2013.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/11/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To obtain a pure population of smooth muscle cells (SMC) derived from mouse embryonic stem cells (ESC) and further assess their functions. METHODS A vector, expressing both puromycin resistance gene (puro(r) ) and enhanced green fluorescent protein (EGFP) gene driven by smooth muscle 22α (SM22α) promoter, named pSM22α-puro(r)-IRES2-EGFP was constructed and used to transfect ESC. Transgenic ESC (Tg-ESC) clones were selected by G418 and identified by PCR amplification of puro(r) gene. The characteristics of Tg-ESC were detected by alkaline phosphatase (ALP) staining, SSEA-1 immunofluorescence and teratoma formation test in vivo. After induction of SMC differentiation by all-trans retinoic acid, differentiated Tg-ESC were treated with 10 µg/mL puromycin for three days to obtain purified SMC (P-SMC). Percentage of EGFP(+) cells in P-SMC was assessed by flow cytometer. Expressions of smooth muscle specific markers were detected by immunostaining and Western blotting. Proliferation, migration and contractility of P-SMC were analyzed by growth curve, trans-well migration assay, and carbachol treatment, respectively. Finally, both P-SMC and unpurified SMC (unP-SMC) were injected into syngeneic mouse to see teratoma development. RESULTS Tg-ESC clone was successfully established and confirmed by PCR detection of puro(r) gene in its genomic DNA. The Tg-ESC was positive for ALP staining, SSEA-1 staining and formed teratoma containing tissues derived from three germ layers. After retinoic acid induction, large amount of EGFP positive cells outgrew from differentiated Tg-ESC. Three days of puromycin treatment produced a population of P-SMC with an EGFP(+) percentage as high as 98.2% in contrast to 29.47% of unP-SMC. Compared with primary mouse vascular smooth muscle cells (VSMC), P-SMC displayed positive, but lowered expression of SMC-specific markers including SM α-actin and myosin heavy chain (SM-MHC) detected either, by immunostaining, or immunoblotting, accelerated proliferation, improved migration (99.33 ± 2.04 vs. 44.00 ± 2.08 migrated cells/field, P < 0.05), and decreased contractility in response to carbachol (7.75 ± 1.19 % vs. 16.50 ± 3.76 % in cell area reduction, P < 0.05). In vivo injection of unP-SMC developed apparent teratoma while P-SMC did not. CONCLUSIONS We obtained a pure population of ESC derived SMC with less mature (differentiated) phenotypes, which will be of great use in research of vascular diseases and in bio-engineered vascular grafts for regenerative medicine.
Collapse
Affiliation(s)
- Xiao-Xiang Tian
- Department of Cardiology, Chinese PLA Cardiovascular Research Institute, General Hospital of Shenyang Military Region, 83 Wenhua Road, Shenhe District, Shenyang, Liaoning 110840, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Xu ZC, Zhang Q, Li H. Human hair follicle stem cell differentiation into contractile smooth muscle cells is induced by transforming growth factor-β1 and platelet-derived growth factor BB. Mol Med Rep 2013; 8:1715-21. [PMID: 24084832 DOI: 10.3892/mmr.2013.1707] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/23/2013] [Indexed: 11/06/2022] Open
Abstract
Smooth muscle cells (SMCs) are important in vascular homeostasis and disease and thus, are critical elements in vascular tissue engineering. Although adult SMCs have been used as seed cells, such mature differentiated cells suffer from limited proliferation potential and cultural senescence, particularly when originating from older donors. By comparison, human hair follicle stem cells (hHFSCs) are a reliable source of stem cells with multi-differentiation potential. The aim of the present study, was to develop an efficient strategy to derive functional SMCs from hHFSCs. hHFSCs were obtained from scalp tissues of healthy adult patients undergoing cosmetic plastic surgery. The hHFSCs were expanded to passage 2 and induced by the administration of transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor BB (PDGF-BB) in combination with culture medium. Expression levels of SMC-related markers, including α-smooth muscle actin (α-SMA), α-calponin and smooth muscle myosin heavy chain (SM-MHC), were detected by immunofluorescence staining, flow cytometry analysis and reverse transcription-polymerase chain reaction (RT-PCR). When exposed to differentiation medium, hHFSCs expressed early, mid and late markers (α-SMA, α-calponin and SM-MHC, respectively) that were similar to the markers expressed by human umbilical artery SMCs. Notably, when entrapped inside a collagen matrix lattice, these SM differentiated cells showed a contractile function. Therefore, the present study developed an efficient strategy for differentiating hHFSCs into contractile SMCs by stimulation with TGF-β1 and PDGF-BB. The high yield of derivation suggests that this strategy facilitates the acquisition of the large numbers of cells that are required for blood vessel engineering and the study of vascular disease pathophysiology.
Collapse
Affiliation(s)
- Zhi Cheng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | | | | |
Collapse
|
25
|
Abstract
Vascular occlusion remains the leading cause of death in Western countries, despite advances made in balloon angioplasty and conventional surgical intervention. Vascular surgery, such as CABG surgery, arteriovenous shunts, and the treatment of congenital anomalies of the coronary artery and pulmonary tracts, requires biologically responsive vascular substitutes. Autografts, particularly saphenous vein and internal mammary artery, are the gold-standard grafts used to treat vascular occlusions. Prosthetic grafts have been developed as alternatives to autografts, but their low patency owing to short-term and intermediate-term thrombosis still limits their clinical application. Advances in vascular tissue engineering technology-such as self-assembling cell sheets, as well as scaffold-guided and decellularized-matrix approaches-promise to produce responsive, living conduits with properties similar to those of native tissue. Over the past decade, vascular tissue engineering has become one of the fastest-growing areas of research, and is now showing some success in the clinic.
Collapse
Affiliation(s)
- Dawit G Seifu
- Laboratory for Biomaterials and Bioengineering, Department of Min-Met-Materials Engineering and Quebec University Hospital Center, Laval University, Quebec City, QC G1V 0A6, Canada
| | | | | | | |
Collapse
|
26
|
Cittadella G, de Mel A, Dee R, De Coppi P, Seifalian AM. Arterial Tissue Regeneration for Pediatric Applications: Inspiration From Up-to-Date Tissue-Engineered Vascular Bypass Grafts. Artif Organs 2013; 37:423-34. [DOI: 10.1111/aor.12022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Giorgio Cittadella
- UCL Centre for Nanotechnology & Regenerative Medicine; University College London; London; UK
| | - Achala de Mel
- UCL Centre for Nanotechnology & Regenerative Medicine; University College London; London; UK
| | - Ryan Dee
- UCL Centre for Nanotechnology & Regenerative Medicine; University College London; London; UK
| | - Paolo De Coppi
- Institute of Child Health and Great Ormond Street Hospital; University College London; London; UK
| | | |
Collapse
|