1
|
Hatem O, Kaçar ÖF, Kaçar HK, Szentpéteri JL, Marosvölgyi T, Szabó É. Trans isomeric fatty acids in human milk and their role in infant health and development. Front Nutr 2024; 11:1379772. [PMID: 38515522 PMCID: PMC10954868 DOI: 10.3389/fnut.2024.1379772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
It is well known that long chain polyunsaturated fatty acids (LCPUFAs) play an important role in neurodevelopment in the perinatal life. The most important source of these fatty acids is the diet, however, they can also be formed in the human body from their shorter chain precursors, the essential fatty acids. Since the WHO recommends exclusive breastfeeding for the first six months after birth, the exclusive source of these fatty acids for breastfed infants is human milk, which can be influenced by the mother's diet. Unsaturated fatty acids can have either cis or trans configuration double bond in their chain with distinct physiological effects. Cis isomeric unsaturated fatty acids have several beneficial effects, while trans isomers are mostly detrimental, because of their similar structure to saturated fatty acids. Trans fatty acids (TFAs) can be further subdivided into industrial (iTFA) and ruminant-derived trans fatty acids (rTFA). However, the physiological effects of these two TFA subgroups may differ. In adults, dietary intake of iTFA has been linked to atherosclerosis, insulin resistance, obesity, chronic inflammation, and increased development of certain cancers, among other diseases. However, iTFAs can have a negative impact on health not only in adulthood but in childhood too. Results from previous studies have shown that iTFAs have a significant negative effect on LCPUFA levels in the blood of newborns and infants. In addition, iTFAs can affect the growth and development of infants, and animal studies suggest that they might even have lasting negative effects later in life. Since the only source of TFAs in the human body is the diet, the TFA content of breast milk may determine the TFA supply of breastfed infants and thus affect the levels of LCPUFAs important for neurodevelopment and the health of infants. In this review, we aim to provide an overview of the TFA content in human milk available in the literature and their potential effects on infant health and development.
Collapse
Affiliation(s)
- Okba Hatem
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Ömer Furkan Kaçar
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Hüsna Kaya Kaçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya, Türkiye
| | - József L. Szentpéteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Jasińska-Melon E, Mojska H, Przygoda B, Stoś K. Trans Fatty Acids Content in Whole-Day Diets Intended for Pregnant and Breastfeeding Women in Gynaecological and Obstetric Wards: Findings from the Study under the “Mum’s Diet” Pilot Program in Poland. Nutrients 2022; 14:nu14163360. [PMID: 36014867 PMCID: PMC9416592 DOI: 10.3390/nu14163360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Trans fatty acids (TFAs) have been proven to have an adverse effect on human health by interfering with n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) synthesis. LC-PUFA n-3 are necessary for the development and maturation of the nervous system and retina during the prenatal period and infancy. TFAs are not synthesized de novo in the human body. Their presence in body fluids arises from the diet. The aim of our study was to determine the content of TFAs in individual meals and in a whole-day hospital diet intended for pregnant and breastfeeding women. Samples were collected from six different hospitals in Poland which voluntarily applied to the “Mum’s Diet” Pilot Program. The content of fatty acids, including TFAs, was determined by gas chromatography coupled with mass spectrometry (GC-MS). The TFAs content in the whole-day hospital diets ranged from 3.86 to 8.37% of all fatty acids (% wt/wt). Food products served for elevenses and afternoon snacks contributed the highest amounts of TFAs. These mainly included dairy products containing TFAs of natural origins. The estimated average intake of TFAs with the hospital diet was 0.72 g/person/day (range: 0.34–1.16 g/person/day) and did not exceed the maximum level of 1% of dietary energy recommended by the World Health Organization.
Collapse
|
3
|
Nagpal T, Sahu JK, Khare SK, Bashir K, Jan K. Trans fatty acids in food: A review on dietary intake, health impact, regulations and alternatives. J Food Sci 2021; 86:5159-5174. [PMID: 34812504 DOI: 10.1111/1750-3841.15977] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 01/20/2023]
Abstract
Trans fats are desired by the edible oil industry as they impart firmness, plasticity, and oxidative stability to oil. However, clinical trials have demonstrated the adverse effects of trans fats in food on human health and nutrition. Regulatory actions have been taken up by government and non-government bodies worldwide to eliminate the presence of trans fats in the food supply. The World Health Organization (WHO) has launched a "REPLACE" action plan to eliminate trans-fat from the global food industry by 2023. A few enabling technologies are developed to mitigate trans fats namely, trait-enhanced oils, modification in the hydrogenation process, interesterification, fractionation, blending, and oleogelation. Some of them have the drawback of replacing trans-fat with saturated fats. Interesterification and oleogelation are in-trend techniques with excellent potential in replacing trans fats without compromising the desired functionality and nutritional quality attributes. This review presents an overview of trans fatty acid for example, its dietary intake in food products, possible adverse health impact, regulations, and approaches to reduce the usage of trans fats for food application. PRACTICAL APPLICATION: The requirement for the replacement of trans fatty acids (TFAs) in food supply globally has challenged the food industry to find a novel substitute for trans fats without compromising the desired functionality and nutritional property. This review presents detailed background on trans fats, their health impacts and current trends of reformulation of oils and fats to mitigate their presence in food supply chains. Information compiled in this paper will help food scientists and technologists, chemists, food processors, and retailers as there is an urgent need to find novel technologies and substitutes to replace trans fats in processed foods.
Collapse
Affiliation(s)
- Tanya Nagpal
- Food Customization Research Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India.,Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Jatindra K Sahu
- Food Customization Research Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Khalid Bashir
- Department of Food Technology, School of Interdisciplinary Sciences and Technology, Hamdard University (Deemed to be University), New Delhi, India
| | - Kulsum Jan
- Department of Food Technology, School of Interdisciplinary Sciences and Technology, Hamdard University (Deemed to be University), New Delhi, India
| |
Collapse
|
4
|
Gershuni V, Li Y, Elovitz M, Li H, Wu GD, Compher CW. Maternal gut microbiota reflecting poor diet quality is associated with spontaneous preterm birth in a prospective cohort study. Am J Clin Nutr 2021; 113:602-611. [PMID: 33515003 PMCID: PMC7948858 DOI: 10.1093/ajcn/nqaa361] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A processed diet, high in fat and low in fiber, is associated with differences in the gut microbiota and adverse health outcomes in humans; however, little is known about the diet-microbiota relation and its impact on pregnancy. Spontaneous preterm birth (SPTB), a pregnancy outcome with serious short- and long-term consequences, occurs more frequently in black and in obese women in the United States. OBJECTIVES In a prospective, case-control sample matched for race and obesity (cases = 16, controls = 32), we compared the fecal gut microbiota, fecal and plasma metabolites, and diet in the late second trimester. We hypothesized that a Western diet would be associated with reduced microbiota richness and a metabolic signature predicting incidence of SPTB. METHODS The fecal microbiota was characterized by 16S-tagged sequencing and untargeted metabolomics was used to analyze both plasma and fecal metabolites. Wilcoxon's rank-sum test was used for the comparison of microbiota genera, α-diversity, fecal and plasma metabolites, and dietary variables between term and SPTB. β-Diversity was analyzed using permutational multivariate ANOVA, and metabolite associations were assessed by module analysis. RESULTS A decrease in α-diversity was strongly associated with the development of SPTB, especially in the taxonomic class of Betaproteobacteria. Of 824 fecal metabolites, 22 metabolites (mostly lipids) differed between cases and controls (P < 0.01), with greater DHA (22:6n-3) and EPA (20:5n-3) in cases [false discovery rate (FDR) < 0.2]. The most significant fecal metabolite module (FDR-adjusted P = 0.008) was dominated by DHA and EPA. Dietary saturated fat (primarily palmitate) intake was greater in cases (31.38 ± 7.37 compared with 26.08 ± 8.62 g, P = 0.045) and was positively correlated with fecal DHA and EPA (P < 0.05). CONCLUSIONS Reduced α-diversity of the gut microbiota and higher excretion of omega-3 (n-3) fatty acids in stool may provide a novel biomarker signature predicting SPTB in women with a low-fiber, high-fat diet. Further investigation of these markers in a larger sample is needed for validation.
Collapse
Affiliation(s)
- Victoria Gershuni
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yun Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michal Elovitz
- Department of Maternal and Fetal Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary D Wu
- Department of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
5
|
Maternal Docosahexaenoic Acid Status during Pregnancy and Its Impact on Infant Neurodevelopment. Nutrients 2020; 12:nu12123615. [PMID: 33255561 PMCID: PMC7759779 DOI: 10.3390/nu12123615] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Dietary components are essential for the structural and functional development of the brain. Among these, docosahexaenoic acid, 22:6n-3 (DHA), is critically necessary for the structure and development of the growing fetal brain in utero. DHA is the major n-3 long-chain polyunsaturated fatty acid in brain gray matter representing about 15% of all fatty acids in the human frontal cortex. DHA affects neurogenesis, neurotransmitter, synaptic plasticity and transmission, and signal transduction in the brain. Data from human and animal studies suggest that adequate levels of DHA in neural membranes are required for maturation of cortical astrocyte, neurovascular coupling, and glucose uptake and metabolism. Besides, some metabolites of DHA protect from oxidative tissue injury and stress in the brain. A low DHA level in the brain results in behavioral changes and is associated with learning difficulties and dementia. In humans, the third trimester-placental supply of maternal DHA to the growing fetus is critically important as the growing brain obligatory requires DHA during this window period. Besides, DHA is also involved in the early placentation process, essential for placental development. This underscores the importance of maternal intake of DHA for the structural and functional development of the brain. This review describes DHA’s multiple roles during gestation, lactation, and the consequences of its lower intake during pregnancy and postnatally on the 2019 brain development and function.
Collapse
|
6
|
Wilson NA, Mantzioris E, Middleton PF, Muhlhausler BS. Influence of sociodemographic, lifestyle and genetic characteristics on maternal DHA and other polyunsaturated fatty acid status in pregnancy: A systematic review. Prostaglandins Leukot Essent Fatty Acids 2020; 152:102037. [PMID: 31811955 DOI: 10.1016/j.plefa.2019.102037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Omega-3 DHA is important for the prevention of preterm birth, however there is limited knowledge of the determinants of omega-3 status during pregnancy. The primary objective of this systematic review was to synthesise data from existing studies assessing relationships between sociodemographic, diet, lifestyle and genetic factors and maternal DHA status. MATERIALS AND METHODS The Medline, Embase, Amed, and CINAHL databases were searched for studies reporting measures of maternal omega-3 status and a sociodemographic/lifestyle/genetic characteristic. RESULTS Twenty-two studies were included in the final analyses. Higher dietary fish consumption/PUFA intake, higher education level and an older maternal age were associated with higher maternal omega-3 status. Higher alcohol intake, smoking and FADS genotype were each associated with lower maternal omega-3 status. DISCUSSION Differences in findings between studies make it difficult to draw clear conclusions about the relationship between these factors and maternal omega-3 DHA status, although socioeconomic status may play a role.
Collapse
Affiliation(s)
- N A Wilson
- School of Pharmacy and Medical Sciences, University of South Australia, North Terrace & Frome Rd, Adelaide SA 5000, Australia
| | - E Mantzioris
- School of Pharmacy and Medical Sciences, University of South Australia, North Terrace & Frome Rd, Adelaide SA 5000, Australia
| | - P F Middleton
- South Australian Health and Medical Research Institute, SAHMRI Women and Kids, Level 7, 72 King William Rd, North Adelaide SA 5006, Australia
| | - B S Muhlhausler
- Food and Nutrition Research Group, Department of Food and Wine Sciences, School of Agriculture, Food and Wine, The University of Adelaide, Waite Road, Urrbrae SA 5064, Australia; Nutrition and Health Program, CSIRO Health and Biosecurity, Kintore Avenue, Adelaide SA 5001, Australia.
| |
Collapse
|
7
|
Manta-Vogli PD, Schulpis KH, Dotsikas Y, Loukas YL. The significant role of carnitine and fatty acids during pregnancy, lactation and perinatal period. Nutritional support in specific groups of pregnant women. Clin Nutr 2019; 39:2337-2346. [PMID: 31732292 DOI: 10.1016/j.clnu.2019.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Pregnancy is characterized by a complexity of metabolic processes that may impact fetal health and development. Women's nutrition during pregnancy and lactation is considered important for both mother and infant. This review aims to investigate the significant role of fatty acids and carnitine during pregnancy and lactation in specific groups of pregnant and lactating women. METHODS The literature was reviewed using relevant data bases (e.g. Pubmed, Scopus, Science Direct) and relevant articles were selected to provide information and data for the text and associated Tables. RESULTS Dynamic features especially of plasma carnitine profile during pregnancy and lactation, indicate an extraordinarily active participation of carnitine in the intermediary metabolism both in pregnant woman and in neonate and may also have implications for health and disease later in life. Maternal diets rich in trans and saturated fatty acids can lead to impairments in the metabolism and development of the offspring, whereas the consumption of long chain-polyunsaturated fatty acids during pregnancy plays a beneficial physiologic and metabolic role in the health of offspring. CONCLUSIONS Pregnant women who are underweight, overweight or obese, with gestational diabetes mellitus or diabetes mellitus and those who choose vegan/vegetarian diets or are coming from socially disadvantaged areas, should be nutritionally supported to achieve a higher quality diet during pregnancy and/or lactation.
Collapse
Affiliation(s)
- Penelope D Manta-Vogli
- Department of Clinical Nutrition & Dietetics Agia Sofia Children's Hospital, Athens, Greece.
| | | | - Yannis Dotsikas
- Laboratory of Pharm. Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, GR-157 71, Athens, Greece.
| | - Yannis L Loukas
- Laboratory of Pharm. Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, GR-157 71, Athens, Greece.
| |
Collapse
|
8
|
Middleton P, Gomersall JC, Gould JF, Shepherd E, Olsen SF, Makrides M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev 2018; 11:CD003402. [PMID: 30480773 PMCID: PMC6516961 DOI: 10.1002/14651858.cd003402.pub3] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Higher intakes of foods containing omega-3 long-chain polyunsaturated fatty acids (LCPUFA), such as fish, during pregnancy have been associated with longer gestations and improved perinatal outcomes. This is an update of a review that was first published in 2006. OBJECTIVES To assess the effects of omega-3 LCPUFA, as supplements or as dietary additions, during pregnancy on maternal, perinatal, and neonatal outcomes and longer-term outcomes for mother and child. SEARCH METHODS For this update, we searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP) (16 August 2018), and reference lists of retrieved studies. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing omega-3 fatty acids (as supplements or as foods, stand-alone interventions, or with a co-intervention) during pregnancy with placebo or no omega-3, and studies or study arms directly comparing omega-3 LCPUFA doses or types. Trials published in abstract form were eligible for inclusion. DATA COLLECTION AND ANALYSIS Two review authors independently assessed study eligibility, extracted data, assessed risk of bias in trials and assessed quality of evidence for prespecified birth/infant, maternal, child/adult and health service outcomes using the GRADE approach. MAIN RESULTS In this update, we included 70 RCTs (involving 19,927 women at low, mixed or high risk of poor pregnancy outcomes) which compared omega-3 LCPUFA interventions (supplements and food) compared with placebo or no omega-3. Overall study-level risk of bias was mixed, with selection and performance bias mostly at low risk, but there was high risk of attrition bias in some trials. Most trials were conducted in upper-middle or high-income countries; and nearly half the trials included women at increased/high risk for factors which might increase the risk of adverse maternal and birth outcomes.Preterm birth < 37 weeks (13.4% versus 11.9%; risk ratio (RR) 0.89, 95% confidence interval (CI) 0.81 to 0.97; 26 RCTs, 10,304 participants; high-quality evidence) and early preterm birth < 34 weeks (4.6% versus 2.7%; RR 0.58, 95% CI 0.44 to 0.77; 9 RCTs, 5204 participants; high-quality evidence) were both lower in women who received omega-3 LCPUFA compared with no omega-3. Prolonged gestation > 42 weeks was probably increased from 1.6% to 2.6% in women who received omega-3 LCPUFA compared with no omega-3 (RR 1.61 95% CI 1.11 to 2.33; 5141 participants; 6 RCTs; moderate-quality evidence).For infants, there was a possibly reduced risk of perinatal death (RR 0.75, 95% CI 0.54 to 1.03; 10 RCTs, 7416 participants; moderate-quality evidence: 62/3715 versus 83/3701 infants) and possibly fewer neonatal care admissions (RR 0.92, 95% CI 0.83 to 1.03; 9 RCTs, 6920 participants; moderate-quality evidence - 483/3475 infants versus 519/3445 infants). There was a reduced risk of low birthweight (LBW) babies (15.6% versus 14%; RR 0.90, 95% CI 0.82 to 0.99; 15 trials, 8449 participants; high-quality evidence); but a possible small increase in large-for-gestational age (LGA) babies (RR 1.15, 95% CI 0.97 to 1.36; 6 RCTs, 3722 participants; moderate-quality evidence, for omega-3 LCPUFA compared with no omega-3. Little or no difference in small-for-gestational age or intrauterine growth restriction (RR 1.01, 95% CI 0.90 to 1.13; 8 RCTs, 6907 participants; moderate-quality evidence) was seen.For the maternal outcomes, there is insufficient evidence to determine the effects of omega-3 on induction post-term (average RR 0.82, 95% CI 0.22 to 2.98; 3 trials, 2900 participants; low-quality evidence), maternal serious adverse events (RR 1.04, 95% CI 0.40 to 2.72; 2 trials, 2690 participants; low-quality evidence), maternal admission to intensive care (RR 0.56, 95% CI 0.12 to 2.63; 2 trials, 2458 participants; low-quality evidence), or postnatal depression (average RR 0.99, 95% CI 0.56 to 1.77; 2 trials, 2431 participants; low-quality evidence). Mean gestational length was greater in women who received omega-3 LCPUFA (mean difference (MD) 1.67 days, 95% CI 0.95 to 2.39; 41 trials, 12,517 participants; moderate-quality evidence), and pre-eclampsia may possibly be reduced with omega-3 LCPUFA (RR 0.84, 95% CI 0.69 to 1.01; 20 trials, 8306 participants; low-quality evidence).For the child/adult outcomes, very few differences between antenatal omega-3 LCPUFA supplementation and no omega-3 were observed in cognition, IQ, vision, other neurodevelopment and growth outcomes, language and behaviour (mostly low-quality to very low-quality evidence). The effect of omega-3 LCPUFA on body mass index at 19 years (MD 0, 95% CI -0.83 to 0.83; 1 trial, 243 participants; very low-quality evidence) was uncertain. No data were reported for development of diabetes in the children of study participants. AUTHORS' CONCLUSIONS In the overall analysis, preterm birth < 37 weeks and early preterm birth < 34 weeks were reduced in women receiving omega-3 LCPUFA compared with no omega-3. There was a possibly reduced risk of perinatal death and of neonatal care admission, a reduced risk of LBW babies; and possibly a small increased risk of LGA babies with omega-3 LCPUFA.For our GRADE quality assessments, we assessed most of the important perinatal outcomes as high-quality (e.g. preterm birth) or moderate-quality evidence (e.g. perinatal death). For the other outcome domains (maternal, child/adult and health service outcomes) GRADE ratings ranged from moderate to very low, with over half rated as low. Reasons for downgrading across the domain were mostly due to design limitations and imprecision.Omega-3 LCPUFA supplementation during pregnancy is an effective strategy for reducing the incidence of preterm birth, although it probably increases the incidence of post-term pregnancies. More studies comparing omega-3 LCPUFA and placebo (to establish causality in relation to preterm birth) are not needed at this stage. A further 23 ongoing trials are still to report on over 5000 women, so no more RCTs are needed that compare omega-3 LCPUFA against placebo or no intervention. However, further follow-up of completed trials is needed to assess longer-term outcomes for mother and child, to improve understanding of metabolic, growth and neurodevelopment pathways in particular, and to establish if, and how, outcomes vary by different types of omega-3 LCPUFA, timing and doses; or by characteristics of women.
Collapse
Affiliation(s)
- Philippa Middleton
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
| | - Judith C Gomersall
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
| | - Jacqueline F Gould
- The University of AdelaideSchool of PsychologyNorth Terrace, AdelaideAdelaideSouth AustraliaAustralia5001
| | - Emily Shepherd
- The University of AdelaideARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and GynaecologyAdelaideSouth AustraliaAustralia5006
| | - Sjurdur F Olsen
- Statens Serum InstitutCentre for Fetal Programming, Department of EpidemiologyCopenhagenDenmark
| | - Maria Makrides
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
- The University of AdelaideSchool of Paediatrics and Reproductive HealthAdelaideAustraliaAustralia
- Women's and Children's Health Research InstituteNorth AdelaideAustralia
| | | |
Collapse
|
9
|
Hoge A, Bernardy F, Donneau AF, Dardenne N, Degée S, Timmermans M, Nisolle M, Guillaume M, Castronovo V. Low omega-3 index values and monounsaturated fatty acid levels in early pregnancy: an analysis of maternal erythrocytes fatty acids. Lipids Health Dis 2018; 17:63. [PMID: 29606136 PMCID: PMC5879610 DOI: 10.1186/s12944-018-0716-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/21/2018] [Indexed: 12/31/2022] Open
Abstract
Background It is unanimously recognized that the maternal nutritional status at the pregnancy onset influence both short-term and long-term health of the mother and offspring. Among several nutrients, LCPUFA, particularly from the omega-3 family, are of utmost importance. This study was carried out to determine fatty acids profile of maternal erythrocyte membranes in early pregnancy and to identify potential determinants impacting on this status. Methods A cohort of 122 healthy women with a singleton pregnancy was included. Fatty acids were analyzed using gas chromatography. Because of the lack of cutoff values, reference ranges were used to determine fatty acids categories. Results Of concern, our data revealed low monounsaturated and long-chain omega-3 fatty acid status in most participants. More than 75% of Belgian pregnant women exhibited Pal, AO and EPA levels as well as IOM3 values below the laboratory reference ranges. Higher DHA concentrations and IOM3 values were found among foreign-nationality participants, non-smokers and physically active women. With regard to dietary factors, omega-3 supplements and diet seem to be complementary since DHA from supplements (but not from diet) and EPA from diet (but not from supplements) were found to be associated with higher concentrations of DHA and EPA, respectively. Conclusions Our study presents evidence demonstrating that the fatty acid status of most early pregnant women is far from being optimal based on the admitted general reference values. Clinicians should be advice to carefully evaluate and improve this status to guarantee the best possible outcome for both the mother and the baby. Electronic supplementary material The online version of this article (10.1186/s12944-018-0716-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Axelle Hoge
- Department of Public Health, University of Liège, Avenue Hippocrate 13 - B23, 4000, Liège, Belgium.
| | - Florence Bernardy
- Department of Public Health, University of Liège, Avenue Hippocrate 13 - B23, 4000, Liège, Belgium
| | - Anne-Françoise Donneau
- Department of Public Health, University of Liège, Avenue Hippocrate 13 - B23, 4000, Liège, Belgium
| | - Nadia Dardenne
- Department of Public Health, University of Liège, Avenue Hippocrate 13 - B23, 4000, Liège, Belgium
| | - Sylvie Degée
- Department of Obstetrics and Gynecology, CHR Citadelle Hospital, University of Liège, Liège, Belgium
| | - Marie Timmermans
- Department of Obstetrics and Gynecology, CHR Citadelle Hospital, University of Liège, Liège, Belgium
| | - Michelle Nisolle
- Department of Obstetrics and Gynecology, CHR Citadelle Hospital, University of Liège, Liège, Belgium
| | - Michèle Guillaume
- Department of Public Health, University of Liège, Avenue Hippocrate 13 - B23, 4000, Liège, Belgium
| | - Vincenzo Castronovo
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| |
Collapse
|
10
|
Association between Maternal and Foetal Erythrocyte Fatty Acid Profiles and Birth Weight. Nutrients 2018; 10:nu10040402. [PMID: 29570689 PMCID: PMC5946187 DOI: 10.3390/nu10040402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022] Open
Abstract
Regular foetal development is crucial for assuring good health status in the offspring. The quality and quantity of maternal dietary fatty acids (FAs) can affect growth. The study aimed to: (1) investigate the association of maternal/foetal lipid profiles with birth weight (BW); and (2) compare these profiles in small, appropriate, and large for gestational age (SGA, AGA, and LGA) infants. FAs were measured in erythrocyte membranes using gas chromatography analysis in 607 mother–infant pairs (316 males, 52.1%). In the quantile regression, a significant association between BW and levels of maternal linoleic acid (LA; C18:2, n-6; coefficient: 18.66; p = 0.010), arachidonic acid (AA; C20:4, n-6; coefficient: 11.35; p = 0.007), docosahexaenoic acid (DHA; C22:6, n-3; coefficient: 29.73; p = 0.007), polyunsaturated FAs (coefficient: 8.55; p = 0.001), foetal DHA (coefficient: −22.82; p = 0.037), and saturated FAs (coefficient: −65.41; p = 0.002) was found. Myristic (C14:0) and pentadecanoic acids (C15:0), both maternal (p = 0.000; p = 0.017) and foetal (p = 0.009; p = 0.002), and maternal erucic acid (C22:1, n-9; p = 0.026) were found at higher levels in SGA infants as compared to AGA ones. Conversely, maternal LA, AA, and omega 6 FAs levels were higher in AGA infants (p = 0.037; p = 0.003; p = 0.026, respectively). Maternal and foetal polyunsaturated and omega 6 FAs levels are positively related to BW, while a lipid profile rich in saturated FAs and erucic acid may influence the risk of SGA.
Collapse
|
11
|
Echeverría F, Valenzuela R, Catalina Hernandez-Rodas M, Valenzuela A. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources. Prostaglandins Leukot Essent Fatty Acids 2017; 124:1-10. [PMID: 28870371 DOI: 10.1016/j.plefa.2017.08.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/10/2017] [Accepted: 08/09/2017] [Indexed: 01/25/2023]
Abstract
Docosahexaenoic acid (C22: 6n-3, DHA) is a long-chain polyunsaturated fatty acid of marine origin fundamental for the formation and function of the nervous system, particularly the brain and the retina of humans. It has been proposed a remarkable role of DHA during human evolution, mainly on the growth and development of the brain. Currently, DHA is considered a critical nutrient during pregnancy and breastfeeding due their active participation in the development of the nervous system in early life. DHA and specifically one of its derivatives known as neuroprotectin D-1 (NPD-1), has neuroprotective properties against brain aging, neurodegenerative diseases and injury caused after brain ischemia-reperfusion episodes. This paper discusses the importance of DHA in the human brain given its relevance in the development of the tissue and as neuroprotective agent. It is also included a critical view about the ways to supply this noble fatty acid to the population.
Collapse
Affiliation(s)
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | - Alfonso Valenzuela
- Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile and Faculty of Medicine,, University de Los Andes, Santiago, Chile
| |
Collapse
|
12
|
von Schacky C, Passow A, Kiefl R. Trans-fatty acid levels in erythrocytes in Europe. Eur J Nutr 2016; 56:1719-1723. [DOI: 10.1007/s00394-016-1218-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/25/2016] [Indexed: 11/28/2022]
|
13
|
Shablinskiĭ MA, Milent'ev AY, Lotosh NY, Selishcheva AA, Badyshtov BA, Besova NV, Savel'ev SV. [Non-esterified fatty acids of blood serum in type 1 diabetic women during late pregnancy]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 60:689-94. [PMID: 25552510 DOI: 10.18097/pbmc20146006689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using gas chromatography a comparative study of the range and content of individual non-esterified fatty acids in serum of patients with diabetes mellitus type 1 in the third trimester of pregnancy, and healthy pregnant and non-pregnant women has been carried out. In groups of pregnant women there was activation of lipid metabolism, confirmed by corresponding changes in serum biochemical parameters, as well as in the content of non-esterified fatty acids. Intergroup differences in the non-esterified fatty acids were not found. However, there were significant differences between the examined groups in the quantitative content of non-esterified fatty acids.
Collapse
Affiliation(s)
- M A Shablinskiĭ
- Institute of Biomedical Problems, Moscow, Russia;Lomonosov Moscow State University, Department of Biology
| | | | - N Yu Lotosh
- Institute of Biomedical Problems, Moscow, Russia
| | - A A Selishcheva
- Institute of Biomedical Problems, Moscow, Russia;Lomonosov Moscow State University, Department of Biology
| | - B A Badyshtov
- Central Clinical Hospital of Civil Aviation, Moscow, Russia
| | - N V Besova
- Institute of Biomedical Problems, Moscow, Russia
| | - S V Savel'ev
- Institute of Biomedical Problems, Moscow, Russia; Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
14
|
Mennitti LV, Oliveira JL, Morais CA, Estadella D, Oyama LM, Oller do Nascimento CM, Pisani LP. Type of fatty acids in maternal diets during pregnancy and/or lactation and metabolic consequences of the offspring. J Nutr Biochem 2014; 26:99-111. [PMID: 25459884 DOI: 10.1016/j.jnutbio.2014.10.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/19/2014] [Accepted: 10/04/2014] [Indexed: 12/25/2022]
Abstract
During pregnancy and/or lactation, maternal nutrition is related to the adequate development of the fetus, newborn and future adult, likely by modifications in fetal programming and epigenetic regulation. Fetal programming is characterized by adaptive responses to specific environmental conditions during early life stages, which may alter gene expression and permanently affect the structure and function of several organs and tissues, thus influencing the susceptibility to metabolic disorders. Regarding lipid metabolism during the first two trimesters of pregnancy, the maternal body accumulates fat, whereas in late pregnancy, the lipolytic activity in the maternal adipose tissue is increased. However, an excess or deficiency of certain fatty acids may lead to adverse consequences to the fetuses and newborns. Fetal exposure to trans fatty acids appears to promote early deleterious effects in the offspring's health, thereby increasing the individual risk for developing metabolic diseases throughout life. Similarly, the maternal intake of saturated fatty acids seems to trigger alterations in the liver and adipose tissue function associated with insulin resistance and diabetes. The polyunsaturated fatty acids (PUFAs), particularly long-chain PUFAs (long-chain PUFA-arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid), play an important and beneficial physiologic role in the offspring who receive this fatty acid during critical periods of development. Therefore, the maternal nutritional condition and fatty acid intake during pregnancy and/or lactation are critical factors that are strongly associated with normal fetal and postnatal development, which influence the modifications in fetal programming and in the individual risk for developing metabolic diseases throughout life.
Collapse
Affiliation(s)
- Laís V Mennitti
- Departamento de Biociências, Universidade Federal de São Paulo, Santos/SP, Brazil
| | - Juliana L Oliveira
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo/SP, Brazil
| | - Carina A Morais
- Departamento de Biociências, Universidade Federal de São Paulo, Santos/SP, Brazil
| | - Débora Estadella
- Departamento de Biociências, Universidade Federal de São Paulo, Santos/SP, Brazil
| | - Lila M Oyama
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo/SP, Brazil
| | | | - Luciana P Pisani
- Departamento de Biociências, Universidade Federal de São Paulo, Santos/SP, Brazil.
| |
Collapse
|
15
|
Decsi T, Boehm G. trans Isomeric fatty acids are inversely related to the availability of long-chain PUFAs in the perinatal period. Am J Clin Nutr 2013; 98:543S-8S. [PMID: 23824720 DOI: 10.3945/ajcn.112.039156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We summarize data on the potential interaction of trans isomeric fatty acids [trans fatty acids (TFAs)] with the availability of long-chain polyunsaturated fatty acids (LC-PUFAs) in the perinatal period. Today, TFA intakes in pregnant and lactating women can be estimated to be ∼1% of energy in the majority of the population. The significant inverse associations seen between TFAs and LC-PUFAs in pregnant women in 3 different European populations investigated in a recent study raise doubts about the nutritional adequacy of high TFA intakes during pregnancy. In a recent study on the TFA content of human milk in a sizable group of mothers at the sixth week of lactation, both arachidonic and docosahexaenoic acids correlated significantly inversely to 18-carbon TFAs but not to 16-carbon TFAs, and at the sixth month of lactation arachidonic acid correlated significantly inversely to 18-carbon TFAs but not to 16-carbon TFAs. Similarly, significant inverse correlations were seen between 18-carbon TFAs and arachidonic and docosahexaenoic acids in both artery and vein wall lipids in a sizable group of healthy term infants. The TFA data obtained in umbilical blood vessel wall lipids were related to the neurologic condition of healthy children at 18 mo of age: children with minimal neurologic dysfunction at age 18 mo had significantly higher cord blood vein wall trans octadecadienoic acid values than did neurologically normal children. Total TFA values as well as total 18-carbon TFA values in umbilical vein wall lipids were significantly inversely associated with neurologic optimality score. Contradictory data renders it impossible to draw firm conclusions on the role of TFAs in modifying fetal growth; however, TFA exposure may be a confounding parameter in studies that investigate the relation between fetal fatty acid supply and intrauterine growth.
Collapse
Affiliation(s)
- Tamás Decsi
- Department of Pediatrics, University of Pécs, Pécs, Hungary.
| | | |
Collapse
|
16
|
Validation of a FFQ for estimating ω-3, ω-6 and trans fatty acid intake during pregnancy using mature breast milk and food recalls. Eur J Clin Nutr 2012; 66:1259-64. [PMID: 22990856 DOI: 10.1038/ejcn.2012.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES To assess the performance of a food frequency questionnaire (FFQ) for estimating ω-3, ω-6 and trans fatty acid intake during pregnancy. Moreover, we determined whether the fatty acid composition of mature breast milk represents a valuable biomarker for fatty acid intake during pregnancy. SUBJECTS/METHODS A prospective study in 41 pregnant women, aged 18-35 years, was conducted. Food intake during pregnancy was evaluated by three 24-h recalls (24 hR), and 2 FFQ. The fatty acid composition of mature breast milk was determined by gas chromatography. The method of triads and joint classification between quartiles of intake were applied. RESULTS The FFQ was accurate for estimating docosahexanoic (DHA), linoleic and total ω-6 fatty acids according to validity coefficients. Higher agreements (>70%) into the same or adjacent quartiles between the dietary methods were found for α-linolenic, total ω-3, linoleic and trans fatty acid intake. High validity coefficients for eicosapentanoic (EPA) and DHA acids of human milk were found (0.61 and 0.73, respectively), and the method was adequate for categorizing the intake of α-linolenic, total ω-3 and trans fatty acids compared with FFQ estimates, and for arachidonic acid and trans fatty acids compared with food recall estimates, during pregnancy. CONCLUSIONS The FFQ was an accurate tool for categorizing α-linolenic, total ω-3 and trans fatty acid intake. According to the validity coefficients observed, the FFQ accurately estimated DHA, linoleic and total ω-6 fatty acids and the composition of mature breast milk was shown to be a suitable biomarker for EPA and DHA fatty acid intake during pregnancy.
Collapse
|
17
|
Decsi T. Effects of 16-carbon and 18-carbon trans isomeric fatty acids in the perinatal period. Am J Clin Nutr 2012; 95:986-7; author reply 987-8. [PMID: 22434602 DOI: 10.3945/ajcn.112.033977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|