1
|
Deo R, Dubin RF, Ren Y, Wang J, Feldman H, Shou H, Coresh J, Grams ME, Surapaneni AL, Cohen JB, Kansal M, Rahman M, Dobre M, He J, Kelly T, Go AS, Kimmel PL, Vasan RS, Segal MR, Li H, Ganz P. Proteomic Assessment of the Risk of Secondary Cardiovascular Events among Individuals with CKD. J Am Soc Nephrol 2025; 36:231-241. [PMID: 39325542 PMCID: PMC11801749 DOI: 10.1681/asn.0000000502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Key Points Machine learning and large-scale proteomics led to a 16-protein secondary cardiovascular risk model in patients with CKD. Hepatic fibrosis and liver X receptor activation represented biologic pathways that link kidney disease and risk of secondary cardiovascular events. An understanding of the circulating proteins associated with secondary cardiovascular events may help to identify novel therapeutic targets. Background Cardiovascular risk models have been developed primarily for incident events. Well-performing models are lacking to predict secondary cardiovascular events among people with a history of coronary heart disease, stroke, or heart failure who also have CKD. We sought to develop a proteomic risk score for cardiovascular events in individuals with CKD and a history of cardiovascular disease. Methods We measured 4638 plasma proteins among 1067 participants from the Chronic Renal Insufficiency Cohort (CRIC) and 536 individuals from the Atherosclerosis Risk in Communities (ARIC) Cohort. All had non–dialysis-dependent CKD and coronary heart disease, heart failure, or stroke at study baseline. A proteomic risk model for secondary cardiovascular events was derived by elastic net regression in CRIC, validated in ARIC, and compared with clinical models. Biologic mechanisms of secondary events were characterized through proteomic pathway analysis. Results A 16-protein risk model was superior to the Framingham Risk Score for secondary events, including a modified score that included eGFR. In CRIC, the annualized area under the receiver operating characteristic curve (area under the curve) within 1–5 years ranged between 0.77 and 0.80 for the protein model and 0.57 and 0.72 for the clinical models. These findings were replicated in the ARIC validation cohort. Biologic pathway analysis identified pathways and proteins for cardiac remodeling and fibrosis, vascular disease, and thrombosis. Conclusions The proteomic risk model for secondary cardiovascular events outperformed clinical models on the basis of traditional risk factors and eGFR.
Collapse
Affiliation(s)
- Rajat Deo
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruth F. Dubin
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yue Ren
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jianqiao Wang
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harold Feldman
- Patient-Centered Outcomes Research Institute, Washington, DC
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Morgan E. Grams
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Aditya L. Surapaneni
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Jordana B. Cohen
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Renal, Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mayank Kansal
- Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois
| | - Mahboob Rahman
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Mirela Dobre
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Tanika Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Alan S. Go
- Division of Research, Kaiser Permanente Northern California, Oakland, California
- The Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Ramachandran S. Vasan
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Section of Cardiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Mark R. Segal
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter Ganz
- Division of Cardiology, Zuckerberg San Francisco General Hospital and Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
2
|
Tutunea-Fatan E, Arumugarajah S, Suri RS, Edgar CR, Hon I, Dikeakos JD, Gunaratnam L. Sensing Dying Cells in Health and Disease: The Importance of Kidney Injury Molecule-1. J Am Soc Nephrol 2024; 35:795-808. [PMID: 38353655 PMCID: PMC11164124 DOI: 10.1681/asn.0000000000000334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Shabitha Arumugarajah
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rita S. Suri
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Nephrology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cassandra R. Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ingrid Hon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Qi H, Shi H, Yan M, Zhao L, Yin Y, Tan X, Qi H, Li H, Weng K, Tang Y, Dai Y. Ammonium tetrathiomolybdate relieves oxidative stress in cisplatin-induced acute kidney injury via NRF2 signaling pathway. Cell Death Discov 2023; 9:259. [PMID: 37491360 PMCID: PMC10368633 DOI: 10.1038/s41420-023-01564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
Cisplatin is an efficient chemotherapeutic agent for various solid tumors, but its usage is restricted by nephrotoxicity. A single dose of cisplatin can cause acute kidney injury (AKI), which is characterized by rapid reduction in kidney function. However, the current therapies, such as hydration, are limited. It is vital to develop novel therapeutic reagents that have both anticancer and renoprotective properties. The objective of this study was to determine whether ammonium tetrathiomolybdate (TM), a copper chelator used to treat cancer and disorders of copper metabolism, may offer protection against cisplatin-induced AKI. In this study, we demonstrated that TM treatment had antioxidative effects and mitigated cisplatin-induced AKI both in vivo and in vitro. Mechanically, TM inhibited NRF2 ubiquitination, which activated the NRF2 pathway in HK-2 cells and promoted the expression of target genes. It should be noted that the protective effect conferred by TM against cisplatin was compromised by the knockdown of the NRF2 gene. Furthermore, TM selectively activated the NRF2 pathways in the liver and kidney. The current study provided evidence for additional clinical applications of TM by showing that it activates NRF2 and has a favorable therapeutic impact on cisplatin-induced AKI.
Collapse
Affiliation(s)
- Hao Qi
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Haoyu Shi
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Minbo Yan
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Liangyu Zhao
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Yinghao Yin
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiaolin Tan
- Department of Clinical Nutrition, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Huiyue Qi
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Hu Li
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Kangqiang Weng
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.
| |
Collapse
|
4
|
Tabernero G, Pescador M, Ruiz Ferreras E, Morales AI, Prieto M. Evaluation of NAG, NGAL, and KIM-1 as Prognostic Markers of the Initial Evolution of Kidney Transplantation. Diagnostics (Basel) 2023; 13:diagnostics13111843. [PMID: 37296695 DOI: 10.3390/diagnostics13111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Kidney transplantation is the best option for end-stage chronic kidney disease. Transplant viability is conditioned by drugs' nephrotoxicity, ischemia-reperfusion damage, or acute rejection. An approach to improve graft survival is the identification of post-transplant renal function prognostic biomarkers. Our objective was to study three early kidney damage biomarkers (N-acetyl-d-glucosaminidase, NAG; neutrophil gelatinase-associated lipocalin, NGAL; and kidney injury molecule-1, KIM-1) in the initial period after transplantation and to identify possible correlations with main complications. We analysed those biomarkers in urine samples from 70 kidney transplant patients. Samples were taken on days 1, 3, 5, and 7 after intervention, as well as on the day that renal function stabilised (based on serum creatinine). During the first week after transplant, renal function improved based on serum creatinine evolution. However, increasing levels of biomarkers at different times during that first week could indicate tubular damage or other renal pathology. A relationship was found between NGAL values in the first week after transplantation and delayed graft function. In addition, higher NAG and NGAL, and lower KIM-1 values predicted a longer renal function stabilisation time. Therefore, urinary NAG, NGAL, and KIM-1 could constitute a predictive tool for kidney transplant complications, contributing to improve graft survival rates.
Collapse
Affiliation(s)
- Guadalupe Tabernero
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
- Department of Nephrology, University Hospital, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Moisés Pescador
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- RICORS2040-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Ana I Morales
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- RICORS2040-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Prieto
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- RICORS2040-Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Cui H, Ren G, Hu X, Xu B, Li Y, Niu Z, Mu L. Suppression of lncRNA GAS6-AS2 alleviates sepsis-related acute kidney injury through regulating the miR-136-5p/OXSR1 axis in vitro and in vivo. Ren Fail 2022; 44:1070-1082. [PMID: 35793478 PMCID: PMC9272941 DOI: 10.1080/0886022x.2022.2092001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury (AKI) is a common complication of sepsis and increase morbidity and mortality. Long non-coding RNA (LncRNA) GAS6-AS2 was related to inflammation and apoptosis in different diseases by regulating miRNAs and downstream genes, but its role in AKI remains unclear. Thus, we speculated that GAS6-AS2 might function in sepsis-related AKI via regulating target genes. Here, LPS or CLP was used to establish in vitro or in vivo sepsis-related AKI model. The interactions between GAS6-AS2 and miR-136-5p, and miR-136-5p and OXSR1, were validated by luciferase reporter assay, RNA pull-down, or RIP assay. Cell apoptosis was determined by flow cytometry, Western blotting, or IHC. The kidney injury was evaluated by H&E staining. The expression of GAS6-AS2, miR-136-5p, and OXSR1 was determined by qRT-PCR or Western blotting. We found that GAS6-AS2 was up-regulated in LPS-treated HK2 cells and the CLP-induced rat model. In vitro, GAS6-AS2 knockdown decreased cleaved caspase-3 and bax expression and increased bcl-2 expression. The levels of TNF-α, IL-1β, and IL-6 were reduced by GAS6-AS2 down-regulation. GAS6-AS2 knockdown ameliorated oxidative stress in the cells, as indicated by the reduced ROS and MDA levels and the elevated SOD level. In vivo, GAS6-AS2 down-regulation decreased urinary NGAL and Kim-1 levels and serum sCr and BUN levels, and H&E proved that the kidney injury was alleviated. GAS6-AS2 knockdown also reduced apoptosis, inflammation, and oxidation induced by CLP in vivo. Mechanically, GAS6-AS2 sponged miR-136-5p which targeted OXSR1. Overall, lncRNA GAS6-AS2 knockdown has the potential to ameliorate sepsis-related AKI, and the mechanism is related to miR-136-5p/OXSR1 axis.
Collapse
Affiliation(s)
- Hongrui Cui
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Guangwei Ren
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Xiuhong Hu
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Baozhen Xu
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Yuping Li
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Zheli Niu
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Liqin Mu
- Department of General Practice, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| |
Collapse
|
6
|
Structural modeling for Oxford histological classifications of immunoglobulin A nephropathy. PLoS One 2022; 17:e0268731. [PMID: 36084046 PMCID: PMC9462802 DOI: 10.1371/journal.pone.0268731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
In immunoglobulin A nephropathy (IgAN), Cox regression analysis can select independent prognostic variables for renal functional decline (RFD). However, the correlation of the selected histological variables with clinical and/or treatment variables is unknown, thereby making histology-based treatment decisions unreliable. We prospectively followed 946 Japanese patients with IgAN for a median of 66 mo. and applied structural equation modeling (SEM) to identify direct and indirect effects of histological variables on RFD as a regression line of estimated glomerular filtration rate (eGFR) via clinical variables including amount of proteinuria, eGFR, mean arterial pressure (MAP) at biopsy, and treatment variables such as steroid therapy with/without tonsillectomy (ST) and renin–angiotensin system blocker (RASB). Multi-layered correlations between the variables and RFD were identified by multivariate linear regression analysis and the model’s goodness of fit was confirmed. Only tubular atrophy/interstitial fibrosis (T) had an accelerative direct effect on RFD, while endocapillary hypercellularity and active crescent (C) had an attenuating indirect effect via ST. Segmental sclerosis (S) had an attenuating indirect effect via eGFR and mesangial hypercellularity (M) had accelerative indirect effect for RFD via proteinuria. Moreover, M and C had accelerative indirect effect via proteinuria, which can be controlled by ST. However, both T and S had additional indirect accelerative effects via eGFR or MAP at biopsy, which cannot be controlled by ST. SEM identified a systemic path links between histological variables and RFD via dependent clinical and/or treatment variables. These findings lead to clinically applicable novel methodologies that can contribute to predict treatment outcomes using the Oxford classifications.
Collapse
|
7
|
Dissanayake LV, Zietara A, Levchenko V, Spires DR, Angulo MB, El-Meanawy A, Geurts AM, Dwinell MR, Palygin O, Staruschenko A. Lack of xanthine dehydrogenase leads to a remarkable renal decline in a novel hypouricemic rat model. iScience 2022; 25:104887. [PMID: 36039296 PMCID: PMC9418856 DOI: 10.1016/j.isci.2022.104887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Uric acid (UA) is the final metabolite in purine catabolism in humans. Previous studies have shown that the dysregulation of UA homeostasis is detrimental to cardiovascular and kidney health. The Xdh gene encodes for the Xanthine Oxidoreductase enzyme group, responsible for producing UA. To explore how hypouricemia can lead to kidney damage, we created a rat model with the genetic ablation of the Xdh gene on the Dahl salt-sensitive rat background (SSXdh−/−). SSXdh−/− rats lacked UA and exhibited impairment in growth and survival. This model showed severe kidney injury with increased interstitial fibrosis, glomerular damage, crystal formation, and an inability to control electrolyte balance. Using a multi-omics approach, we highlighted that lack of Xdh leads to increased oxidative stress, renal cell proliferation, and inflammation. Our data reveal that the absence of Xdh leads to kidney damage and functional decline by the accumulation of purine metabolites in the kidney and increased oxidative stress. A novel rat model of hypouricemia was created by the gene ablation of the Xdh gene The SSXdh-/- rat showed a failure to thrive, kidney injury, and functional decline Multi-omics revealed increased inflammation and oxidative stress in SSXdh-/- rats
Collapse
|
8
|
Hou YC, Huang HF, Tsai WH, Huang SY, Liu HW, Liu JS, Kuo KL. Vegetarian Diet Was Associated With a Lower Risk of Chronic Kidney Disease in Diabetic Patients. Front Nutr 2022; 9:843357. [PMID: 35558755 PMCID: PMC9087577 DOI: 10.3389/fnut.2022.843357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction Diabetes mellitus (DM) is a pathological hyperglycemic state related to the dysregulation of insulin. Chronic kidney disease (CKD) is a common chronic complication in diabetic patients. A vegetarian diet could be one of the preventive strategies for the occurrence of CKD in patients with diabetes mellitus. However, it is still unknown whether a vegetarian diet lowers the occurrence of CKD in DM patients. Research Design and Methods This retrospective study was conducted at Taipei Tzu Chi Hospital from 5 September 2005 to 31 December 2016. Subjects with an HbA1c level > 6.5% or previous history of diabetes mellitus elder than 40 years were grouped based on self-reported dietary habits (vegetarians, lacto-ovo vegetarians and omnivores) in the structured questionnaire. Structural equation modeling (SEM) was applied to estimate the direct and indirect effects of variables on the occurrence of chronic kidney disease. Results Among these 2,797 subjects, the participants were grouped into dietary habits as vegans (n = 207), lacto-ovo vegetarians (n = 941) and omnivores (n = 1,649). The incidence of overall CKD was higher in the omnivore group [36.6% vs 30.4% (vegans) and 28.5% (lacto-ovo vegetarian), p < 0.001]. In the SEM model, after adjusting for age and sex, the lacto-ovo vegetarian [OR: 0.68, 95% confidence interval (CI): 0.57–0.82] and vegan groups (OR 0.68, 95% CI: 0.49–0.94) were both associated with a lower risk of CKD occurrence than the omnivore group. The vegan diet and lacto-ovo diet lowered the risk related to a high BMI (OR: 0.45, p < 0.001, OR: 0.58, p < 0.001) and hyperuricemia (OR: 0.53, p < 0.001; OR: 0.55, p < 0.001) for the occurrence of CKD. Conclusion Vegetarian dietary habits were associated with a lower occurrence of CKD in DM patients.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Fen Huang
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Hsin Tsai
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sin-Yi Huang
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hao-Wen Liu
- Tai-Yang Otorhinolaryngology Clinic, New Taipei City, Taiwan
| | - Jia-Sin Liu
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Ko-Lin Kuo
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
9
|
Anti-Oxidant and Anti-Inflammatory Effects of Lipopolysaccharide from Rhodobacter sphaeroides against Ethanol-Induced Liver and Kidney Toxicity in Experimental Rats. Molecules 2021; 26:molecules26247437. [PMID: 34946518 PMCID: PMC8707101 DOI: 10.3390/molecules26247437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the protective effects of lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) against ethanol-induced hepatotoxicity and nephrotoxicity in experimental rats. The study involved an intact control group, LPS-RS group, two groups were given ethanol (3 and 5 g/kg/day) for 28 days, and two other groups (LPS-RS + 3 g/kg ethanol) and (LPS-RS + 5 g/kg ethanol) received a daily dose of LPS-RS (800 μg/kg) before ethanol. Ethanol significantly increased the expression of nuclear factor kappa B (NF-κB) and levels of malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in the liver tissue and decreased anti-oxidant enzymes. Hepcidin expression was downregulated in the liver, with increased serum levels of ferritin and iron. Prior-administration of LPS-RS alleviated the increase in oxidative stress and inflammatory markers, and preserved iron homeostasis markers. In the kidney, administration of ethanol caused significant increase in the expression of NF-κB and the levels of TNF-α and kidney injury markers; whereas LPS-RS + ethanol groups had significantly lower levels of those parameters. In conclusion; this study reports anti-oxidant, anti-inflammatory and iron homeostasis regulatory effects of the toll-like receptor 4 (TLR4) antagonist LPS-RS against ethanol induced toxicity in both the liver and the kidney of experimental rats.
Collapse
|
10
|
Grunz-Borgmann EA, Nichols LA, Spagnoli S, Trzeciakowski JP, Valliyodan B, Hou J, Li J, Cheng J, Kerley M, Fritsche K, Parrish AR. The renoprotective effects of soy protein in the aging rat kidney. MEDICAL RESEARCH ARCHIVES 2020; 8:10.18103/mra.v8i3.2065. [PMID: 34222651 PMCID: PMC8247450 DOI: 10.18103/mra.v8i3.2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aging is a risk factor for chronic kidney disease (CKD) and is itself associated with alterations in renal structure and function. There are no specific interventions to attenuate age-dependent renal dysfunction and the mechanism(s) responsible for these deficits have not been fully elucidated. In this study, male Fischer 344 rats, which develop age-dependent nephropathy, were feed a casein- or soy protein diet beginning at 16 mon (late life intervention) and renal structure and function was assessed at 20 mon. The soy diet did not significantly affect body weight, but was renoprotective as assessed by decreased proteinuria, increased glomerular filtration rate (GFR) and decreased urinary kidney injury molecule-1 (Kim-1). Renal fibrosis, as assessed by hydroxyproline content, was decreased by the soy diet, as were several indicators of inflammation. RNA sequencing identified several candidates for the renoprotective effects of soy, including decreased expression of Twist2, a basic helix-loop-helix transcription factor that network analysis suggest may regulate the expression of several genes associated with renal dysfunction. Twist2 expression is upregulated in the aging kidney and the unilateral ureteral obstruction of fibrosis; the expression is limited to distal tubules of mice. Taken together, these data demonstrate the renoprotective potential of soy protein, putatively by reducing inflammation and fibrosis, and identify Twist2 as a novel mediator of renal dysfunction that is targeted by soy.
Collapse
Affiliation(s)
- Elizabeth A Grunz-Borgmann
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - LaNita A Nichols
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Sean Spagnoli
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Jerome P Trzeciakowski
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77807
| | - Babu Valliyodan
- Division of Plant Sciences, College of Agriculture, Food and Natural Resource, University of Missouri, Columbia, MO 65211
| | - Jie Hou
- Department of Electrical Engineering and Computer Sciences, College of Engineering, University of Missouri, Columbia, MO 65211
| | | | - Jianlin Cheng
- Department of Electrical Engineering and Computer Sciences, College of Engineering, University of Missouri, Columbia, MO 65211
| | - Monty Kerley
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 6521
| | - Kevin Fritsche
- Department of Nutrition and Exercise Physiology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
11
|
The Predictive Role of the Biomarker Kidney Molecule-1 (KIM-1) in Acute Kidney Injury (AKI) Cisplatin-Induced Nephrotoxicity. Int J Mol Sci 2019; 20:ijms20205238. [PMID: 31652595 PMCID: PMC6834366 DOI: 10.3390/ijms20205238] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) following platinum-based chemotherapeutics is a frequently reported serious side-effect. However, there are no approved biomarkers that can properly identify proximal tubular injury while routine assessments such as serum creatinine lack sensitivity. Kidney-injury-molecule 1 (KIM-1) is showing promise in identifying cisplatin-induced renal injury both in vitro and in vivo studies. In this review, we focus on describing the mechanisms of renal tubular cells cisplatin-induced apoptosis, the associated inflammatory response and oxidative stress and the role of KIM-1 as a possible biomarker used to predict cisplatin associated AKI.
Collapse
|
12
|
Zhou Y, Xu W, Zhu H. CXCL8 (3-72) K11R/G31P protects against sepsis-induced acute kidney injury via NF-κB and JAK2/STAT3 pathway. Biol Res 2019; 52:29. [PMID: 31084615 PMCID: PMC6513525 DOI: 10.1186/s40659-019-0236-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/25/2019] [Indexed: 01/03/2023] Open
Abstract
Background Acute kidney injury (AKI), which is mainly caused by sepsis, has high morbidity and mortality rates. CXCL8(3–72) K11R/G31P (G31P) can exert therapeutic effect on inflammatory diseases and malignancies. We aimed to investigate the effect and mechanism of G31P on septic AKI. Methods An AKI mouse model was established, and kidney injury was assessed by histological analysis. The contents of serum creatinine (SCr) and blood urea nitrogen (BUN) were measured by commercial kits, whereas neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) were detected by enzyme-linked immunosorbent assay (ELISA) kits. The expressions of CXCL8 in serum and kidney tissues were determined using ELISA and immunohistochemical analysis, respectively. Apoptosis rate of renal tissue was detected by terminal deoxynucleotidyl transfer-mediated dUTP nick end labeling (TUNEL) analysis. The expressions of inflammatory cytokines were measured by quantitative real-time PCR and Western blot, respectively. The apoptosis-related proteins, JAK2, STAT3, NF-κB and IκB were determined by Western blot. Results G31P could reduce the levels of SCr, BUN, HGAL and KIM-1 and inhibit the renal tissue injury in AKI mice. G31P was also found to suppress the serum and nephric CXCL8 expressions and attenuated the apoptosis rate. The levels of inflammatory cytokines, pro-apoptotic proteins were decreased, while the anti-apoptotic proteins were increased by G31P in AKI mice. G31P also inhibited the activation of JAK2, STAT3 and NF-κB in AKI mice. Conclusion These results suggest that G31P could protect renal function and attenuate the septic AKI. Our findings provide a potential target for the treatment of AKI.
Collapse
Affiliation(s)
- Yunfeng Zhou
- Department of Intensive Medicine, The Third Hospital of Nanchang, Nanchang, Jiangxi, China
| | - Wenda Xu
- Department of Intensive Medicine, The Third Hospital of Nanchang, Nanchang, Jiangxi, China
| | - Hong Zhu
- Department of Intensive Medicine, Ruian People's Hospital, No. 108 Wansong Road, Yuhai Street, Ruian, Wenzhou, 325200, Zhejiang, China.
| |
Collapse
|
13
|
Song J, Yu J, Prayogo GW, Cao W, Wu Y, Jia Z, Zhang A. Understanding kidney injury molecule 1: a novel immune factor in kidney pathophysiology. Am J Transl Res 2019; 11:1219-1229. [PMID: 30972157 PMCID: PMC6456506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Kidney injury molecule 1 (KIM-1) is a type I membrane protein, comprising an extracellular portion and a cytoplasmic portion. It is also named as HAVCR1 (Hepatitis A virus cellular receptor 1) or TIM1 (T-cell immunoglobulin mucin receptor 1), and is expressed in the kidney, liver, and spleen. KIM-1 plays different roles via various molecular targets in immune diseases and kidney injury. KIM-1 is involved in HAV infections, autoimmunity, immune tolerance, and atopic diseases. The urinary KIM-1 level is closely related to its tissue level, and correspondingly related to kidney tissue damage. KIM-1 is not only an early biomarker of acute kidney injury (AKI), but also has a potential role in predicting the long-term renal outcome. In this review, we provide a summary of KIM-1's activities, focusing on the latest studies concerning the important roles of KIM-1 in the immune system and kidney diseases.
Collapse
Affiliation(s)
- Jiayu Song
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, China
| | - Jing Yu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, China
| | - Gabriella Wenda Prayogo
- Department of Endocrinology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
| | - Weidong Cao
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, China
| | - Yimei Wu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, China
| |
Collapse
|
14
|
Tao M, Shi Y, Tang L, Wang Y, Fang L, Jiang W, Lin T, Qiu A, Zhuang S, Liu N. Blockade of ERK1/2 by U0126 alleviates uric acid-induced EMT and tubular cell injury in rats with hyperuricemic nephropathy. Am J Physiol Renal Physiol 2019; 316:F660-F673. [PMID: 30648910 DOI: 10.1152/ajprenal.00480.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are serine/threonine kinases and function as regulators of cellular proliferation and differentiation. Recently, we demonstrated that inhibition of ERK1/2 alleviates the development and progression of hyperuricemia nephropathy (HN). However, its potential roles in uric acid-induced tubular epithelial-mesenchymal transition (EMT) and tubular epithelial cell injury are unknown. In this study, we showed that hyperuricemic injury induced EMT as characterized by downregulation of E-cadherin and upregulation of vimentin and Snail1 in a rat model of HN. This was coincident with epithelial cells arrested at the G2/M phase of cell cycle, activation of Notch1/Jagged-1 and Wnt/β-catenin signaling pathways, and upregulation of matrix metalloproteinase-2 (MMP-2) and MMP-9. Administration of U0126, a selective inhibitor of ERK1/2, blocked all these responses. U0126 was also effective in inhibiting renal tubular cell injury, as shown by decreased expression of lipocalin-2 and kidney injury molecule-1 and active forms of caspase-3. U0126 or ERK1/2 siRNA can inhibit tubular cell EMT and cell apoptosis as characterized with decreased expression of cleaved caspase-3. Moreover, ERK1/2 inhibition suppressed hyperuricemic injury-induced oxidative stress as indicated by decreased malondialdehyde and increased superoxide dismutase. Collectively, ERK1/2 inhibition-elicited renal protection is associated with inhibition of EMT through inactivation of multiple signaling pathways and matrix metalloproteinases, as well as attenuation of renal tubule injury by enhancing cellular resistance to oxidative stress.
Collapse
Affiliation(s)
- Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Lunxian Tang
- Emergency Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Lu Fang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Wei Jiang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Tao Lin
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University , Shanghai , China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University , Providence, Rhode Island
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| |
Collapse
|
15
|
Nam Y, Jhee JH, Cho J, Lee JH, Shin H. Disease gene identification based on generic and disease-specific genome networks. Bioinformatics 2018; 35:1923-1930. [DOI: 10.1093/bioinformatics/bty882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
- Yonghyun Nam
- Department of Industrial Engineering, Ajou University, Yeongtong-gu, Suwon, South Korea
| | - Jong Ho Jhee
- Department of Industrial Engineering, Ajou University, Yeongtong-gu, Suwon, South Korea
| | - Junhee Cho
- Department of Industrial Engineering, Ajou University, Yeongtong-gu, Suwon, South Korea
| | - Ji-Hyun Lee
- DR. Noah Biotech, Yeongtong-gu, Suwon, South Korea
| | - Hyunjung Shin
- Department of Industrial Engineering, Ajou University, Yeongtong-gu, Suwon, South Korea
| |
Collapse
|
16
|
McWilliam SJ, Antoine DJ, Jorgensen AL, Smyth RL, Pirmohamed M. Urinary Biomarkers of Aminoglycoside-Induced Nephrotoxicity in Cystic Fibrosis: Kidney Injury Molecule-1 and Neutrophil Gelatinase-Associated Lipocalin. Sci Rep 2018; 8:5094. [PMID: 29572451 PMCID: PMC5865203 DOI: 10.1038/s41598-018-23466-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Aminoglycosides are commonly used for the treatment of pulmonary exacerbations in patients with cystic fibrosis (CF). However, they are potentially nephrotoxic. This prospective observational cohort study aimed to investigate the potential validity of two urinary renal biomarkers, Kidney Injury Molecule-1 (KIM-1) and Neutrophil Gelatinase-associated Lipocalin (NGAL), in identifying aminoglycoside-induced nephrotoxicity in children with CF. Children and young adults up to 20 years of age with a confirmed diagnosis of CF were recruited from ten United Kingdom hospitals. Participants provided urine samples for measurement of KIM-1 and NGAL concentrations, at baseline, at regular outpatient appointments, and before, during and after exposure to clinically-indicated treatment with the aminoglycoside tobramycin. 37/158 patients recruited (23.4%) received at least one course of IV tobramycin during the study. The median peak fold-change during tobramycin exposure for KIM-1 was 2.28 (IQR 2.69) and 4.02 (IQR 7.29) for NGAL, in the absence of serum creatinine changes. Baseline KIM-1 was positively associated with cumulative courses of IV aminoglycosides (R2 = 0.11; β = 0.03; p < 0.0001). KIM-1, in particular, may be a useful, non-invasive, biomarker of acute and chronic proximal tubular injury associated with exposure to aminoglycosides in patients with CF, but its clinical utility needs to be further evaluated in prospective studies.
Collapse
Affiliation(s)
- Stephen J McWilliam
- Department of Women's and Children's Health, University of Liverpool, Merseyside, United Kingdom.
| | - Daniel J Antoine
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrea L Jorgensen
- Department of Biostatistics, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Rosalind L Smyth
- University College London, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, and MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, Merseyside, United Kingdom
| |
Collapse
|
17
|
Grunz-Borgmann EA, Nichols LA, Wang X, Parrish AR. Twist2 Is Upregulated in Early Stages of Repair Following Acute Kidney Injury. Int J Mol Sci 2017; 18:ijms18020368. [PMID: 28208580 PMCID: PMC5343903 DOI: 10.3390/ijms18020368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/05/2017] [Accepted: 02/03/2017] [Indexed: 12/04/2022] Open
Abstract
The aging kidney is a marked by a number of structural and functional changes, including an increased susceptibility to acute kidney injury (AKI). Previous studies from our laboratory have shown that aging male Fischer 344 rats (24 month) are more susceptible to apoptosis-mediated injury than young counterparts. In the current studies, we examined the initial injury and early recovery phases of mercuric chloride-induced AKI. Interestingly, the aging kidney had decreased serum creatinine compared to young controls 1 day following mercuric chloride injury, but by day 4, serum creatinine was significantly elevated, suggesting that the aging kidney did not recover from injury. This conclusion is supported by the findings that serum creatinine and kidney injury molecule-1 (Kim-1) gene expression remain elevated compared to young controls at 10 days post-injury. To begin to elucidate mechanism(s) underlying dysrepair in the aging kidney, we examined the expression of Twist2, a helix-loop-helix transcription factor that may mediate renal fibrosis. Interestingly, Twist2 gene expression was elevated following injury in both young and aged rats, and Twist2 protein expression is elevated by mercuric chloride in vitro.
Collapse
Affiliation(s)
- Elizabeth A Grunz-Borgmann
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - LaNita A Nichols
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Xinhui Wang
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
18
|
Heung M, Ortega LM, Chawla LS, Wunderink RG, Self WH, Koyner JL, Shi J, Kellum JA. Common chronic conditions do not affect performance of cell cycle arrest biomarkers for risk stratification of acute kidney injury. Nephrol Dial Transplant 2016; 31:1633-40. [PMID: 27342582 PMCID: PMC5039344 DOI: 10.1093/ndt/gfw241] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/12/2016] [Indexed: 12/11/2022] Open
Abstract
Background Identification of acute kidney injury (AKI) can be challenging in patients with underlying chronic disease, and biomarkers often perform poorly in this population. In this study we examined the performance characteristics of the novel biomarker panel of urinary tissue inhibitor of metalloproteinases-2 (TIMP2) and insulin-like growth factor-binding protein 7 ([IGFBP7]) in patients with a variety of comorbid conditions. Methods We analyzed data from two multicenter studies of critically ill patients in which [TIMP2]•[IGFBP7] was validated for prediction of Kidney Disease: Improving Global Outcomes (KDIGO) Stage 2 or 3 AKI within 12 h. We constructed receiver operating characteristic (ROC) curves for AKI prediction both overall and by comorbid conditions common among patients with AKI, including diabetes mellitus, congestive heart failure (CHF) and chronic kidney disease (CKD). Results In the overall cohort of 1131 patients, 139 (12.3%) developed KDIGO Stage 2 or 3 AKI. [TIMP2]•[IGFBP7] was significantly higher in AKI versus non-AKI patients, both overall and within each comorbidity subgroup. The AUC for [TIMP2]•[IGFBP7] in predicting AKI was 0.81 overall. Higher AUC was noted in patients with versus without CHF (0.89 versus 0.79; P = 0.026) and CKD (0.91 versus 0.80; P = 0.024). Conclusions We observed no significant impairment in the performance of cell cycle arrest biomarkers due to the presence of chronic comorbid conditions.
Collapse
Affiliation(s)
- Michael Heung
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Luis M Ortega
- Division of Nephrology and Hypertension, Department of Medicine, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Lakhmir S Chawla
- Department of Anesthesia and Medicine, George Washington University, Washington, DC, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wesley H Self
- Department of Emergency Medicine, Vanderbilt University, Nashville, TN, USA
| | - Jay L Koyner
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jing Shi
- Walker Bioscience, Carlsbad, CA, USA
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | |
Collapse
|
19
|
Structural equation modelling exploration of the key pathophysiological processes involved in cardiac surgery-related acute kidney injury in infants. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:171. [PMID: 27262736 PMCID: PMC4893417 DOI: 10.1186/s13054-016-1350-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/13/2016] [Indexed: 01/06/2023]
Abstract
Background Uncertainties about the pathophysiological processes resulting in cardiac surgery-related acute kidney injury (AKI) in infants concern the relative impact of the most prominent risk factors, the clinical relevance of changes in glomerular filtration rate vs tubular injury, and the usefulness of available diagnostic tools. Structural equation modelling could allow for the assessment of these complex relationships. Methods A structural model was specified using data from a prospective observational cohort of 200 patients <1 year of age undergoing cardiopulmonary bypass surgery. It included four latent variables: AKI, modelled as a construct of perioperative creatinine variation, of oliguria and of urine neutrophil gelatinase-associated lipocalin (uNGAL) concentrations; the cardiopulmonary bypass characteristics; the occurrence of a post-operative low cardiac output syndrome and the post-operative outcome. Results The model showed a good fit, and all path coefficients were statistically significant. The bypass was the most prominent risk factor, with a path coefficient of 0.820 (95 % CI 0.527–0.979), translating to a 67.2 % explanation for the risk of AKI. A strong relationships was found between AKI and early uNGAL excretion, and between AKI and the post-operative outcome, with path coefficients of 0.611 (95 % CI 0.347–0.777) and 0.741 (95 % CI 0.610–0.988), respectively. The path coefficient between AKI and a >50 % increase in serum creatinine was smaller, with a path coefficient of 0.443 (95 % CI 0.273–0.596), and was intermediate for oliguria, defined as urine output <0.5 ml kg−1 h−1, with a path coefficient of 0.495 (95 % CI 0.250–0.864). A path coefficient of −0.229 (95 % CI −0.319 to 0.060) suggested that the risk of AKI during the first year of life did not increase with younger age at surgery. Conclusions These findings suggest that cardiac surgery-related AKI in infants is a translation of tubular injury, predominately driven by the cardiopulmonary bypass, and linked to early uNGAL excretion and to post-operative outcome. Trial registration ClinicalTrials.gov identifier NCT01219998. Registered 11 October 2010. Electronic supplementary material The online version of this article (doi:10.1186/s13054-016-1350-1) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Structural equation modeling identifies markers of damage and function in the aging male Fischer 344 rat. Mech Ageing Dev 2016; 156:55-62. [PMID: 27134149 DOI: 10.1016/j.mad.2016.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/12/2022]
Abstract
The male Fischer 344 rat is an established model to study progressive renal dysfunction that is similar, but not identical, to chronic kidney disease (CKD) in humans. These studies were designed to assess age-dependent alterations in renal structure and function at late-life timepoints, 16-24 months. Elevations in BUN and plasma creatinine were not significant until 24 months, however, elevations in the more sensitive markers of function, plasma cystatin C and proteinuria, were detectable at 16 and 18 months, respectively. Interestingly, cystatin C levels were not corrected by caloric restriction. Urinary Kim-1, a marker of CKD, was elevated as early as 16 months. Klotho gene expression was significantly decreased at 24 months, but not at earlier timepoints. Alterations in renal structure, glomerulosclerosis and tubulointerstitial fibrosis, were noted at 16 months, with little change from 18 to 24 months. Tubulointerstitial inflammation was increased at 16 months, and remained similar from 18 to 24 months. A SEM (structural equation modeling) model of age-related renal dysfunction suggests that proteinuria is a marker of renal damage, while urinary Kim-1 is a marker of both damage and function. Taken together, these results demonstrate that age-dependent nephropathy begins as early as 16 months and progresses rapidly over the next 8 months.
Collapse
|
21
|
Wang X, Grunz-Borgmann EA, Parrish AR. Loss of α(E)-catenin potentiates cisplatin-induced nephrotoxicity via increasing apoptosis in renal tubular epithelial cells. Toxicol Sci 2014; 141:254-62. [PMID: 24973089 DOI: 10.1093/toxsci/kfu130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is one of the most potent and widely used antitumor drugs. However, the use of cisplatin is limited by its side effect, nephrotoxicity. Evidence has shown an increased incidence and severity of acute kidney injury (AKI) in the elderly. Previous studies from our laboratory demonstrate a decrease in α(E)-catenin expression in aged kidney. In this study, we investigated whether the loss of α(E)-catenin may increase cisplatin nephrotoxicity. To study the effects of reduced α(E)-catenin, a cell line with stable knockdown of α(E)-catenin (C2 cells) was used; NT3 is nontargeted control. C2 cells exhibited a significant loss of viability as determined by MTT assay compared with NT3 cells after cisplatin challenge, but showed no difference in lactate dehydrogenase (LDH) leakage. Increased caspase 3/7 activation and PARP cleavage was observed in C2 cells after cisplatin treatment. Z-VAD, a pan-caspase inhibitor, abolished the difference in susceptibility between NT3 and C2 cells. Interestingly, the expression of α(E)-catenin was further decreased after cisplatin treatment. Furthermore, in vivo data demonstrated a significant increase in serum creatinine at 72 h after a single dose of cisplatin in 24-month-old rats, but not in 4-month-old rats. Increased expression of KIM-1 and in situ apoptosis were also detected in aged kidney after cisplatin challenge. Taken together, these data suggest that loss of α(E)-catenin increases apoptosis of tubular epithelial cells which may contribute to the increased nephrotoxicity induced by cisplatin in aged kidney.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Medical Pharmacology and Physiology, School of Medicine, University, of Missouri, Columbia, Missouri 65212
| | - Elizabeth A Grunz-Borgmann
- Department of Medical Pharmacology and Physiology, School of Medicine, University, of Missouri, Columbia, Missouri 65212
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University, of Missouri, Columbia, Missouri 65212
| |
Collapse
|
22
|
Effects of environmental levels of cadmium, lead and mercury on human renal function evaluated by structural equation modeling. Toxicol Lett 2014; 228:34-41. [PMID: 24769258 DOI: 10.1016/j.toxlet.2014.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 11/23/2022]
Abstract
A relationship between exposure to heavy metals, including lead and cadmium, and renal dysfunction has long been suggested. However, modeling of the potential additive, or synergistic, impact of metals on renal dysfunction has proven to be challenging. In these studies, we used structural equation modeling (SEM), to investigate the relationship between heavy metal burden (serum and urine levels of lead, cadmium and mercury) and renal function using data from the NHANES database. We were able to generate a model with goodness of fit indices consistent with a well-fitting model. This model demonstrated that lead and cadmium had a negative relationship with renal function, while mercury did not contribute to renal dysfunction. Interestingly, a linear relationship between lead and loss of renal function was observed, while the maximal impact of cadmium occurred at or above serum cadmium levels of 0.8 μg/L. The interaction of lead and cadmium in loss of renal function was also observed in the model. These data highlight the use of SEM to model interaction between environmental contaminants and pathophysiology, which has important implications in mechanistic and regulatory toxicology.
Collapse
|